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Abstract 
 

 

Fuel economy and emission challenges are pushing automotive OEMs to develop alternative 

hybrid-electric, and full-electric powertrains, increasing variation in potential powertrain 

architectures, which exacerbates the complexity of control software used to coordinate various 

propulsion devices. Safety of this control software must be ensured through high-integrity 

software monitoring functions that detect faults and ensure safe mitigating action is taken. This 

monitoring functionality has itself become complex, requiring extensive modification for each 

new powertrain architecture to develop, calibrate, and verify the software to ensure safety as 

defined by ISO 26262. However, it must also be robust against false fault-detection, thereby 

maximising vehicle performance availability to the customer. It is therefore desirable to 

investigate whether novel approaches for software safety monitoring can address the 

manufacturer’s complexity and calibration burden whilst robustly achieving safety with 

minimal effect on availability.  

In this thesis, two novel functional safety monitoring concepts have been conceived and 

developed. First, an Adaptive Safety Monitor is introduced that aims to directly reduce the 

necessary safety software fidelity through new reasoning surrounding safety and driver 

expectation. An improvement in robustness is demonstrated by successfully using a low-

fidelity safety software coupled with an adaptive safety monitor instead of a conventional 

high-fidelity model approach, and was shown to both accurately detect erroneous torque 

demand and prevent false-positive detection. Secondly, a novel Principal Component Analysis 

based safety monitor is introduced. An automated PCA model derivation process is developed 

that derives safety software automatically from the control software, with minimal effort from 

the OEM, and is shown to both quantitatively and qualitatively detect software faults within 

5Nm of torque demand. These concepts are supported by a literature review, development 

context in relation to the ISO 26262 standard, and a set of ideal monitoring attributes derived 

from ISO 26262, ISO 25010, and expert opinion. A Matlab/Simulink electric vehicle model 

was created to serve as a simulation test-bed for both concepts. Lastly, considerations for 

verification and validation are explored before both developed concepts are evaluated 

according to the derived ideal attributes. 
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Chapter 1 
 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 – Summary 

 

The introduction will outline the motivation behind this project by discussing the demands of 

the automotive market and pressures on automotive OEMs, recent technology advances, and 

the trends that these advances have yielded in the automotive sector. The new challenges these 

trends bring to the automotive OEM will be discussed with particular attention drawn to 

increased vehicle control software complexity, leading to increased development costs for the 

manufacturer. From this, the research question will be asked, along with the aim and objectives 

this project seeks to achieve. Finally, the structure of this thesis will be outlined. 
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1-1 – Motivation 

 

1-1.1 – Manufacturer Development Burdens 

 

Modern vehicle manufacturers (OEMs) are being challenged more than ever before to develop 

new technologies to meet the demands of the market. Governments around the world are 

implementing ever-more stringent emissions legislation, such as the upcoming Euro VII terms 

in Europe, along with a replacement for the New European Drive Cycle that aims to provide 

emissions figures that better match real world driving, through the World Harmonized Light 

Vehicle Test Procedure [1]. To comply with these new emissions targets, manufacturers must 

develop their vehicles with the environment in mind. The penalties can be severe, as not 

meeting these targets for a mass-market vehicle will lead to heavy fines imposed on the 

manufacturer. Simultaneously, more demanding customer expectations in performance – 

seemingly at odds with reducing emissions – have forced manufacturers to improve vehicle 

technology in most other areas to remain competitive. Customers in most markets are seeking 

cars with better driving performance, refinement, features, and fuel economy, and new vehicle 

technologies are important to satisfying consumer desire in purchasing new vehicles [2]. 

 

1-1.2 – Recent Technology Advances 

 

Technology advances in recent years have transformed vehicle engineering design capabilities 

and added features to vehicles in the large automotive sector that is still expanding. 

Underwood [3] highlights a number of key technological advances that have fostered the most 

change. 

 

1-1.2.1 – Computing Power 

 

Developments in microprocessors have, in general, followed Moore’s Law [4] under which 

the transistor density in mainstream microprocessor circuits double roughly every 18 months. 

In turn, this means processor speed in mainstream microprocessors is continuously increasing. 

Figure 1-1 shows the result of Moore’s Law since the 1970s with respect to how transistor 

density has increased average microprocessor clock speed.  
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Figure 1-1: A recent visualisation of the impact of Moore’s Law, yielding exponentially 

increased average clock speed in mainstream microprocessors [5, 6] 

 

Couple this trend of increased performance with the decreased manufacturing and energy costs 

per unit of performance, and the use of persistently more powerful processing devices in 

consumer vehicles remains feasible. Figures 1-2 and 1-3 show the reduction of manufacturing 

per transistor cycle and energy consumption per million instructions per second, respectively.  

 

 

 

Figure 1-2: falling microprocessor manufacturing cost per transistor runtime cycle [6] 

 



 

23 

 

 

 

Figure 1-3: Improved energy efficiency per microprocessor instruction [6] 

 

Indeed, established microprocessor companies have developed high performance computing 

processors specifically for new software applications in the automotive, such as Engine 

Control Units (ECUs) [7].  

 

1-1.2.2 – Networking 

 

Communication technology, specifically wireless communications, has increased 

exponentially too. Over time, Nielsen’s Law of Internet Bandwidth [8] has described this trend 

as a 50% annualised growth in internet bandwidth. The introduction of high speed wireless 

internet protocols, such as 4G and the upcoming 5G service, can deliver wireless speeds of up 

to 20 Gbits/s [9]. Primarily driven by the consumer cellular phone demands, this 

communication service is already being used by vehicle entertainment systems. Already the 

wireless network is impacting consumer driving habits, as live traffic updates are being 

produced using information from clients connected to the wireless cellular network. With 

network capabilities seeing continuous investment in both first and third world countries, 

automotive manufacturers are seeking ways to utilise these newfound communication 

capabilities through new vehicle features that meet consumer demands. Further to this is the 

development of high-speed short-range communication protocols such as Dedicated Short-

Range Communication, aimed at being able to quickly connect and share data with local 

transmitter/receivers [3]. 
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1-1.2.3 – Battery Technology 

 

Battery electric accumulators used for electric vehicles (EVs) are another trend that is seeing 

great strides in advancement. An obstacle to electric vehicles has – until recently – been the 

performance limitation of providing enough energy density (kWh/kg), and the cost limitation 

of reducing battery price per kWh ($/kWh). Recent breakthroughs in battery technology, and 

the establishment of more raw material suppliers and mass production battery manufacturers, 

has addressed both limitations, as average power density has risen and cost per kWh has fallen 

[10]. Indeed, based on 2012 forecasting, major automotive manufacturers have, in fact, been 

able to exceed predictions in reducing battery cost, shown in Figure 1-4 through analysis 

conducted by Wood Mackenzie  

 

 

 

Figure 1-4: Wood Mackenzie 2012 battery cost forecast, with recent data and near future 

prediction by some major automotive OEMs [10]. 

 

Currently, lithium-ion batteries have been the main technology used in the automotive 

industry, but next generation research is already underway, with the much more widely 

abundant sodium-ion being a favourable avenue to drastically reduce the cost per kWh. Many 

predict these could be widely available as soon as 2020 [11].  
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1-1.3 – Automotive Industry Trends: Autonomy, Connectivity, 

Electrification. 

 

The key technology drivers in the automotive industry has resulted in three identifiable 

technology trends emerging in the automotive sector: Autonomy, Connectivity, and 

Electrification [12], known as the ‘ACEs’ trends.  

 

1-1.3.1 – Autonomy 

 

Autonomy refers to some level of vehicle intelligence, whereby the vehicle can take over 

functions typically performed by the driver. This primarily includes control of acceleration, 

braking, and steering, but can extend to making driving decisions based on the environment, 

such as changing lanes, taking an exit, merging with the flow of traffic, and obstacle avoidance. 

SAE J3016 [13] is a published standard for categorising various ‘levels’ of autonomous 

capabilities a vehicle has; this is shown in Table 1-1. 

 

Table 1-1: Summary of automated driving levels from SAE J3016 [13] 

 

SAE 

Level 
Name 

Execution of 

Steering and 

Acceleration/ 

Deceleration 

Monitoring of 

driving 

environment 

Fallback 

performance 

of dynamic 

driving task 

System 

Capability 

(driving 

modes) 

0 
No 

Automation 
Human Driver Human Driver Human Driver N/A 

1 
Driver 

Assistance 

Human Driver 

and System 
Human Driver Human Driver 

Some 

Driving 

Modes 

2 
Partial 

Automation 
System Human Driver Human Driver 

Some 

Driving 

Modes 

3 
Conditional 

Automation 
System System Human Driver 

Some 

Driving 

Modes 

4 
High 

Automation 
System System System 

Some 

Driving 

Modes 

5 
Full 

Automation 
System System System 

All Driving 

Modes 

 

Many manufacturers have sold Level 2-capable autonomous vehicles, but the ‘tipping point’ 

comes when Level 3 is reached, as this moves the responsibility of monitoring the driving 

environment away from the driver and onto the vehicle, meaning liability shifts to the 
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manufacturer. Currently ‘autonomy’ is most widely seen in automated emergency braking 

systems which are expected to be mandated in Europe in the near future [14].  From a safety 

perspective, autonomy is seen as being able first to result in crashless vehicles to reduce road 

traffic accidents significantly through the aid of warnings and interventions for the driver, 

before eventually becoming ‘driverless’ vehicles, whereby the vehicle is able to fully control 

itself on the road and keep the occupants safe. Public opinion of driverless vehicles is still 

split, with recent high-profile fatalities being blamed on self-driving systems [15]. However, 

Underwood’s [3] forecast predicts the first stepping stone of crashless vehicles will lead to 

more widespread public acceptance of driverless systems, with these systems set to improve 

with more testing enabled by the recent technology advancements in networking and 

computing power. 

 

1-1.3.2 – Connectivity 

 

Technology advancements in wireless internet bandwidth and new short-range communication 

protocols have opened the possibility for the development of ‘connected vehicles’. These are 

vehicles that are connected to a network capable of supplying useful information that can affect 

driving decisions by either the driver or the autonomous vehicle, either through short range 

communication between nearby vehicles, between the vehicle and a greater infrastructure 

network, or generally between the vehicle and a connectivity cloud [3]. The information 

available to a connected vehicle can help aide infrastructure traffic flow, through the use of 

‘intersection move assist’, ‘cooperative adaptive cruise control’ (or ‘platooning’), and live 

traffic information in order to reduce journey travel times and improve fuel efficiency [3]. It 

can also be used as a safety tool, utilising features such as ‘do not pass warning’, ‘control loss 

warning’ and ‘forward collision warning’ to help make better driving decisions.  

 

A safety pilot has been conducted by the US Department of Transportation over a three year 

period starting in 2015, called The Ann Arbor Connected Vehicle Test Environment, whereby 

~2800 vehicles were equipped with short range communication send/receivers [16]. These 

‘vehicle awareness devices’ transmit ‘basic safety messages’ continuously, sending location 

and velocity data to a central network, which is then shared with nearby vehicles. Interestingly, 

the basic safety message is communicated over 5.9 GHz channel frequency, which was 

specifically set aside by the US Federal Communications Commission to support intelligent 

transportation systems, as far back as 1999; clearly, then, connected vehicles have been a long-

term development, poised for growth over coming years.  
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1-1.3.3 – Electrification 

 

Electrification of vehicle powertrains – of the three ACEs trends – is the furthest developed 

trend so far, yet still in its infancy in terms of development potential and market share. Electric 

powertrains were in fact first seen at the dawn of the motorcar era, but never found mass 

market appeal due to limitations on performance development versus the internal combustion 

engine [17]. Primarily, battery technology has been the greatest roadblock to mass market 

ownership. Over the past two decades, however, electrified powertrains have become a 

popular choice amid rising fuel prices and as battery technology has progressed to make such 

vehicles more commercially feasible in the mass [17]. Typically, the electric motors are still 

coupled to an internal combustion engine (ICE) in a hybrid-electric vehicle (HEV) or plug-in 

hybrid-electric vehicle (PHEV) application, but as battery technology advances more fully-

electric vehicle (EV, also known as battery-electric vehicles, BEV) models are expected to be 

offered by manufacturers.  

 

The State of Innovation 2017 report by Clarviate Analytics [18] looks at novel patent families 

granted across technology sectors in order to track research activities and technology 

advancement, with the most recent results shown in Table 1-2. 

 

Table 1-2: State of Innovation 2017 tracking of patent subsectors submitted globally 

within the automotive sector. 

 

% Subsector 2016 2015 % Change 

23% Alternative powered vehicles 42880 37844 13% 

11% Navigation systems 21568 19753 9% 

11% Transmission 20299 20175 1% 

10% Seat, seatbelts and airbags 19754 18165 9% 

10% Safety 19076 18551 3% 

7% Suspension systems 13431 12827 5% 

6% Steering systems 11925 10841 10% 

6% Pollution control 10667 10114 5% 

5% Security systems 9217 8627 7% 

4% Braking systems 8262 7654 8% 

4% Engine design and systems 8048 7845 3% 

2% Entertainment systems 4591 4659 -1% 
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Within the automotive sector, the subsector that saw both the greatest percentage and year-

over-year change in novel patent families was alternative powered vehicles, which the report 

notes comprise of mostly of electrified powertrain innovations. Tightening emissions is 

leading to some countries imposing national bans on new vehicles sold with non-electrified 

powertrains. These countries reportedly include the UK, China, India, Germany, France, 

among others, imposing such a ban between 2030 and 2040 [19]. Most drastically, the 

Netherlands has announced a ban on any non-zero-emission vehicle sold from 2030 [20]. The 

2017 European market share of EV and BEVs is shown in Figure 1-5.  

 

 

 

Figure 1-5: Market share percentage of BEV and PHEV of new cars sold within major 

European countries in 2017 [21]. 

 

With a combined EV and BEV new car market share less than 2% for most major European 

countries, and the emissions legislations being imposed by their governments, the market 

capitalisation potential is very high for electric vehicles over the coming years and into the 

future. 

 

1-1.4 – ACEs and Software Complexity 

 

While the ACEs trends advance the quality of product for consumers, meeting the demands of 

the market through greater convenience, performance, efficiency, and connectivity, there is an 

opportunity cost to each of these trends. The prospect of vehicle autonomy has prompted many 
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questions surrounding consumer lifestyle habits with regards to vehicle ownership. Many 

companies are investing in shared ownership business models, with on-demand vehicle hailing 

for a regular subscription fee. Autonomous vehicles are seen by many experts as the biggest 

fundamental change to the automotive industry since the introduction of the car itself. 

Integration of autonomous technology with the current road traffic rules and human drivers is 

also a concern: autonomous systems have already been blamed for many fatal incidents in the 

US and Europe [15], [22]. though most can attribute improper use and lack of driver 

intervention as the ultimate enabler. The connectivity trend will require significant investment 

from either private automotive companies, or local, national, and even international 

governments to improve the wireless communication infrastructure of vehicle-to-grid and 

vehicle-to-vehicle networks [3]; in either respect, the cost will most likely be passed onto the 

consumer through added purchase price or through taxation. Widespread vehicle 

electrification will require significant upgrades in the power grid capability to be able to cope 

with the demands of vehicle charging, resulting in more expensive electricity unit prices from 

the power suppliers, and possibly increased taxation due to national infrastructure upgrades 

[23].  

 

Aside from the given research and development costs associated with any new technology, the 

ACEs trends all share a common denominator in increased software complexity. Each of the 

ACEs trends require significantly more information to be processed; autonomous vehicles 

process large amounts of visual data from cameras, as well as Lidar and radar systems, to 

understand the state of the environment around the vehicle. It must then process this data into 

the most suitable action/reaction, calling on much stored data [13]; this complexity is further 

compounded if the autonomous system is continuously learning through performance analysis.  

 

Connectivity requires wireless and information processes to be incorporated with the vehicle 

software system, requiring additional computational power to process the numerous streams 

of information that is used to change performance and aide in driving decisions and driver 

recommendations. Autonomous vehicles can rely on  vehicle-to-anything data to make driving 

decisions [24], and with the introduction of 5G networks capable of 1 to 20 Gbit/s data transfer 

[9] potentially huge amounts of network data can be made available for the vehicle control 

software to use. The network data could provide information of every local vehicle, pedestrian 

and object detected by the network of cars, all of which needs to be processed by the vehicle 

for the best course of action. 

 

Electric powertrains introduce a fundamentally different method of delivering drive torque 

than mainstream vehicles have historically utilised up until recent years, with either petrol or 
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diesel ICEs. The software that controls the torque delivery, and management of the various 

subsystems of the electric powertrain (such as the inverters and accumulators), is both complex 

and substantially different from the software that controls torque delivery through an ICE. A 

single vehicle model may have had a range of different petrol or diesel powertrain variants, 

probably shared between some vehicle models, however, with the introduction of electrified 

powertrains in the mainstream automotive market the number of possible powertrain varieties 

for a single vehicle model similarly increases. In all, the cumulative software complexity and 

development effort required for a single vehicle model across all powertrain variants increases 

substantially. Furthermore, new driveability, efficiency and performance control features 

continue to push up software complexity over all hybrid and electric variants.  

 

1-1.4.1 – Powertrain Control Software 

 

The software that is primarily responsible for the control of all powertrain functions, and which 

contains all driveability, performance, and efficiency features, is called the ‘functional 

software’. The functional software takes vehicle states, environmental measurements, and 

driver input, specifically, the accelerator pedal. Using these signals, the functional software is 

able to produce a ‘torque demand’, which is the overall powertrain torque that is requested 

from the powertrain [25]. This torque demand is then distributed between the various 

propulsion actuators for actualisation, with software components dedicated to controlling the 

individual actuators. When one considers all the factors that go into determining the 

appropriate torque demand, compounded with the trend of electrification, clearly the 

functional software that will become increasingly complex.  

 

1-1.4.2 – Safety Software 

 

Due to the software separating driver from powertrain control (i.e., there no longer exists a 

mechanical linkage between accelerator pedal and powertrain actuators), the functional 

software becomes a safety critical component. As such, it is essential that manufacturers verify 

that any unreasonable risk is mitigated within the functional software, as a fault or malfunction 

in the functional software can lead to a hazard. Indeed, the recent introduction of ISO 26262 

Road Vehicles – Functional Safety [26] has warranted that manufacturers who aim to be ISO-

compliant must prove that freedom from unreasonable risk is ensured in all electronic and 

electrical systems, including software.  

 

With the complexity in the functional software, however, the verification of such freedom is a 

significant undertaking for the manufacturer, and is typically commercially infeasible. 
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Therefore, OEMs instead develop a simpler set of software which acts as a watchdog or 

comparator to the functional software, and which can be much more easily verified; this is 

called the ‘safety software’. The safety software is a simplified version of the functional 

software, containing only the most important components of the functional software to ensure 

that safety is being achieved. It checks to see whether the torque demand being asked by the 

functional software is plausible, expected, and safe; the safety software is a fault detection and 

fault reaction mechanism used to ensure the vehicle meets the safety requirements set out by 

the manufacturer using ISO 26262. The context of functional and safety software is shown in 

Figure 1-6. 

 

 

 

Figure 1-6: Functional and Safety Software in the context of driver controlling vehicle 

acceleration. 

 

Compared to the functional software, the safety software is of a reduced complexity to enable 

feasible verification of safety, but also comes at the cost of some level of reduced accuracy 

when compared to the functional software. The safety software errs on the side of caution, but 

doing so can result in reduced system robustness, leading to an unnecessary loss of vehicle 

availability to the driver due to omitted functional software components in the safety software. 

Therefore, it becomes an issue of software fidelity: high fidelity safety software will be more 

accurate and robust, but its complexity will result in much higher development and verification 

efforts, whereas low fidelity software is less complex with reduced development and 

verification efforts, but at the cost of robustness. OEMs aim to develop the lowest cost safety 

software that meets robustness requirements.  
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Unfortunately, with the anticipation of much more complex functional software due to the 

ACEs trends, the safety software will in turn also start becoming more complex, as otherwise 

the fault detection system becomes much less robust. This leads to increased development and 

verification costs per powertrain variant. Furthermore, with the wider range of powertrain 

variants available, the cost of development and verification for the safety software for all the 

variants within a single vehicle model offering cumulatively increases the cost far beyond what 

it has been before, with the current safety software approaches. Safety software in particular 

is seeing a great amount of innovation and research, as can be seen in Table 1-2, where the 

automotive subsector of ‘safety’ (which excludes ‘seats, seatbelts and airbags’) is responsible 

for 10% of novel patent families being submitted in 2016 [18], putting it in the top five most-

researched automotive subsectors according to this metric of innovation.  

 

1-2 – Research question 

 

Given the prospect of significantly increased software development, verification, and 

implementation costs to the OEM as the ACEs trends will tend to increase software 

complexity, the following research question should be asked:  

 

• Could a new approach or method of implementing safety software reduce the cost 

burden on the manufacturer, while still ensuring the safe operation of the functional 

software in vehicle powertrains? 

 

1-2.1 – Aims and Objectives 

 

The research question has prompted this investigation into the current method(s) used by 

OEMs to achieve safety through safety software. Jaguar Land Rover, an external automotive 

OEM, has provided funding for this project, as well as made available expertise from its safety 

team. Using these resources, and expertise at the University of Bath, the aim of the project is 

as follows: 

 

• Investigate new safety software concepts and evaluate them against the current state 

of practice. 

 

To satisfy the aim, and answer the research question, the following five objectives are set: 
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1) Objective 1: Understand current state of practice, and identify new concepts from 

literature. 

 

A literature review will be conducted into fault detection methods, considering the 

current state of practice in the automotive industry, and other industries such as 

aerospace, locomotive, nuclear power plants and process engineering. 

 

2) Objective 2: Identify ideal concept attributes and score candidates against them. 

 

The application within which the concept will be applied, and ISO 26262 standard 

which governs the topic, needs to be understood such that the intended application can 

be appropriately scoped. Furthermore, with expertise available from the OEM, as well 

as other applicable standards governing the software, a list of desirable attributes can 

be identified, against which candidate concepts and the benchmark can be scored 

against. These scores can be weighted according to desirability, and are used to narrow 

down the concept candidates to only those that provide the highest chance of success 

before being investigated.  

 

3) Objective 3: Establish a testing method for testing performance of the concepts. 

 

To test whether the concepts are able to detect faults and perform satisfactorily, a valid 

testing method must be devised, including the development of a testing environment 

within which the concepts can be evaluated. 

 

4) Objective 4: Conduct detailed investigation into candidate concept(s). 

 

With the concepts selected from the literature review, ideal concept attributes 

identified, and a testing environment established, the detailed investigation and 

development of the concept candidates can be undertaken. 

 

5) Objective 5: Determine if candidate concepts could be suitable for a future production 

vehicle using ideal concept attributes.  

 

After the concept investigations take place, they are re-evaluated and re-scored against 

the ideal concept attributes post-investigation, using the outputs of the detailed 

concept investigations. The final evaluation will discuss each concept’s score with 

each attribute in a discussion. 
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1-3 – Thesis Structure 

 

The contents of each of the seven chapters of this thesis is detailed below: 

 

1) Chapter 1: Introduction, containing the motivation for the project. Here, the current 

automotive technology trends of autonomy, connectivity, and electrification are 

highlighted, and the problems they bring to the OEM are discussed, specifically, 

increased software complexity. The software used in automotive vehicles is discussed, 

with focus on safety software. The research question is then asserted, and aims and 

objectives highlighted.  

 

2) Chapter 2: The literature review, looking at the current state of practice with regards 

to safety software and fault detection in the automotive industry. This is then expanded 

to other industries, such as aerospace, locomotive, and nuclear power plants to identify 

possible concepts. A map of concepts is created and categorised, and these concepts 

explained and discussed. A number of these are subsequently selected based on their 

initial potential.  

 

3) Chapter 3: An overview of the ISO 26262 standard, discussing mostly the concept 

phase of the standard, where the safety lifecycle process begins. In the first part of this 

chapter, a walk-through of the concept phase is conducted, leading to the functional 

safety requirements that provide the context within which the concepts are being 

developed within. Safety nomenclature and their meaning for the subsequent chapters 

are defined here. The next part of this chapter contains the identification of the ideal 

monitoring, using ISO 26262, ISO 25010, and OEM expertise from Jaguar Land 

Rover to determine which attributes are desirable in a safety concept. These are then 

weighted according to desirability. The benchmark concept and concept candidates 

identified in the literature review are then scored using knowledge gained from the 

literature review to eliminate low scoring concepts. The last part of this chapter 

introduces the test method, through the use of an electric vehicle model made in 

Matlab/Simulink software environment, ending with the testing method for the safety 

concepts being established at the end of the chapter. 

 

4) Chapter 4: A detailed investigation into the adaptive safety monitor concept, this 

chapter provides a novel justification for the use of an adaptive module in the 

benchmark system. The basis of what constitutes an unexpected hazard is challenged, 
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and the way this new reasoning may allow for some adaptive function to be used. 

Furthermore, this adaptive function can allow a less complex set of safety software to 

be used while maintaining and/or improving concept reliability. The concept is then 

explained, and then tested using the test environment from Chapter 3, specifically with 

the use of a vehicle creep controller, and the results analysed. An automated 

optimisation technique is finally described and tested that aides in parameter tuning, 

and forms the basis of what could constitute future work with automated derivation. 

 

5) Chapter 5: The second concept candidate is investigated, a principal component 

analysis (PCA) based safety concept. The development of the concept is documented, 

starting from fundamentals being applied to a linear system in a vehicle program to 

detect torque errors. A novel method of being able to identify fault direction as well 

as magnitude through output signal offsetting is introduced. Non-linear systems are 

then investigated, leading to the conception of the Local PCA concept which divides 

the system operating ranges and fits local PCA models to them. After this, an 

automated subdivision PCA process is created, which enables automated PCA-based 

safety software model generation based only the training data inputs and outputs. 

These models are then stored and used in real-time as a successful safety monitor to 

estimate torque error in the control software, demonstrated through a vehicle 

simulation. Finally, the limitations of the concept are discussed, and alternative PCA 

module architectures are presented. 

 

6) Chapter 6: With the two key concepts investigated primarily for functional 

suitability, the verification and validation concerns unique to each concept is discussed 

in this chapter, along with their potential solutions. The two concepts are then 

evaluated against the original ideal concept attributes, with an updated post-

investigation score and discussion for each attribute leading to final concept scoring 

and recommendation. 

 

7) Chapter 7: In this final chapter, a summary of the research activities undertaken in 

this thesis is presented. The original research question is revisited and answered 

through the discussion of how the research activities meet the objectives set in this 

chapter. An overall conclusion is drawn, and future research activities originating 

from this investigation are described. 
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1-4 – Conclusion 

 

Functional software used to control vehicles and their powertrains are a significant burden to 

OEMs in the process of product development. New automotive technology trends, autonomy, 

connectivity, and electrification (ACE) are set to exacerbate this burden through necessary 

increased functional software complexity, which drives increased safety software complexity, 

using current safety software approaches. It is therefore worthwhile to examine if novel 

approaches could reduce this burden. 

 

With the project motivation outlined, and the research question proposed with the aim and 

objectives of the project, a literature review will be conducted to provide context within the 

field of fault detection safety systems, the current state of practice in the industry, and to 

identify possible safety concept candidates for further investigation. 
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Chapter 2 
 

Literature Review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 – Summary 

 

A literature review needs to be undertaken to understand which safety concepts have seen 

successful implementation. This literature review will seek to cover the automotive industry 

to identify a concept to benchmark future concepts against, and to identify a number of 

preliminary concepts for future investigation. The fault detection strategies in the automotive 

sector will first be explored, then other industries such as locomotive, industrial plants and 

aerospace. Finally, safety concepts will be identified and discussed before the concept 

candidate shortlist is presented. 

 

• Objective 1: Understand current state of practice and identify new concepts from  

                      literature. 
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2-1 – Fault Detection Strategies in the Automotive Sector 

 

First, the current state of practice of safety monitoring in the automotive industry needs to be 

understood. This section will cover the benchmark concept against which future concept 

candidates will be evaluated.  

 

2-1.1 – ISO 26262 Overview 

 

ISO 26262 [27], released in 2011, is a new standard by which functional safety in road vehicles 

can be verified. A second edition was released in 2018 [28],but as this project was undertaken 

under the first edition, that will be used going forwards. The first edition contains ten parts 

that cover a traceable safety lifecycle process from the Concept Phase (Part 3 [27]), through 

the Product Development Phases (Parts 4-6 [29-31]), to the Production & Operation Phase 

(Part 7 [32]). Management guidelines (Part 2 [33]) are provided, as are Supporting Process 

information (Part 8 [34]), ASIL-Oriented and Safety-Oriented Analysis recommendations 

(Part 9 [35]). Vocabulary (Part 1 [26]) and Informative Guidelines (Part 10 [36]) make up the 

rest of the standard. Chapter 3 goes into more detail with regards to applying ISO 26262 to 

this project, but a few important ideas and concepts need to be introduced for this chapter.  

 

ISO 26262 uses a ‘Hazard Analysis and Risk Assessment’ to identify potential vehicle-level 

hazards resulting from item-level malfunctions, with the item in this project being the 

powertrain functional software. Each hazard is classified by its severity, exposure, and 

controllability, using the Automotive Safety Integrity Level (ASIL) to determine how much 

risk a particular hazardous situation poses to safety. Subsequently, the commensurate rigour 

of development and verification for the item is required by the OEM to show that unreasonable 

risk has been mitigated. The ASIL-ratings range from lowest priority with Quality 

Management (QM, an acceptable level of risk), through to ASIL A, B, C, and finally with D 

requiring the most development rigour. A ‘safety goal’ is then assigned to each ASIL-rated 

hazard, which is then realised through a ‘functional safety concept’; this is what the safety 

software is for the powertrain functional software, a functional safety concept that mitigates 

unacceptable risk due to possible malfunctions in the functional software.  

 

2-1.2 – E-Gas Safety Software Concept 

 

In 1995, a consortium of German manufacturers (BMW, Daimler, VW, Porsche, and Audi) 

established the E-Gas Working Group, a safety-driven collaboration for establishing safety 
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standards for electronically controlled throttle bodies that were beginning to see widespread 

use [25]. As of 2002, the workgroup had released a standardised functional safety monitoring 

concept for gasoline and diesel ECUs, and their concept is designed to implement a high-level 

safety requirement, specifically the ‘prevention of unintended acceleration’ (which, according 

to their own hazard analysis and risk assessment, yielded an ASIL-B rating). It uses a central 

functional monitoring architecture with three levels: Level 1 is the ‘functional level’, which 

contains all of the complexities of normal operation, calculating torque demand, which 

includes all the variables that account for drivability, fuel efficiency, performance, driver 

modes, powertrain transient compensation etc. Here, a faulty torque demand could lead to a 

violation of safety, and therefore the safe operation of the functional level needs to be ensured. 

This task is carried out by Level 2, the functional monitoring level, which calculates the 

‘permitted torque demand’, given some of the same information. Level 2 houses the safety 

software which calculates the permitted torque demand, and should the permitted torque 

demand exceed the torque demand from the functional software, a fault will be flagged, and 

the appropriate fault reaction or limitation will take place. Finally, to ensure that some 

hardware fault has not compromised the ability of the Level 2’s monitoring integrity, a Level 

3 subroutine is implemented, spanning over both the primary integrated circuit on the 

functional controller, and a separate integrated circuit called the monitoring controller. Figure 

2-1 shows the E-Gas three-level concept for powertrain control. 

 

 

 

Figure 2-1: Interaction between three levels in E-Gas safety concept for ECU [25] 
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2-1.2.1 – Continuous Torque Demand Monitor 

 

From the E-Gas Continuous Torque Monitor [25], a software-specific application of the safety 

concept can be created, called the ‘continuous torque demand monitor’. Instead of measuring 

directly the components of the vehicle powertrain in a feedback loop, the continuous torque 

demand monitor specifically looks at the cumulative torque demand desired by the system, 

before being interpreted by the propulsion actuators; this makes the monitor actuator 

independent, as it limits the scope to just the functional software. 

 

The safety software typically uses a simplified mathematical model of the functional software 

to estimate whether the functional software behaves as it should. The safety software model 

takes in some of the same input signals as the functional software, including driver inputs (e.g. 

accelerator pedal position, steering angle, mode selection), powertrain and vehicle states (e.g. 

actuator rotational speed, gear selection, differential engagement status, battery state of 

charge), and environmental conditions (e.g. ambient temperature, humidity) to calculate the 

permitted torque demand. Not all signals are used, owning to the safety software being 

simplified. The actual torque demand is measured from the functional software, and the 

permitted torque demand subtracted from the actual torque demand to calculate the difference 

between the two, called the ‘nominal torque error’, which is sent to a fault decision block. If 

the nominal torque error is above some acceptable threshold, it is assumed that a malfunction 

has occurred, and because the safety software is more rigorously verified for safety, it is 

assumed that the malfunction has occurred in the functional software, and a fault is flagged by 

the system. When this happens a fault reaction mechanism is triggered to bring the vehicle 

back to a safe state. For example, if an excessive amount of torque is detected from the 

functional software, the fault reaction mechanism may limit torque to the maximum safe limit 

such that the driver retains control of the vehicle. Figure 2-2 shows the architecture of the 

continuous torque demand monitor [37].  
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Figure 2-2: Continuous torque demand monitor, an example of model-based safety 

software design. 

 

Figure 2-2 is the basic concept of how the safety software ensures that the functional software 

is operating correctly. In practice, there are many extra complexities bespoke to each vehicle 

and OEM, including monitors within the safety software model around different parts of the 

torque structure. The fault-check block is also not simply the instantaneous error of the 

measured and expected torque outputs, but often incorporates some level of statistical analysis, 

taking into account historical variables and counters. The fault check block also depends on 

other variables, as a fault in one context does not necessarily mean a fault in another, for the 

same calculated error. 

 

The E-Gas software architecture is commonly used in the automotive industry for functional 

safety, especially among the Workgroup members and their suppliers. But as powertrain 

systems become increasingly diverse, particularly with the introduction of hybrid systems and 
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electrification, the interdependency and relations between new and existing functions and 

features increase the chance of a fault developing. In order for the E-Gas three-level approach 

to achieve the same level of robustness, the Level 2 monitoring functions need developing at 

a greater effort and cost, such that all possible fault causes and noise factors are accounted for. 

 

2-1.2.2 – Safety Software Complexity 

 

With the release of ISO 26262, the key question arises for the safety software engineer: ‘how 

does one know the system is safe enough?’ The straightforward answer is simply that if there 

is any error between the measured torque output and the expected torque output, then the 

system is not safe. In order to detect with 100% accuracy the occurrence and magnitude of any 

fault, the safety software model in Figure 2-2 needs to be a perfect representation of the 

functional software. Such a safety software model would yield an ‘ideal expected torque 

output’, which feeds into the error calculation block to produce the ‘actual torque error’. This 

has zero error under normal operating conditions, but under malfunctioning conditions a fault 

occurs, an error value is produced. To have a perfect safety software model that could quantify 

the true magnitude of the malfunction with 100% accuracy would require that all signals and 

processing code for every possible noise factor be taken into consideration. A perfect set of 

safety software, however, is far too complex to feasibly verify, and so its fidelity needs to be 

reduced to ease the burden of development and verification; doing so introduces noise factors. 

 

Noise factors are variables and underlying processes that, left unaccounted for, reduce the 

accuracy of the error calculation. The degree to which they affect the error calculation is 

dependent on the significance of that noise factor. Safety software complexity is reduced by 

choosing those noise factors that have the least significance, and would not reduce the ability 

of the concept to detect the presence of a safety-critical malfunction. Should the complexity 

be reduced too far, robustness of the safety monitoring concept is impacted, as it will 

incorrectly determine a fault has occurred – based on the safety model – when a true fault has 

not. Such a scenario is termed a “false positive”, whereby safety is maintained, but availability 

of the function is unnecessarily reduced. Causes of noise factors usually fall into the following 

categories [38, 39]: 

 

• Unstructured Uncertainties: Plant, component, or environment dynamics and 

variables that are not accounted for a priori in the safety software, leading to 

discrepancies between the mathematical safety software model and the plant itself. 
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For example, not accounting for vehicle mass when estimating torque error by 

measuring vehicle acceleration. 

• Process Noise: Limitations of the embedded software environment to perform 

perfectly accurate calculations of the physical domain. For example, accumulation of 

rounding errors due to using software variables with low bit depth.  

• Measurement Noise: Inaccuracies in the sensor measurement of the physical domain. 

For example, the high-frequency noise often found in accelerometer measurements, 

which often needs to be filtered and approximated. 

 

Attempting to account for every possible noise factor in such a highly dynamic plant – while 

keeping the safety monitor robust – is infeasible. Besides this, checking if any fault occurs (no 

matter how small), is usually over and beyond the requirement for meeting even the most 

stringent ASIL D rated safety goal. While that is the ultimate goal for the safety software, 

achieving this state in reality proves to be more effort than is required to ensure safety of the 

item; this is why engineers simplify the safety software by making the safety software model 

less representative of the functional software. This results in a system that estimates the 

expected torque output rather than perfectly imitates it, thus it is called the ‘estimated expected 

torque output’, and the corresponding error calculation yields the ‘estimated torque error’. 

Because it is not fully representative, there is some degree of signal variance where noise 

factors have not been fully modelled and accounted for. 

 

It is important to remember that having a safety software model that is not fully representative 

of the functional software does not necessarily mean the safety goal would not be met. Indeed, 

as long as the safety goal is met, the safety software model can be as simple as needs be. What 

could change is the probability of a false positive. Engineers overcome this by incorporating 

an error threshold in the fault decision block that will ignore small error values, attributing 

them to the fact that a simpler, less representative safety software on its own will have some 

error variance under normal conditions. Even if there actually is a small fault, it would not be 

a safety risk to the driver as long as the safety objective is still met. A more representative 

safety monitor can generally use a smaller error threshold without false positives occurring, 

whereas a less representative safety monitor typically needs a larger threshold as normal error 

variance is greater due to more unaccounted noise factors being present. As with most things 

in engineering, a balance needs to be found, where the error threshold in the safety software is 

small enough to reliably detect if the safety goal is close to being missed (without 

misdiagnosing a fault where there isn’t one), but such that the safety software is developed at 

a low cost (possibly meaning greater signal variance). Development effort is therefore directed 
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towards compensating for noise factors that have the greatest effect on variance and signal 

noise, as these are the most likely to give a false reading.  

 

2-1.2.3 – Adaptive Safety Monitor Concept 

 

The problem with rising safety software complexity due to the ACEs trends [3] has been stated. 

If, however, there were some way to use a simplified safety software model and still achieve 

safety, this would directly reduce the complexity of the safety software. The problem, 

naturally, is that this would also incur many more false positives due to noise factors that are 

left unaccounted for in the simpler safety software. However, if there were some way to adapt 

to these noise factors through an additional software function, while still achieving safety, 

robustness could be regained. Therefore, this theorised ‘adaptive safety monitor’ is a direct 

answer to the problem of safety software complexity by achieving the same result, with enough 

robustness, all while using a simpler safety software model that requires less development, 

verification, and implementation effort [40]. The adaptive safety monitor is discussed further 

in Chapter 3 during concept selection, and throughout Chapter 4.  

 

2-1.2.4 – Safety and Electrified Powertrains 

 

It is worth briefly discussing the effect that hybrid and electric vehicle and system design has 

on safety. Conventional ICE vehicles use only one torque source, whose power is split between 

two or four wheels through one or more differentials. Vehicle handling can be affected by 

which axle(s) are being driven, and the position of the engine mass with regards to these axles. 

Besides these arrangements, and active differential control (i.e. torque vectoring), there is not 

much else in a conventional powertrain that can significantly affect vehicle dynamics in the 

event of unintended acceleration or deceleration. With the introduction of electric motors, 

however, the number of powertrain system variants become much greater [41]. Because of 

this, some powertrains are susceptible to new hazards that require consideration, and new 

safety goals.  

 

In addition to the ICE powertrain topologies, electric motors can be placed on the engine 

crankshaft, after the transmission but before a differential, on the previously un-powered axle 

before a new differential, a motor per wheel. These options are not exclusive either, so a 

combination of many of these can be seen. The 2016 Honda NSX hybrid vehicle, for example, 

uses two motors independently driving the front wheels, and a third motor aiding the ICE with 

torque fill and regenerative braking [42]. From a safety point of view, independently driven 

wheels can not only lead to unintended acceleration or deceleration when a torque malfunction 
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occurs, but can also cause the car to change course through unintended lateral yaw [43, 44]. 

The 2016 Honda NSX powertrain is shown in Figure 2-3. 

 

 

 

Figure 2-3: 2016 Honda NSX, an example hybrid powertrain with independent electrically 

driven front wheels. [45] 

 

Additionally, depending on system architecture, a fault in one of the wheels could cause it to 

generate current and drive the other motor(s), further worsening the unintended steering effect 

[46]. Using this powertrain layout brings with it the added safety goal of ensuring that the 

cross-axle difference in torque from the motors is not enough to cause unintended vehicle 

instability. Achieving safety could require that steering angle, vehicle heading estimation and 

wheel slip be accounted for in the safety software.  

 

In summary, therefore, while having a variance of powertrain topologies bring with them 

exciting opportunities for better vehicle dynamics, it also presents an opportunity for new 

hazards. To the OEM, this stresses the importance of functional safety in the products it sells, 

and the need to ensure powertrain malfunctions do not lead to vehicle level hazards in all 

powertrain variants. The extra effort to ensure safety is now more difficult than ever due to 

these unique powertrain characteristics, hence why new safety concepts are of interest. It is 

possible that other industries could use safety concept methods that are now worth examining 

in the new era of vehicle powertrains.  

 

 

Independent 

electric motors 

driving front wheels 

Single motor 

assisting ICE on 

rear wheels 
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2-2 – Fault Detection Strategies in Other Sectors 

 

Safety concepts span a great number of industries and fields where ensuring the safe operation 

of electronically controlled systems is vital. There are many different methods used in practice, 

but a select few are typically favoured by certain industries; this is because some methods lend 

themselves better to some applications than others, be it due to flexibility, cost effectiveness, 

accuracy or robustness, available resources, packaging constraints etc. Moreover, engineers 

specialising in a certain industry use well established safety concepts that are both familiar to 

them, and are proven in the field. Indeed, ISO 26262 Part 4 Section 7.4.3.4 [29] encourages 

the use of “well-trusted automotive systems design principles” in order to reduce systematic 

failures. Oftentimes, standards agencies, institutes and organisations that govern codes of 

practice for a particular industry issue safety monitoring standards, endorsing a handful of 

safety monitoring concepts for their field. This was not the case with ISO 26262, as ISO 

intentionally provided a broad risk-based verification and assessment process for validating 

whatever method an OEM would like to use for the desired application, rather than a one-

method-fits-all approach. In doing so, ISO has left it up to the engineers to tailor their approach 

for their specific application in the widening scope of items that are electronically controlled 

in a vehicle. For this reason, it makes sense to assess the safety monitoring concepts found in 

industries outside of automotive as well. 

 

When changing focus to other industries, it is important to remember that the frame of 

reference of the environment in which safety concepts and monitors operate has also changed. 

Vehicles are consumer products used in a dynamic and noisy environment, whereas the nuclear 

industry’s massive plants operate within tightly controlled, low-tolerance environments. 

Nevertheless, there are elements of safety concepts that could be adapted for a hybrid or EV 

application. 

 

2-2.1 – Locomotive 

 

In many ways, road vehicles are similar to trains. Both operate in dynamic environments, both 

have self-contained drive units (both ICE and electric motors), and both carry occupants. 

Trains are, however, commercial modes of transit that are often supported and operated by the 

government. More importantly, trains operate on fixed routes. Because of this, trains have 

been using standardised Train Running Diagnostic Systems for over 40 years, consisting of a 

5T system [47, 48]. The 5T system uses five independent monitoring systems: 
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• Train Coach Running Diagnostics System. 

• Trace Hotbox Detection System. 

• Trackside Acoustic Detection System. 

• Trouble of Moving Freight Car Detection System. 

• Track Performance Detection System. 

 

Of the five diagnostics systems, only the Train Coach Running Diagnostics System is located 

on the train itself, whereas the rest are trackside. Analysis for trackside diagnostics takes place 

away from the track at the railway control centre through ‘Communication-Based Train 

Control’ [49, 50]. For road vehicles, this is not yet a feasible concept, as the infrastructure has 

not yet developed for Cloud-based diagnostics to be implemented in every vehicle, but the 

future of connected vehicles may bring with it the telemetry infrastructure to implement an 

external safety concept [50]. [51] uses an external monitoring method using cameras to capture 

data on rail tracks, which are then processed using trained ANNs to detect cracks in the 

railroad. However, the reliability is hampered by numerous noise factors such as glare, weather 

and obstacles. In 2018, Renault released the SYMBIOZ concept, a level 4 prototype vehicle 

that uses special highway telemetry to aid in the autonomous vehicle capabilities [24]. 

 

The Train Coach Running Diagnostics System is part of the main ‘Train Control and 

Monitoring System’ that handles all vehicle controls within the ‘Train Consist Level’ [52].The 

system architecture includes two Vehicle Control Units (one active, one redundant), and a 

Safety Control System consisting of a Safety Supervisor and Wheel Slide Protection. The latter 

two are SIL (Safety Integrity Level) validated and are required to comply with IEC 61508 

[53]. Since trains are commercially operated, and since packaging is less of a constraint than 

in a road vehicle, the monitoring system can use more sensors at greater cost, measuring 

current flow to electric motors. 

 

Guo et al. [54] submitted a patent for detecting a system fault in an electric power locomotive, 

whereby multiple data inputs are analysed and compared against a fault knowledge library. If 

abnormal data was found, it would match an entry in the library, and a fault-reaction would 

occur. This is called an Expert System, as a knowledge base is pre-programmed before 

commission (see Figure 2-6). While this can be useful to some degree in automotive safety 

software, the sheer number of variants and environmental noise factors mean that developing 

this knowledge base will require significant effort. An interesting train diagnostics paper was 

written by Sunder et al. [55] where they developed a safety concept for detecting component 

faults in an ICE-2 trailer type by analysing trailer vibrations, though not for the purpose of 

torque monitoring.  A similar paper was written by Chao et al. [56], and a patent based on this 
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concept was applied to identifying bearing cage failures in electric motors by [57]. Data was 

collected with accelerometers, and analysis was conducted in the time-domain, in the 

frequency-domain, and with statistical discriminants in parallel, finding that each were useful 

in detecting different types of faults. For road cars, then, it could be possible to study vibrations 

in parts of the powertrain to detect if torque is being applied, with whole vehicle vibration 

measured as a control measurement to isolate what is happening in the powertrain alone. In 

reality, vibration-type torque monitoring is better suited for trains as there are fewer noise 

factors to account for, and the level of fidelity needed to accurately measure torque rules out 

this approach. Component vibration characteristics could also change over time with wear, 

which would need to be tested and modelled. However, some of the statistical techniques seen 

in this paper such as examining the variance, skewness, low-band Kurtosis and high-band 

Kurtosis could be used for identifying errors through a noisy signal [55]. 

 

2-2.2 – Industrial and Nuclear Power Plants 

 

Industrial plants are of a different nature to the topics seen so far. The purpose they serve is 

not a transport mission, and the plant environment itself is tightly controlled so as to reduce 

external noise factors. In an effort to mitigate risk, reduce errors, and increase efficiency, the 

majority of the normal operation is controlled either automatically or by a human-operated 

control centre, particularly in the nuclear field where radiation poses a significant threat to life.  

Despite this, power plants and process engineering plants are still staffed by human workers 

whose safety is of the utmost importance, and as such require safety measures to be 

implemented in the control systems to ensure this. Many of the safety objectives are easily 

ensured with regular quality management tasks such as scheduled component maintenance, 

sensor calibration, actuator tests, equipment cleaning and verification [58]. Different types of 

plants have different maintenance requirements and operational safety precautions, typically 

based on the SIL associated with the risk involved. These risks vary as much as the purpose 

of the plant; a nuclear power plant (NPP) needs to ensure safe nuclear material handling, 

whereas a pharmaceutical chemical processing plant must ensure that the product is 

manufactured correctly. 

 

Ensuring safety, in many ways, does not make business sense in the automotive world. 

Leading automotive manufacturers invest a lot of money developing redundant fault detection 

systems that may not even be needed over the course of the vehicle’s lifetime. Adding a new 

feature introduces cost, both through developing its functionality, but also through developing 

its corresponding safety mechanism. Safety systems are implemented, therefore, for the prime 

purpose of ensuring the safety of occupants and ensuring the safe and dependable operation of 
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the vehicle. For industrial plants, however, safety monitoring is inherent to the business model. 

While a failure may or may not cause harm to workers, it will always affect production i.e. 

loss of profit. A catastrophic failure is usually due to either an extraordinary external 

circumstance such as an earthquake [59] (something that can be planned for but not avoided), 

or the compounding effect of a series of multiple small failures within the plant. Since 

chemical plants and NPPs are commercially operated, more money is typically spent on the 

safety systems than in a consumer product. Some examples of failure consequences could 

include: 

 

• Nuclear reactor meltdown. 

• Incorrect chemical ratios. 

• Fire or Explosion. 

• Pollutant escaping into the environment. 

 

To avoid these, then, the application of safety monitoring techniques in industrial plants are 

imperative. Of all accidents and safety system failures, NPPs receive the greatest amount of 

attention due to the nature of the material being handled, and the resulting effects of a failure. 

The most infamous incident occurred in 1986 at the Chernobyl power plant in Ukraine [60] 

after a reactor meltdown resulted in an explosion, releasing large amounts of radiation into the 

atmosphere. More recently, the 2011 Fukushima disaster was a result of an off-shore 

earthquake and subsequent tsunami that damaged electrical power supply lines and safety 

infrastructure, causing loss of cooling function to all the reactors [59]. 

 

NPPs adhere to a strict maintenance schedule on all measurement equipment to reduce the 

likelihood of a sensor or data transmission fault occurring. IEC/IEEE 61582 governs safety 

standards in NPP instrumentation and control important to safety [58]. NPPs require very 

accurate measurements in order to tightly control reactor temperatures. Testing the conditions 

of electronic equipment is important to safety, and includes standards for indenter modulus 

tests [61], elongation at break tests [62], oxidation induction time tests [63], and optical time 

domain reflectometry [64]. In the past two to three decades, NPPs have shifted away from 

analogue control to digital electronic automated instrumentation and control. This has 

increased functionality, but also complexity, leading to greater risk of latent and common 

cause faults  [65].  Electrical/electronic functional safety is covered generally by IEC 61508 

so similar terminology such as Safety Integrity Level (SIL) is used in this context. The 

International Atomic Energy Agency’s (IAEA) safety policy promotes the use of redundancy, 

diversity and independence in safety-critical measurement and signals [65]. Diversity means 

the way in which the parameter is measured is different for each redundant signal, and could 
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include varied design and measurement principles, and/or different components bought from 

different vendors. Redundancy means multiple measurements and sensors for a safety-critical 

parameter, such as reactor temperature. The multiple signals are then processed via voter 

software to that tests for faulty signals or signal carriers. A triple modular redundancy chip 

was developed and tested by Hiari et al. for an automotive application, reducing cost by 

containing it on a single microchip [66]. Figure 2-4 shows their design of triple modular 

redundancy architecture, an example of diverse redundancy. 

 

 

 

Figure 2-4: Example Triple Modular Redundancy design for fan speed [66]. 

 

Others have extended this to N-modular redundancy, with [67] demonstrating a number of 

alternative arrangements to suit the application, which is reducing hardware power 

consumption in their case. [68] suggested a quadruple modular redundancy approach using 

three hardware redundancies and an additional adaptive software approach to be resistant to 

dual-point faults. Quadruple redundancy is also needed to truly be tolerant to Byzantine faults, 

a subset of faults that are based on the Byzantine generals problem [69]. Independence is 

attained through isolating electricals, physically separating and dividing communication 

between each subsystem. With multiple redundancy can come complexity, however, so the 

IAEA recommends purchasing pre-qualified and trusted commercial-off-the-shelf hardware 

and software components to reduce the possibility of risk with new system design.  

 

With the high level of information available by the various sensors and resources available, 

and given the tightly controlled environments, statistical methods are popular in industrial 

plants; these are discussed further in Section 3. 
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2-2.2.1 – Analytical Redundancy 

 

All fault detection processes require system measurements in order to understand the current 

state of the plant. These measurements are made using sensors within the plant. If the sensor 

was to fail, the fault detection would not be able to measure how the system was performing, 

and thus could not know if the system develops a safety critical fault. Often, the same sensors 

are used for functional and safety software, but this is not always the case. In order to overcome 

this, some level of redundancy needs to be implemented such that the safety software can still 

operate in the event a sensor fails. The simplest answer would be to introduce multiple sensors 

(or actuators); this is called hardware redundancy. Usually the most robust option, it is a 

necessity in some applications such as throttle pedal position, but brings with it extra hardware 

costs as well the difficulty of packaging extra components. 

 

The other option is that of analytical redundancy, the process of estimating the sensor output 

by relying on algebraic relationships between that particular measurement, and a number of 

other dependent process variables. Analytical redundancy is typically described by two 

categories [70-72]: 

 

• Direct Redundancy: A ‘virtual sensor’ value is computed by combining the values 

of other sensors with an algebraic model. The virtual sensor value is then cross-

checked against the measured value from a real sensor. A sensor fault would show a 

discrepancy between actual and computed values. 

• Temporal Redundancy: Differential relations between a physical plant (or actuator) 

and sensor value – using a priori models of the physical plant – can be used to check 

the plausibility of a single sensor. For example, if a wheel speed sensor estimates 

vehicle speed has increased from 10 m/s to 40 m/s within a time step of 10 ms, though 

both values are plausible in isolation, it is likely impossible that the vehicle had 

accelerated at a rate of 3000 m/s2, indicating a sensor fault. 

 

Using analytical redundancy is also beneficial in isolating a fault source in some cases [73] 

[74]. For example, Tabache et al. [75] used analytical redundancy to reconstruct a virtual 

sensor from other variables in an EV powertrain. Tabache et al. highlights that safe operation 

of electric motors in a road vehicle operate on quality sensor measurements from motor 

current, voltage and speed sensors. These sensors are subject to faults originating from 

disconnections, as well as signal noise, drift and offset. They therefore developed a fault 

tolerant control system, whereupon, if a fault was detected in the actual speed sensor, the 

analytical redundancy produced 'virtual speed sensor’ would substitute in place of the faulty 
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hardware by way of a voter scheme. It is therefore possible that some ‘virtual torque sensor’ 

could be derived for use in a safety software model. [76] used a mathematical engine model 

to generate the expected engine output under healthy conditions, from which they could derive 

residuals for fault detection. 

 

2-2.3 – Aerospace 

 

Much like both the automotive and locomotive industries, aeroplanes are self-propelled 

vehicles that carry passengers and goods in a highly dynamic environment. Of particular 

interest is the fly-by-wire technology that is used in most modern aircraft and jets, where a 

pilot (or autopilot) request a certain action that the control system then uses to determine 

actuator actions. Planes experience very many noise factors during operation that aren’t as 

significant in both the automotive and locomotive fields, such as altitude change (which brings 

with it greatly varying temperatures and air density), cross wind, and mass changes due to fuel 

burn. Tactical aerospace vehicles are particularly vulnerable to faults as many of them are 

aerodynamically unstable [77]. Military aerospace contractors purposefully designed them for 

agility, with the ability to perform manoeuvres that are impossible in a commercial passenger 

aircraft. In order to keep the tactical aircraft flying, then, a huge effort is placed on the control 

systems engineers to keep the aircraft stable because the training and mental strain for a pilot 

to fly the vehicle would make it unfeasible. 

 

Since aircraft operate off the ground there is the inherent risk that, if a component should fail, 

the worst-case scenario is a crash landing which is usually much more severe in an aircraft 

than a road vehicle due to collision speed and crash structures. The easiest way to ensure safety 

in case of a failure is hardware redundancy, but aside from the inevitable added cost, this is 

usually not even a viable option due to weight and packaging constraints. Safety monitoring 

is therefore doubly important, as the safe state of the aircraft may not allow an engine to simply 

be shut off since the aircraft might not be able to land safely; naturally, this is even more of a 

risk with helicopters due to their relative inability to glide without power. The requirements 

for aircraft airworthiness is described by an inverted relationship between failure severity and 

probability, shown in Table 2-1 [78]. 
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Table 2-1: Classification of aerospace failures based on fault severity and likelihood [78] 

 

Fault Class Fault Severity 
Permissible 

Likelihood 

Prob. per 

flight hour 

Minor 
Slight functional capability reduction. 

Physical discomfort. 
Probable 10-3 

Major 
Slight functional capability reduction. 

Physical distress. 
Remote 10-5 

Hazardous 
Large functional capability reduction. Few 

serious or fatal injuries. 

Extremely 

Remote 
10-7 

Catastrophic 
Normally occurs with hull loss. 

Multiple fatalities to occupants. 

Extremely 

Improbable 
10-9 

 

 

From Table 2-1, parallels can be drawn with ISO 26262 in how failure classification is 

determined, as both use a severity and probability (related in many ways to ‘exposure’ in ISO 

26262). ‘Controllability’ is a key criteria that was added to ISO 26262 [35], as the writers 

wanted to capture the drivers’ ability to avoid an accident when assessing risk.  In some areas, 

system monitoring goes hand-in-hand with safety monitoring, as the airline wants to check 

that the aircraft is functioning as efficiently as possible. Health management and fuel burn are 

arguably the two greatest operating costs to commercial airlines, so the airlines want to ensure 

that their jets are operating at their best performance and catch any faults that could be 

detrimental to achieving that performance. Safety monitoring, in a way, is an inherent by-

product to system health monitoring, but it should be noted that health monitoring does not 

cover all safety functions. 

 

As computing electronics made their way into aircraft, digital computers took over many fly-

by-wire functions, and subsequently became responsible for flight-critical functions [79]. 

Initially, ensuring the safety of a flight-critical system was achieved through hardware 

redundancy, adding multiple sensors, actuators, and computers to ensure that a fault was 

extremely improbable. A voting system was devised such that the correct signal could be 

identified. Some traditional analysis techniques included: 

 

• Limit Checking: Fault presence if pre-set plant limits were exceeded. 

• Frequency Spectrum Analysis: Some plant measurements produce a certain 

normal frequency spectrum. Deviation could indicate a fault presence. Some 

faults may even produce a characteristic frequency, which could aid in fault 

isolation. 
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• Fault Dictionary Approach: Compare system behaviour with known fault 

characteristics, trained a priori. 

 

However, with the sheer number of components that require redundancy in an aircraft, the 

added cost was astronomical both in buying the components but also weight and added 

maintenance. As such, with more powerful computer processor hardware being developed, 

analytical redundancy began to emerge to meet safety goals with less hardware components 

needed, with the model-based approach used most readily. The model utilises analytical 

redundancy to reduce hardware-redundancy components (e.g. triplex hardware redundancy 

reduced to duplex [66]) and a knowledge-based approach that makes use of human system 

knowledge to form the expert system approach. The expert system is useful for a complex 

system such as an aircraft or road vehicle, in that it combines quantitative reasoning (analytical 

and hardware), and qualitative reasoning (knowledge-based approach) to expertly detect faults 

in the system in addition to using some process history. The aerospace industry has used what 

is called fault-tolerant control architecture. Figure 2-5 shows an example of fault-tolerant 

control system design. 

 

 

Figure 2-5: Fault-Tolerant Control system design [77] 

 

Figure 2-5 shows an example of fault-tolerant control where multiple controllers are designed 

with a ‘decision logic’ block that switches between them based on a perceived fault. The fault 

is determined within what is called the ‘residual generator block’ [77]. For the residual 

generation code, parity space is used which is based on the state-space model. A set of 

relations, called parity relations, results to zero unless there is a fault, whereby the result will 

deviate significantly from zero. Using diagnosis equations, the decision logic block then 
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selects the optimum subsystem controller based on the remaining healthy actuation channels. 

With simulation on real data, Mukhopadhyay et al. [77] found that the controllers could 

effectively diagnose and find the fault in real time. [80] used a Kalman Filter bank to detect 

faulty sensors in an aircraft gas turbine system. The method showed promise in being able to 

identify a fault sensor by generating residuals in one of the Kalman filters when it had failed. 

This could be used in a ground vehicle powertrain to detect a faulty sensor where multiple 

redundant ones are available. Figure 2-5 is actually very similar to the process used currently 

in the automotive industry. The residual generator is essentially the error between the actuator 

command and the sensed system state, so it is comparable to the error calculation block of the 

continuous torque demand monitor in Figure 2-2. The decision logic block is similar to the 

fault-check block, and the different controllers and selection would be the fault-reaction 

mechanism. Parity relations are further explored in Section 3. 

 

Mukhopadhyay et al. [77] opens up the topic of Reconfigurable Flight Control - or more 

generally reconfigurable controllers - reprograms a particular functions controller based on a 

fault occurrence, in an attempt to reallocate actuator responsibility and maintain a safe level 

of performance. Typically, a fault-tolerant control system requires: 

 

1) A sufficiently robust, reconfigurable controller. 

2) A sufficiently robust fault detection and diagnosis scheme. 

3) A reconfiguration mechanism. 

 

Reconfigurable control is seen in the automotive industry where Wang & Wang [81] used 

fault-tolerant control in a four wheel independently driven electric vehicle. Should one of the 

motors fail, their control effort redistribution would ensure a safe and controllable vehicle for 

the driver. Zhang & Jiang [82] classifies Reconfigurable Flight Control methods as linear 

quadratic regulator, eigenstructure assignment, pseudo-inverse, model following, multiple 

model, fuzzy logic, adaptive control and neural network; some of these will be discussed later 

in this section. Zhang & Jiang does note, importantly, that most of these methods assume a 

perfect fault diagnosis is already available, which is sometimes not the case.  Ultimately, then, 

while the actual reconfiguration mechanism is part of the overall safety concept, it is more part 

of the fault-reaction mechanism than the fault-detection strategy [83], and thus falls just 

outside the scope of this project but is very closely linked to the topic. 
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2-3 – Fault Detection and Diagnostic Methods 

 

From analysing the various industries, the topic of fault detection software concepts can be 

broken up into two major categories: model-based [74] and process history based [84]. A 

hierarchy of fault detection and diagnostic methods are mapped out in Figure 2-6. 

 

 

 

Figure 2-6: Classification of a number of different diagnostic techniques [84] 

 

Figure 2-6 shows the classification and relations between a number of different diagnostic 

methods. Model-based approaches are what have been described in the E-Gas concept, where 

a mathematical safety software model is used to determine if the system is behaving as 

expected, or if a fault has occurred such that performance has deviated. The mathematics in 

the model is an interpretation of the physics that happen within the vehicle. The interpretation 

of the physics (i.e. the a priori knowledge) can therefore be classified into two types of 

expressions:  quantitative model-based and qualitative model-based. Quantitative model-based 

methods find a mathematical functional relationship between system inputs and outputs 

through the use of transfer functions or filters. Qualitative model-based approaches on the 

other hand uses equations that express the relationships as qualitative functions centred around 

units in a process.  
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Process history-based approaches, on the other hand, can only use a large amount of historical 

input and output process data as it’s a priori knowledge. The ways in which historical datasets 

are interpreted, called the ‘feature extraction’ processes, can also be classified as qualitative 

and quantitative. Qualitative methods examine qualitative trends, whereas quantitative 

methods can either be statistical-based extraction methods, or non-statistical such as neural 

networks. As there are many diagnostic types to consider, only quantitative model-based and 

quantitative process-history based will be examined in depth in this report, as they seem to be 

more directly comparable with the current benchmark. 

 

All fault detection systems need some level of a priori knowledge to determine if a fault has 

occurred; without knowing how the system should behave, the safety software cannot know if 

the system is misbehaving. Venkatasubramanian [74] examines the underlying commonality 

between all diagnostic methods in how the measurement data is handled. In all methods, the 

following process is followed: 

 

1) Measurement space: The inputs into the diagnostic system, this is where the sensor 

measurements (including processed but not altered signals) exist, with no a priori 

system knowledge affecting their input. 

2) Feature Space: From the measurement space, a priori knowledge is used to extract 

the features of the measurements. Developing a feature space is useful as it lowers the 

complexity of information going into the decision space. This is because features (i.e. 

faults) tend to ‘cluster’ more distinctly once a priori filtering is applied, and as such 

classification and discrimination of features become easier.  Thus, having more a 

priori knowledge benefits the transformation from measurement space to feature 

space into a more usable input for the decision space. 

3) Decision Space: Features from the feature space are mapped into the decision space 

using some form of objective meeting function, such as a threshold seen in the fault 

check block of Figure 2-2 (top or a discriminant function as part of an implemented 

search or learning algorithm. If a priori knowledge is extensively used in the mapping 

from measurement space to feature space, the burden of the search / learning algorithm 

is greatly reduced. 

4) Class Space: This is where the results of the decision space are classified into different 

failure classes, typically through the use of simple thresholds. From here, the diagnosis 

system will decide which fault reaction to undertake, based on the class of fault 

identified in the class space. 
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Therefore, fault detection is the combination of prior knowledge with fault searching and 

system learning algorithms to process measurement data into types of faults. Prior knowledge 

can be produced in a number of ways, depending on the engineer’s knowledge of the system. 

It could include invariant relationships between sensor outputs and actuator inputs, based on 

energy balances and material properties in a process [74]. Alternatively, it could take form in 

an appropriate system identification transform model, resulting in a bank of filters being used. 

In process-history based systems, a priori knowledge could also use statistical Gaussian 

distribution expectations of measured data. Fault detection can therefore be divided into two 

basic steps [70]: 

 

1) Generation of Error: This incorporates the Measurement Space and Feature Space 

from above, and benefits from more a priori knowledge. 

2) Decision and isolation of faults: Decision Space and Classification Space from 

above. 

 

With this in mind, each of the quantitative-type concepts highlighted in Figure 2-6 will be 

talked about in more detail. 

 

2-3.1 – Model-Based Methods 

 

2-3.1.1 – Parity Relations 

 

Parity space is one of the simplest forms of model-based fault detection methods. Frank [70] 

explains that the main idea is to monitor the parity (consistency) between the mathematical 

equations of the system (analytical redundancy relations) and the actual sensor measurements, 

and a fault is thus declared if the error between the two exceed the preassigned error bounds. 

The parity equations are obtained by rearranging and transforming variants of input-output 

and state-space safety software models, with the model structure rearranged to get the best 

coverage for fault isolation [74]. Venkatasubramanian et al. performs a review of parity 

relations in the chemical and industrial processing field, and found that while parity relations 

were easy to generate using on-line process data and can effectively isolate faults, none of the 

sources they cited could handle gross process parameter drifts without using multiple models 

for different dynamical cases, and even then, they could not address significant multiplicative 

parametric faults. 
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In many respects, the E-Gas concept [25] used in the automotive industry is a version of this, 

using a more simply-programmable rule-based model of the functional software, and 

comparing its output with the measured output of the functional software itself. It is less 

equations-based than parity relations, owing to it being a software application with developer-

defined functions as opposed to purely relying on physical equations. 

 

2-3.1.2 – Observers and Filters 

 

In this approach, observers are designed by reconstructing the system outputs from the sensor 

measurements, and then using the estimation error to develop observers and innovation to 

develop the Kalman filters [74]. Referring to the parity relations method, Frank [70] explains 

that a closed-loop parity space approach can lead to the concept of state estimation. Observers 

are a type of state estimator that are popular in this area of control theory [82], particularly in 

chemical engineering, industrial engineering [74], aerospace [79, 82, 85, 86], and has grown 

in popularity in the automotive industry [75, 87, 88]. 

 

Patton [79] examines the use of a ‘state estimation filter’ (or observer), a fault detection 

method whereby outputs are estimated based on one or more accepted sensor signals. This is 

used to isolate both the occurrence and the source of the fault, with the aim to better understand 

what has caused the fault [79]. Depending on the type of analytical redundancy in place, 

different forms of estimation filters are available for use. If the sensor measurements are 

related by algebraic equations (called static analytical redundancy), a classical least-squares 

method is used. If they are linked by differential equations (dynamic analytical redundancy), 

and provided they are deterministic the estimation filter used is a Luenberger Observer - also 

called a simple blender - which is a dynamical combination of the measurements. The 

Luenberger Observer is typically less time consuming than other estimator techniques, but 

since it doesn’t take into account parameter variations and system disturbances, it is has some 

drawbacks in particularly noisy plants [75]. Finally, in the general stochastic case where the 

sensor patterns can be analysed statistically but not necessarily linked and predicted 

mathematically, a Kalman Filter is used, designed in respect to the measurement noises and 

disturbance characteristics [89]. Additionally, robustness is improved with an ‘unknown input 

observer’, where the fault detection filter is decoupled from unknown inputs, such that the 

fault detection system becomes insensitive to unmodelled system disturbances whilst having 

specified sensitivity to sensor and actuator faults. 

 

Kalman filters are of particular interest to this topic, as their strength lies in the fact that they 

are designed for the stochastic case where noise factors need to be accounted for [70]. The 
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Kalman filter is a recursive algorithm that aims to minimize estimation error. Robustness to 

other noise factors can be improved by using a bank of Kalman filters that consider all the 

available possible system models under all possible dynamical changes [90]. Each Kalman 

filter or state estimator in the bank is tuned to be sensitive to a different possible fault 

hypothesis, and then in turn each hypothesis’ probability is tested using some decision function 

such as Bayesian decision theory [91]. One possible setup for a bank of observers is to assign 

one observer per sensor or actuator, in what is called a dedicated observer scheme, tuned to 

detect faults in the sensors or actuators [92]. Figure 2-7 shows a bank of Kalman filters used 

with likelihood functions as part of a multiple hypothesis test: 

 

 

 

Figure 2-7: Bank of Kalman filters as part of Multiple Hypothesis Test [79]. 

 

Kalman filters are excellent at estimating linear states in a system, but have some trouble with 

non-linearity. Dynamic systems are usually very non-linear, so an Extended Kalman Filter 

(EKF) is commonly used in practice. The EKF is a modification of the normal Kalman filter 

in that a non-linear model is linearized at each process iteration by calculating the Jacobian, 

and subsequently ignoring higher order approximation terms [87]. Patra [85] used an EKF as 

a state estimator for an attitude controller in a missile. It was found that the EKF was effective 

in stabilizing the angle of attack by effectively estimating the state of the system. In Zhang & 

Jiang’s paper [82], a two-stage adaptive EKF was used as part of a fault-tolerant control 

scheme in an aircraft, with fault parameter estimation. The EKF stage 1 first estimates the 

reduction of control effectiveness, and as such a historical sample size that is smoothed for the 

fault decision scheme is decided in stage 2. The size of the moving average window to be 

smoothed is changed so as to best reduce model uncertainties (this is the adaptive aspect of 

the filter). Compared to a PID controller, the fault-tolerant control actuator fault detection 

system used in this paper offers both faster and smoother fault reaction, and the ability to reject 
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any known noise factor. The fast and smooth fault reaction helps to achieve the principle of 

‘graceful degradation’. 

 

Ghodbane et al. [86] uses a fault diagnosis method called Extended Multiple Model Adaptive 

Estimation, which is a technique based on a bank of EKFs. Each EKF is responsible for 

monitoring the health of an actuator, and assigning a conditional probability to each fault 

scenario. Consequently, the estimated state vector of the system as a whole is found by 

summing all EKF state vectors, each of which is weighted by the corresponding probability. 

In this case, the Extended Multiple Model Adaptive Estimation fault detection process was 

very effective in isolating the fault to a single actuator, but did take about three seconds for 

the fault to fully register after it was injected (fault probability value needed to rise), and five 

seconds to determine the fault was no longer present. In an automotive application, the delay 

could take longer than the safety window allows, and would need to be tuned for faster fault 

detection, perhaps at the expense of robustness against false positives. [93] used Kalman filter 

as part of fault tolerant control in a network distributed control system, whereby the state 

observer was able to detect a faulty sensor as well as identify and compensate for random 

network transport delays. While signal transport delays are not likely to be a problem in this 

application, their approach to handling signal disorder or loss (corruption) may be of interest. 

 

A useful variation of the Kalman filter is the unscented Kalman filter, designed specifically 

for discrete time cases in non-linear system [87]. It uses the unscented transform to address 

the problem of propagating Gaussian random variables through non-linear model functions; 

this eliminates the need for linearization altogether, improving estimation accuracy and 

lowering computational complexity [87]. Vasu et al. [87] developed an extended mean value 

engine model that averages the dynamics of an ICE for the purpose of engine control in a 

vehicle ECU. They used an unscented Kalman filter with the extended mean value engine 

model and measurement signal post-processing to describe the engine in the model while 

estimating fewer states of interest, allowing flexibility in the balance between robustly 

obtaining system information through a noisy signal and computational efficiency. Their 

estimator method was also shown to be sufficiently modifiable to be sensitive to particular 

faults. Such an application in an EV or HEV would be useful as being able to isolate and 

distinguish between ICE or electric motor torque sources, helping the vehicle enact an 

appropriate fault reaction. Tabbache et al. [75] used an EKF and Luenberger Observer as part 

of an analytically redundant voter scheme, whereby an EV electric motor speed sensor was 

supplemented by a ‘virtual sensor’, whose signal was derived from appropriately tuned EKF 

and adaptive Luenberger Observer using other system inputs. The EKF used stator current and 

voltage components to reconstruct rotor speed and rotor flux. A voter scheme would then 
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determine the signal most likely to be true. They found that the Luenberger Observer had better 

performance at high speed during faulty conditions, whereas the EKF had a higher reliability 

coefficient at low and medium speed faulty conditions, and the actual speed sensor was 

naturally most reliable during healthy conditions at all motor speeds. The most reliable signal 

would then be selected for use in the motor control model based on the conditions. 

 

2-3.2 – Process History Based Methods 

 

2-3.2.1 – Principal Component Analysis 

 

A method commonly used in process engineering is called Principal Component Analysis 

(PCA), which is sometimes called Proper Orthogonal Decomposition in other engineering 

disciplines. It is closely related to Factor Analysis, where variables can sometimes be grouped 

together and represented by a lesser number of variables [94]. Hussein et al. [95] describes 

PCA as a statistical procedure working by “(decomposing) the variance and covariance 

structure of a data matrix by defining linear combinations of the columns in the original 

matrix.” Essentially, then, PCA is a data-driven modelling approach that takes a large amount 

of multivariate data, and seeks to find sets that contain correlated data within them, but such 

that the sets do not correlate with each other. It focusses on the processes occurring based on 

the variance and correlation of the outputs it measures. Because it can group data into less sets 

than there are data points, the lower dimensionality can improve fault detection and diagnosis 

using outlier statistical methods. The sets can then be used to create predictive models - if 

captured through a supervised learner environment - for use in other controllers as a knowledge 

base. Figure 2-8, from Mazzoleni et al., [96] shows how data can be processed into groups 

using a PCA variant called Principal Direction Divisive Partitioning, which was applied to an 

aerospace electro-mechanical actuator: 
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Figure 2-8: Principal Direction Divisive Partitioning results, showing three data clusters 

in (left), being processed into three failure mode classes (right) [96] 

 

Figure 2-8 shows how data samples between two features can be statistically divided. The two 

features in this case were arbitrary as they were each a linear combination of 21 variables, 

including actuator displacement and torque generating current. The solid and dotted lines are 

possible boundaries for class designation. This method shows a lot of promise, as it both 

identifies a fault has occurred and the cause of a fault (with a priori knowledge). In theory, 

this could be applied to monitoring torque to an electric motor in a vehicle if the right variables 

are available. 
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Hussein et al. [95, 97] used PCA in conjunction with Projection to Latent Structure 

Discriminant Analysis to treat an electro-pneumatic system as a black box and robustly 

determine system health information. This is a method that looks to find a line or plane that 

can differentiate between classes depending on their values. It is based on building classes 

(visualised as clusters) using a knowledge base from which the model is trained. Hussein et 

al. found that their setup on a printing system was effective in finding faults such as high 

throttle and leakage, using signals from pressure, displacement, and vibration sensors. Their 

approach could be used in multiple automotive powertrains because it can treat the powertrain 

as a black box. This is because the system does not need to necessarily know what is happening 

in the system, but simply needs to measure what the outputs are and determine which class or 

cluster the current performance state is in based on the inputs. The drawback here is that with 

each measured variable the state becomes increasingly complex. Visualisation of data beyond 

the third dimension (i.e. more than three measured variables) requires more effort to analyse, 

but also more processing power to use as an online processor. This will heavily depend on 

how few classes the outputs can be reduced to, but it is likely that the number of noise factors 

- and the statistical overlap of recorded data – will make analysis difficult. Additionally, 

development tests of virtually all possible faults may be needed to be conducted to build the 

knowledge base necessary for the PCA fault detection; however, since the application in this 

project is a software function, gathering and recording training data could be automated, and 

thus performed very quickly at an accelerated rate (i.e. faster than real-time) during 

development.  

 

Zheng et al. [98] tried to apply PCA to an NPP, but identified that the process varies between 

“stable – transition – stable” states that aren’t as significant in a typical chemical processing 

plant. Additionally, since some variables in an NPP are sensitive to external parameters such 

as feed water flow, main steam pressure etc., PCA can’t accurately classify the data it records. 

This is a similar problem faced by the highly dynamic environment and external factors that a 

vehicle powertrain operates within. Zheng et al. [98] overcame this by developing a 

Reformative PCA-based Fault Detection Method. The method starts by using K-mean cluster 

analysis to analyse historical data and obtain datasets for various stable operating conditions. 

A ‘principal component model’ group is produced for the whole process using the K-mean 

cluster datasets. The process state is then determined, with fault detection disabled if the 

process is in a transitional state. This is done through a ‘stability factor’. Finally, the detecting 

sample’s membership to the principal component model group datasets is determined, and a 

new principal component model is produced for the current stable operating condition. This 

method was then applied to 26 variables in data taken from a real 600MW NPP, and it was 
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found that the reformative PCA method can effectively and quickly detect faults on variables 

that vary with external factors, when the traditional PCA method would not. Figure 2-9 

supports their progress [98] with the PCA process running online: 

 

 

 

Figure 2-9: Comparison of T2 and Q in conventional PCA (left) and Reformative PCA 

(right), showing improvement in fault detection with Reformative PCA method [98]. 

 

A drawback to this particular concept by Zheng et al is the need to turn off fault detection 

during ‘transition states’, which is a concern for an automotive safety concept. This is simply 

because it means that fault detection could be switched off during any time where there are 

external variables affecting powertrain performance, such as a changing road gradient, 

temperature and weather, and vehicle mass changes. The time in which a fault can become a 

hazard is very small, and having any lapse in fault detection capability will make the vehicle 

vulnerable to missing a fault. If this could be overcome with another adaptive controller in 

conjunction with the reformative PCA method such that it offers full and adequate coverage, 

then this safety concept could have some merit. Otherwise, another application of PCA could 

yield similar results regardless of noise factor.  

 

Canonical Correlation Analysis (CCA) is a fusion of statistical process like PCA and expert 

systems, whereby known statistical correlations are used to set a baseline [99] uses CCA in an 

industrial processing plant-wide distributed monitoring of variables, where local nodes use 

independent CCA analyses that are cross checked with others, and can be used to diagnose 

faulty nodes as well as train new nodes. The system showed improved fault detection rates, 

improved false positive rates, and greatly improved detection speed. The detection speed is 

primarily due to reworking with a lower dimensionality at the local level, which allows data 

to be processed and transferred more quickly between the network. This may be of interest in 

a distributed control system within an ECU, but may not see as much benefit on a powertrain 

ECU for powertrain fault monitoring, as bandwidth-limited communication channels are not 

used for monitoring powertrain software on the same chip. [100] also uses CCA to detect 
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sensor precision degradation by generating residual signals in sensors when taking into 

account the canonical correlation into account. The drawback of this particular statistical 

method is the effort it takes to derive those canonical correlations in the first place, transform 

them from engineering understanding into the CCA format, and then validate that these 

relations are correct.  

 

2-3.2.2 – Neural Networks 

 

Neural networks fall into the branch of artificial intelligence. The aim of a neural network is 

to create relations between inputs and outputs in a system by evolving its internal structure 

[101]. They can be used to learn and create transfer functions where analytical mathematical 

equations are difficult to form, working by pattern recognition between input and output 

vectors [102]. The role of a neural network in the case of fault detection and isolation would 

be to use training data to develop pattern recognition for what a correctly functioning vehicle 

would operate as. The training data would be developed offline. In an online learning 

application, the neural network could possibly adapt to small parameter variations and drifts 

if the patterns aren’t suddenly or significantly different. The same neural network would then 

be able to recognise if the pattern is suddenly vastly different to normal operation, i.e. deviance 

from the training data, indicating a fault occurrence. The difficulty would be quickly and 

correctly diagnosing the source of the fault if prior data (i.e. a pattern for that specific fault) is 

not available for the operating conditions. Conversely, developing a fully comprehensive 

training dataset for the neural network could take significant effort, as virtually all driving 

conditions would need to be tested, and most – if not all – faults be artificially induced. 

 

There are many different types of neural network in use in fault diagnosis and data analysis, 

but they are typically classified by their learning strategy: supervised and unsupervised. Neural 

networks with supervised learning strategies have specific learning topology constraints 

within which they learn [84]. This reduces the task to an estimation of connection weights 

between data samples, where the connection weights are learned by using the difference 

between desired and measured parameter values. Cybenko [103] states that this method is 

useful in classifying arbitrary regions of the learning topology. One of the more widely used 

supervised learning neural network in chemical engineering is the back-propagation algorithm. 

Learning performance for neural networks is a key characteristic to try and optimise. To do 

so, some researchers have performed feature extraction by pre-filtering and data processing 

the input data [104]. Their results showed greatly reduced learning time for the neural network, 

and improved clarity in recognising patterns for fault detection. Moussavi et al. [105] used an 

Adaptive Neuro-Fuzzy Inference System to intelligently control a permanent magnet DC 
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motor by using an adjustment mechanism with an adaptive controller (something called Model 

Reference Adaptive Control) where together they found that a hybrid learning technique would 

improve reaction speed to change in motor dynamics, and maintain control. 

 

Unsupervised learning strategies, also known as self-organising neural networks, restructure 

their framework based on the inputs it receives, as it uses unsupervised estimation techniques. 

The objective is pattern recognition, whereby similar patterns are grouped together to form a 

class. If there is a pattern far enough away from all current classes a new class is created [105, 

106]. In this method, therefore, the threshold within which patterns are grouped together is a 

key calibration term, leading to the clustering technique, which aims to group data samples 

such that there is the greatest amount of separation between classes; with an objective defined, 

this essentially becomes an optimisation problem. K-means clustering is a commonly used 

self-organising analysis technique [107]. It assumes a set number of classes exist, and 

distributes the data such that each one has at least one data sample is unique to it. It then looks 

to self-organise to optimise separation between the classes. Puskorius & Feldkamp [108] 

showed that using a Dynamic Decoupled EKF can greatly improve learning efficiency in 

neural networks in a highly nonlinear application.  

 

Li [109] used an ANN as a vehicle state estimator for autonomous driving. They improved on 

the usual practice of relying on curve theory and the Serret-Frenet equation of vehicle 

kinematics modelling, instead using a Kalman filter to estimate lateral vehicle motion states. 

The tuning of the Kalman filter itself was done using an ANN, which combines with the 

Kalman filter to form an ANN observer. While generally favourable results were presented in 

the paper, there were significant vehicle motions that were missed or damped out by the 

method, as well as significant deviations from the true values. These deviations are concerning, 

as it needs to be verified that their characteristics will never result in a missed fault in safety-

critical software - something that does not seem feasible in the present time. [110] used 

artificial neural networks to learn the characteristics of supervised autonomous vehicle 

behaviour, which was then used to detect deviations from the intended path of the autonomous 

system, due to system faults. They were able to suggest a form of verification framework, but 

the sheer scale of the task that high ASIL safety-critical software requires for verification, and 

reliance on other technologies such as vehicle-to-grid monitoring that could be used to aid in 

reliability. 

 

Horton [102] used a simple artificial neural network (ANN) for the purpose of parameter 

identification in mapping aerodynamics in a tactical ground-to-air missile, essentially acting 

as a state estimator. He compares ANNs with Kalman filter estimators. The Kalman filter can 



 

68 

 

also ‘learn’ and be ‘taught’, but uses a priori knowledge of the system structure along with 

initial state estimates in order to better estimate the plant state. The Kalman filter then begins 

to adapt to the system as it is used online. The effectiveness is determined by the basic 

algorithm capabilities, and the quality of the a priori knowledge it is based on. An ANN, by 

contrast is trained offline first, over a range of operating conditions. It is more tolerant to 

system structural changes, whereas a Kalman filter may struggle if not properly programmed. 

An ANN also does not need initial parameter estimates, and does not necessarily require any 

additional online training regime to continue performing state estimates. The quality of an 

ANNs state estimates are determined by the capabilities of the chosen network learning 

architecture, and the size of its knowledge base. Horton found limitations in the neural network 

performance under new and uncertain operating environments (conditions that it had not 

trained for). He argued that these could be overcome by further online training. However, he 

combined the Kalman filter and the ANN into a hybrid structure, where the ANN acts as a 

basis for the self-adaptive linear Kalman filter estimator. The hybrid state-estimator was very 

effective, outperforming both counterparts respectively. 

 

2-3.3 – Concept Candidate Selection 

 

Now that the literature review has been completed, the concepts that have been discussed at 

length in the previous section will form the initial group of concept candidates. In addition to 

these, the benchmark continuous torque demand monitor will be revisited. As stated 

previously, a simplified safety software model would result in more noise factors being left 

unaccounted for, leading to more torque error.   

 

In summary, the preliminary concept candidate shortlist is as follows: 

 

1) The Adaptive Safety Monitor. 

2) The Kalman Filter. 

3) Principal Component Analysis. 

4) Neural Networks. 

 

2-4 – Conclusions 

 

Many fault detection methods are used throughout both the automotive industry and beyond. 

This literature review has identified some of the methods used in these industries, including 

the benchmark E-Gas three-level concept widely used in the automotive industry, and which 
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future concept candidates will be tested against in this investigation. Four preliminary concept 

candidates have been identified for investigation, two quantitative model-based concepts: the 

adaptive safety monitor and the Kalman filter, and two quantitative process-history-based 

concepts: principal component analysis and neural networks. The next chapter will outline the 

context of the ISO 26262 lifecycle in concept phase to establish key terminology, and 

understand the structure within which these concepts will need to be developed in (Chapter 3). 

The subsequent chapter will identify ideal concept attributes to select the concepts that show 

the most promise before in-depth concept investigations can begin (Chapter 4 and 5). 
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Chapter 3 
 

Safety Requirements,  

Ideal Monitoring Attributes,  

and Test Environment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 – Summary 

 

The first part of this chapter provides the purpose for the novel safety concepts being 

developed, through discussing how risk is mitigated using the ISO 26262 engineering 

framework through the derivation of functional safety requirements. The second part of this 

chapter derives additional ideal monitoring attributes. These are identified based on ISO 

26262, ISO 25010, and OEM expert opinion, and are used to select the most promising concept 

candidates for detailed investigation via a Pugh Matrix. Finally, the testing methodology will 

be established for detailed concept development and investigation in the following chapters. 

 

• Objective 2: Identify ideal concept attributes and score candidates against them. 

• Objective 3: Establish a testing method for testing performance of the concepts. 
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3-1 – Obtaining Safety Requirements for Concept 

Development 
 

Functional safety is a vehicle-level attribute, whereby the vehicle is shown to be free from 

unreasonable risk. For that unreasonable risk to be mitigated, it must be identified and 

quantified at the vehicle level, such that top level safety requirements can be defined to 

mitigate the risk appropriately. A portion of these safety requirements are then implemented 

by the safety concept. Therefore, to design an appropriate safety concept, the safety-criticality 

of that safety concept must first be understood in light of the risk it is supposed to mitigate. 

This section explores the risk relating to one potential vehicle-level hazard, such that 

appropriate safety requirements are defined for the safety concept to implement. ISO 26262 

provides an engineering framework in Part 3 to identify sources of risk in the powertrain, 

quantify what risk is unreasonable, and provide a subsequent process for developing safety 

concepts. 

 

3-1.1 – ISO 26262 Engineering Framework 
 

A familiar V-diagram is at the core of the ISO 26262 engineering framework, emphasised by 

the fact that it appears in the opening pages of each part of the standard; this can be found in 

the Appendix [27], with a condensed diagram shown in Figure 3-1: 

 

 

 

Figure 3-1: Simplified ISO 26262 Process V-Diagram 

 



 

72 

 

The standard is conveniently separated into ten parts, but the technical aspects of the safety 

lifecycle takes place within Parts 3 to 7, with the remaining parts consisting of helpful 

documentation and supporting management processes. On the left-hand side of the V-diagram 

– the design phase - the parts roughly contain the following processes: 

 

• Part 3 – Concept Phase [27]: Item Definition, Hazard Analysis and Risk Assessment, 

creation of Safety Goals, conception of Functional Safety Concepts (FSC) and their 

Functional Safety Requirements to meet the Safety Goals. 

• Part 4 – Product Development at System Level [29]: specifying a Technical Safety 

Concept (TSC) and Technical Safety Requirements (TSRs) of the specific system in 

the vehicle, such that the FSC is effectively implemented, system is designed, and 

system-level verification and validation activities can be undertaken. 

• Part 5 and 6 – Product Development at Hardware and Software Level [30, 31]: 

component-level development to implement TSCs and TSRs, hardware / software 

integration, and component-level verification activities. 

• Part 7 – Production and Operation [32]: handling the commissioning of the item in 

the vehicle.  

 

Each of these parts have relevant validation and verification (V&V) activities on the right-

hand side (upward path) of the V-diagram that verify the design phase of each product 

development level, with some preliminary V&V activities also included in the design phase 

itself. Consideration for these V&V activities will be made in Chapter 6 of this project, but the 

focus will remain primarily in concept phase and system design. Full component-level 

development (Parts 5 and 6) are out of scope for the most part, but again some of the 

considerations will be touched upon throughout development in this project.  

 

To understand the context within which this project seeks to operate, it is important to 

understand the flow of requirements in order to achieve functional safety of an item at the 

vehicle level, and how they drive the need for functional safety concepts in powertrain 

software; this process begins in Part 3, the Concept Phase. Figure 3-2 shows the overview of 

this summary and the primary work products as the lifecycle travels down the left-hand side 

of the V-diagram, starting in the Concept Phase, with the corresponding ISO 26262 Part and 

Clause shown in the chevrons. 
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Figure 3-2: Hierarchy of safety requirements [27]. 

 

Developing a system through a full safety lifecycle is a significant task and a full safety report 

is out of scope for a thesis, however, a focused demonstration through the Concept Phase 

process will be undertaken in this chapter in order to arrive at the starting point for developing 

novel function safety monitoring concepts.  

 

3-1.2 – Item Definition 
 

The starting point of the Concept phase is the Item Definition. An ‘item’ in ISO 26262 is the 

electronic/electrical (E/E) “system or array of systems that implement a function at the vehicle 

level” (ISO 26262 Part 1-1.69 [26]). The aim of defining the item is to establish its purpose, 

functionality, and interaction with other vehicle systems: its operational boundary. The E/E 

item focused on in this thesis is the powertrain system. The functional safety boundary diagram 

for this item is shown in Figure 3-3. 
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Figure 3-3: Powertrain System Boundary Diagram at the vehicle level. 

 

A primary function of the powertrain system is that of achieving vehicle acceleration. Using 

the boundary diagram of Figure 3-3, the functions delivered by this item is listed and 

decomposed according to the system elements. For the sake of brevity, only the function of 

vehicle acceleration will be examined.   

 

Table 3-1: Decomposed acceleration function and associated elements of the powertrain. 

 

Function System Elements Function (decomposed) 

Provide vehicle 

acceleration 

commensurate 

with driver 

demand 

Accelerator Pedal Transmit measured position to Powertrain ECU 

Powertrain ECU Receive inputs from accelerator pedal, drive 

mode selector, and other vehicle sensors / 

systems. 

Calculate desired vehicle direction of travel 

Calculate desired vehicle total torque demand 

Calculate actuator demand for each actuator 

Transmit actuator demand to propulsion 

actuators 

Propulsion Actuators Receive actuator demand from Powertrain ECU 

Realise torque according to demand 

 

The vehicle acceleration function in Table 3-1 can be summarised as using a sensor to 

determine a desired vehicle acceleration, which is delivered by the propulsion actuator(s). The 

powertrain ECU determines this desired vehicle acceleration by transforming the desired 

acceleration into a vehicle torque demand via a complex process within the powertrain 

functional software (hereafter “functional software”). The torque demand is then allocated to 

the various actuators, which are then controlled via software drivers in the actuator control 

software, before individual actuator demands are sent to the propulsion actuators. This is a 

very simplified contextual overview of the system commonly used in the industry (other 

topologies exist) but is sufficient to describe the safety critical E/E item in its immediate 

context.  
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The powertrain system can be regarded as one of the most complex safety critical E/E items 

within the vehicle, being operational at all times the vehicle is turned on, and active during 

each and every environmental situation the vehicle is in. It is therefore critical that the safe 

operation and the mitigation of unreasonable risk is achieved at all times. It must be ensured 

correct torque demand is delivered in relation to driver pedal demand, as a malfunctioning 

torque demand could result in unexpected vehicle behaviour, potentially leading to a 

hazardous situation.  

 

3-1.3 – Hazard Analysis and Risk Assessment 
 

The next step is to conduct a hazard analysis and risk assessment (hereafter, HARA). The goal 

of the HARA is to identify and categorise the hazardous events that could arise in the event of 

a malfunction and assign a risk to these hazards. Once these have been identified, safety goals 

are defined that ensure the prevention and mitigation of identified unreasonable risk in the 

event of one of these malfunctions occurring in the item. The safety goal includes what is 

called a ‘safe state’, a tangible and attainable metric that defines safety for this item with 

respect to the hazard, typically to be attained within an allotted time once a fault is detected 

(the ‘fault-tolerant time interval’, FTTI). These safety goals form the basis for the functional 

safety concepts, as their purpose is to ensure the safety goals are met.  

 

The Society for Automotive Engineers (SAE) has released a document called J2980 [111], a 

recommended practice for surface vehicles called ‘Considerations for ISO 26262 ASIL Hazard 

Classification’. This document is useful during the development stage of the safety lifecycle 

as it provides a more detailed insight into identifying hazards and classifying the risk they pose 

than ISO 26262 does. J2980 is limited in scope as it focuses on the HARA stage without the 

prerequisite item definition, a point it stresses in part 1.2 [111]. The document compiles and 

marries many of the principles found in and recommended by a number of other applicable 

documents and standards, and reframes them in the context of ISO 26262. An overview of the 

HARA inputs, processes, and outputs are shown in Figure 3-4.  
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Figure 3-4: Overview of HARA process outlined by J2980 and ISO 26262. 

 

The three main processes of the HARA will be examined more closely in this section, as it 

provides a traceable context for the reason a functional software malfunction would be 

considered hazardous, and the level of risk such a malfunction poses. 

 

3-1.3.1 – Hazard and Operability Analysis 

 

A Hazard and Operability (HAZOP) analysis is an explorative analysis method for identifying 

faults in the various function of an item. It does so by composing sentences with applicable 

guidewords and phrases to identify the malfunctional behaviours that could lead to hazards to 

humans at the vehicle level. The procedure is to take a function that the vehicle seeks to 

provide and apply these guide-phrases to the function to find the resultant malfunction. 

Consider the following function provided by the powertrain: “provide vehicle acceleration 

commensurate with driver demand”. Applying the HAZOP guide-phrases yields the item 

malfunctions shown in Table 3-2.  

 

Table 3-2: HAZOP for Acceleration Function 

 

Function vs 

Guidewords 

Loss of 

Function 

when 

intended 

Incorrect 

Function – 

more 

Incorrect 

Function – 

less 

Incorrect 

Function – 

wrong 

direction 

Unintended 

activation 

of function 

Output 

stuck at a 

value 

Vehicle 

Acceleration 

Loss of 

Acceleration  

Excessive 

acceleration 

Insufficient 

acceleration 

Acceleration 

in reverse 

direction 

Unintended 

acceleration 

Acceleration 

stuck at 

value 

 

For the purpose of this thesis, the primary malfunction that shall be considered will be 

“unintended acceleration”. 
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3-1.3.2 – Situational Analysis 

 

In ISO 262626 Part 3-7.4.2 [27], the situations where a certain malfunction could lead to a 

hazardous behaviour are considered, in that the S, E and C parameters assigned to each hazard 

are determined when the situation in which the malfunction occurs is taken into account. J2980 

provides a useful graphic in Section 4.2.1.4 [111] to aid in considering the possible operational 

situations of the vehicle, though it does stress that Figure 3-5 is not exhaustive. 

 

 

 

Figure 3-5: Possible Vehicle Operational Situations [111] 

 

The situational analysis has a great impact on each of the different ASIL determination 

parameters, and should be done carefully within the appropriate operational context the vehicle 

would be used within. Three situations are considered moving forward: 

 

• Vehicle driving in city or on country roads behind another car  

• Vehicle driving at low speed (first gear) in pedestrianised area  

• Vehicle is cruising on motorway with moderate-heavy traffic 

 

These will be considered alongside “unintended acceleration” to form the hazardous situations 

in the hazard analysis part of the HARA in Table 3-7. 
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3-1.3.3 – Risk Assessment 

 

With the functions and hazards identified, the risk assessment can now take place to determine 

the risk each hazard poses to human life and property. In line with recommendation from IEC 

61508 [53] of assigning a Safety Integrity Level (SIL) to evaluate and categorise the risk of 

each hazard, ISO 26262 uses the Automotive Safety Integrity Level (ASIL) to determine the 

level of effort required to mitigate the assessed level of risk each hazard poses. Whereas SIL 

categories are assessed on the severity (level of potential injury, S) and exposure (probability 

of occurrence, E), an additional parameter – control, C – is included in determining the ASIL, 

by assessing the amount of control the driver has in the hazardous situation. While ISO 26262 

does provide some guidelines in determining the appropriate S, E and C parameter values, 

J2980 gives a deeper insight in how these parameters would be justifiably evaluated.  

 

3-1.3.3.1 – Exposure 

 

Exposure is the measure of how often it is expected that a vehicle would be in the situation 

being assessed.  The exposure class in ISO 26262 comprises of five categories, ranging from 

E0 to E4, shown below with the relevant descriptions in Table 3-3 below.  

 

Table 3-3: Exposure class parameter values with quantitative descriptions in terms of 

frequency and duration from ISO 26262 Part 3 Annex B. 

 

Historical data and evidence should be used to determine a justifiable exposure parameter. 

Two methods of assessing exposure are presented in ISO 26262 – frequency and duration – 

which need to be used with common sense applied in order to ascertain the correct value. For 

 
Exposure Class 

E0 E1 E2 E3 E4 

Description Incredible 
Very low 

probability 

Low 

probability 

Medium 

probability 

High 

probability 

Frequency 

Method 

Never 

expected 

Occurs less 

often than 

once a year 

for great 

majority of 

drivers 

Occurs a few 

times a year 

for great 

majority of 

drivers 

Occurs once a 

month or more 

often for an 

average driver 

Occurs during 

almost every 

drive on 

average 

Duration 

Method 

Never 

Expected 

Not 

Specified 

<1% of 

average 

operating 

time 

1% to 10% of 

average 

operating time 

>10% of 

average 

operating time 
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example, crossing a junction only accounts for perhaps 5% of average operating time (E3), but 

occurs multiple times every drive cycle (E4). The frequency method will be chosen for the 

risk assessment.  

 

3-1.3.3.2 – Severity 

 

The next step in the risk assessment is to consider how severe the injuries would be from a 

particular hazardous event. The severity class, S, is given four possible parameters, show in 

Table 3-4 with their corresponding qualifying descriptions from ISO 26262 [27]. 

 

Table 3-4: Severity Class with correlation to planar collision speeds, from various analyses 

of global accident databases [111]  

 

 

 

The descriptions provided in Table 3-4 are general guidelines as the actual injury experienced 

by occupants is virtually non-deterministic due to the many factors involved, and the inherent 

chaotic nature of an accident. Within each accident situation, the severity is a distribution from 

minimal risk to human life to human fatality. The shape of that distribution curve and the 

centre of that distribution is what drives the severity classification. The primary factor 

affecting the shape of that distribution is the difference in speed at the point of collision, 

commonly referred to as “delta v”, with higher delta v values increasing the severity of injury. 

SAE J2980 provides a useful table for various planar vehicle collisions, and the 

minimum/maximum delta v ranges found to correlate with the severity classifications after 

analysing a number of global accident databases; the ranges chosen for the risk assessment are 

shown at the bottom of Table 3-4. 

 

 

 
Severity Class 

S0 S1 S2 S3 

Description No Injuries 

Light and 

moderate 

injuries 

Severe and life-

threatening 

injuries 

(survival 

probable) 

Life-threatening 

injuries 

(survival 

uncertain), fatal 

injuries 

Frontal 

collision delta v 
< 4 kph 4 – 20 kph 20 – 40 kph > 40 kph 

Rear collision 

delta v 
< 4 kph 4 – 20 kph 20 – 40 kph > 40 kph 

Side collision 

delta v 
< 2 kph 2 – 10 kph 10 – 20 kph > 20 kph 
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3-1.3.3.3 – Controllability 

 

The third classification in the risk assessment is that of controllability by participants involved 

in the hazardous situation to avoid harm, which includes the host vehicle driver, other road 

users, and pedestrians. This is done either by achieving a safe state themselves (e.g. applying 

the brakes to slow car down), or by being able to perform an evasive manoeuvre (e.g. 

controlling steering to avoid hazards, moving out of the way of a malfunctioning vehicle). 

Table 3-5 correlates the four controllability classifications with the real-world possibility of 

harm avoidance by the collision participants. 

 

Table 3-5: Controllability Class with quantification 

 

Controllability 

Class 
Description Quantification 

C0 
Controllable in 

general 

If dedicated regulations exist for a particular 

hazard, Controllability may be rated C0 when it is 

consistent with the corresponding existing 

experience concerning sufficient Controllability. 

C1 
Simply 

controllable 

≥ 99% of all drivers or other traffic participants 

are usually able to avoid specified harm 

C2 
Normally 

controllable 

≥ 90% of all drivers or other traffic participants 

are usually able to avoid specified harm 

C3 
Difficult to control 

or uncontrollable 

< 90% of all drivers or other traffic participants 

are usually able to avoid specified harm  

 

Controllability is largely dependent on the human factor in a collision, which can include how 

easily the hazard is identified, and an appropriate mitigating action taken. Some hazards have 

an intuitive reaction for the majority of drivers. For example, unintended vehicle acceleration 

can be intuitively counteracted by depressing the brake pedal [111]. ISO 26262 Part 3-8.4.2.6 

[27] considers how a driver reaction may be a key part of achieving the safety goal, and if so, 

which actions and controls are needed by the driver to ensure that controllability is achieved.  

 

3-1.3.3.4 – ASIL Determination and Completing the HARA 

 

Combining the E, S, and C parameters, the ASIL rating for each hazardous situation can be 

determined in the risk assessment. The ASIL is used to determine the risk each hazardous 

situation carries with respect to human harm, and once derived in the risk assessment, is carried 
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throughout the safety development lifecycle, from Safety Goal to Software Safety 

Requirement. It also specifies the level of development rigour required to ensure confidence 

that risk has been mitigated commensurate with the level of that risk. Table 3-6 shows how 

the ASIL ratings are calculated for each hazardous situation. 

 

Table 3-6: ASIL Rating based on E, S and C classes [27]. 

 

Severity Class 
Probability 

Class 

Controllability Class 

C1 C2 C3 

S1 

E1 QM QM QM 

E2 QM QM QM 

E3 QM QM A 

E4 QM A B 

S2 

E1 QM QM QM 

E2 QM QM A 

E3 QM A B 

E4 A B C 

S3 

E1 QM QM A 

E2 QM A B 

E3 A B C 

E4 B C D 

 

Note that S0, E0 or C0 have an ASIL QM rating assigned to them, as each one indicates an 

acceptable level of risk is present. Note also that only the most likely (E4), most severe (S3), 

and least controllable (C3) classifications lead to the most stringent ASIL rating of ASIL D. 

 

Compiling the malfunctions, the hazardous situations, the risk assessment into one table for 

analysis completes the HARA. The HARA is an iterative task that can lead to reassessment as 

new information is discovered and new hazardous situations considered. Assessing all possible 

malfunctions and situations is a significant task, so an example HARA table for the 

malfunction focused on in this thesis – ‘unintended acceleration’ – is presented in Table 3-7. 

Here, three driving scenarios are examined, one at low speed, one at moderate speed, and one 

at high speed, with situations 1 and 2 being adapted from J2980 Table D-3 [111].  
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Table 3-7: Example HARA for unintended acceleration under three driving scenarios 

 

 

  

 ID Situation 1 Situation 2 Situation 3 
H

A
Z

A
R

D
 A

N
A

L
Y

S
IS

 

Function 

Provide acceleration 

commensurate with 

driver demand 

Provide acceleration 

commensurate with 

driver demand 

Provide 

acceleration 

commensurate with 

driver demand 

Malfunction 
Unintended 

acceleration 

Unintended 

acceleration 

Unintended 

acceleration  

Situation 

Description 

Vehicle driving in 

city or on country 

roads behind another 

car 

Vehicle driving at 

low speed (first 

gear) in 

pedestrianised area  

Vehicle is cruising 

on motorway with 

moderate-heavy 

traffic 

Potential 

Vehicle 

Hazard 

Front/rear collision 

with the vehicle in 

front 

Frontal collision 

with pedestrian at 

low speed, no run 

over assumed. 

Front/rear collision 

with the vehicle in 

front 

R
IS

K
 A

S
S

E
S

S
M

E
N

T
 

A
u

to
m

o
ti

v
e 

S
a
fe

ty
 I

n
te

g
ri

ty
 L

ev
el

 (
A

S
IL

) 

E E4 E3 E4 

R
ea

so
n

 

Very common 

situation. >10% of 

operation time 

Large proportion of 

drive cycles take 

place in 

pedestrianised area 

(parking lots, 

pedestrian crossings 

etc), likely <10% of 

operation time, but 

a smaller subset of 

areas could lead to 

run-over. 

Very common 

situation >10% of 

operating time. 

S S2 S2 S3 

R
ea

so
n

 Frontal crash of 

vehicle into rear end 

of another vehicle at 

intermediate speed 

(delta v = 20 kph) 

Low collision speed 

as initial speed is 

low, and pedestrian 

is regarded as being 

close to vehicle.  

High speeds 

increases 

possibility of 

higher front/rear 

delta v (> 40 kph) 

C C2 C3 C1 

R
ea

so
n

 

Situation can be 

controlled by brake 

actuation, intuitive 

driver reaction. 

Sufficient reaction 

time in majority of 

situations 

In low gear, 

acceleration for 

torque will be great, 

startling drivers 

with the unintended 

acceleration. 

Proximity to 

pedestrians lowers 

reaction time such 

that <90% of drivers 

are able to avoid 

(similar to Sit. 1) 

Since at motorway 

speeds, vehicle is 

in higher gear. This 

lessens wheel 

torque and 

resulting vehicle 

acceleration, which 

would be less 

startling to driver. 

ASIL ASIL B ASIL B ASIL B 
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3-1.4 – Safety Goals 
 

With the HARA completed, a safety goal at the vehicle level can be defined for each hazard 

(ISO 26262 Part 3-7.4.4.3 [27]). The safety goal is a “vehicle-level requirement” (ISO 26262 

Part 1-1.108 [26]) that – when achieved – prevents or mitigates any unreasonable risk 

identified in the relevant hazardous events in the HARA. A safety goal must therefore be 

quantified, meaning that there must be some quantitative requirement that can be met such that 

it can be shown that safety has been achieved. A single safety goal can be applied to multiple 

hazards, inheriting the ASIL of the highest hazard relying upon it.  

 

3-1.4.1 – Choosing the Safety Goal 

 

In the context of ISO 26262, and specifically pertaining to the risk assessment, the safety goal 

addresses the risk presented in a hazard such that by achieving the safe state, one or more of 

the ASIL parameters (E, S or C) is reduced. The aim is by arguing that if the vehicle were 

transitioned to the defined safe state when a malfunction occurred, the risk assessment would 

produce a new ASIL for the particular hazard. If that new ASIL rating is QM, the residual risk 

is now small enough to be reasonable with no further risk reduction is necessary: safety has 

been achieved. The safe state has to be reached before a fault can become a hazard: this is the 

FTTI, and is defined in ISO 26262 Part 1-1.45 [26]. 

 

 

Figure 3-6: Fault Tolerant Time Interval [26] 

 

One common approach in industry is by selecting the safety goal such that the driver is able 

to regain and maintain control of the situation. For example, taking any of the situations in the 

malfunction of ‘excess torque demand’ leads to the hazard ‘unintended acceleration’. 
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Controllability in each of the situations in Table 3-7 is not C0, but if the safe state was to 

ensure unintended acceleration remained within a manageable (i.e. controllable) magnitude, 

the controllability parameter could then be reduced to C0, and consequentially the ASIL would 

reduce to QM. The threshold would need to be manageable in such a way that the driver would 

easily be able to react to, and compensate for, the hazard, thereby mitigating the hazard. 

 

Birch et al [112] identified the hazard of ‘unintended acceleration at low speed among 

pedestrians’ in their paper about safety cases and the functional safety assessment in ISO 

26262. In an industrial case study, the hazard could be caused by the torque request and 

delivery within an electric vehicle, just as in this chapter. They prescribed the accompanying 

safety goal as ‘Vehicle positive longitudinal acceleration shall not exceed driver demand by 

over 1.5m/s2 for longer than 1 s’, with the rationale being that such a situation is controllable 

in general (C0) by the driver slowing and stopping the vehicle with application of the brake 

pedal. The FTTI for this safety goal is 1 second [112]. This is the safety goal chosen to mitigate 

unintended acceleration in all three situations of the HARA in Table 3-7, inheriting ASIL B. 

 

3-1.5 – Functional Safety Concepts 
 

In order to implement the safety goal, a method and mechanism concept is required, called a 

functional safety concept (FSC). The FSC is defined in ISO 26262 Part 1-1.52 [26] as “the 

specification of the functional safety requirements (1.53), with associated information, their 

allocation (1.1) to architectural elements (1.32), and their interaction necessary to achieve the 

safety goals (1.108)”. The FSC is where functional safety requirements (FSRs) are defined to 

functionally implement the safety goals, with at least one FSR for each safety goal. They are 

then allocated to the available architectural elements within the item. A FSR should be 

technical-implementation agnostic, meaning it should only be defined in terms of 

functionality. These FSRs will inherit the highest ASIL rating of the safety goals it is assigned 

to, which in this case is ASIL B. 

 

3-1.5.1 – Defining the Functional Safety Requirements  

 

E-Gas will serve as a strong basis for developing an FSC for the safety goal defined in Section 

3-1.4.1, especially seeing as this monitoring concept is considered industry standard [25]. E-

Gas Version 5.5 is specifically aimed at addressing the hazard of unintended acceleration in 

control units (which, according to their own HARA, yielded an ASIL-B rating), leading to its 

own safety goal of ‘prevent unintended acceleration’. To meet this safety goal, the FSRs in E-

Gas are allocated to sensors, actuators, and the ECU. The ECU is tasked with all of the 
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functional monitoring activities in Level 2. Table 3-8 shows each of the FSRs that are allocated 

to the ECU specifically, and subsequently the monitoring software; a summary is also provided 

to aid understanding. 

 

Table 3-8: Summary example of ECU-allocated FSRs for E-Gas FSC 

 

Safety Goal 
Vehicle positive longitudinal acceleration shall not exceed 

driver demand by over 1.5m/s2 for longer than 1 s 
ASIL B 

    

 Task Summary E-Gas ECU Functional Safety Requirement ASIL 

FSR 1 
Secure input 

signals 

The engine control unit detects sensor faults (e.g. 

accelerator pedal, throttle-valve, brake, cruise 

control), additional torque relevant sensors / 

components) by using appropriate plausibility 

checks. 

B 

FSR 2 
Calculate actual 

torque demand 

Torque requests of other control devices that are 

transmitted by networks shall be checked for 

plausibility (e.g. accelerator pedal, throttle-valve, 

brake, [cruise control]) in the engine controller. 

B 

FSR 3 

Calculate 

permissible torque 

request 

In the powertrain control unit a safety concept shall 

be implemented for validation and confirmation of a 

not permissible exceeding driving torque or an 

unintended acceleration. 

B 

FSR 4 

Switch to safe state 

if a fault is 

detected 

In case of a fault the engine control unit shall switch 

to a safe state. 
B 

 

The derivation and definition of the FSC is the final step in the Concept Phase of ISO 26262 

Part 3 [27]. Entering into Part 4 considers the specific system that the FSC is applied to, 

generating a system-specific Technical Safety Concept and Technical Safety Requirements; 

the following thesis chapters of concept development occur chiefly at this boundary. The focus 

of this thesis will be on FSR 3, highlighted in blue in Table 3-8, whereby novel safety 

monitoring concepts will be explored to ensure the correct torque demand is being provided 

by the powertrain ECU functional software, fulfilling FSR 3.  
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3-1.6 – Safety Lifecycle Summary 
 

In the first part of this chapter, the concept phase of ISO 26262 has provided the context and 

the purpose of the safety concept. In line with Figure 3-2, the following list summarises the 

outcomes of this section: 

 

• Function: Provide acceleration commensurate with driver demand. 

• Hazardous Situation: Unintended acceleration near pedestrians. 

• Safety Goal: Vehicle positive longitudinal acceleration shall not exceed driver 

demand by over 1.5 m/s2 for longer than 1 second. 

• Functional Safety Requirement: In the powertrain control unit a safety concept shall 

be implemented for validation and confirmation of a not permissible exceeding 

driving torque or an unintended acceleration. 

 

3-2 – Ideal Safety Concept Attributes 

 

The previous section used the concept phase framework of the ISO 26262 safety lifecycle to 

define the core task that the safety concept needs to accomplish: its functional safety 

requirement. In this section, the additional other desirable attributes of the safety concept will 

be derived and discussed. These attributes are not necessarily required by ISO 26262, but are 

desirable to the automotive OEM as it may make it easier to meet the ISO 26262 requirements, 

easier to develop, and/or easier to implement. These attributes will be used to identify the most 

promising concept candidates from the preliminary shortlist produced in the literature review. 

 

3-2.1 – Primary Motivations 
 

To identify the ideal safety monitor attributes, a general understanding of the motivations that 

go into selection of a safety monitor need to be highlighted. These main motivations were 

brought from the functional safety team working at the sponsoring OEM.  

 

3-2.1.1 – Meeting Functional Safety Requirements and Performance Criteria 

 

First, the safety monitor must be able to fulfil the task it is designed to do, namely, be able to 

always ensure safety goals are met. This is captured by conforming to the requirements of ISO 

26262, as the standard provides the framework to develop requirements against which the 

safety monitor is evaluated. Along with this is the matter of how reliable the system is in 
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operation, which is to say, its ability to provide availability to the driver and to not 

unnecessarily limit availability due to a non-hazardous fault.  

 

3-2.1.2 – Development Effort 

 

The second motivation is that of development effort on the part of the OEM. In Chapter 1, this 

was highlighted as the main motivation for this project. The development effort of the safety 

monitors have increased as the software complexity of the functional software also increased. 

Consider two different FSCs/TSCs for the same item and safety goal, each meeting the 

FSRs/TSRs and yielding the same reliability etc. The first concept has a higher initial design 

effort than the second, so it would make sense to choose the second concept as this would be 

less costly for the manufacturer. However, if the first concept can be easily transferred between 

applications – the net effort required over all applications may be less for the first concept than 

the second, yielding a lower net cost for the manufacturer. Furthermore, the first concept may 

simply build on existing software used in industry (i.e. the E-Gas continuous demand monitor 

[25]), so the actual starting point for initial design may be higher than for the brand new second 

concept. Many engineering groups may work on the safety software across numerous 

companies, so a highly complex concept may make calibration and modification difficult. 

Related to this, and of very high importance, is the effort required to verify the concept as per 

ISO 26262. A concept would benefit from being easier to verify, as the verification effort is a 

major part of increasing the development costs of the concept. A new concept that meets the 

requirements and is reliable, but requires a significantly larger verification effort will 

ultimately cost more, particularly if any minor modification or calibration requires extensive 

reverification.  

 

3-2.1.3 – Implementation Effort 

 

Lastly, the consideration of actually implementing the concept on the vehicle and releasing it 

to the consumer. A key component in this is the hardware cost related to the storage and 

computational requirements that the concept brings. For example, a concept that requires high 

performance computing to run large amounts of data, or the storage of many variables, would 

require more expensive hardware per vehicle. In special, low volume vehicle productions, this 

may be a sensible trade off if it leads to lowered development effort, but in mass market 

vehicles, the hardware cost is multiplied many times over, so a small per-vehicle saving in 

hardware costs may make economic sense. 
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All of these main motivators can be summarised by minimizing OEM cost as much as possible 

while still meeting the safety criteria.  

 

3-2.2 – Software Quality and ISO 25010 

 

In this software environment, ISO 26262 does not address many of the attributes associated 

with the quality of software as this is not the focus of the standard. However, many of the 

motivations that drive safety criteria are common with developing and evaluating quality 

software. For example, software that is poorly designed can lead to difficulty in full 

verification, or could lead to unnecessary resource utilisation, both undesirable attributes in 

quality software and with respect to a functional safety monitor. The quality of software can 

arguably be in relation to the low-level programming implementation and coding – which is 

largely dependent on the skill of the programmer – but can also be inherent to the architecture 

and framework of the software concept and how it is structured to meet its goals. In addition 

to qualities and attributes that can be gleaned from ISO 26262, it therefore also makes sense 

to look at an ISO standard that more directly addresses the quality of the software used in such 

systems for more possible quality characteristics. 

 

ISO 25010 is an international standard on systems and software engineering [113]. Based on 

ISO 9126:1991, it forms the second part of a series of standards governing software quality, 

SQuaRE, which stands for Software Quality Requirements and Evaluation. ISO 25010 focuses 

specifically on the quality aspect of the software itself, with other parts in the series looking at 

themes such as management (ISO 25000 [114]), measurement (ISO 25020 [115]), 

requirements (ISO 25030 [116]), and evaluation (ISO 25040 [117]).  

 

The standard separates the quality of the software into two main sections. First, the “quality in 

use” is examined, which highlights five key characteristics related to the interaction with the 

system by a human operator, either an end user or maintenance by a developer. These 

characteristics are:  

 

• Effectiveness 

• Efficiency 

• Satisfaction 

• Freedom from Risk 

• Context Coverage 
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The application of safety software is different to a computer program used by a consumer, in 

that there is no direct usage: it is a hidden function from the consumer. Effectiveness in this 

context is defined in ISO 25010 Section 4.1 as specifically relating to how effective the 

software is in enabling the user to achieve their goal. Efficiency addresses the resources 

required to achieve the goal of the user. Satisfaction is with regards to user experience. 

Freedom from Risk is inherent to the safety software, as that is indeed its primary purpose, so 

it is not a new attribute. Context coverage addresses the number of different scenarios in which 

a user can use the software, so would not relate to the ability of the safety software to cover 

all possible scenarios. 

 

The ‘quality in use’ model is therefore not relevant. Instead, a product quality model is 

provided by ISO 25010 Section 3.3 that addresses the quality of the software itself, not the 

usage experience. Eight key characteristics and thirty-one sub-characteristics are identified 

and shown in Table 3-9; a detailed explanation of each of these characteristics can be found in 

ISO 25010 Section 4.2. 
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Table 3-9: Product Quality Model - characteristics and sub-characteristics from ISO 

25010 [113] 

 

ISO 25010 Characteristic IS 25010 Sub-Characteristic 

Functional Suitability 

Functional Completeness 

Functional Correctness 

Functional Appropriateness 

Performance Efficiency 

Time-behaviour 

Resource Utilisation 

Capacity 

Compatibility 
Co-existence 

Interoperability 

Usability 

Appropriateness recognisability 

Learnability 

Operability 

User Error protection 

User interface aesthetics 

Accessibility 

Reliability 

Maturity 

Availability 

Fault Tolerance 

Recoverability 

Security 

Confidentiality 

Integrity 

Non-repudiation 

Accountability 

Authenticity 

Maintainability 

Modularity 

Reusability 

Analysability 

Modifiability 

Testability 

Portability 

Adaptability 

Installability 

Replaceability 

 

3-2.3 – Ideal Monitoring Attributes 

 

With guidance from ISO 26262 [26], a product quality model from ISO 25010 [113], and 

industry experience from Jaguar Land Rover, ideal attributes of the functional safety monitor 

have been identified. Each attribute will be briefly described in the context of a functional 
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safety monitor, any relationships with other attributes noted, and any associated 

(sub)characteristics from ISO 25010 stated.  

 

3-2.3.1 – Functional Suitability 

 

The safety concept must comply with the FSRs and TSRs from the ISO 26262 safety lifecycle. 

It must be able to reliably, quickly and accurately detect true faults that will violate the safety 

goal every time they occur, including latent and multiple faults as necessary. All true faults 

must be classified and isolated for correct fault reaction to take place. It is important to quickly 

be able to start fault reaction within the FTTI such that a “graceful transition to a safe state” 

[26] can occur, but could also lead to sensitivity from high frequency noise factors, resulting 

in false positives (affecting reliability).  

 

Related ideal attributes are Reliability and Verifiability. Related ISO 25010 sub-characteristics 

include Functional Suitability, Functional Appropriateness, Functional Completeness, 

Functional Correctness (Accuracy), and Time-Behaviour. 

 

3-2.3.2 – Reliability 

 

In this context, reliability is a subset of robustness, ensuring that maximum availability of the 

vehicles performance is given to the driver. A true fault leads only to the necessary reduction 

of availability in order to maintain safety. There is a low chance of false positives occurring 

with high reliability, due to a low sensitivity towards noise factors. Low reliability will 

unnecessarily limit vehicle performance availability with false positive occurrence. It also 

considers recoverability, as it should not unnecessarily limit performance after an ECU reset. 

There becomes a trade-off, whereby the appropriate level of engineering effort should be 

dedicated to improving reliability. In order to select the appropriate trade-off, the project and 

safety requirements should be examined. The project requirements will set the minimum level 

of availability the system should have, and the safety requirements will set the level of safety 

the system should have. Engineering effort for reliability will be complete once both sets of 

requirements have been verified to have been met during the verification phase of the project, 

i.e. limitation of unnecessary vehicle performance availability is acceptably low, and safety 

has been achieved.  
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Related ideal attributes are Functional Suitability, Initial Design Effort, and Simplicity. 

Related ISO 25010 sub-characteristics include Reliability, Availability, Fault-Tolerance, 

Recoverability, and Maturity. 

 

3-2.3.3 – Verifiability 

 

A safety concept must be verifiable, in the sense that it can be verified to ensure it will always 

meet the FSRs over the lifetime of the vehicle, proving that the software complies with ISO 

26262. If the software cannot be verified to maintain safety objectives at all times, it is not 

suitable for a safety-critical application. This attribute also covers ease of verifiability, as a 

concept may be verifiable but could require great effort, leading to increased costs for the 

OEM and ultimately the consumer. On the other hand, verification could be fairly straight-

forward with easily identifiable and testable systematic testing, which in a software 

environment could be automated, reducing costs. Additionally, should the functional software 

need to be recalibrated, the amount of reverification required would also impact costs. ISO 

26262 Part 4-7.4.3.6 [29] states: ‘a decision not to re-use well-trusted design principles should 

be justified’. This is relevant here as some of the methods being evaluated are novel in this 

application (i.e. not well-trusted) and thus must be verified to comply with the ISO 26262 

standard at all times. With a process-history based concept, any stored data that is used to drive 

concept operation (such as neural network training data) needs to also be both verifiable and 

verified.  

 

Related ideal attributes are Functional Suitability, Initial Design Effort, Modifiability, and 

Simplicity. Related ISO 25010 sub-characteristics include Functional Suitability Compliance, 

Analysability and Testability. 

 

3-2.3.4 – Compatibility 

 

Compatibility covers how well the concept can operate with other items in the greater vehicle 

plant, including the functional software and other safety software modules. It also considers if 

the new concept can simply replace the existing one, or whether additional, novel development 

work is needed, and if hardware changes are required. Additionally, the safety concept should 

be able to coexist with sufficient independence from modules that are not safety critical, 

specifically, ASIL QM level functional software.  
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Related ideal attributes are Simplicity, Hardware and Computational Requirement, and Initial 

Design Effort. Related ISO 25010 sub-characteristics include Compatibility, Replaceability, 

Coexistence, Compatibility Compliance, and Interoperability. 

 

3-2.3.5 – Hardware and Computational Requirement 

 

This attribute is directly related to cost of implementation and packaging needs for when the 

vehicle is released, including the storage requirements and the computational resources the 

concept would need to operate. Consideration also needs to be given if a certain concept 

requires special hardware or storage facilities, e.g. an online-learning concept may need 

hardware redundancies such that if a memory unit fails, all the captured training data isn’t also 

lost. Other, more novel monitoring concepts may require specific sensors or network 

connectivity of a high minimum hardware or bandwidth specification in order to meet safety 

goals, all adding to implementation costs. As previously mentioned, the importance of this 

attribute is dependent on the economics of the target application: a low-volume vehicle model 

would put lower emphasis on these per-vehicle costs than a mass market production run would.  

 

Related ideal attributes are Compatibility and Commercial Feasibility. Related ISO 25010 sub-

characteristics include Performance Efficiency, Maintainability, Installability, and Resource 

Utilisation. 

 

3-2.3.6 – Initial Design Effort 

 

The initial design effort required to produce the concept is directly related to the cost involved 

in the development stage, and reducing the initial design effort will lead to greatly reduced 

costs. Design effort covers the necessary coding expertise for designing and calibrating the 

concept for a specific vehicle application. A high initial design effort can make commercial 

sense if it enables easy transferability of the concept to other applications, meaning the net 

cost is lower over multiple vehicle programs. Verification effort is related to this attribute as 

both contribute greatly to the cost of development, with initial design effort on the left-hand 

side of the ‘V’ cycle, and verification effort on the right-hand side.  

 

Related ideal attributes are Verifiability, Simplicity, Compatibility, Modifiability and 

Commercial Feasibility. Related ISO 25010 sub-characteristics include Maintainability. 
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3-2.3.7 – Simplicity 

 

The concept should be simple, or rather, not unnecessarily complex. This is to avoid failures 

from unconstrained complexity, and implies modularity, encapsulation within the design, and 

adequate level of granularity [27]. Highly complex concepts may be more difficult to design, 

verify, modify, and could necessitate higher hardware specification and computational 

resources. Additionally, it could be more difficult to trace changes if multiple teams work on 

the software. Therefore, keeping the concept as simple as it needs to be is usually desirable, 

unless added complexity could enable easier modification or better resource utilisation.  

 

Related ideal attributes are Initial Design Effort, Verifiability, Modifiability, Hardware and 

Computational Requirement, and Compatibility. 

 

3-2.3.8 – Modifiability 

 

Suitability for configurable architectural design, and maintainability of the software 

architectural design is desirable. With the functional software in the process of development, 

it is desirable to be able to quickly and easily calibrate or modify the concept without great 

effort. Modifiability is also related to how easily the concept could be transferred to a new 

application (powertrain or vehicle) with only some calibration work required, potentially 

reducing the initial design effort required in the new application, and thus the cost involved. 

The option to modify could be related to having that capability programmed in during initial 

design, though at the expense of simplicity.  

 

Related ideal attributes are Initial Design Effort, Verifiability, and Simplicity. Related ISO 

25010 sub-characteristics include Modifiable, Modularity, Changeability, Stability, 

Reusability, Transferability, Portability, and Adaptability. 

 

3-2.3.9 – Commercial Feasibility 

 

Feasibility for the design and implementation of software units’, the technique is only worth 

exploring if it could possibly be commercially deployed, provided it meets all other 

requirements. Ensures that development time, development costs and implementation costs 

are jointly justifiable within the business case.  

 

This ideal attribute relates to all others. 
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3-2.3.10 – Evolvable 

 

As the vehicle ages, or changes are made throughout its lifetime, the mathematical model 

becomes less representative of the actual plant. The ability of the concept to adapt to these 

changes over time could prove highly beneficial, as it could minimise effort spent on 

calibrations during the development stage as the functional software is being changed, but 

potentially even enable the safety concept to maintain reliability over a longer period of time 

and with new, unaccounted-for noise factors interacting with the system. The biggest concern 

with an evolvable safety concept is that of verifiability, as now all possible future evolution 

permutations of the concept would need to be ensured to be functionally suitable. Other 

concerns relate to how complex the system could become, and the additional hardware and 

computational requirements to process the evolution of the concept.  

 

Related ideal attributes are Reliability, Verifiability, Initial Design Effort, Hardware and 

Computational Requirement, Simplicity, Modifiability, and Compatibility. Related ISO 25010 

sub-characteristics include Adaptability. 

 

3-2.3.11 – Security 

 

Ideally, the OEM should ensure that the software is secure, such that it cannot be maliciously 

altered after commission in a way that would cause the safety concept to fail to meet its safety 

objective, ultimately endangering occupants. Currently, security analysis is not required by 

ISO 26262, but will likely be introduced in future legislation.  

 

Related ideal attributes are Compatibility, Hardware and Computational Requirement, Initial 

Design Effort, Simplicity, and Modifiability. Related ISO 25010 sub-characteristics include 

Security, Confidentiality, Integrity, Non-Repudiation, Accountability, Authenticity. 

 

3-2.4 – Importance Weighting and Pugh Matrix Score 

 

Each of the ideal attributes shown in the previous section are important selection criteria to 

help the OEM evaluate current and potential safety concepts. However, the importance of each 

attribute varies according to the needs of the OEM. These could be relative to technical factors, 

with considerations for the safety goals and associated ASILs the concept seeks to address, the 

range powertrain variations, available hardware and storage resources available, expected 

noise factors, software complexity and features etc. In addition to this, management and 
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commercial factors also play a significant role in impacting attribute importance, such as the 

vehicle production cycle plans (current and future), the inter-company working groups (and 

intra-company engineering departments), budget etc.  

 

The manufacturer sponsoring this research project is looking to use the research outputs in a 

mass-market vehicle application. They are concerned with the cost of having to recalibrate and 

re-verify safety software every time there is an update in the functional software. Certainly, 

the concepts must perform the task required (i.e. be functionally suitable), and be able to be 

verified, to comply with ISO 26262 requirements. They hope that the new concepts are 

compatible with the current software and hardware, such that minimal changes are necessary 

and very little to no additional cost is added for new hardware, since the software could find 

use in thousands of new vehicles. Initial design effort is of lower importance than it being 

modifiable to allow easy transfer between vehicle powertrains, and straightforward re-

calibration. While a simple concept would be ideal, it is of lower importance, along with 

commercial feasibility, so as not to limit the consideration of possible new concepts for this 

project. An evolvable concept presents an interesting and challenging avenue of research, but 

with many questions surrounding verifiability it is of lower priority. Finally, product security 

is worth mentioning due to possible future legislation, but is not of major focus in this project.  

 

With this in mind, a weighting has been applied to each attribute according to the needs of the 

OEM funding this research project, shown in Table 3-10. 
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Table 3-10: Importance weighting of each attribute for this application 

 

Attribute Weight 

Functional Suitability 10 

Reliability 7 

Verifiability 10 

Compatibility 8 

Hardware and Computational Requirement 8 

Initial Design Effort 6 

Simplicity 6 

Modifiability 7 

Commercial Feasibility 6 

Evolvable 3 

Security 0 

 

The weightings above are used to evaluate and score the current and candidate concepts using 

a Pugh Matrix, with an overall Pugh Matrix score for each concept calculated by multiplying 

the importance weight by the concept score for each attribute, and summing these results 

together. Each attribute can have a maximum score of 10 and a minimum score of 0. 

 

3-2.5 – Concept Selection 

 

Taking the concepts that were highlighted in the literature review, and knowledge of their 

strengths and any use in industry, the attribute scores could be estimated to narrow down which 

concepts have potential for investigation. In doing so, efforts could be directed towards the 

most promising concepts, and concepts that are clearly unsuitable (i.e. concepts that score less 

favourably versus the benchmark will lose their candidacy). The benchmark for determining 

concept suitability is – as identified in the literature review – the continuous torque demand 

monitor. Table 3-11 shows the initial attribute scores of each concept candidate, and the 

benchmark, as of the first year of research; the scores of the continuous torque demand monitor 

benchmark concept were derived with expert input from Jaguar Land Rover functional safety 

engineers, as they use this concept in practice.  
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Table 3-11: Initial, pre-investigation attributes scores of concept candidates identified in 

the literature review scored against the benchmark concept. Total score difference to 

benchmark is shown in parentheses in the rightmost column.  

 

3-2.5.1 – Observers 

 

An initial investigation into observers – specifically, the Kalman filter – found that while they 

could be used in a functional software fault detection and diagnosis environment, such a 

concept would essentially be based on the current method for fault detection. Like the current 

method, a mathematical model of the monitored system is compared to the measured outputs 

of said system in order to produce an error value (residuals); additional mathematical functions 

would also need to be applied to measured inputs y and/or predicted states 𝑥. 

 

The strength of Kalman filters in a traditional sense is that they can “see through” noisy data 

using known dynamics, but in a software environment where the system is a user-defined 

software function, those dynamics are often highly complex, and discrete (as opposed to 

continuous states). Noise factors in the functional software would manifest themselves as 

process noise (wk), but it is more likely that certain ‘dynamics’ would be missed during 
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Continuous 

Torque 

Demand 

Monitor 
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328* 

(-208) 

Neural 
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(-187) 
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(+4) 

Adaptive 

Safety 

Monitor 
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(+61) 

            

* score shown follows initial investigation, yielding no usable results. 
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modelling. It seems the Kalman filter can only account for zero-mean Gaussian white noise, 

so noise factors that cause a signal offset, for example, will affect residuals and thus possibly 

register false readings. On the other hand, the residuals and observer banks could be arranged 

to be sensitive to certain faults and not to others, which would then feed into a decision block 

to evaluate fault magnitude and isolate it using the residuals. The decision block could 

theoretically look for combinations of residuals to determine if a true fault has occurred, 

ignoring false positive spikes in residuals, but this will require extensive testing and will be 

likely be made bespoke to each powertrain setup, limiting transferability. Extended State 

Observers were found to be a relatively new type of observer that again relies on system 

dynamics, but its application potential to monitor the functional software is likely low due to 

the nature of the software interactions found there, the rate at which it needs to detect a fault, 

and the safety critical nature of the application.  

 

Investigation was halted ultimately due to incompatibility between the model form of safety 

software and the form required for Kalman filter implementation. 

 

3-2.5.2 – Neural Networks 

 
From initial learning in the literature review, it was determined the primary barrier facing the 

neural network as a safety software concept is verification. The weightings are very abstract, 

making full formal verification a near impossible task. Furthermore, the more successfully 

implemented ANNs found in literature continue to evolve and adapt after deployment. 

Verifying this would be very difficult due to the abstract nature of the inner workings of an 

ANNs, and though reliability and performance may be improved through evolution and 

adaptation, verifying safety due to these post-deployment adaptations has been determined 

unfeasible at this point. Neural networks are a significant change from the current continuous 

torque demand monitor method used, as it is not clear which signals should be included in the 

input layer, and what the output layer would resemble, making the concept less compatible 

over the benchmark concept. Each modification would require full retraining of the neural 

network, as the weightings may or may not be related to the sections being modified. While 

the neural network training does not require much expertise (since it is learning for itself), the 

setup up and interpretation of the model would need to take place for each powertrain variant 

and modification, impacting initial design effort. Neural networks may require significant 

storage and computational requirements depending on the complexity, and the number of 

neuron layers; this complexity makes the concept less simple. Overall, verification is the 

primary concern, making this concept commercially infeasible for this application. 
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3-2.5.3 – PCA 

 

From the literature, it seems that PCA has been successfully used in safety-critical fault 

detection applications, so there is reason to believe that it can be implemented successfully as 

a safety concept on a vehicle. Until the investigation is conducted, it is unknown if it is 

functionally suitable, particularly as it is a novel concept; the same can be said about reliability. 

As PCA is a process-history based method, verifiability can be dependent on the quality of the 

training data it is developed on (Verifiability) but should be easier to verify than neural 

networks owing to being able to see the components of the PCA models once derived, though 

may need some expert knowledge to interpret them appropriately. It is expected that PCA can 

be compatible with the current system, as it performs essentially the same function as the safety 

software fault detection, with the same inputs producing the torque error (compatibility).  

 

PCA is excellent at describing very large amounts of data using just a few parameters, and 

could therefore reduce the storage capacity needed; once the PCA model is derived, the 

training data does not also need to be stored on a production vehicle, so minimal storage space 

is required. Additionally, it seems that PCA only needs to perform some multiplications to 

produce a torque error from the inputs, so little computational resources are used (hardware 

and computational requirements). Attaining sufficient training data for PCA to derive the 

model during development can be a difficult – therefore costly – task for most applications, 

but since it is monitoring a software plant, it is expected that the training data can quickly be 

attained, provided full coverage can be made (Initial Design Effort).  

 

Once derived, a PCA model is self-contained and can be a simple concept to implement 

(Simplicity). However, any changes made to the functional software may require re-derivation 

of the PCA model, impacting the ease of modifiability; if the necessary training data is easy 

to obtain through automated scripts – seeing as the application is software-based – 

modification may be relatively straightforward. There is scope also to include some evolving 

automated re-derivation process, improving the PCA model after the vehicle has been sold, 

but this naturally brings with it verifiability concerns. Overall, there is potential for PCA as a 

commercially feasible safety concept.  

 

3-2.5.4 – Adaptive Safety Monitor 

 

The highest attributes score is held by the theorised adaptive safety monitor. As it is essentially 

an adaptive version of the continuous demand monitor, it should be similarly functionally 
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suitable. A simpler safety software model means a reduced initial design effort, reduced 

hardware (and possibly computational) requirements, makes modifications easier, and 

provides a simpler concept overall.  

 

The safety software now can provide greater reliability to the driver, with long term changes 

to the vehicle less likely to affect false positives in the safety software due to how the concept 

changes on the vehicle according to slow moving torque errors (Evolvable). However, this 

adaptation could impact verifiability effort, as it needs to be ensured that the concept does not 

adapt in a way that could make it functionally unsuitable. Despite this, the initial attributes 

points towards the adaptive safety monitor possessing strong commercial feasibility, and 

therefore is a prime candidate for investigation. 

 

3-2.5.5 – Selected Concept Candidates 

 

Of the four potential concepts, only the PCA safety monitor and the adaptive safety monitor 

have initial scores greater than the continuous torque demand monitor, and therefore will be 

carried forwards for investigation.  

 

3-3 – Concept Development and Testing Environment 

 

To test the PCA and adaptive safety monitor concepts, a testing environment needs to be 

established. The methodology for evaluating these concepts will be to use the testing 

environment to determine if the concepts are indeed able to detect faults in a timely manner, 

versus the benchmark – i.e. they meet functional suitability requirements. The experience 

gained throughout the development of these new concepts will then been used to determine a 

post-investigation score of each attribute in Chapter 6. 

 

A development and testing environment has been created using the Matlab and Simulink 

workspace to fairly evaluate and test the selected concepts. Data collection was conducted in 

a Range Rover Hybrid test vehicle, and that data was used – along with vehicle parameters – 

to produce a vehicle model in Simulink, using the Simscape modelling toolbox to validate the 

model against the collected data; details to this modelling and validation process can be found 

in the Appendix.    
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3-3.1 – Twin-EV Powertrain and Vehicle Model 
 

The sponsoring manufacturer was able to provide powertrain control software for a pre-

production twin-EV powertrain. The powertrain comprises of two reduction-geared 300 Nm 

electric motors with a maximum angular speed of 7000 rpm, one on each axle driving the 

differential. It was decided that such a powertrain would suit safety concept development much 

better than the hybrid variant, as complex unmodelled transient dynamics in the ICE would be 

eliminated, as would the 8-speed transmission, reducing simulation times to ~1% of the 

previous powertrain model. The only drawback was that a test vehicle housing this powertrain 

was not available for data collection and re-validation, so the decision was made to modify the 

validated Range Rover Hybrid model to match the twin-EV powertrain [17] shown in Figure 

3-7.  

 

 

 

Figure 3-7: Twin-EV Powertrain. Black connections indicate mechanical coupling, and 

orange indicates HV electrical connections. 

 

The drawback was deemed acceptable for this investigation, as it serves the purpose of being 

a suitable environment for testing the operation and effectiveness of the novel safety 

monitoring concept candidates. The vehicle parameters for the Twin-EV powertrain are shown 

in Table 3-12. Some of the parameter values have been slightly altered from the Range Rover 

Hybrid due to commercial reasons. 
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Table 3-12: List of key vehicle parameters used in Twin-EV powertrain model 

 

Parameter Value Unit 

Vehicle Mass 2000 kg 

Drag coefficient 0.37 - 

Frontal Area 3.07 m2 

CG Height 0.5 m 

CG from front axle 1.4 m 

Wheelbase 3 m 

Trackwidth 2.2 m 

Wheel Radius 0.35 m 

Tyre Friction Coefficient 0.02 - 

E-machine Inertia 0.06 kgm2 

Electrical Efficiency Constant 0.9 - 

Mechanical Efficiency Constant 0.95 - 

Max E-machine Torque (per motor) 300 Nm 

Max E-machine speed 7000 rpm 

Reduction Gear Ratio 9.04:1 - 

Rear Differential Gear Ratio 1:1 - 

Rear Differential Inertia 3.2 kgm2 

Front Differential Gear Ratio 1:1 - 

Front Differential Inertia 3.2 kgm2 

 

Many of the same vehicle parameter values were carried over from the Range Rover Hybrid 

as it was expected a similar class vehicle would eventually carry this powertrain. The 

arrangement of the new twin-EV Simscape model, centralised control structure, and driver 

model is shown in Figure 3-8.  
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Figure 3-8: Twin-EV Simscape vehicle model with centralised control system 

 

The vehicle model components are unchanged, with exception to the electric motors which 

can now produce 300 Nm at 0 rpm. A reduction gear of 9.04:1 is placed on each axle before 

the differential, stepping up the torque and stepping down the speed; the differentials both 

have a 1:1 final drive ratio. The total torque demand from the torque structure is the sum of 

torque demand to the front and rear motors.  

 

3-3.2 – Safety Software Test Method 

 

The powertrain control software provided by the OEM was calibrated for the twin-EV 

development vehicle. Due to IP sensitivity, the complex software was contained mostly within 

an S-function that was not a searchable Simulink model. However, a list of variables was also 

provided which included a torque map, whereby desired total wheel torque was calculated by 

accelerator pedal position and vehicle speed: this is used as part of the complex calculation of 

torque demand.  

 

Using just the vehicle map, and accounting for the total gear ratio from each e-machine to its 

axle (9.04:1), the basic drive functionality of the complex powertrain control software S-
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function could be achieved without unintended interactions with – and interventions from – 

unidentifiable software components hidden in the powertrain control software. Seeing as the 

actuators are identical, the torque demand is simply split evenly for delivery. This 

comparatively simple set of software, in effect, formed the functional software that new safety 

software concepts will seek to monitor, and is shown in Figure 3-9. 

 

 

 

Figure 3-9: Simplified Torque Structure from complex VSC provided by the OEM 

 

While the vehicle velocity input is calculated directly from the vehicle dynamics body 

Simscape block, control of the pedal percentage input needs to come from the driver. A driver 

model was created that would ultimately modulate the accelerator pedal to match the vehicle 

velocity with a desired target vehicle velocity. The driver model is simply a PI controller with 

an output range of 0% to 100%, though there is scope to dynamically adjust the PI gains 

through scheduling and reset integral terms as necessary. 

 

In order for concept testing and performance assessment to be made, a test method needs to 

be established. The assumption is made that if a concept is functionally suitable, it should be 

able to detect faults in the functional software due to the comparison of actual torque demand 

from the functional software, and permitted torque demand as calculated by the safety 

software. Therefore, in the absence of faults, it can be assumed the torque error would be zero.  

 

The most straightforward way to achieve this in the test environment would be to simply 

duplicate the torque structure module as the safety software model. When no fault is present, 

the torque error would be zero. If a fault were to be then injected in the torque structure (but 

not the safety software) a torque error of the difference between permitted torque demand and 

torque demand – the same profile of the fault injection – would be produced. Figure 3-10 

shows the Simulink test structure for benchmarking new concepts, with p indicating pedal 

position (%), v indicating vehicle velocity, and τ indicating torque.  
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Figure 3-10: Simulink Test Structure with driver model (yellow), functional software 

(blue), safety software (green), and Simscape twin-EV vehicle model (grey). 

 

The aim of this test is to determine whether a new concept is functionally suitable, i.e. it can 

detect the fault in the functional software accurately and quickly. The fault reaction mechanism 

and intervention system will be excluded from analysis, as fault detection is the primary focus 

of this project. The fault reaction mechanism serves a separate function to detection, as it 

simply acts when the fault detection concept determines a fault has occurred. Most of the other 

attributes will be assessed through the experience of development and anticipated challenges 

of each new concept with the expert knowledge from the literature review and from Jaguar 

Land Rover, seeing as any new concepts cannot feasibly be put through the full safety 

lifecycle; where possible like-for-like testing will be conducted. 

 

3-4 – Conclusions 

 

With the concept phase of ISO 26262 explored through the lens of powertrain safety software, 

the core task of the safety monitoring concept has been defined. The limited scope of 

addressing a safety goal preventing unintended acceleration means a focused goal of 

monitoring malfunctions of torque demand can be made, guiding future investigation. Based 

on the principles of ISO 26262, ISO 25010, and expert opinion from the sponsoring OEM, 
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eleven ideal monitoring attributes were identified to winnow down the concept candidates to 

those that show the most promise against the benchmark continuous torque demand 

monitoring concept, shortening the preliminary concept list to two concept candidates: the 

adaptive safety monitor and the PCA safety monitor. In the following two chapters, the 

development of the adaptive safety monitor and PCA safety monitor will be detailed using the 

testing environment established in the second half of this chapter.  
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Chapter 4 
 

Adaptive Safety Monitor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 – Summary 
 

A novel adaptive safety monitor is proposed as an innovative software fault-detection concept, 

aiming to enable transferability between powertrains without modification and minimal 

recalibration effort. This chapter will outline specific challenges of development burden faced 

by current fault-detection methods, and how an adaptive safety monitor concept can overcome 

them. Development of the adaptive safety monitor concept is discussed, with the introduction 

of a two-stage algorithm, and a performance analysis is conducted through model simulation 

to demonstrate improved robustness against false faults over the continuous torque demand 

monitor. A parameter calibration and optimisation process is then demonstrated through 

design-of-experiments, concluding with further work and an outlook into future commercial 

applications. 

• Objective 4: Conduct detailed investigation into candidate concept. 



 

109 

 

4-1 – Adaptive Safety Monitor Concept 
 

4-1.1 – Safety Software Model Fidelity 
 

In the introduction (Chapter 1), the problem of rising software complexity was identified as 

putting increased burden on automotive manufacturers. The continuous torque demand 

monitor (alluded to in Chapter 1 and introduced with more detail in Chapter 2) monitors the 

functional software using a set of high-integrity safety software. Typically, this safety software 

contains a simplified version of the functional software in a safety software model; a perfect 

copy of the functional software is not used for the model, as its complexity makes the effort 

of verification too great. The safety software model used in the continuous torque demand 

monitor is, however, of a high-fidelity to minimize the modelling discrepancies between the 

safety software and the functional software, and to provide accurate torque error estimations. 

 

One way to reduce the development burden is to use a further simplified, low-fidelity model 

in the safety software. Provided the functional suitability is not sacrificed (ability to always 

meet safety goals), a simpler safety software model will be less costly to develop, validate and 

verify. Additionally, the transferability between powertrain variants could be increased due to 

the relative simplicity. However, the simplified model could consequentially at times differ 

more from the functional software it monitors in such a way that it falsely identifies a torque 

error to be an unsafe fault, leading to an unnecessary limitation of powertrain availability to 

the driver in reaction to this false fault flag. While safety is still achieved with this simplified 

safety software model, the driver has the inconvenience of reduced availability when there was 

no fault present. In this context, the strengths of a high-fidelity model can be summarised as: 

 

• Meets safety goals. 

• More reliable against false faults, leading to increased functional availability. 

 

while the benefits of a low-fidelity model can be summarised as: 

 

• Meets safety goals. 

• Reduced complexity. 

• Reduced development and verification effort. 

• Reduced cost. 

• Increased transferability between powertrain variants. 

• Possible reduced storage and computational requirement. 
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In practice, functional safety engineers seek to strike a balance between development cost and 

robustness against false positives in the safety monitors they develop, permitting a certain 

amount of torque error to be present, provided safety goals are still met. Typically, this should 

not cause a false fault to be flagged under normal operating conditions (which in this case 

implies no malfunction has occurred and any torque error is due only to noise factors, primarily 

unstructured uncertainties), but it leaves less tolerance for any additional factors in the torque 

error to occur before a fault is flagged. The tolerance is called the ‘minimum headroom’ of the 

safety monitor, practically being considered the amount of additional torque error from a fault 

that could cause a fault to be flagged; a high-fidelity model will have a larger minimum 

headroom, and a perfect model would have a minimum headroom equal to the ‘nominal 

headroom’ – that is, the torque error permissible before the safety goal is violated. To illustrate 

this, consider Figure 4-1, which compares a representative histogram distribution of nominal 

torque error over some period of time in both a high-fidelity and low-fidelity model in the 

safety software under normal operating conditions [37]. 
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Figure 4-1: Representative torque error histogram and distribution under normal 

operating conditions for high-fidelity (top) and low-fidelity (bottom) safety software 

models 

 

In the nominal torque error calculation of Figure 4-1, both models are assumed to exhibit a 

torque error distribution centre around zero under normal operating conditions. Comparing the 

variance of the torque error, however, a high-fidelity model would exhibit a tighter distribution 

under normal operating conditions compared to that of the low-fidelity model, leaving a 

sizable minimum headroom to allow for manageable faults to occur without a false fault flag; 

The low-fidelity model, meanwhile, leaves much less headroom for manageable faults to occur 

before a fault is flagged by the safety monitor, unnecessarily limiting availability to the driver 

since the fault would not, in fact, violate a safety goal.  
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Now consider a real malfunction occurring in the functional software that is being monitored 

by the safety software model. The malfunction yields a small fault of 30 Nm which, in itself, 

does not violate a safety goal for unintended acceleration. The distribution of torque error seen 

in the safety models from Figure 4-1 will tend to shift, such that the centre of torque error 

distribution surrounds the 30 Nm fault. The higher-fidelity model, with its tighter torque error 

distribution and larger minimum headroom, can tolerate the 30 Nm fault and not cause a fault 

to be flagged. However, the lower-fidelity model, with its wider torque error distribution, 

cannot tolerate such a fault as one or more of the torque error measurements exceed the error 

threshold. Therefore, a fault is incorrectly flagged – a false positive, since the 30 Nm fault 

does not actually violate the safety goal – due to the noise factors present in such a low-fidelity 

model. Figure 4-2 illustrates this scenario. 

 

Figure 4-2: Representative torque error histogram and distribution with 30 Nm fault for 

high-fidelity (top) and low-fidelity (bottom) safety software models 
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It is also possible that unmodelled changes in operating conditions such as aggressive driver 

behavior, high altitude, and high temperatures can result in a wider distribution of torque error 

during normal operating conditions, leading to false fault flags with no real fault present in 

functional software.  

 

4-1.2 – Adaptive Safety Monitor 
 

When torque error distribution was used to visualize the effect of high and low fidelity safety 

software models, it was theorised that the safety monitor could be allowed to slowly adapt to 

manageable changes in mean error since these do not pose immediate safety violations to the 

driver, regardless of the source of the slow-moving torque error. In doing so, there is a reduced 

likelihood that a slow-moving change in torque error distribution, would cause torque error 

values at the edges of the distribution to exceed the error threshold and flag a false fault. A 

fast and significant change in torque error – one that should indicate a safety risk to the driver 

– should always cause the distribution to exceed the error threshold. A fast change of a 

manageable magnitude – such that the driver retains control and would not be put at risk – 

could still cause an adaptive low-fidelity model to exceed the error threshold since it is only 

permitted to adapt at a prescribed safe rate, potentially causing a false fault flag. The small 

fault magnitude does mean, however, that the distribution is quickly brought back below the 

error threshold, and the amount of availability lost to the driver would be minimal. 

 

The adaptive safety monitor could therefore allow a low-fidelity safety software model to be 

used as part of the functional safety concept, while still achieving safety, but with the added 

benefit of increased robustness against false faults, thereby increasing functional availability 

to the driver. The adaptive safety monitor is compatible with the existing functional safety 

concept architecture, becoming implementable between the nominal torque error calculation 

and the fault decision function. Birch et al [37] developed the first instance of the adaptive 

safety monitor, whereby the mean error is calculated and stored. For the assumed Gaussian 

distribution, the mean error is simply the mean of all the sampled torque error values within 

the torque error sampling window. Then the error offset is calculated, though this is not simply 

the most recent mean error value as it is limited to a degree based on allowable rate of change 

and maximum or minimum allowable offset value. This prevents the adaptive safety monitor 

from adapting too quickly, such that an unsafe fault would be adapted to by the adaptive safety 

monitor faster than the driver could and consequently be missed. Once the error offset is 

calculated, it is subtracted from the nominal torque error to produce the ‘offset torque error’.  
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4-1.3 – Two-Stage Adaptive Safety Monitor 
 

Noise factors that are inherently present in non-perfect-fidelity safety software models yield 

different torque error behaviors in magnitude and rate of propagation. Certain noise factors 

propagate very quickly, such as proportional gains in a controller or measurements in the plant 

itself such as electric motor current. Others noise factors, meanwhile, propagate quite slowly, 

such as sensor drift over time, changes in controller behavior due to a small integral gain, or 

measurements in the plant itself such as compensating for actuator temperature. In a case 

where multiple noise factors occur simultaneously (as is often the case) it can be beneficial to 

be able to adapt slowly to slow-propagating noise factors, while having a different approach 

to fast-propagating noise factors.  

 

During development, it was found that performing just one offset calculation step greatly 

limited tunability of the way the adaptive safety monitor performs in this respect. If a sensor 

drift was simulated with another faster-propagating noise factor included, the adaptive safety 

monitor with only one adaption calculation would be tuned between ignoring all fast-

propagating noise factors or having to re-adapt to slower propagating noise factors when a 

fast-propagating noise factor occurred; each tune of the adaptive safety monitor parameters 

became a compromise. Therefore, a two-stage adaptive algorithm was introduced that allowed 

separately tuned responses to slower and faster torque error propagation, which improved 

performance overall. The two-stage adaptive algorithm is illustrated in Figure 4-3. 
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Figure 4-3: Two-Stage Adaptive Safety Monitor Algorithm theoretical architecture with 

simplified safety software model, parameters, and annotated calculation steps. 

 

The Two-Stage Adaptive Safety Monitor function (highlighted by dashed outlines in Figure 

4-3) is coupled with a simplified safety software model, which is less costly to develop when 

compared to the high-fidelity model used in the continuous torque demand monitor, and 

comprises of two adaptation calculation stages tuned for different noise factor propagation 

rates; these will be discussed in further detail in the next section. 
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4-1.4 – Equations 
 

The equations governing the calculation of the output of the two-stage adaptive safety monitor 

are outlined in this section. Figure 4-3 is used to describe the calculation steps and how the 

tunable adaptive safety monitor parameters are used. 

 

4-1.4.1 – Long-Term Adaptation Stage 

 

First, the long-term adaptation stage deals with slow-propagating noise factors that typically 

exhibit slow changes compensated for in the functional software, such as ambient air pressure 

or battery temperature. It seeks to adapt slowly over time in the same way a driver slowly 

begins to experience any long-term deviations from the original expected baseline behaviour. 

After obtaining the current nominal torque error, 𝛆𝛕,𝐭, in step 1 of Figure 4-3, the long-term 

mean error for current time t, 𝜀𝜏𝑙,𝑡, is calculated as the average of all nominal torque errors 

over the long-term sample window, tl, using nominal torque errors from time t-tl to time t: 

 

 

𝜀𝜏𝑙,𝑡 = (
𝑡𝑙

𝑡𝑠𝑎𝑚𝑝𝑙𝑒
) × ∑  𝜀𝜏,𝑖

𝑡

𝑖=𝑡−𝑡𝑙

 

(4-1) 

 

where tsample is the timestep size. Next, in step 3 of Figure 4-3, the long-term offset for current 

time t, 𝜏𝑙𝑜,𝑡, is the previous long term offset 𝜏𝑙𝑜,𝑡−1 plus the change, where rl is the long-term 

rate of change limit. The driver fault delay for time t, (Kdd,t) can prevent any adaptation taking 

place if equal to zero; the reasoning behind the driver delay is later discussed in Section 5-

2.2.2. 

 

 𝜏𝑙𝑜,𝑡 = 𝜏𝑙𝑜,𝑡−1 + (min(|𝜀𝜏𝑙,𝑡|, 𝑟𝑙) ×  sgn(𝜀𝜏𝑙,𝑡) × 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 ×𝐾𝑑𝑑,𝑡) (4-2) 

 

The long-term offset is used in step 4 of Figure 4-3 to calculate the current long-term offset 

torque error, 𝜀𝜏𝑙𝑜,𝑡, which is the current nominal torque error minus the long-term offset, 

bounded by the minimum and maximum long-term offset limits, minl and maxl.  

 

 𝜀𝜏𝑙𝑜,𝑡 = 𝑚𝑖𝑛𝑙 ≤ 𝜀𝜏,𝑡 − 𝜏𝑙𝑜,𝑡 ≤ 𝑚𝑎𝑥𝑙 (4-3) 

 

The minimum and maximum long-term offset limits can be static or dynamic. 
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4-1.4.2 – Short-Term Adaptation Stage  

 

The short-term adaptive stage deals with more dynamic changes in torque error that could arise 

through some active control systems like cruise control. Through using a smaller torque error 

sampling window to calculate the ‘short-term mean error’, immediate changes can be better 

estimated, being less weighted by historic data. This is then used to calculate the ‘short-term 

offset torque error’ with a greater allowable rate-of-change and a separate set of allowable 

offset limits. Note that the ‘short-term mean error’ is calculated using the average ‘long-term 

offset torque error’, as opposed to the nominal torque error, because it is assumed that long-

term effects would at worst compound with short-term ones to give the overall nominal torque 

error, and by offsetting long-term effects first a more accurate estimation of short-term effects 

can be obtained by the short-term adaptation stage of the safety monitor.  

 

The short-term mean error for current time t, 𝛆𝛕𝐬,𝐭, is the average of all long-term offset torque 

error 𝛆𝛕𝐥𝐨,𝐢 over the short-term sampling period, t-ts to t; this relates to step 5 of Figure 4-3. 

 

 

𝜀𝜏𝑠,𝑡 = (
𝑡𝑠

𝑡𝑠𝑎𝑚𝑝𝑙𝑒
) × ∑  𝜀𝜏𝑙𝑜,𝑖

𝑡

𝑖=𝑡−𝑡𝑠

 

(4-4) 

 

Next, the short-term offset for current time t, 𝜏𝑠𝑜,𝑡, can be calculate (step 6 of Figure 4-3). It is 

the previous short-term offset 𝜏𝑠𝑜,𝑡 plus the change for the sample unit, where rs is the short-

term rate of change limit, and tsample the timestep size in seconds. The driver fault delay for 

time t, (Kdd,t) can again prevent change taking place, if equal to zero. 

 

 𝜏𝑠𝑜,𝑡 = 𝜏𝑠𝑜,𝑡−1 + (min(|𝜀𝜏𝑠,𝑡|, 𝑟𝑠) × sgn(𝜀𝜏𝑠,𝑡) × 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 × 𝐾𝑑𝑑,𝑡) (4-5) 

 

The short-term offset torque error, 𝜀𝜏𝑠𝑜, is the current long-term offset torque error minus the 

short-term offset, bounded by the minimum and maximum total offset limits, mintotal and 

maxtotal. 

 

 𝜀𝜏𝑠𝑜,𝑡 = 𝑚𝑖𝑛𝑡𝑜𝑡𝑎𝑙 ≤ 𝜀𝜏𝑙𝑜,𝑡 − 𝜏𝑠𝑜,𝑡 ≤ 𝑚𝑎𝑥𝑡𝑜𝑡𝑎𝑙 (4-6) 

 

This short-term offset torque error, step 7 in Figure 4-3, is the output of the two-stage adaptive 

safety monitor, and can also be referred to as simply the ‘offset torque error’, since it is the 

cumulation of both long-term and short-term offset stages.  
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4-2 – Performance Analysis 
 

Consider a passenger car offered by an automotive OEM with a range of powertrain options 

with automatic transmissions, including at least one ICE variant and one full-EV variant. A 

common drivability function in automatic transmission passenger cars is ‘creep’, where the 

car will very slowly move forwards from standstill upon the release of the brake pedal, up to 

a speed of approximately 6 kph. While the outcome in both powertrain variants are the same, 

the method in which creep is achieved is very different. For the ICE variant with a torque 

convertor, creep is achieved simply as a by-product of the engine idle-speed governor acting 

through the torque converter, and not directly controlled by an active controller [118].  

 

A full-EV variant, on the other hand, has to actively control the torque demand to the electric 

motors such that creep behaviour is emulated, meaning an additional functional software 

component needs to be developed in torque structure to add this capability. Consequently, a 

safety monitor likely will also need to be developed alongside in order to account for the 

additional torque demand supplied by the creep controller. Not doing so will cause a torque 

error to occur at low speed, since a torque is being demanded despite no input from the driver. 

Of course, if a fault is flagged by the safety software due to this torque error, it would be a 

false fault, and will unnecessarily limit powertrain availability. Torque demand cannot simply 

be capped either, since the creep controller will need to be able to creep up an incline, 

potentially demanding very large torque values. However, due to the slow dynamic nature of 

vehicle creep functionality, an opportunity is presented to implement an adaptive safety 

monitor on a simplified safety software instead of developing and verifying additional safety 

software. 

 

4-2.1 – Vehicle Model and Methodology 

 

A Matlab/Simulink Simscape full-EV vehicle model has been developed as a test bed for the 

adaptive safety monitor, based on a powertrain with one electric motor on each drive axle. The 

two electric motors are controlled by a torque demand supplied by the functional software 

torque structure, which itself is controlled by a driver model trying to achieve a target vehicle 

speed. Figure 4-4 shows the test architecture used.  
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Figure 4-4: Test model architecture for fault detection performance using an adaptive 

safety monitor, which does not include a fault reaction mechanism. 

 

4-2.1.1 – Safety Goals 

 

Recall that the safety goal Birch et al. [112] defines to address the hazardous event of 

‘unintended acceleration during low-speed manoeuvre in a pedestrianised area’ is to ensure 

‘vehicle positive longitudinal acceleration shall not exceed driver demand by more than 1.5 

m/s2 for longer than 1 s’. Their fault reaction mechanism for this hazard is to limit excess 

torque demand to 150 Nm, which they justify by stating that the maximum vehicle acceleration 

that can be achieved by 150 Nm is 1.5 m/s2. Through simulation of this vehicle model, it was 

found that on a -5.5 degree downhill slope (considered the limit of designed creep functionality 

in this simulation before mechanical brake intervention is needed), an excess torque fault of 

90 Nm will give a maximum possible acceleration of 1.5 m/s2. Therefore, the torque error 

threshold will be set at ±90 Nm, with safety being achieved once torque error is contained 

within these limits. 

 

4-2.1.2 – Functional Software 

 

The creep controller for an EV (or a hybrid in EV-mode) will most likely see it incorporated 

into functional software, different from a conventional powertrain where the idle governor is 
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included in the engine control software, post torque demand calculation. To emulate the 

functionality of creep found in a conventional powertrain, the EV creep controller a torque 

request to match a target creep speed. From a standstill with brake pedal applied the target 

speed will be zero, and releasing the brake pedal with no accelerator pedal input will result in 

target speed ramping up to 6 kph over a period of four seconds. When the accelerator pedal is 

then actuated, the nominal torque structure will take over from the creep controller to deliver 

torque demand. During a coast-down event, the nominal torque structure will also emulate 

engine braking through the application of brake torque through the motors, which in turn has 

an added benefit of electric regeneration. As vehicle velocity approaches target creep velocity, 

a feed-forward element in the creep controller ensures a smooth transition from nominal torque 

structure to creep control. A blending function ensures a smooth transfer of torque demand 

supply between creep control and nominal torque structure.  

 

4-2.1.3 – Safety Software 

 

A simplified model is used for the safety software, which comprises only of an accurate 

representation of the nominal torque structure and the blend function – a signal smoothing 

function that both ensures a smooth transition between the nominal torque structure and creep 

controller, but also generally smooths the response of nominal torque demand. The blending 

function could exist within the nominal torque structure, but for ease of tuning during 

development, it existed outside of the nominal torque structure. The functional software does 

not include any information about the creep controller in the calculation of permitted torque 

request, and as such it will generate some torque error whenever the creep controller is actively 

contributing to the torque demand; it is this nominal torque error that will be sent on to the 

adaptive safety monitor. A list of parameter settings for this set of simulations can be found 

later in Table 4-2. 

 

4-2.1.4 – Fault Injection 

 

In order to meet the primary safety goal of detecting and preventing unintended acceleration, 

sudden and significant erroneous torque demand must be detectable by the fault detection 

module when such a fault occurs, meaning the adaptive safety monitor must not alter the torque 

error to the point that a dangerous fault would be missed. Meanwhile, slow and/or small faults 

would not violate the safety goal and can be ignored so as not to cause a false fault flag and 

limit functional availability. To test this with the adaptive safety monitor, faults can be injected 
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on the actual torque request in the functional software to simulate such a phenomenon, with 

the assumption that the safety software will not suffer the same fault.  

 

4-2.1.5 – Fault Detection and Reaction 

 

For this investigation, torque errors of ±90 Nm for any length of time in the will result in a 

fault being flagged by the fault detection module, owing to it violating the safety goal. A fault 

reaction mechanism has not yet been implemented in this simulation, but could be expected to 

be similar to Birch et al [112] by limiting torque demand to 90 Nm when a fault occurs 

 

4-2.1.6 – Test Case 

 

A representative simulation is used where the vehicle first enters into creep from a standstill 

with no driver pedal input, causing the target creep velocity to begin to ramp and reach 6 kph. 

Then, the driver demands a ramped speed increase at 12 s with the accelerator pedal to 36 kph 

where the velocity is then held from 17 s to 22 s. A coast-down event then takes place at 22 s, 

easing the vehicle back into creep velocity; only simulated overrun braking by the nominal 

torque structure will be used, as the driver will not use the mechanical brake pedal.  Four step-

change fault events will take place in simulations where faults are injected; their start time, 

end time, and direction are shown in Table 4-1. 

 

Table 4-1: Fault event schedule for simulations 

 

Event Start End Duration Direction 

Fault 1 7 s 8 s 1s Positive 

Fault 2 16 s 17.5 s 1.5s Positive 

Fault 3 19 s 20 s 1s Negative 

Fault 4 39 s 40 s 1s Negative 

 

4-2.2 – Results and Discussion 

 

4-2.2.1 – Simulation 1: No fault 

 

Figure 4-5 compares the nominal torque error from the functional software with the offset 

torque error calculated in the adaptive safety monitor over the fifty second simulation. Since 

there is no fault occurrence in this simulation, the error threshold should not be exceeded.  
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Figure 4-5: Nominal and offset torque error with no fault injection 

 

Figure 4-5 shows that the nominal torque error varies by about 70 Nm due to the torque error 

introduced by the creep controller. With the adaptive safety monitor, however, the offset 

torque error varies less than 10 Nm from zero for the whole duration of the simulation. The 

most significant variation occurs during transition into and out of creep control functionality 

from the nominal torque structure at 13 s and at 27 s.  

 

4-2.2.2 – Simulation 2: 70 Nm Fault  

 

Four manageable faults of 70 Nm are injected into the torque request; these should ideally not 

cause the error threshold to be exceeded at any point by the torque error, since they do not 

violate the safety goals. The results are shown in Figure 4-6. 
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Figure 4-6: Nominal and offset torque error with 70 Nm fault injections 

 

For the nominal torque error shown in Figure 4-6, a false fault flag takes place during Fault 1 

and almost including Fault 4 which nearly reaches the error threshold. The adaptive safety 

monitor, meanwhile, successfully prevents any false fault flag from taking place, always 

keeping torque error within the error threshold.  

 

Each fault causes an initial 70 Nm torque error magnitude in the offset torque error, to which 

the adaptive safety monitor then begins to adapt. An important observation to note is an 

overshoot in the opposite direction immediately after each fault event. This can be attributed, 

in part, to the creep controller actively counteracting the unexpected deviation from target 

creep velocity due to the fault when torque demand is sourced from the creep controller. The 

other factor is the adaptive safety monitor compensates for the fault over its duration after the 

initial step of 70 Nm, only for the nominal torque error to suddenly step 70 Nm back towards 

zero, resulting in the overshoot in offset torque error.  

 

A key reasoning for the adaptive safety monitor concept is that since the driver is effectively 

acts as a controller in the powertrain system, it takes into account the driver’s cognitive model 

of the powertrain, whereby a constant fault – after the initial step-change in torque error – 

would not violate the safety goal as the driver will adapt to it over time. Therefore, initially 

after a sudden change in torque error, the driver may need some time to realise a fault had 

occurred relative to their mental model, rather than immediately adapting. Following the initial 

reaction time, the driver could then begin to adapt to the constant fault. In terms of the adaptive 



 

124 

 

safety monitor, this aspect could be realised as limiting the adaption rate for a short period 

after a sudden fault of a prescribed – and perhaps variable – magnitude is noticed in the 

nominal torque error; this function is included for the next simulation, where the delay is set 

to 1 second. 

 

4-2.2.3 – Simulation 3: 120 Nm Fault 

 

In this simulation, the capability of detecting unsafe faults is tested, with each 120 Nm fault 

event ideally being allowed to exceed the error threshold. This is the primary objective of the 

safety monitor, as dangerous faults cannot be missed, but over time they can be safely adapted 

to in a way similar to how the driver adapts. Crucially, it is the initial fault occurrence that 

needs to be detected and mitigated within the FTTI [26]. Figure 5-7 shows the results of this 

simulation. 

 

 

Figure 4-7: Nominal and offset torque error with 120 Nm fault injections. 

 

From Figure 4-7, it is clear that for each fault event the adaptive safety monitor accurately 

allows all unsafe faults to exceed the error threshold to the correct amount at the start of each 

event. The additional driver delay rules prevent initial adaption by the driver to account for 

that reaction time, which is set at one second in this simulation. An overshoot is noticeable at 

the end of Fault 1, but since the adaption offset is very limited due to the new functionality, 

this overshoot is mostly due to the nominal torque error as the creep controller actively 

attempts to counteract the deviation from target creep velocity.  
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A very important observation and comparison is the behaviour of the nominal and offset torque 

errors during and following Fault 4. Here, due to the positive nominal torque error immediately 

preceding the negative 120 Nm fault event, the net nominal torque error at the start of Fault 4 

only reaches -70 Nm, which incorrectly does not exceed the -90 Nm error threshold. In this 

case, an unsafe fault would have been missed altogether, a critical failing of solely using the 

simplified model in the safety software. However, since the adaptive safety monitor has 

adapted to that preceding nominal torque error, it forces the offset torque error to correctly 

exceed that lower error threshold. Furthermore, the overshoot in nominal torque error 

following Fault 4 actually exceeds the positive error threshold, resulting in a false positive in 

the wrong direction; the adaptive safety monitor, meanwhile, does not suffer the same 

problem. 

 

4-2.2.4 – Simulation 4: 120 Nm fault, uphill on incline 

 

In this simulation, shown in Figure 4-8, the same four 120 Nm faults are added into the torque 

demand calculation, but now the car is on a 5.5 degree uphill incline. On an incline, torque 

demands from the creep controller are higher since more torque is required to overcome 

acceleration due to gravity, which in turn lead to larger and fast-changing torque errors. 

 

 

Figure 4-8: Nominal and offset torque error with 120 Nm fault injections for a 5.5 degree 

uphill incline. 



 

126 

 

Figure 4-8 show the nominal and offset torque errors in this scenario. Nominal torque error 

exceeds the error threshold at creep speed, leading to many false fault flags throughout the 

simulation. The adaptive safety monitor is able to prevent most false flags from taking place, 

with the exception of the very first few seconds as the creep controller must quickly increase 

torque demand to prevent rollback and match the increasing target creep velocity. The error 

threshold is only exceeded by a small amount, however, and if the fault reaction mechanism 

is to limit torque to 90 Nm, this would only result in a very small loss of availability to the 

driver. All the faults, meanwhile, are promptly and correctly handled by the adaptive safety 

monitor. 

 

This phenomenon leads to questions about the ability of the adaptive safety monitor to detect 

real faults. Consider a scenario where a real fault of 120 Nm occurs at 13 s, when offset torque 

error is -70 Nm. To the driver, this is indeed a real fault of 120 Nm since the torque error is 

only present due to differences between the creep controller and nominal torque structure. This 

fault would be missed by the adaptive safety monitor, since the net offset torque error of only 

50 Nm does not exceed any error threshold. However, on this uphill incline, it was found that 

an excess torque of over 305 Nm is required to cause unintended longitudinal acceleration of 

1.5 m/s2. Therefore, this 120 Nm fault would not, in fact, be a missed fault in terms of violating 

the primary safety goal. Even if the offset torque error is at the lower error threshold of -90 

Nm, a 180 Nm real fault will be captured by the adaptive safety monitor.  

 

4-2.2.5 – Simulation 5: 120 Nm fault, downhill on an incline 

 

The last simulation considers adaptive safety monitor performance on a 5.5 degree downhill 

slope. Due to the long coast-down time on the hill, an axis break is necessary in Figure 4-9 to 

concisely show the full simulation; also, Fault 4 is moved to 60 s. 
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Figure 4-9: Nominal and offset torque error with 120 Nm fault injections for a 5.5 degree 

downhill incline, with axis break. 

 

Because of the downhill gradient, torque output by the electric motors are much less when 

compared to that on an uphill incline. Again, each true fault is successfully captured by the 

adaptive safety monitors offset torque error output, though the nominal torque error does not 

vary by much outside of fault events. Large overshoots are experienced following the Fault 1 

and Fault 4: these will be discussed in the following section.  
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4-2.3 – Accuracy of the Adaptive Safety Monitor 
 

Accuracy is an attribute quality that is captured by the ideal monitoring attribute of Functional 

Suitability in Chapter 3. It is the measure of how well the safety monitor performs in terms of 

the primary safety requirements it must meet, which is to say, how often the safety monitor 

will detect and classify a safety goal violation when one occurs. From each simulation shown, 

the adaptive safety monitor has been able to detect and classify a safety goal violation at every 

occurrence. Though a truly significant improvement over the nominal method, this alone does 

not guarantee complete accuracy of the adaptive safety monitor. The purpose of the adaptive 

safety monitor is to eliminate nominal torque error due to noise factors, while ensuring 

nominal torque error due to real faults are allowed to propagate. Throughout the simulations, 

however, there are some instances where this nominal torque error is non-zero when a real 

fault is not present. While these deviations are permissible as – at worst – they result in a false 

positive, should a real fault occur in the opposite direction to the torque error due to noise, it 

is possible that the resulting offset torque error would not exceed the torque error threshold. 

In the preceding experiments for this application, there have been two sources of non-zero 

offset torque error not due to a real fault, which will be referred to generally as ‘overshoots.’ 

A brief discussion is provided with respect to how these overshoots could affect the ability of 

the adaptive safety monitor to detect a safety goal violation: its accuracy. 

 

4-2.3.1 – Accuracy during Creep Control Intervention 

 

The first source of overshoot occurs when the creep controller is active, including transitioning 

into and out of creep control. Consider Figure 4-9 of Simulation 5. Seemingly, the main 

criticism is the performance of the adaptive safety monitor immediately following Faults 1 

and 4, where significant overshoots are exhibited once each real fault ends. The main 

contribution to these overshoots is the inherent reaction by the creep controller to counteract 

against the affect the fault has on vehicle speed. At first, this would seem a vulnerability: 

should another -120 Nm fault occur at 63 s (where offset torque error is 80 Nm, resulting in a 

net torque error of -40 Nm), the lower error threshold would not be exceeded by the offset 

torque error, and a true fault seemingly missed. However, a consideration must be made for 

what the driver actually expects so soon after Fault 4. Since the torque error counteraction is 

carried out by the creep controller and not the driver, it could be argued that the driver is still 

expecting no forward acceleration during this period. By examining such a case where a 

second larger fault takes place almost immediately after the first smaller fault, an indication 

can be made on whether a fault of that magnitude would indeed be unsafe, and whether the 

adaptive safety monitor had missed an unsafe fault. Figure 4-10 compares the torque errors 
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and the corresponding vehicle acceleration of an initial 95 Nm fault at 79 s, followed quickly 

by a second 170 Nm fault at 80.3 s, starting from steady creep velocity of 6 kph on a 5.5 degree 

downhill incline.  

 

 

 

Figure 4-10: Vehicle acceleration and torque error compared on a -5.5 degree slope, with 

a 95 Nm fault followed by a 170 Nm fault. 

 

Ignoring the fact that the safety goal is not actually violated, peak vehicle acceleration for both 

the first 95 Nm fault and subsequent 170 Nm fault are actually roughly the same at 0.9 m/s2, 

due to the same reason that leads to the ‘overshoot’ in torque error in the first place: creep 

controller intervention. This shows that, though the total acceleration as the second fault takes 

place approaches 1.7 m/s2, the actual acceleration first ‘cancels out’ the -0.8 m/s2 unintended 

deceleration felt by the driver by the creep controller, leading to just 0.9 m/s2 of unintended 
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acceleration. Following both faults, the creep controller provides brake torque in order to 

reduce vehicle speed back to creep velocity, which would violate a -1.5 m/s2 threshold (if the 

driver still expects no deceleration); this is, however, still captured by the offset torque error, 

and therefore the adaptive safety monitor maintains accuracy at the safety goal level. Better 

calibration of the adaptive safety monitor parameters (or refinement of the creep control 

software) could improve the reliability by reducing unnecessary overshoots when no fault is 

present.  

 

4-2.3.2 – Accuracy during Driver Control 

 

The second source of overshoot occurs when the driver is in control and cannot be explained 

by the creep control intervention. Overshoots in this category can be found immediately 

following Fault 2 and Fault 3 in Figure 4-9. In these cases, only the adaptive safety monitor 

can be to blame, as the nominal torque error does not exhibit the same overshoots. The 

overshoots in these situations are generally due to the calibration of the adaptive safety monitor 

parameters with respect to its application. The overshoot immediately following Fault 2 is due 

to the driver delay parameter, as it allows the adaptive safety monitor to begin adapting after 

a set period of time. Should this reflect driver perception as intended, the resultant offset torque 

error would be an accurate representation of how the driver actually experienced the end of 

Fault 2, as they had started to adapt to the fault. The driver delay parameter value needs to be 

validated, possibly by a driver task analysis, with respect to the controllability parameter 

corresponding to the hazard that the safety goal addresses (this is discussed in Chapter 6). The 

overshoot that occurs after Fault 3 is similarly most likely due to the calibration of the adaptive 

safety monitor parameters, and for this reason investigating the calibration of the adaptive 

safety monitor parameters can prove beneficial in improving accuracy in this area, an 

investigation which is performed in the next section.  
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4-3 – Calibration and Parameter Optimisation 

 

An anticipated benefit of using an adaptive safety monitor is that it could be transferred and 

used for many different applications within the functional software and between multiple 

powertrains. These applications vary in requirement, so the adaptive safety monitor needs to 

be calibrated somewhat for each application to ensure adequate performance. There are a 

number of (currently) fixed parameters that can be tuned to achieve optimum desired 

performance from the monitor, shown in Table 4-2.  

 

Table 4-2: Adaptive safety monitor tuneable parameters, limits, and current values. 

 

Parameter Current Value Lower Limit Upper Limit 

Long-Term Sample Window 20 s 10 s 50 s 

Short-Term Sample Window 0.1 s 0.1 s 10 s 

Driver Fault Delay 1 s 1 s 3 s 

Long-Term Adaption Rate 5 Nm/s 0.5 Nm/s 10 Nm/s 

Short-Term Adaption Rate 25 Nm/s 5 Nm/s 25 Nm/s 

Maximum Long-Term Offset 200 Nm 50 Nm 300 Nm 

Maximum Total Offset 400 Nm 50 Nm 500 Nm 

Minimum Long-Term Offset -200 Nm -50 Nm -300 Nm 

Minimum Total Offset -450 Nm -50 Nm -500 Nm 

Upper Error Threshold 90 Nm 90 Nm 90 Nm 

Lower Error Threshold -90 Nm -90 Nm -90 Nm 

 

An automated design-of-experiments process has been conceived to improve the performance 

of the adaptive safety monitor for a particular nominal torque error dataset. A controlled 

experiment takes place where a representative nominal torque error input is captured with 

known faults injected. The ideal offset torque error output of the adaptive safety monitor is 

then defined a priori. The ideal torque error output is typically what an expected response 

from a perfectly tuned adaptive safety monitor would yield, which is the elimination of all 

noise factors, capturing just the known faults at the correct magnitude, but with the inclusion 

of a valid driver delay. In this example, using the nominal torque error input taken from Figure 

4-7, the accompanying ideal offset torque error is overlaid in Figure 4-11.  
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Figure 4-11: Ideal offset torque error output for the nominal torque error input, used for 

parameter calibration and optimisation testing. 

 

The design-of-experiments consists of a space-filling Hobol sequence of parameter 

combinations cases (using parameter limits from Table 4-2), which an automated routine will 

use to individually test and score each case with. Some rules are used to filter out nonsensical 

cases, for example where short-term sample window is larger than long-term sample window. 

Each case is tested using the same nominal torque error, and the output offset torque error 

(𝜀𝜏𝑠𝑜) is compared to the ideal output (𝜀𝜏𝑖𝑜). A simple metric, called the torque error difference 

integral, S, is used to score the performance of each test case, shown in Equation (4-7). 

 

 𝑆 =  𝑡𝑠𝑎𝑚𝑝𝑙𝑒 ×∑|𝜀𝜏𝑠𝑜 − 𝜀𝜏𝑖𝑜| (4-7) 

 

A lower S for a particular case indicates the offset torque error better matches the ideal torque 

error output, and multiplying the sum by the sample time tsample ensures a normalised output 

into terms of torque error seconds (Nms); with the current parameters, an S score of 157.5 Nms 

is attained. From 8000 initial cases, 4160 were valid for testing. The cases were then sorted by 

ascending S score, yielding S scores ranging from 1278 Nms to 142.8 Nms in Figure 4-12.    

 



 

133 

 

 

Figure 4-12: Parameter combination cases, sorted by ascending S value 

 

The best performing parameter combination improves the performance of the adaptive safety 

monitor by 9.3% on this particular torque error dataset. The results of this test are shown in 

Figure 4-13, using the updated optimal parameter values seen in Table 4-3. 

 

 

Figure 4-13: Offset torque error output using parameters from best-performing case, 

compared to nominal torque error and ideal offset torque error. 

 

The updated optimal parameter values are shown in Table 4-3. 
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Table 4-3: Updated parameter values and change over previous. 

 

Parameter Old New Change 

Long-Term Sample Window 20 s 26.3 s + 6.3 

Short-Term Sample Window 0.1 s 0.1 s  0 

Driver Fault Delay 1 s 1.37 s + 0.37 

Long-Term Adaption Rate 5 Nm/s 9.99 Nm/s + 4.99 

Short-Term Adaption Rate 25 Nm/s 22.89 Nm/s - 2.11 

Maximum Long-Term Offset 200 Nm 211 Nm + 11 

Maximum Total Offset 400 Nm 290 Nm - 110 

Minimum Long-Term Offset -200 Nm -224 Nm - 24 

Minimum Total Offset -450 Nm -402 Nm + 48 

 

The main areas of improvement are immediately following Fault 2 and Fault 3, where the 

offset torque error overshoots seen in Figure 4-7 are reduced. Most of this can be attributed to 

the larger driver fault delay values as the adaptive safety monitor does not begin adapting until 

just before the end of Fault 2. Faults 1 and 4 still experience an overshoot after the fault finishes 

due to the fact that the short-term offset stops updating at the start of the fault to allow the fault 

to exceed the error threshold; when the fault finishes, however, the creep controller had already 

started to counteract the fault while the short-term offset doesn’t adapt, leading to the 

overshoots in both nominal and offset torque error This is clear when examining the difference 

between nominal offset torque error immediately preceding and immediately following each 

fault, as the difference is largely the same, the small difference being attributed to the long-

term offset adaption (which still slowly adapts during faults). Marginal gains are also realised 

with reduced variation as the creep controller and nominal torque structure are switched 

between (around 13 s and 27 s). With the sorted cases, the trends and effect of each parameter 

can be examined to give a better understanding of how best to select values in the future. Due 

to the highly noisy data produced this way, the sorted parameters values are filtered using 

Savitzky-Golay filtering for qualitative analysis. Savitzky-Golay filtering was chosen for its 

ability to preserve low frequency attributes while removing noise and high frequency effects 

[119]. Figure 4-14, Figure 4-15, and Figure 4-16 show the results of this exercise, grouping 

parameters with like units together. 

 



 

135 

 

 

Figure 4-14: Savitzky-Golay filtered ‘time’ based parameter values, sorted by ascending S 

value. 

 

 

Figure 4-15: Savitzky-Golay filtered ‘torque error rate-of-change’ based parameter values, 

sorted by ascending S value. 

 



 

136 

 

 

Figure 4-16: Savitzky-Golay filtered ‘torque’ based parameter values, sorted by ascending 

S value. 

 

The parameter with the clearest trend is the near-linear relationship between a very low Short-

Term Sample Window and the lowest S scores in Figure 4-14. Meanwhile, the lowest Long-

Term Sample Window values tend to show the opposite effect by corresponding to high S 

scores, which relates to the increase seen with the optimised parameter value over the previous 

one. Driver-delay does not seem to make much difference in this test, but may yield different 

results when faced with a different dataset. A minor trend is noticeable initially in Figure 4-15 

when using higher Short-Term Adaption Rate values to improve S score, as does Long-Term 

Adaption Rate, though not to the same degree; it may be the case that when presented with a 

larger fault over a longer period, higher Long-Term Adaption Rate has a more significant 

effect on performance. This highlights the importance of choosing a representative dataset 

from the application target to perform these tests on. Finally, none of the offset limits in Figure 

4-16 seemed to show any clear trend, but again this is likely due to the fact none of the offset 

limits were really reached in this set of experiments, and a different application could find 

these parameters have a stronger effect on the outcome.   
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4-4 – Conclusions 

 

A novel functional safety concept called the two-stage adaptive safety monitor was introduced 

in this chapter, seeking to address the issue of safety software complexity by enabling a simpler 

safety software model to be used with an adaptive element in the safety monitor, overcoming 

many of the drawbacks that would otherwise prevail, primarily robustness against false faults. 

 

A performance analysis of this concept was carried out on an electric vehicle powertrain 

simulation, where an active creep controller found in the functional software was omitted in 

the safety software for reduced cost and increased transferability. The adaptive safety monitor 

yielded very good results when the functional software encountered large faults, while also 

preventing many false fault flags from limiting powertrain availability when small faults were 

encountered. This was tested on both a flat surface, and on uphill and downhill inclines, and 

showed to be a large improvement over using the simplified safety software model alone. A 

parameter calibration and optimisation method was introduced, using an automated design-of-

experiments process to tune the parameter values in the adaptive safety monitor for a given 

drive cycle. Parameter performance trends were also identified, and further developments were 

suggested for a more comprehensive automated parameter optimisation process, such that 

performance is improved over all operating conditions, and parameter calibration costs are 

further reduced. 

 

The adaptive safety monitor shows great promise in the early stages of the safety lifecycle, but 

will still need full validation and verification ahead of product delivery. Furthermore, a full 

assessment of possible applications the adaptive safety monitor should be done to explore the 

full feasible simplification of the safety software. Part of the reasoning behind the use of the 

adaptive safety monitor is attributed to having the driver in-the-loop as a controller of the 

powertrain. Rapidly developing autonomous vehicle technology will see the driver largely 

taken out of the greater powertrain control, but the simplicity of the adaptive safety monitor 

means that it could likely be utilised in many other safety-related applications, even outside 

automotive applications. 

 

In the next chapter, the novel safety monitoring concept based on PCA is explored.  
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Chapter 5 
 

Principal Component Analysis  

Safety Monitor 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 – Summary 

 

In this chapter, Principal Component Analysis (PCA) is investigated as a potential functional 

safety concept for software safety monitoring in a passenger vehicle. PCA, using Hotelling’s 

T2 statistic is a well-established fault detection method employed in other industries. Here, a 

Local PCA concept with an automated PCA model derivation process is developed. PCA 

models of a nonlinear control software function are generated using only its inputs and outputs. 

These models are then stored and used in real-time as a safety monitor to estimate torque error 

in the control software, demonstrated through a vehicle simulation. This concept is shown to 

have potential as a functional safety monitoring tool within its current limitations. 

 

• Objective 4: Conduct detailed investigation into candidate concept. 
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5-1 – Principal Component Analysis 

 

With the computational and telemetric ability to capture large amounts of data from a system 

during development stages, the area of Statistical Process Control (SPC) has expanded as a 

viable control technique [120]. One of the most well-known and widely utilised SPC methods 

is that of Principal Component Analysis (PCA). PCA is a statistical technique based on 

variation between variables within a dataset. Traditionally, PCA is used to analyse a set of data 

of variables with possible underlying correlations, and rotate the data such that they become 

orthogonally uncorrelated (or at least less correlated) [120]. It seeks to fit a linear model to the 

training data, centred on the mean of all the recorded data points and with new orthogonal 

axes. The first principal component (PC) is found along the semi-axis of greatest variation in 

this data, the second PC along a remaining orthogonal semi-axis with the next greatest 

variation, and so on. The magnitudes of variation along the semi-axes are described by the 

eigenvalues of the data, and the semi-axes themselves are described by the corresponding 

eigenvector coefficients. The eigenvectors and eigenvalues are calculated using Singular 

Value Decomposition (SVD) [121]. The eigenvalues are arranged in decreasing order in the 

diagonal eigenvalue matrix Ʌ, and the corresponding eigenvector coefficients arranged in 

column format in the eigenvector matrix V; it is these matrices that describe the PCA model.  

 

Using a training dataset X, represented as an n x m matrix, where n is the number of data 

samples, and m the number of variables; Xi,j would be the value associated with the jth variable 

of the ith data sample x. The first step of PCA is to find the mean of each column (variable) of 

X, denoted by �̅� [122]. 

 

 
�̅� =

∑ 𝐗𝑖
𝑛
𝑖=1

𝑛
 (5-1) 

 

Next, the covariance of each dimension needs to be determined: 

 

 
𝑐𝑜𝑣(𝐗, 𝐘) =  

∑ (𝐗𝑖 − �̅�)(𝐘𝑖 − 𝐘)
𝑛
𝑖=1

(𝑛 − 1)
 (5-2) 

 

and the covariances assembled into the covariance matrix, C: 

  

 𝐂𝑛𝑥𝑛 = (𝑐𝑖,𝑗 , 𝑐𝑖,𝑗 = 𝑐𝑜𝑣(𝐷𝑖𝑚𝑖, 𝐷𝑖𝑚𝑗)) (5-3) 
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An example of C is shown below for a 3-variable system (i.e. m = 3), with original variables 

x, y and z: 

  

 

𝐂 = (

𝑐𝑜𝑣(𝑥, 𝑥) 𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑥, 𝑧)

𝑐𝑜𝑣(𝑦, 𝑥) 𝑐𝑜𝑣(𝑦, 𝑦) 𝑐𝑜𝑣(𝑦, 𝑧)

𝑐𝑜𝑣(𝑧, 𝑥) 𝑐𝑜𝑣(𝑧, 𝑦) 𝑐𝑜𝑣(𝑧, 𝑧)
) (5-4) 

 

The next step in the PCA analysis is obtaining the eigenvectors and eigenvalues from the 

covariance matrix using SVD, whose theory follows as below [121]:  

 

 𝐀 = 𝐔𝐒𝐕𝑇    and     𝐀𝑇 = 𝐕𝐒𝐔𝑇 (5-5) 

 

Where A is some n x m matrix, U is the eigenvector matrix of AAT, V the eigenvector matrix 

of ATA, and S the matrix with the square roots of their eigenvalues along its diagonal (though 

it is not square). Then,  

 

 𝐀𝑇𝐀 = 𝐕𝐒𝐔𝑇𝐔𝐒𝐕𝑇 (5-6) 

 

Since U and V are eigenvector matrices, by definition their columns consist of orthonormal 

vectors, meaning they are square orthogonal matrices, and therefore satisfy the following 

condition: 

 

 𝐔𝑇 = 𝐔−1 (5-7) 

 

Thus, (5-7) can be re-written: 

 

 𝐀𝑇𝐀 = 𝐕𝐒𝐔−1𝐔𝐒𝐕𝑇 

𝐀𝑇𝐀 = 𝐕𝐒𝐈𝐒𝐕𝑇 

𝐀𝑇𝐀 = 𝐕𝐒2𝐕𝑇 

𝐀𝑇𝐀 = 𝐕Ʌ𝐕𝑇 (5-8) 

 

If we equate ATA to the covariance matrix C: 

 

 𝐀𝑇𝐀 = 𝐂 (5-9) 

 

Then the eigenvalues 𝜆 and eigenvectors v are obtained using the following equation: 
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 𝐂𝑣 =  𝜆𝑣 

(𝐂 − 𝜆𝐈)𝑣 = 0 

|𝐂 − 𝜆𝐈| = 0 (5-10) 

 

Once the relevant λ and v are obtained, V and Ʌ can be derived. V is the matrix consisting of 

eigenvectors corresponding to C in the columns, and Ʌ the matrix of eigenvalues 

corresponding to the eigenvectors of C, a square matrix with the eigenvalues λ along the 

diagonal. The columns of V and Ʌ are then ordered in descending order of eigenvalue 

magnitude. The ith PC is described by the eigenvector in the ith column of V, and the ith 

eigenvalue in the ith column of Ʌ. 

 

5-1.1 – PCA as a Fault Detection Concept 

 

Jolliffe [120] discusses two key methods typically used with SPC to identify whether a 

particular data sample x would fall within the known limits of variation in the PCA model, or 

if it is instead classified as an outlier (an indicator of faulty behaviour). The first is Squared 

Prediction Error (SPE, hereafter Q) which was introduced by Jackson and Mudholkar [123] as 

a means to approximate control limits, based on the distribution of Q. Jackson and Hearne 

[124] offer a variant of this process to detect groups of outlying new datapoints, rather than 

single outliers. The other key method is called Hotelling’s T2 statistic, introduced by H. 

Hotelling in 1931 [125]. It is a multivariate statistical method that is the generalized 

counterpart of Student’s t-test [120]. The equations for T2 and Q are shown below [126]: 

 

 𝑇2 = 𝑥𝐕(Ʌ)−1𝐕𝑇𝑥𝑇 (5-11) 

 𝑄 = 𝑥(𝐈 −  𝐕𝐕𝐓)𝑥𝑇 (5-12) 

 

If a new data sample x does not closely match the PCA model – i.e. it exhibits unusual variation 

relative to the model – the T2 and Q statistic values will increase. In short, T2 provides 

information on unusual variation within the model-space, whereas Q provides information 

about unusual variation outside the model-space [127]. For example, if the original dataset X 

is three-dimensional, and after PCA analysis it is decided that only two PCs can describe 99% 

of the data, the model-space can be reduced to two dimensions within a 3-D dataspace; x will 

still be described by the three coordinates in the dataspace. If a new sample x falls within the 

2-D plane that PC1 and PC2 describe in the 3-D dataspace, but falls far away from the normal 

data, then there will be a large T2 value. Compare this to a data sample that falls outside the 
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PC1-PC2 plane, in ‘unmodelled’ space, a variation which would instead be captured by a Q 

value. Figure 5-1 illustrates the difference between T2 and Q. 

 

 

Figure 5-1: T2 and Q statistics on 2D PCA model in 3D data space. 

 

PCA-based fault detection concepts have been used in many industrial processing applications. 

Penha et al. [127] discusses how PCA was used to model the normal operation of five water 

temperature sensors in a nuclear reactor. The model was then used to robustly identify faulty 

temperature sensors, through both the T2 and Q residuals. Hao et al. [128] looked at multiple 

variants of PCA-based fault detection strategies as part of a concept for detecting faults during 

non-steady transient operational periods in a manufacturing plant, and found their particular 

Longitudinal-Standardization PCA-based Adaptive Confidence Limit method to be very 

effective in both capturing faults and being robust against false alarms.   

 

For application as a functional safety monitor, large amounts of data will need to be captured 

to derive a representative PCA model for all operating conditions of the system. Eggett and 

Pulsipher [129] conducted a simulation in order to compare the performance of T2, Q, and the 

Jackson and Hearne [130] variation of Q. They found that T2 was preferable for large datasets, 

whereas Q performed better with small samples. Therefore, only T2 will be considered within 

the scope of this investigation. 
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5-2 – PCA Safety Monitoring Concept Development 

 

This investigation seeks to investigate whether PCA is a functionally suitable safety monitor 

concept and a viable alternative for use in a vehicular torque structure, such that the fault 

reaction mechanism is effective in its mitigation of a fault. The key objectives pertaining to 

functional suitability of the PCA concept in this chapter are: 

 

1) Quickly detect that a fault has occurred. 

2) Determine direction of the fault (positive or negative). 

3) Determine the magnitude of the fault. 

 

In this section, the stages of development of the PCA safety monitoring concept are outlined, 

leading to a concept that meets these objectives. 

 

5-2.1 – PCA Safety Monitoring of Powertrain Software 

 

For application in an online vehicle safety monitoring system, PCA could be used to rapidly 

develop a model of the vehicle torque structure software, or a component thereof. The process 

can be described by four major phases: 

 

1) Define Scope of PCA Safety Monitor. 

2) Gather training data from normal operation. 

3) Derive PCA models during development. 

4) Store PCA models for online fault detection.  

 

5-2.1.1 – Define Scope of PCA Safety Monitor Concept 

 

A modern vehicle torque structure (functional software) contains many software components 

and functions that are used to calculate the appropriate torque demand from accelerator pedal 

and other inputs. Some of these include external factors such as vehicle speed and ambient air 

temperature; others compensate for powertrain dynamics, such as actuator or battery 

temperature performance characteristics; other examples include active control and/or 

deliberate intervention functions such as stability and traction control, driver-selectable pedal 

modes, high-voltage recharging control etc. The scope of the PCA Safety Monitor needs to be 

set such that inputs and outputs and their operating ranges are defined, such that 

comprehensive testing can take place. 
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5-2.1.2 – Gather Training Data 

 

The PCA Safety Monitor Concept needs to know the normal operation of the nominal torque 

structure, or a particular section thereof, in order to create the appropriate PCA models. The 

functional software acts as a black box for the PCA concept, as only the inputs and output are 

recorded for training data. The training data should be comprehensive in that the full range of 

possible input values are tested to fully capture the functional software operating space. A 

second set of training data is also captured with an artificial fault injected into the output signal, 

which is used to aid derivation and test performance of the PCA fault detection during 

development. The input and output signals will become the original variables during the PCA 

model generation process, where each data point x will exist in the m-dimensional dataspace.  

 

5-2.1.3 – Derive PCA models in development 

 

 This stage in the concept is the focus of this chapter. Here, the normal and faulty training data 

is used to derive PCA models based on the original variables. The PCA models seek to fit the 

normal data with little variation under normal operating conditions, but must be able to detect 

a fault if it causes unusual variation in the output based on the inputs. The PCA models must 

be tested, validated and verified in this stage. 

 

5-2.1.4 – Store PCA models for online fault detection 

 

With the PCA models defined, they are stored and used as reference for online execution when 

the vehicle is deployed. The PCA concept will compare newly measured data samples to the 

stored PCA models to monitor the behaviour of the inputs and output of the functional software 

components, and flag a fault if unusual variation occurs along with information regarding that 

fault.  

 

5-2.2 – Linear Software Function 

 

The first stage of development is to test the PCA and T2 fault detection capability, and 

demonstrate the method is viable on a simple case. The test will capture training data for two 

inputs and one output. This can be thought of as a torque demand pedal map, where the two 

inputs are accelerator pedal position percentage, p, and vehicle forward velocity, v, and the 

output torque demand, τ.  Note that any equations describing this torque demand pedal map is 

not necessary a priori knowledge for the PCA concept, as such equations merely describe the 
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component that will be treated as a black box during a PCA model derivation process. Training 

data for this black-box component is generated using input parameter sweeps, where 

uniformly-distributed combinations of values for the inputs are used, the resultant outputs 

captured, and all the datapoints stored in X for PCA analysis to take place. PCA analysis 

produces the PCA model in the form of the eigenvector and eigenvalue matrices, V and Ʌ, 

which are then stored for online fault detection using T2. Figure 5-2 shows the result of a PCA 

development stage on a linear torque pedal map. 

 

 

Figure 5-2: Linear PCA Training and Test Data, and Model. 

 

In this test, pedal position percentage p has a range of 0-100%, and vehicle velocity v a range 

of 0-160 kph. 10000 unique input value combinations were used to generate the training data 

set. With this data, the PCA model is derived, and the three PCs are shown originating from 

the model centre in Figure 5-2. To test the online fault detection capability using this PCA 

model, a set of test data comprising of inputs and outputs of the software component is 

generated over a 100 s period, called ‘normal test data’. This tests the PCA model’s ability to 

prevent undue variation under normal operating conditions, which would otherwise cause a 

false fault to be flagged by the fault reaction mechanism. A second set of test data modifies 



 

146 

 

the first through the inclusion of a fault signal, a simulated ‘torque error’ effect additively 

applied to the torque output. Figure 5-3 shows the torque error signal used in these tests. 

 

 

Figure 5-3: Torque Error signal 

 

The set of normal data with this fault signal applied is called ‘fault test data’. When the normal 

and fault test data are used for their respective T2 online tests, the resulting T2 outputs are 

generated and shown in Figure 5-4. 

 

 

Figure 5-4: Linear PCA Online test, showing T2 output for normal and fault conditions 

(top) for given torque outputs (bottom). 

 

From Figure 5-5, it is clear that T2 is able to reliably identify fault occurrences, and with 

information regarding the severity of the fault in terms of absolute magnitude, when scaled 
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appropriately. However, the fault T2 tends to curve during each ramp, rather than increasing 

linearly as the torque error signal does, meaning that a single scalar will not accurately scale 

the T2 at all points to correspond with the torque error. Another drawback here is that 

information relating to fault direction is not available since T2 ≥ 0.  

 

5-2.2.1 – Output Data Offsetting 

 

Currently, there is no way to know whether a given T2 value signifies a positive or negative 

torque error, a metric which is required to appropriately mitigate an unintended longitudinal 

acceleration safety hazard, and which is the second objective of this investigation. It was found 

during investigation that when a positive constant a is added to the output of the T2 online test 

data – but not the training data – both normal and faulty T2 test signals have their T2 values 

increased. While this seems to worsen performance due to far greater T2 values under normal 

conditions, it reveals qualitative information pertaining to fault direction. Figure 5-5 shows the 

resulting T2 with a constant offset, a, of 1000 Nm applied to the output (torque) of the same 

normal and fault test datasets as previously shown in Figure 5-2.  

 

 

Figure 5-5: Conventional PCA Linear T2, with output offset a = 1000 Nm applied. 

 

Figure 5-5 now shows that qualitative information about torque direction is clearly visible, as 

now all positive torque faults are above the normal T2 line at a given time, and all negative 

faults lie below. Additionally, there seems to be a much more linear ramp, qualitatively 

matching the torque error signal of Figure 5-3 more accurately and simplifying the 
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interpretation effort. During this output offsetting investigation, it seemed that a sufficiently 

large a was needed to improve this aspect, as an a that was too small would yield similar 

erroneous qualitative fault T2 behaviour as seen in Figure 5-4. This is likely due to the fact that 

the offset needs to be greater than the expected largest absolute magnitude in Nm of the faulty 

behaviour, such that it doesn’t cross the plane created by a, i.e. the new baseline from which 

T2 calculations take place. An output offset of a > 1000 would work just as well. 

 

5-2.3 – Nonlinear Software Function 

 

In practice, most software components in the functional software are not perfectly linear. For 

a multiple input single output system, a curved and often non-smooth, non-linear surface is 

typically formed. Since PCA results in linear models centred at the training data mean, there 

will always be some difference between the model and the non-linear dataset in some areas. 

Therefore, if a single PCA model is used for the entire non-linear dataset, there will be some 

variation in the normal T2 test, particularly data points further away from the centre of the 

dataset. Consider now some non-linear relationship in the equation describing the torque 

demand pedal map: with the same input data trace and fault signals used in the linear PCA T2 

tests, the training data and T2 test data output yielded by such a non-linear equation could be 

as shown in Figure 5-6.  
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Figure 5-6: Nonlinear PCA Training and Test Data. 

 

Figure 5-6 shows that a curved surface dataset has been attained from the new function, with 

the same 500 Nm range in the output axis. The curved surface will likely lead to reduced 

performance from the linear PCA model, as normal operating data varies with respect to the 

third eigenvector (the smallest one), leading to variation in normal T2. Using the same output 

offset as before (a = 1000 Nm), the same T2 online test is conducted, and the results are 

exhibited in Figure 5-7. 
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Figure 5-7: Curved training dataset, and T2 offset with linear PCA model. 

 

Reduced performance on this dataset is clear in Figure 5-7 as normal T2 now varies 

considerably. As expected, greater normal T2 variation will make it difficult to detect and 

distinguish abnormal faulty T2 variation, leading to both many false faults being flagged, and 

some true faults may be missed altogether. This is all due to the fact that a single linear PCA 

model cannot accurately describe the nonlinear training data.  

 

5-2.3.1 – Local PCA Concept 

 

To remedy this, a simple concept has been devised that places multiple linear PCA models in 

the dataspace to fit the non-linear training dataset. The training data is segmented into cells by 

creating boundaries on the axes of original input variables; an individual PCA model is derived 

for each cell k. In theory, this means that each individual PCA model will be a better 

representation of the local training data than a single model covering the whole dataset would. 

This concept will be called Local Principal Component Analysis (Local PCA), and the basic 

theory of the concept is illustrated using a simple two-variable system in Figure 5-8. 
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Figure 5-8: Comparing Conventional PCA (left) to Local PCA of two cells (right). 

 

In Figure 5-8, the model centres in the Local PCA concept is found much closer to their local 

training data, and the individual Local PCA eigenvectors more closely resemble the data it is 

estimating than the regular PCA. The second eigenvalue is also much smaller, meaning that 

there is less variation in the ‘fault direction’ (output axis), and would theoretically mean better 

distinction between fault and normal data. Only the input axes are divided, because only faults 

are being checked on the outputs; if the output axis was also divided, then a fault could move 

the data sample x into a different cell, and could lead to a missed fault. Therefore, only the 

input axes are divided to create cells. Using the same non-linear data as before, and with the 

same a =1000 Nm applied, results of the T2 online test are shown in Figure 5-9. 
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Figure 5-9: Local PCA T2, with an offset applied. 

 

From Figure 5-9, the Local PCA concept now causes T2 to experience sharp discontinuities as 

the current data sample x passes from one cell to another; this, naturally, is due to differences 

in the PCA models. These discontinuities are significant enough that even large faults cannot 

be robustly identified. However, within each cell k, normal variation stays within a narrower 

relative threshold, and using the average value of normal variation as a baseline better 

distinguishes faulty from normal T2 behaviour within each cell. Therefore, if the average 

normal T2 value, b, during an online test was captured, it could be used offset all future T2 

values for that cell, such that each cell has the same average baseline (i.e. zero). Then a 

common ‘normal threshold’ can be used to identify faulty behaviour, regardless of which cell 

it occurs within. This ‘average T2 offset’ b can be calculated purely from normal training data, 

without knowledge of fault response.  

 

The average T2 offset calculation is demonstrated in Figure 5-10, taking the previous result of 

Local PCA online test from Figure 5-9, considering only the normal T2 values of cell 2, and 

finding the average of all values in that cell.  
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Figure 5-10: Example demonstrating how average offsets are derived a posteriori from 

normal T2 online test for each cell’s Local PCA model. 

 

The average T2 offset for cell 2, b2, would roughly be 1.7e4 from Figure 5-10, and is shown 

by the dotted black line. The T2 online test is repeated for the same normal and fault test data, 

but this time using the cell membership already calculated for each new data sample x (based 

on its input axis coordinates) and the corresponding average T2 offset bk is subtracted from the 

nominal normal and faulty T2 outputs.  

 

 

Figure 5-11: T2 with average normal T2 offsets bk applied to each corresponding cell k. 
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Comparing Figure 5-11 to Figure 5-7, it is apparent that using average normal T2 offset for the 

cells means that faults are much more easily distinguishable. Additionally, obtaining 

information about fault direction and magnitude is simpler, as a negative torque error (i.e. too 

little torque demanded) now tends to be a negative value. This is not a complete concept yet, 

though: the normal T2 still varies by a considerable amount and will benefit from reduced 

normal variation. Moreover, a fundamental problem persists: T2 is a qualitative statistic as 

opposed to a useful, quantitative value for use in fault detection. T2 needs to somehow be 

interpreted into a useful metric, akin to the familiar ‘torque error’ typically used by the fault 

detection system.  

 

5-2.3.2 – T2 Normalisation 

 

Although the cells now share a common baseline of zero T2 under normal conditions, the 

interpretation of a given fault magnitude is not common. Therefore, there also needs to be 

some form of T2 interpretation scalar, a possibility that has now been made possible with the 

introduction of this average normal T2 offset. In order to select the correct scalar, a different, 

more comprehensive T2 test is introduced   

 

Instead of using a varying additive fault signal from Figure 5-3, a constant 100 Nm fault f is 

now applied to examine the behaviour between cells as a comprehensive input parameter 

sweep is conducted; this is shown in Figure 5-12. 
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Figure 5-12: Input parameter sweep under normal conditions and with constant 100 Nm 

fault f on subdivided nonlinear training data. 

 

A constrained view of the x-axis in Figure 5-12 can be found in Figure 5-13, showing more 

signal detail otherwise lost due to frequency. 
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Figure 5-13: Input parameter sweep under normal conditions and with constant 100 Nm 

fault, f, on subdivided nonlinear training data; first 10 seconds only (see Figure 5-12). 

 

The variation in the fault offset T2 generally varies around some average value in the same 

way as normal offset T2 varies around zero, but it is clear that Local PCA models 1 and 2 tend 

to produce greater T2 outputs for the same fault compared to models 3 and 4, indicating that a 

single scalar for the all cells will not correctly estimate torque error. With that in mind, the 

average fault offset T2 value has to be found for each cell, 𝑇2̅̅̅̅ 𝑓𝑎𝑢𝑙𝑡,𝑘, obtained by averaging all 

the fault offset T2 values for a given test that is produced when cell k is active. Then, all of the 

T2 values produced in each cell can be divided by the corresponding 𝑇2̅̅̅̅ 𝑓𝑎𝑢𝑙𝑡,𝑘 such as to 

normalise each cell’s response to the same 100 Nm fault, f. Since normal offset T2 is already 

centred on zero, there will not be a further offset change in normal offset T2. The result of this 

is that normal offset T2 in each cell will now vary around zero under normal conditions (as 

before), but now around 1 for fault offset T2 whenever the fault magnitude equals f. With all 

of T2 normalised, the (𝑇2̅̅̅̅ 𝑓𝑎𝑢𝑙𝑡,𝑘)
−1

 scalar for each cell can be scaled by the known fault 

magnitude f to produce the T2 torque error estimate, 𝑇𝐸𝑇𝐸
2 , a useful metric for the fault detection 
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and reaction mechanism to act upon. Considering all of these steps, then, a single T2 scalar ck 

can be derived for each cell k, which is used to obtain 𝑇𝐸𝑇𝐸
2  at any given time. Deriving ck is 

summarised in Equation (5-13): 

 𝑐𝑘 = 𝑓 × ( 𝑇
2̅̅̅̅
𝑓𝑎𝑢𝑙𝑡,𝑘)

−1
 (5-13) 

 

where f is the constant fault used in the faulty T2 test, and  𝑇2̅̅̅̅ 𝑓𝑎𝑢𝑙𝑡,𝑘 the average fault offset T2 

for cell k captured after the test. Using the same test as before (Figure 5-12), the T2 scalar ck 

for each cell k is derived and stored. When a new set of input parameter sweeps are then 

conducted, the T2 output is multiplied by the corresponding T2 scalar ck based on which cell is 

active for the current T2. This test includes the normal offset T2 test, the previous faulty offset 

T2 test from a constant 100 Nm fault f, and two more faulty offset T2 tests – constant 50 Nm 

and -75 Nm faults – to provide indication whether a given derived ck is valid for any fault 

injection magnitude. Figure 5-14 compares the T2 estimated torque error, 𝑇𝐸𝑇𝐸
2 , outputs of 

these tests.  

 

 

Figure 5-14: T2 estimated torque error outputs for normal and fault data with subdivided 

training data for -75 Nm, 0 Nm, 50 Nm, 100 Nm values of f. 
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From Figure 5-14 it can be seen that the T2 normalisation process has successfully normalised 

the cells in the T2 estimated torque error outputs, such that a fault on the output will be quickly, 

and with reasonable accuracy, be detected by this concept. The original fault of 100 Nm is 

easily distinguishable from normal operation, with a variance range of -10 Nm to +20 Nm.  

 

Furthermore, both the 50 Nm and -75 Nm faults are correctly classified (with like variance) 

during their T2 online tests using the cell membership k to determine appropriate Vk, Ʌ𝐤, bk 

and ck. This important finding should indicate that, regardless of which value for f is used to 

derive b and c during development, these will provide a correct 𝑇𝐸𝑇𝐸
2  for any encountered fault 

magnitude. In summary, the methods employed to calculate 𝑇𝐸𝑇𝐸
2  can be described by the 

following equations. 

 

 𝐌𝐤 = 𝐕𝐤(Ʌ𝑘)
−1𝐕𝐤

𝐓 (5-14) 

 𝑥𝑎 = 𝑥 + [0,0,… , 𝑎] (5-15) 

 𝑇𝐸𝑇𝐸
2  =  [[𝑥𝑎𝐌𝐤𝑥𝑎

𝑇] − 𝑏𝑘] × 𝑐𝑘 (5-16) 

 

where k is the determined cell membership of datapoint x, and x itself is a vector whose 

elements are the original dataspace coordinates, with all the inputs first, then the output at the 

end. Since the PCA models do not change once they are released with the vehicle, (5-14) can 

be pre-multiplied to produce the single [m x m] PCA model Mk, such that a lesser burden is 

placed on the computational and storage resources during real-time execution. These are 

promising results, but variation around the ideal in both fault and normal 𝑇𝐸𝑇𝐸
2  is still 

significant enough to potentially inhibit consideration of this concept as a viable fault detection 

method for this application. Therefore, the next section seeks to reduce this variation through 

the introduction of an automated refinement process.  

 

5-2.4 – Automated Subdivision PCA 

 

It was demonstrated in the preceding section that through the creation of divisions in the input 

axes of the training data such that cells of training data are produced, better matching PCA 

models could be found for the local training data within the cells they are being derived from, 

leading to reduced variation in T2. It seems reasonable, then, to assume that further cell 

divisions could yield improved performance by reducing normal variation, and thereby 

improving the fault detection robustness of this method. However, simply dividing the cells 

indiscriminately will quickly lead to impractical amounts of data needing storage, exacerbated 

further with systems of greater dimensionality. 
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An automated cell subdivision process has been conceived, whereby cell divisions are tested 

and refined, such that improved performance can be obtained while not drastically expanding 

the amount of data storage required; this process has been called Subdivision PCA. The basic 

principle is straightforward: test if a subdivision improves the fault detection capabilities above 

a desired amount, and if so create that subdivision. Figure 5-15 illustrates one iteration of the 

subdivision refinement process.  

 

 

Figure 5-15: One iteration of cell subdivision in subdivision refinement process, with 

green cells showing earmarked cells for future subdivision. 

 

Figure 5-15 shows the input space of a three-dimensional training data dataspace. The starting 

cells and their boundaries (solid black lines) for this iteration is shown in 1), and the 

performance of the T2 tests stored. Then in 2) through 5), the same tests are repeated, but with 

new probationary subdivisions in one cell at a time (dashed lines) to determine if these 

subdivisions bring benefit; green-shaded cells yield improvements whereas red-shaded cells 

do not. Cells that show improvement then have their subdivisions confirmed, ready for the 

next iteration 6).   

 

5-2.4.1 – Error Integral, Cell Selection Function and Subdivision Refinement 

 

In order to determine which cells to subdivide, some way to quantify their performance needs 

to be established. One way to understand the performance of the set of PCA models during the 

T2 tests is to determine how distinguishable a fault is from normal operation. Variation in either 

normal or faulty offset T2 will tend to reduce this discernibility, and reduction of this variation 

is the main aim of the subdivision refinement process. A simple metric has been derived to 
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take this into account, called the ‘error integral’ e. With a known constant fault magnitude f 

being used in the T2 online tests, the error integral e can be calculated using (5-17). 

 

 𝑒 =∑( |𝑇𝐸𝑇𝐸,𝑓𝑎𝑢𝑙𝑡
2 − 𝑓| + |𝑇𝐸𝑇𝐸,𝑛𝑜𝑟𝑚𝑎𝑙

2 | ) (5-17) 

 

With perfect PCA model matching, faulty offset T2 will equal f and normal offset T2 will equal 

zero, leading to e = 0; any deviation from these baselines will increase e. This is calculated for 

each datapoint during the T2 online test and cumulatively summed together. The criteria for 

the subdivision refinement process is therefore to minimize e. With each iteration of 

subdivision refinement, each cell needs to be tested for improved subdivision performance. 

This is called the Cell Selection Function, and is comprised of the following steps: 

 

1) Start the subdivision iteration. 

2) Take an untested cell k of the current subdivision, and create a probationary 

subdivision (which includes all other cells of the current subdivision). 

3) Derive PCA models of the whole training data using the probationary subdivision. 

4) Conduct T2 test using PCA models from probationary subdivision. 

5) Derive average offsets and T2 scalars, and apply to normal and faulty T2.  

6) Calculate error integral e for probationary subdivision, and compare with e from 

current subdivision.  

7) If the probationary e is greater than the current e, earmark cell k for subdivision 

refinement in the next iteration. Otherwise, do not subdivide it.  

8) Revert back to the current subdivision in step 2 until all cells are tested. 

9) Subdivide earmarked cells, end subdivision iteration. 

  

There are a number of criteria that can control the number of subdivision iterations performed, 

such as a minimum cell size (related to a set number of subdivision iterations), maximum 

number of PCA models, error integral requirement, the ‘knee point’ in error integral 

improvement, or until no improvement could be made to error integral by any further 

subdivision. The earmarked cells could be sorted based on percentage e improvement and only 

those above a certain percentage chosen for further subdivision. Figure 5-16 shows the 

development process flowchart to with this cell selection function.  
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Figure 5-16: Subdivision Refinement Process with Cell Selection Function. 

 

Continuing on with the same data from Figure 5-16, the subdivision refinement process is 

carried out to see if variation can be reduced. After three subdivision refinement iterations, a 

set of 64 cells are created with corresponding PCA models, offsets, and T2 scalars. Figure 5-

17 shows the resulting T2 estimated torque error outputs using these PCA models.  
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Figure 5-17: Normal and Fault T2 estimated torque error outputs after three subdivision 

iterations. 

 

With more PCA models describing the nonlinear training data due to the automated 

subdivision process, variation in both fault and normal T2 estimated torque error are 

dramatically reduced, with a variation of >2 Nm in both signals across the whole input space.  

 

5-2.4.2 – Weighted Subdivision 

 

Up to this point, the only type of cell subdivision considered has been to create a new cell 

boundary halfway between the existing ones along a particular input axis. There is scope to 

investigate altering the ‘weighting’ of these new subdivisions, whereby additional tests are 

conducted to find if biasing boundaries would yield improved performance at no additional 

storage cost. Figure 5-18 illustrates the difference between the nominal Subdivision 

Refinement and Weighted Subdivision Refinement. 
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Figure 5-18: Regular Subdivision (a) compared to an example Weighted Subdivision (b) 

after two subdivision iterations. 

 

The Weighted Subdivision Refinement process is also easily automated, and included as a 

subroutine within the Cell Selection function of Figure 5-16. When the next cell is tested, all 

allowed combinations of boundary weighting are tested individually, and the best performing 

one (with the lowest e) is compared to the current subdivisions, and if e has been reduced, then 

that cell is earmarked with the corresponding subdivision weightings. It allows the refinement 

process to better match non-linear data with fewer subdivision iterations. 

 

5-3 – Implementation of PCA in a simulated vehicle torque 

structure 

 

To test the Automated Weighted Subdivision PCA concept for implementation, a Simscape 

vehicle powertrain model has been developed in the Simulink environment. The vehicle 

modelled is a twin-axle EV from Chapter 3 (first shown in Figure 3-7), with an electric motor 

on each axle; Figure 5-19 revisits the EV powertrain layout. 
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Figure 5-19: EV Powertrain Architecture. 

 

The model consists of two main sections: 1) the physical drivetrain and vehicle model, and 2) 

the torque structure control software, similar to a typical modern vehicle control setup. A 

torque demand is sent to the actuators from the torque structure control software, which itself 

is controlled by the accelerator pedal demand from the human driver model and the measured 

physical vehicle velocity. The PCA FSC will seek to detect faults in the torque structure. 

Figure 5-20 shows the intended architecture of the physical model, torque structure, and PCA 

module. 

 

 

 

Figure 5-20: System view of simulation model. 

 

Birch et al. [112] defines a safety goal to address the hazard of unintended acceleration: 

“vehicle positive longitudinal acceleration shall not exceed driver demand by more than 1.5 

m/s2 for longer than 1 s’. They found, for their particular EV vehicle, that the maximum 

acceleration achievable by a 150 Nm fault is 1.5 m/s2, and therefore defined the functional 
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safety requirement and fault reaction mechanism to limit erroneous excess torque to 150 Nm. 

Considering the same safety goal Birch et al. defines, the same test was conducted on the 

Simulink vehicle model in this chapter to find that a ~140 Nm fault would result in a maximum 

1.5 m/s2 acceleration. Therefore, with respect to this safety goal, the PCA module must be able 

to always detect a fault of 140 Nm in the torque software to achieve safety with respect to this 

hazard. 

 

5-3.1 – PCA Development Stage 

 

The PCA derivation and online implementation process previously outlined will be put into 

practice for this application. 

 

5-3.1.1 – Define Scope of PCA Safety Monitor Concept 

 

This first step in the development stage is to identify the item being monitored and scope. In 

this case, the simplified vehicle torque structure is being monitored, with inputs of accelerator 

pedal position and measured vehicle velocity and an output of torque demand; this is the part 

that will be extracted for PCA model development.  

 

5-3.1.2 – Gather Training Data 

 

 With the scope defined, the software component is extracted for analysis. In this case, two 

uniformly-distributed random number generators are used as inputs to generate 10000 data 

samples of pedal position, velocity, and torque for the PCA models to be trained on. Random 

number generators of different seeds are also used to generate test data for refinement in the 

next stage.   

 

5-3.1.3 – Derive PCA models 

 

The training data and test data is used to calculate the PCA models in the automated weighted 

subdivision process. After four subdivision iterations, the final M, b, and c are derived and 

stored for each 256 cells; for this application, a = 10000. Figure 5-21 shows the performance 

of these PCA models on the test data: 
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Figure 5-21: T2 for Normal and 100 Nm Fault 

 

Compared to Figure 5-17, there does exist some greater variation in both normal and fault T2 

here in Figure 5-21, which can be attributed to the greater complexity system being modelled. 

Furthermore, it was found that the instances of greatest variation are found specifically in just 

two cells. Depending on design requirements, more iterations and cell refinement could in 

theory be used to increase fidelity and improve robustness at the expense of increased storage 

requirement. The ability to choose the number of iterations of the PCA model development 

for a particular application highlights the capability to tune the PCA module in the 

development stage to the particular need or constraint of the application.  

 

5-3.2 – PCA Module Online Implementation and Test 

 

With the PCA module derived, the final step is to now implement it into the vehicle. The same 

input and output signals are routed to the module, and the estimated torque error output from 

the PCA module would be sent to the fault decision and reaction mechanism. Fault detection 

is the focus of this thesis, so no active fault reaction will take place. A test can now take place. 

 

The human driver model will attempt to match a simple target vehicle velocity – recorded real-

world driving data – by actuating the accelerator pedal and brake pedal. Eight fault events will 

take place over the course of the 100 s drive cycle, which will be additively injected on the 

torque output, as per Figure 5-20. Figure 5-22 shows the fault signal injection schedule, which 

the PCA module has no knowledge of.   
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Figure 5-22: Fault injection signal schedule. 

 

The aim of this exercise is to see whether the PCA module will be able to replicate these faults, 

as they are torque errors. Both positive and negative faults are included to test correct 

estimation in both directions.  The resulting estimated torque error output from the PCA 

module for this test case is shown in Figure 5-23. 

 

 

Figure 5-23: T2 Estimated Torque Error from PCA Module. 
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The results in Figure 5-23 are very promising. With the exception of a small amount of 

expected noise, the PCA module manages to capture each fault event in the test case. The 

largest variation occurs in the last fault event, where a momentary spike of 5 Nm occurs. Other 

periods of signal noise exist, but generally it is kept low. 

 

With the current PCA module noise, the error threshold for fault detection would need to be 

reduced slightly to ensure a true hazard isn’t missed. For example, if the true hazard was 145 

Nm, but due to noise the estimated torque error from the PCA module read 135 Nm, a fault 

that violates the functional safety requirement would be missed. The amount of reduction 

would be related to the expected normal variation following the PCA model derivation during 

development. Even so, the noise in Figure 5-23 is generally low with respect to the signal 

fidelity required for fault detection in a vehicle. 

 

5-4 – Time-Dependent Functions 

 

The Subdivision PCA concept has been shown to work quite well on multi-variate static MISO 

systems, where there is no dynamic time-element. In the previous examples, a given set of 

inputs would always result in the same output irrespective of preceding inputs. However, the 

functional software for vehicle torque management in modern cars will invariably have some 

form of dynamic time-dependent behaviour in the function. Some examples would include: 

 

• Torque blending function 

• Traction Control function 

• ICE dynamics compensation 

 

These cases present a fundamental issue for PCA: a given set of instantaneous inputs may 

produce different outputs, depending on what the inputs were in the time preceding the current 

data sample. When the software function being monitored includes a time-dynamic behaviour 

such as a time-delay or smoothing function, the training data produced resembles a ‘cloud’ of 

datapoints as opposed to a surface. The variation in this direction results in a much larger 

eigenvalue in the last PC, decreasing distinction between a fault and normal behaviour.  In the 

literature review, PCA was shown to have been successfully implemented in industrial 

engineering applications, such as chemical process and nuclear power plants. Indeed, these are 

also dynamic systems that have some level of time-dependent behaviour to them, papers by 

[127] show the typical sample interval to be about one minute, as opposed to the 0.01 s in the 

torque management software. Additionally, control signals are typically not used as variables, 
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but rather just system and sensor variables (temperature, pressure, flow rate etc.) which would 

change less rapidly than a control input, unless a clear fault is present. Therefore, the time-

behaviour performance of the Subdivision PCA needs to be examined. The simplest form of 

this would be to include a time delay on the output of the system, capturing the inputs and the 

delayed output.   

 

Great consideration for the Subdivision PCA method needs to be given to how the training 

data is gathered, because to build a comprehensive dataset of inputs and outputs would require 

a sufficiently representative combination of possible preceding inputs to the current state of 

the system. The following number of training data points n is thus required: 

 

 

𝑛 =∏𝑑𝑖
𝜔
𝑡

𝑚𝑖𝑛

𝑖=1

 (5-18) 

 

where di is the chosen representative resolution of the ith input variable (e.g. dpedal = 101, where 

each integer percentage of a possible 0-100% pedal positions is captured), ω is the sampling 

frequency in Hz, and t is the time constant of the non-linear behaviour that takes the longest 

historical effect into account (e.g. t = 1 for a 1 second delay on the output). Clearly then, this 

would surmount to an extremely large number of data points to build a representative dataset 

for the Subdivision PCA to train on, but which is not necessarily impossible to do 

computationally in a software environment. A major drawback is that each non-linear 

behaviour would need to be analysed for its time constant, which in itself may actually change 

depending on some other influence, such as different torque blending transfer functions for 

different pedal maps.  

 

5-4.1 – Compensating for Time-Dependent Function Dynamics 

 

A possible remedy would be to model these time-dependent characteristics outside of the PCA 

model, effectively negating the temporal behaviour. Depending on the nature of the time-

dependent behaviour, the PCA safety monitoring concept could be arranged in one of two 

ways: 

 

1) Use other inputs as inputs into an external dynamic model of the time-dependent 

behaviour, the output of which becomes an additional variable for the PCA module to 

learn. 
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2) Use the output of the PCA module as an input into a dynamic model, the output of 

which is then used for the fault detection.  

 

Both approaches would incur additional initial design costs as it makes each PCA module 

more application specific, but would also depend on whether or not the dynamic behaviour 

could even be modelled in the first place. An example layout of the second option is shown in 

Figure 5-24. 

 

 

 

Figure 5-24: Architecture of separating out dynamic behaviour from PCA for Fault 

Detection. 

 

In the architecture shown in Figure 5-24, PCA is performed on the non-linear, non-time-

dependent part of the functional software with T2 torque error as the output. The T2 torque 

error output can then be added to the current torque demand from the functional software to 

obtain the expected torque demand. This is then sent into a safety software version of the 

dynamic function (time dynamic), and the outputs of this is compared to the same output in 

the functional software to get the error for the whole scope of the safety monitor. Separating 

out the dynamic component of a function is very difficult in practice, especially as there can 

be multiple dynamics interacting with each other; gathering the required training data becomes 

exponentially infeasible when additional dynamics are considered. 

 

Another potential remedy that does not explicitly separate out the time dynamic component of 

the functional software is the inclusion of an inverse of the dynamic function on the output 

going to the PCA model, or in some cases a duplication of the dynamic model on the inputs 

going into the PCA model such that the dynamic component is cancelled out; for example, if 

the time dynamic is a 0.5 s transport delay, the same delay can be applied to the inputs such 
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that the dynamic effect is cancelled out. Examples of these two layouts are represented in 

Figure 5-25 and Figure 5-26.  

 

 

 

Figure 5-25: Inverse time dynamic model on functional software (L1) Output 

 

 

Figure 5-26: Time-dynamic offsetting models on Inputs 

 

In theory, and with a bit of extra work bespoke to each type of dynamic considered, this could 

negate the time-dynamic between inputs and outputs. Unfortunately, three drawbacks have 

been identified: 

 

1) Consideration for the Fault Tolerant Time Interval 

2) Separating out time dynamic component for modelling still required 

3) Complex and sometimes inaccurate inverse models 
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5-4.1.1 – Fault Tolerant Time Interval 

 

ISO 26262 Part 1, 1.45 [26] defines the Fault Tolerant Time Interval (FTTI) as “time-span in 

which a fault (1.42) or fault can be present in a system (1.129) before a hazardous (1.57) event 

occurs”, (International Standards Organization, 2014). With this in mind, ‘undoing’ the time 

dynamic by adding an inverse model effectively will double the ‘Diagnostic Test Interval’ 

between ‘Fault’ and ‘Fault Detection, increasing the burden on the ‘Fault Reaction Time’ in 

order for the system to reach a safe state within the FTTI. This is illustrated in Figure 5-27 

with the dotted line, which takes twice as long to detect a fault, and leaves very little time to 

get the system to a Safe State.  

 

 

Figure 5-27: Fault reaction time and fault tolerant time interval (ISO 26262 Part 1-1.44, 

Fig. 4 [26], with modification) 

 

While simpler dynamics with a short time constant may still leave sufficient space for a 

successful fault reaction, the environment in which passenger cars operate will likely demand 

a short FTTI for unintended acceleration. 

 

5-4.1.2 – Separating Out Dynamic Components 

 

In order to derive an inverse dynamic model, the dynamic component needs to be known and 

the inverse function modelled. This second method therefore suffers from the same problem 

as the architecture in Figure 5-24, in that separating out the dynamic component of a function 

is not always possible, especially where multiple components interact with each other.  
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5-4.1.3 – Complex and Inaccurate Inverse Models 

 

Even if the dynamic component was known, the inverse model may not be able to be modelled 

such that it can accurately counteract the dynamic component or requires significant 

computational resources to operate. The time dynamics in the torque structure may well be so 

complex that to attempt to model them would not be a commercially feasible approach, 

particularly as these models would independently need to be verified, quickly adding to initial 

design cost reducing simplicity and modifiability. Doing so may well make the concept near-

identical to how the Continuous Torque Demand Monitor is developed, negating the benefit 

of using the PCA concept. 

 

5-5 – Further Constraints and Feasibility  

 

The PCA Safety Monitor is shown to have promise as an FSC, but a number of constraints are 

present in this concept that are yet to be overcome.  

 

5-5.1 – Validation and Verification 
 

Before this concept can be implemented in a real vehicle, robustness and verification methods 

will need to be explored further to ensure the PCA safety monitor will fully ensure the safe 

operation of the software component it is monitoring at all times. Verification will form much 

of the future work on this concept, with some of the key aspects explored in Chapter 6. 

 

5-5.2 – MIMO Functions 
 

Currently, only multiple-input-single-output (MISO) systems are able to be monitored. This is 

due to the fact that T2 varies when there is variation in the direction of the smallest eigenvalue 

(last PC), and it is not currently known if the error could be reconstructed when two outputs 

are being monitored by the same PCA module in a multiple-input-multiple-output (MIMO) 

system. However, it is believed that if a system has multiple inputs and outputs but only one 

output needs to be monitored, a PCA concept could set up in a way that treats the remaining 

outputs as inputs and are subdivided accordingly. A fault could, in theory, only be triggered if 

the monitored output did not match the known input and other output value combinations. By 

extension, multiple PCA modules can then be individually developed to be sensitive to errors 

on a particular output signal, with the PCA modules then arranged such that their estimation 
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outputs are combined to create an overall MIMO monitoring function. Figure 5-28 

demonstrates such an arrangement.  

 

 

 

Figure 5-28: Example Architecture for applying PCA Module to MIMO Functional 

Software. Red labels in the PCA Modules indicate signals that are treated as “outputs” for 

the purposes of PCA error estimation. 

 

In Figure 5-28 each PCA Safety Software Module is a MISO model that considers the same 

inputs and outputs in the estimation of errors, but each is derived to be sensitive only to 

estimate errors with respect to one output from the MIMO Functional Software. This is done 

by selecting one of the Functional Software outputs as an output for the PCA derivation 

process (i.e. it does not get subdivided during automated subdivision development), while the 

other output gets treated as an input. The number of PCA Modules will depend on the number 

of outputs that need to be monitored. In such an architecture, dynamics between output signals 

(e.g. where output 1 affects the value of output 2) can also be captured in the relevant MISO 

PCA Modules. Of course, such an arrangement increases requirements for storage and 

computation, as well as increases design, implementation, and verification effort.  

 

5-5.3 – Hardware Storage Requirements 
 

While PCA is excellent at describing large amounts of data with just a few matrices, the 

subdivision process creates a relatively large amount of data to be stored, which is likely to be 

a constraint on modern vehicle ECUs. Each cell k consists of an [m x m] model matrix Mk, the 

boundaries matrix Bk of size [minputs x 2], the T2 scalar ck, and the T2 offset bk. Finally, the 
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single output offset constant a is stored. This means the number of ROM-stored values (nval) 

for one PCA module (excluding code for execution) is described in Equation (5-19): 

 

 𝑛𝑣𝑎𝑙 = ((𝑚
2 + 2𝑚𝑖𝑛𝑝𝑢𝑡𝑠 + 2) × 𝑛𝑐𝑒𝑙𝑙) + 1 (5-19) 

 

where ncell is the number of cells contained in the PCA module. The per-cell storage 

requirement is squarely dependent on the number of monitored system variables in this 

concept, so increasing this quickly increases the storage requirement. The other aspect of this 

to consider is that as the number of monitored system variables is increased more nonlinearities 

are introduced into the resulting PCA system, and would need more subdivisions to capture 

these non-linearities. Each subdivision made on a cell increases the number of cells to a total 

of 2𝑚𝑖𝑛 − 1, and subsequently gives more opportunities to further refine in the next 

subdivision, likely increasing the number of cells exponentially. The PCA safety monitor 

investigation included test cases with different m, leading to storage requirements differing by 

nearly two orders of magnitude. For example: 

 

• One of the test cases on a three-variable system (two inputs, one output) yielded 13 

cells in the subdivision process, resulting in 780 bytes of data.  

• One of the comprehensive test cases on a four-variable system (three-input one-

output) yielded 481 cells, resulting in 46176 bytes of data.  

 

 There are a number of storage optimisation methods that could drastically reduce the number 

of cells, such as allowing for a very small amount of increased variation if it meant sharing a 

PCA model for near-congruent cells, rather than storing separate models. Additionally, more 

complex cells could be derived, at the cost of increased storage space to describe their more 

complex boundaries.  

 

5-5.4 – Computational Requirements 
 

Finally, the computational requirement also needs consideration. The T2 analysis equations 

are similarly dependent on the number of system variables being monitored. Once the cell 

membership is determined, calculating the T2 estimated torque error, 𝑇𝐸𝑇𝐸
2 , just requires the 

T2 analysis, output offset and T2 normalisation; the number of multiplications, opsmult, to be 

performed in real-time on the ECU for calculating are: 

 

 𝑜𝑝𝑠𝑚𝑢𝑙𝑡 = 𝑚
2 +𝑚 + 1 (5-20) 
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and the number of summation calculations, opssum, is: 

 

 𝑜𝑝𝑠𝑠𝑢𝑚 = 𝑚2 (5-21) 

 

leading to the total number of operations, ops, to be: 

 

 𝑜𝑝𝑠 = 2𝑚2 +𝑚 + 1 (5-22) 

 

Figure 5-29 shows the number of summation and multiplication operations requiring 

execution on the ECU per timestep, as the number of measured variables, m, increases 

(excluding cell membership calculation and other executable code): 

 

Figure 5-29: Computational requirement per step for increasing numbers of PCA 

Variables 

 

Increasing the number of monitored system variables will increase the calculations nonlinearly 

due to the squared m term. Many factors will play into the computational requirements 

feasibility for this concept. Storage of the necessary data for the PCA module is a major 

limiting factor in modern vehicle ECUs, particularly when the module monitors more than 

three system variables on very nonlinear functions. However, storage and computational 

resources are ever increasing as ECU technology continues to develop, and could lead to more 

complex functions, such as this PCA monitoring concept seeing commercial feasibility in 

future passenger vehicles, should the other limitations be overcome. 
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5-6 – Conclusions 

 

This chapter has explored and detailed the stages of development that has led to a viable 

method for deriving a PCA-based safety monitor as part of a functional safety concept. The 

PCA safety monitor can meet the goals of being able to quickly detect a fault and determine 

its direction and magnitude. An automated subdivision refinement process was then detailed, 

whereby multiple cells of PCA models were created to improve performance and better 

describe non-linear datasets.   

 

The process was then successfully carried out within a simulated vehicle environment, where 

a software component was identified (torque structure), training data was generated, the PCA 

models derived, and the PCA safety monitor implemented. The PCA safety monitor was able 

to detect all the injected faults during the drive cycle with a small amount of variation, and 

correctly estimate the magnitude and direction of each fault. Within the constraints and 

limitations discussed in the final section, the PCA safety monitor holds merit as a viable safety 

monitoring concept, pending the thorough verification and robustness testing required by ISO 

26262. 

 

The next chapter considers the verification and validation considerations for both the PCA 

safety monitor of this chapter, and the adaptive safety monitor, before revisiting the ideal 

attribute scores preliminarily assigned in Chapter 3 and updating the attributes with 

justifications based on the outcomes from the two investigations. 
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Chapter 6 
 

Validation & Verification 

Considerations  

and Concept Evaluation 
 

 

 

 

 

 

 

 

 

 

 

 

 

6 – Summary 

 

The PCA Safety Monitor and the Adaptive Safety Monitor have both been shown to hold value 

as safety monitor candidates, according to initial testing. In order for these to be progressed 

commercially, attention needs to be paid toward any unique validation and verification (V&V) 

considerations that have been identified as a result of these investigations. A full V&V analysis 

of either concept is out of scope for this project, but key questions are discussed, and are 

addressed with potential solutions. Finally, the concepts will be each re-evaluated according 

to the ideal concept attributes identified in Chapter 3 to produce a final Pugh matrix score.   

 

• Objective 5: Determine if candidate concepts could be suitable for a future production 

vehicle, using ideal concept attributes. 
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6-1 – Validation and Verification Considerations 

 

6-1.1 – Principal Component Analysis Validation & Verification 

Concerns 

 

As PCA is a process-history-based quantitative analysis method [84], many of the concerns 

are rooted in ensuring the validity and integrity of the data used for deriving and testing the 

PCA models, in addition to certain limitations of the current PCA system that pose other V&V 

concerns. 

 

6-1.1.1 – Training Data: Verification of Training and Test Data 

 

As the PCA models are derived from a set of training data captured from the functional 

software component to be monitored, the models can only be as good as the quality of the 

training data. As such, the verification of the training data is a key question, since poor training 

data could lead to PCA models that are either unrepresentative of the software component, or 

include any systematic problems in the software component. Similarly, a separate set of the 

same source of data is used for the T2 testing and verification process, which checks the 

performance of the PCA models over the range of inputs and outputs. Should the test data be 

invalid, the test would also be invalid, and could mean poor performance and loss of functional 

suitability by the PCA module.  Furthermore, for the T2 testing process, there is a need to 

ensure that enough test data is captured for the process to verify the PCA models. Using too 

little test data could mean too sparse a representation of the functional software in the test data, 

possibly invalidating a test. Of course, with a deterministic software component, a finite 

number of possible states exist, and each possible input combination could be tested at the 

significantly increased expense of development resources. Thus, if there were to be some 

reduced set of test data (as there currently is), it must still be valid and comprehensive enough 

to satisfy verification of the PCA model performance. 

 

Possible Solution: The Data Safety Initiative Working Group was established by the Safety 

Critical Systems Club, with the aim of developing clear practices of handling data (as opposed 

to software and hardware) in safety-critical systems through the publication of the Data Safety 

Guidance [131]. Structured around ISO 31000 (with the purpose of assisting data safety 

consideration in future standards), a four-phase “Data Safety Management Process” (DSMP) 

is outlined in the latest version of the Data Safety Guidance handbook: 
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• Establish Context 

• Identify Risks 

• Analyse Risks 

• Evaluate and Treat Risks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

 

The DSMP first considers the whole context of system development context, requirements, 

and design, in order to establish the rigour devoted to addressing the risk appetite. Here, the 

type of data can be identified from the list provided in Section 6.1.6 and Appendix E of the 

Data Safety Guidance, with PCA training data possibly falling under “1- Predictive” (“data 

used to model or predict behaviours and performance”) or “9-Machine Learning” (“data used 

to train the system to enable it to learn from the characteristics of the data”), and PCA test data 

falling under “verification” (“data used to test and analyse the system”). Sources of risk are 

then identified along with potential consequences to produce a comprehensive list of possible 

risks, for which the Data Safety Guidance handbook provides data-related HAZOP 

guidewords. With a list of risks established, these risks can then be individually analysed and 

the data-safety related risk level determined by the Data Safety Assurance Level (DSAL) on a 

scale of lowest assurance (DSAL 0) to highest assurance (DSAL 4). Each risk’s DSAL is 

calculated based on parameters of ‘Likelihood’ and ‘Severity’ using Table 6-1; calculation of 

Likelihood and Severity is found in Section 6.3.1 of [131]. 

 

Table 6-1: Data Safety Assurance Level 

 

 
 

Likelihood 

 Low Medium High 

S
ev

er
it

y
 

Negligible DSAL 0 DSAL 0 DSAL 1 

Minor DSAL 0 DSAL 1 DSAL 2 

Moderate DSAL 1 DSAL 2 DSAL 3 

Major DSAL 2 DSAL 3 DSAL 4 

Catastrophic DSAL 3 DSAL 4 DSAL 4 

 

The use of DSALs is reminiscent of ASILs in ISO 26262 [26] and SILs in IEC 61508 [53]. 

Mitigation of the risks are then either conducted within the software or the data itself, with 

numerous techniques recommended based on the DSAL of each risk. With the introduction of 

the Data Safety Guidance, a clear structure to determine the best countermeasures and 

mitigation techniques against poor training data are provided, and could be used to ensure the 

proper training of the PCA modules is achieved.  
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6-1.1.2 – Training Data: Validity of Data Collection Method 

 

The method that is used to collect both the training data and T2 test data needs to be 

representative of the full range of possible states the functional software component could take 

on. Currently, obtaining training and test data is achieved through sweeping the input 

parameters on the functional software component and measuring the resulting output(s), to 

create the training data sets Xtrain and Xtest. For a functional software component with no state 

dynamics, each data sample tested can be chosen randomly, as testing on one data sample has 

no impact on the next one tested. However, if there was a software component which contains 

some dynamics, such that the test outcomes of each data sample are affected by the order in 

which they’re tested, the data collection method would need to be validated in order to ensure 

the captured data sets being used for training and testing are valid.  

 

Possible Solution: It is possible that a system with state dynamics in the functional software 

component could need to rely on a vehicle simulation model incorporated into the data 

collection method to ensure the data is captured in the manner that the functional software 

component processes it; simulator usage is a highly recommended technique for DSAL 3 and 

DSAL 4 data applications by the DSMP in Section 6.4.2.8 [131]. Two further issues are, 

however, introduced: 1) the verification of the vehicle model used, and 2) the completeness 

concern surrounding a comprehensive data capturing exercise. An automated systematic test 

schedule is a possible option, but needs to be ensured that both enough data, and the right data, 

is captured; this could be verified through other processes found in the DSMP, such as 

Statistics-Based Sampling, a highly recommended technique for DSAL 3 and DSAL 4 data 

applications in the DSMP Section 6.4.2.5. 

 

6-1.1.3 – PCA Model Derivation: Systematic Errors in Functional Software 

 

If all the training data has been validated and verified to be suitable for model derivation using 

the methods stated previously, there would still exist concerns relating to the derivation of the 

PCA models themselves. These models need to be valid representations of the functional 

software through the training data and need to be verified to show they are functionally 

suitable. Three key concerns are present with regards to the PCA safety monitor model 

derivation. If some systematic behaviour is present in the functional software component that 

leads to a violation of the safety goal – as opposed to a malfunction in the software after release 

– the training data collected on such a software component would likely also contain such 

behaviour, leading to a PCA module that would consider potentially hazardous behaviour as 

‘normal’. Single outliers and discontinuities in the training data are generally ignored or 
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averaged out when the PCA models are derived, but if a significant part of the training data is 

captured on flawed operation, the PCA safety concept may allow such functionality to 

continue without fault detection, as it was trained on this data. Verification of the absence of 

such behaviour is therefore imperative. 

 

Possible Solution: Possibly the most significant verification concern with the PCA concept, 

the verification method used in Chapter 5 would not be able to detect such faults, as it tests 

relative to the training data. There are two possible ways to address this concern, with both 

testing for violation of safety goals at the simulated vehicle level. Firstly, more rigour could 

be applied to ensuring the training data itself is free from such behaviour in the first place, 

which would include some sort of rule-based checking throughout a systematic test schedule 

as part of a full vehicle model. Testing the training data is essentially testing the functional 

software for systematic errors, as opposed to malfunctions after deployment. As such, this 

method would require a good understanding of the safety goal(s), and what conditions would 

violate them, such that the rules are able to capture any systematic flaws in the functional 

software. The second method is to go through with PCA model derivation and implement the 

PCA safety monitor as the safety software with the functional software. The full system is then 

subjected to the similar tests as the first method, as part of a full vehicle simulation systematic 

test programme, this time testing whether the fully derived and implemented system violates 

any vehicle-level safety goals.  

 

The second method has the advantage of being able to be the final sign-off in terms of 

verification since it is testing the end product (thereby adding assurance), but does mean any 

necessary modification that might result from the tests will be more costly. This is since 

finding errors in the late stage could mean reverting all the way back to the first stage of 

gathering training data, if it is a systematic error. The first method, meanwhile, will allow for 

more rapid changes to be made in the functional software and/or training data before deriving 

PCA models. Furthermore, it may not be possible to trace any resulting safety goal violations 

back to systematic flaws in the training data, as it could be a problem in the PCA model itself, 

unless this is also verified; even then, further testing would be required to specifically identify 

the region of training data responsible for the systematic flaw. It is possible that the 

development effort required to define and create the data/system testing environment yields a 

situation similar to what the benchmark method would yield, driving up cost for the PCA 

concept significantly.  
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6-1.1.4 – PCA Model Derivation: Unmonitored Signal Produces Significant 

Adverse Effect 

 

Reducing the number of functional software signals to monitor in the PCA safety software 

module is a key way in which computational resources, storage requirements, and initial 

development effort can be reduced, especially when considering the trend of increasing 

functional software complexity. Similarly, it will need to be verified that excluding certain 

signals will not lead to a point where the PCA models are not representative enough such that 

the T2 estimated torque error is too inaccurate, as that could mean reduced reliability of 

availability, or worse, a missed fault. Testing in Chapter 5 showed that the linear PCA safety 

monitor is sensitive to non-linear data, leading to the conception of the Local PCA concept 

and automated subdivision process. If a signal in the functional software component is left 

unmonitored, an unmodelled non-linearity could easily cause the T2 torque error estimate to 

be inaccurate. Therefore, it would need to be verified that such non-linearities do not exist or 

can only exist within a constrained magnitude.  

 

Possible Solution: This concern is congruent to simplifying the safety software model in the 

benchmark safety monitoring concept, with the adverse effect essentially being increased 

torque error under normal conditions due to an unmodelled noise factor. Therefore, established 

methods such as P-diagrams could be used to examine the effect of each of the noise factors, 

to determine which should and shouldn’t be included in the safety software.  

 

6-1.1.5 – PCA Model Derivation: Unknown State Dynamics in Functional 

Software Component 

 

Testing in Chapter 5 showed that the PCA safety monitor is sensitive to temporal state 

dynamics that may exist in the functional software component being monitored. A PCA 

module could be set up in such a way that those dynamics are accounted for, effectively 

removing the burden on PCA to monitor time-dynamic behaviour. Such modelling requires 

expert knowledge by the engineer, and the safety software component would need to be 

verified as per the current benchmark. However, it must be verified that all temporal functions 

of the functional software are compensated for, such that the resulting PCA models are able to 

produce an accurate estimate of torque error through T2 at all times.  

 

Possible Solution: With a fully comprehensive data collection routine, it is expected that such 

time-dynamics would surface. These dynamics are effectively unknown noise factors. If the 
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training data does not capture any such unknown dynamics, at worst the resulting PCA module 

will flag a false positive and reduce availability to the driver. If the training data does capture 

such unknown dynamics, a significant normal variation will manifest itself as part of the T2 

test and should be easily identifiable, after which the engineer will be able to take measures to 

analyse the source of the normal variation, persisting until the dynamic is accounted for. 

 

6-1.1.6 – PCA Model Derivation: Validity of T2 Normalisation method 

 

The step which maps T2 values (after output signal offsetting and normal baseline offsetting) 

measures the average T2 output in each cell for a known fault magnitude f. T2 is normalised by 

dividing by this average, and then multiplying by f to produce the T2 scalar, ck. The concern 

stems from choosing which f to use in this step, and whether this method is sensitive to the 

selection of f during the cell subdivision process, as a poor choice of f could lead to sub-optimal 

cell selection. 

 

Solution: A brief test was actually conducted during the development of the PCA concept to 

test whether choice of f impacts the way the subdivisions are decided during the automated 

subdivision process of the PCA module. It was expected that if f did affect cell performance, 

then two different choices of f would result in different subdivision cell boundaries being 

drawn. A comprehensive set of data was not yet used at this point of the investigation. Three 

inputs (accelerator pedal position, vehicle speed, and actuator temperature) were subdivided 

using 100 Nm and 50 Nm for f. The subdivisions on the input spaces are examined and 

compared in Figure 6-1. 
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Figure 6-1: Three-dimensional input dataspace with training data (blue) and subdivision 

cells for 100 Nm f  (left) and 50 Nm f (right).   

 

Figure 6-1 shows the 3D input space subdivisions for both choices of f, and the training data 

used. It was confirmed that the exact same subdivisions had been made irrespective of fault 

magnitude – provided the fault magnitude stays constant throughout the data. This finding was 

pivotal in enabling the justification of using the T2 normalisation method, as this indicated that 

choice of f was arbitrary, and therefore valid for finding the T2 scalar, ck. For full assurance, 

this could be retested with a comprehensive set of data across the whole input space.  

 

6-1.2 - Adaptive Safety Monitor Validation &Verification Concerns 

 

The adaptive safety monitor, being an adaptive version of the continuous torque demand 

monitor, faces most of the same validation and verification challenges as the benchmark 

system with regards to the overall structure of the fault detection and reaction mechanisms. 

The focus of this section is the adaptive module, and its interactions with the simplified safety 

software model.  

 

6-1.2.1 – Adaptive Module Parameters: Validating Maximum Adaption Rate 

Limit 

 

The maximum adaption rate limit is a very important tuning parameter of the concept, which 

is calculated using the sum of the maximum adaption rate limits for both long-term and short-

term calculations. On the one hand, if the maximum adaption rate limit is set too high, the 

adaptive safety monitor could adapt more quickly to a fault than a driver is able to, such that 
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a hazardous fault is deemed acceptable and dismissed. On the other hand, the adaption rate 

could be set too low, which means it begins to behave more like the continuous torque demand 

monitor, losing the adaption ability; depending on how the safety model had been simplified, 

this could lead to an increase in torque error due to noise factors, reducing reliability through 

unnecessarily limiting availability to the driver. Ideally, the maximum adaption rate limit is 

set to the most one can expect the driver to adapt to, but a safety margin could be given such 

that a slightly lower maximum adaption rate limit is chosen; this is to ensure that the adaptive 

safety monitor doesn’t adapt too quickly and miss a fault, as it is preferable to instead lose 

some robustness of availability for the sake of safety.  

 

Possible Solution: It is important to determine how quickly the driver is able to adapt to such 

torque errors, a straightforward task in principle, but once the variation of driver ability is 

considered, finding that answer is not simple as each and every driver has a different ability, 

often with various abilities in different situations. The controllability parameter in ISO 26262 

Part 3 is evaluated on “the probability that the driver … [is] able to gain sufficient control of 

the hazardous event, such that they are able to avoid the specific harm.” [27]. While this refers 

to determining the controllability of the hazard, it could be argued this statement indicates that 

some level of driver ability is assumed, and that the driver is given some responsibility for 

interacting with the system to comply with the safety goals. Indeed, ISO 26262 Part 3-8.4.2.6 

supports this by supplying guidelines for specifying the necessary actions of the driver in order 

to comply with the safety goals. One could argue, then, that there can be an assumption on the 

driver ability. NOTE 1 of Clause 3-8.4.2.6 b) suggests a driver task analysis could be helpful 

in determining driver behaviour, such as the prevention of surprise/panic/shock, which could 

currently be the best approach to validate the maximum adaption rate limit – and other adaptive 

module parameters such as driver delay and offset limit – that is used.  

 

6-1.2.2 – Adaptive Module Parameters: Verifying Parameters across Operating 

Range 

 

Chapter 4 showed that the adaptive safety monitor parameters could be optimised for a specific 

use case, but it is likely that the parameters result in the ‘best compromise’; it could be that the 

chosen set of parameters perform very well in one area, but not very well in all areas. At worst, 

this could mean the performance is really no different than that of the benchmark, meaning the 

adaptive capability is eliminated and a more complex safety software is required to ensure the 

safety goals are met with reasonable robustness of availability.  
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Possible Solution: To address the issue of parameter verification across the entire operating 

range, an automated software-based Monte-Carlo simulation with a representative set of 

scenarios created through design of experiments could be conducted to ensure that the chosen 

set of parameters meet the functional suitability requirements [132, 133]. It is likely, though, 

that some robustness of availability is sacrificed in order that the chosen parameters can 

achieve safety throughout the whole operating range. Therefore, a possible solution for 

improving robustness of availability while still maintaining safety is to subdivide the operating 

range, such that the parameters need only be verified for a subset of the operating range; 

multiple sets of parameters could then be stored and interpolated between as the operating 

conditions change, for example if the driver selects a different drive mode. Maximum rate 

limits, sampling time windows, and driver delay parameters are all easily changed on the go, 

but the total offset limits are not as straightforward to interpolate between subdivisions, and 

could simply not be included in the parameter scheduling process. Of course, this increases 

the storage requirement of the adaptive module somewhat, depending on the subdivisions 

created; investigation of such an operating range subdividing and parameter scheduling 

concept forms much of the future work for this concept. 

 

6-1.2.3 – Safety Software Simplifications 

 

The simplifications made in the safety software of the adaptive safety monitor concept can 

affect the ability of the adaptive safety monitor to detect faults. The core reasoning that enables 

the adaptive safety monitor to work is the idea that the driver is able to adapt to slow moving 

torque errors. If the nominal torque error produced by the simplified safety software is 

propagates quickly and significantly, the adaptive safety monitor will not adapt to it fast 

enough (as per the max adaption rate limit) and will result in some offset torque error. Should 

the source of such nominal torque error be a fault or malfunction, then that is the right course 

of action by the adaptive safety monitor. However, if such fast and significant nominal torque 

error occurs due to noise factors, this could lead to false positives. 

 

Moreover, consider a situation where some noise factor produces a nominal torque error of 50 

Nm, to which the adaptive safety monitor has adapted to. Should it suddenly ‘switch off’ (i.e. 

suddenly produce a nominal torque error of 0 Nm) the adaptive safety monitor will produce a 

-50 Nm offset torque error, as that is the relative change. However, if there immediately 

follows a fault of 125 Nm (to an error threshold of 100 Nm, for example) the offset torque 

error from the adaptive module would be 75 Nm. This could potentially be a missed fault, as 

initially the nominal torque error was produced due to unmodelled functional software 

components in the simplified safety software, which the driver simply understands as normal 
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vehicle behaviour. By switching to a new drive mode, the driver could expect a -50 Nm change 

in torque, but instead receives 125 Nm more than the driver expects from the new mode, but 

only a 75 Nm increase when compared to the baseline from the previous mode 

 

The problem here could highlight a potential shortcoming of the adaptive module when trying 

to mimic the driver behavioural model: the adaptive module itself is a reactive system, 

responding to historical behaviour from the nominal torque error output, whereas the driver 

also has a feedforward element; consider that the driver may anticipate a change in the 

functional software before it happens (e.g. manually selecting a different drive mode) in a way 

that the adaptive safety monitor could only adapt to after the change takes place and resulting 

torque error changes.  

 

Possible Solution: To overcome this, though, the function could just be included into the 

safety software, at the expense of simplicity, such that the nominal torque error is not 

introduced in the first place. One point to note is that switching between modes while driving 

is typically achieved through torque blending for drivability and safety, so for the majority of 

cases no changes need to be made. However, there could be a need to verify that such 

behaviour is not present in the simplified safety model. Therefore, extra care must be taken 

when developing the simplified safety model to ensure certain switching modes - or any other 

noise factors - do not cause a large sudden change in the nominal torque error. As it’s a 

software-based function, an automated full factorial and/or Monte Carlo approach could be 

conducted with a systematic test schedule [132, 134, 135]. 

 

6-2 – Concept Evaluation and Scoring 

 

PCA and the adaptive safety monitor have been shown in the preceding sections as viable 

safety monitoring concepts. The experience of developing and implementing each concept has 

identified the strengths and weaknesses of both PCA and the adaptive safety monitor concepts 

when compared to the continuous torque demand monitor. The ideal monitoring attributes can 

therefore be revisited and scores adjusted based on these experiences.  

 

6-2.1 – Post-Investigation Scores 

 

In the literature review (Chapter 2), four safety concepts were identified. Chapter 3 used expert 

knowledge from Jaguar Land Rover, considerations from ISO 26262 [26], and principles of 

software quality from ISO 25010 [113] to derive a set of ideal safety concept attributes and 
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individual weightings. The concepts were then scored based on the anticipated experience of 

investigation to identify PCA safety monitor and the adaptive safety monitor as the concepts 

with the highest potential of success, excluding the other candidates with little promise.  

 

Following the development and testing investigations of both candidate concepts, considering 

the validation and verification considerations, and with input from experts at Jaguar Land 

Rover during development, the concepts have been rescored based on research findings. The 

final ideal attribute score for each concept is shown in Table 6-2, with the previous, pre-

investigation scores in parentheses. 

 

Table 6-2: Post-investigation attribute scores of PCA safety monitor and the adaptive 

safety monitor; pre-investigation attribute scores in parentheses. 

 

6-2.2 – Discussion 

 

This section will discuss the justification for each attribute score of both concepts, before a 

final recommendation is made. 

 

6-2.2.1 – Functional Suitability 

 

6-2.2.1.1 – PCA Safety Monitor 

 

For time-invariant non-linear systems, the subdivision PCA is shown to detect faults as they 

occur very quickly and provide reasonably accurate information of these faults with regards 
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to both direction and magnitude, which are important for fault classification and an appropriate 

and correct fault reaction. While there is some small variation under both normal and faulty 

conditions due to modelling errors, with further refinement of subdivisions it is believed noise 

under normal conditions can be reduced further using other subdivision techniques. 

 

The biggest counter to the PCA safety monitor with regards to Functional Suitability, however, 

is the ability to handle time-variant dynamic behaviour within the system. The current system 

deals very well with static behaviour, in the sense that certain inputs will give certain outputs 

every time, but if the output is a function of both the current and previous inputs, then without 

knowledge of that behaviour PCA is shown to be ineffective in the current form. Some 

remedies were proposed, but more development would be required to understand how these 

problems could be overcome for different applications.  

 

Another important consideration is that PCA may only be valid on a MISO system. Since there 

is only a single T2 value that determines the current error of the system, and the fact that the 

subdivisions are only made on input variables, systems with multiple output variables that 

need to be monitored may not work with the subdivision PCA method. This will mostly be 

because interpreting a single T2 value to describe two or more outputs errors will not enable 

accurate information to be obtained, since the single T2 value may not be able to distinguish 

between an error on one output versus the other.  Additionally, the necessity of offsetting the 

output data in the data space to provide information on fault direction may not be as effective, 

since the data would need to be offset in two axes. A MIMO system would likely require 

multiple PCA models, where the same inputs variables are used, but with one output signal 

per PCA module, and the multiple T2 values interpreted somehow.  

 

In the end, the PCA safety monitor is functionally suitable under certain conditions, such as 

simplifying complex yet non-temporal functions. More work is needed to overcome problems 

associated with temporal dynamics. 

 

6-2.2.1.2 – Adaptive Safety Monitor 

 

As the adaptive safety monitor is an adaptive version of the current continuous torque demand 

monitor, many of the strengths of functional suitability are carried over. With the reasoning 

explained in Chapter 4, and the tests demonstrating the effectiveness, the adaptive safety 

monitor holds real promise as a functionally suitable concept. By nature, sudden and 

significant faults that would violate the safety goal are able to be detected just as quickly as 
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the continuous torque demand monitor, as in these times it behaves just as the conventional 

variant would.   

Accuracy is often improved; as was shown in the experiments, noise factors can yield a torque 

error that is offset from the true error. In these instances, and depending on the nature of those 

torque errors, the adaptive safety monitor can provide a more accurate torque error estimation 

than the continuous torque demand monitor could.  

 

6-2.2.2 – Reliability 

 

6-2.2.2.1 – PCA Safety Monitor 

 

A motivation behind the subdivision PCA concept was to improve robustness in identifying a 

fault using the T2 statistic. Using a single PCA model on a non-linear dataset caused significant 

variation (noise) to occur in T2 under normal conditions, such that there was little improvement 

over simply using the raw torque output since faulty T2 in one area would overlap with normal 

variation in another. Noise reduces the reliability of the concept, as a true safe condition 

calculated with noise may yield a false positive. 

 

With the introduction of the subdivision PCA, however, it was shown that variation in both 

normal and faulty T2 could be made to be more easily discernible by reducing variation within 

each subdivision cell. The PCA models were able to reduce noise to the point that the T2 values 

were considered sufficiently low for non-linear time-invariant systems. Still, some noise on 

the T2 output exists which; further subdivision refinements could be conducted, motivated 

through attempting to reduce this noise. The criteria for normal variation could even be varied 

across the data space according to the derived technical safety requirements. For example, a 

25 Nm fault at low-speed low pedal position could be an unsafe condition, whereas even a 50 

Nm fault could be tolerable at high speed in sixth gear, and would not need as high robustness, 

meaning normal data could be tolerated to vary more. 

 

Unfortunately, testing on time-variant dynamic plants showed that the training data came to 

resemble more of a cloud of training data, as opposed to the surface seen previously. This 

causes a greater amount of variation in each cell, and in turn causes large variation in normal 

and fault T2, such that they again overlap by significant amounts, and mean that faults cannot 

reliably be identified: in fact, typical faults aren’t at all identifiable, with the exception only of 

the largest positive ones.  
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6-2.2.2.2 – Adaptive Safety Monitor 

 

The main strength of the adaptive safety monitor, and indeed the motivation behind the 

concept, is to improve the reliability of the safety software concept when its safety software 

model is simplified. The increased torque error from the uncompensated noise factors in 

simplifying the safety software is offset by the adaptive safety monitor, leading to more 

availability for the driver as slow propagating or constant torque errors are deemed safe for 

the driver, and are therefore adapted to, correcting the minimum headroom. This was shown 

through the tests conducted in Chapter 4, with most of the false positives were compensated 

for in a way that would prevent a fault reaction.   

 

Equally, if a fault in the system occurs slowly, or is reasonably small, the adaptive safety 

monitor will compensate for this such that a second small fault that occurs later in the drive 

cycle would not unnecessarily reduce availability to the driver, as the driver would have 

already adapted to the first fault.  

 

In a couple of instances during the creep control simulations, the torque error changed faster 

than the adaptive safety monitor was allowed to adapt to it, typically on uphill or downhill 

sections where brake torque or driving torques are generally greater to overcome gradients. 

The adaptive safety monitor still represented a significant improvement of reliability over the 

conventional monitor in this aspect, but the safety engineer would still need to be mindful of 

where these torque errors originate from as before, and could still be required to compensate 

or account for the noise factors causing them, where possible.   

 

6-2.2.3 – Verifiability  

 

6-2.2.3.1 – PCA Safety Monitor 

 

ISO 26262 requires that the safety software can be proven to comply with the standard, 

meaning that the software will maintain safety throughout the lifetime of the vehicle. 

Subdivision PCA consists of many steps in deriving the PCA models due to subdivisions and 

optimisations, but once the set of models have been created they would not change. A number 

of verification concerns exist with the subdivision PCA method, as discussed earlier in this 

chapter, and generally split into two subcategories: training data, and the PCA models 

themselves.  

 



 

193 

 

The training data used to derive and test the PCA models needs to be validated and verified, 

as errant data will lead to poor models. Additionally, the validity of the data collection method 

itself needs to be ensured, so that the data is representative of the system being modelled, such 

that functionally suitable PCA models are derived. With the recent publication of the Data 

Safety Guidance [131], a framework has been provided to address these concerns about data 

safety through a Data Safety Management Process to identify, analyse, and treat risks 

associated with data, and give useful techniques for risk mitigation strategies.  

 

Even with good data, the PCA models need to be verified to make sure they are functionally 

suitable. The T2 testing process can be used to comprehensively test the nominal performance 

of the PCA models, with high relative normal T2 variation tending to indicate poor matching 

of the training data, when no real fault is present; this can be automated as part of a design of 

experiments or Monte Carlo systematic testing strategy, with the use of P-diagrams to identify 

noise factors in the system. Concerns relating to model fidelity are addressed this way, and 

could indicate whether certain signals need to be included in the PCA model. However, 

concerns regarding the verification of absence of systematic hazards is of a higher concern, as 

it may be possible that such hazards would be hidden in the training data itself. Any additional 

software needed to package the PCA model needs to be verified too, and while this is expected 

to be a familiar exercise, it could negate the benefits that this concept brings. 

 

A predicted issue with using the subdivided PCA method was that Part 4 Section 7.4.3.6 of 

ISO 26262 states: ‘…a decision not to re-use well-trusted design principles should be justified’ 

[29]. Addressing these verification concerns to a satisfactory degree could be the justification 

needed to satisfy this clause for higher ASIL-rated applications. 

 

6-2.2.3.2 – Adaptive Safety Monitor 

 

With the adaptive safety monitor being an adaptive version of the continuous torque demand 

monitor, the verification techniques used to verify the simplified safety model would – in 

general – remain the same. In fact, the burden of verification is likely to be lessened 

considerably, depending on the amount of simplification made to the safety software model 

versus the benchmark. This is due to less software components being included in the safety 

model, and less signals that need to be verified to be correct.  

 

With the introduction of the adaptive element to the software, new verification efforts are 

needed to both validate the concept approach, and to verify that the concept will meet the 

safety goal(s). As discussed earlier in this chapter, a primary challenge of the adaptive safety 
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monitoring concept relates to validation of the adaption rate of the concept, to ensure it is 

representative of the human driver; this concern can be addressed with a driver task analysis 

(suggested by ISO 26262 [27]) to quantify the boundaries of adaption rate of a driver, and to 

choose the expected driver adaption rate baseline relative to the ASIL of the safety goal. 

Secondly, verification of the other adaptive parameter values needs to be conducted due to the 

concern that reliability performance may be better in certain operating ranges than in others. 

This could be remedied with a parameter scheduling concept, whereby the full operating range 

is subdivided into cells, each with its own parameters that perform best within that cell’s 

operating range; derivation of these cells and parameters is expected to be automated, as is the 

verification of the parameters within these ranges, through a Monte-Carlo simulation. Finally, 

the verification of the simplified safety software – when coupled with the adaptive module – 

is a concern, as sudden changes in nominal torque error under normal operating conditions 

could cause the adaptive safety monitor to be vulnerable to false positives or missed faults. 

The solution to this could be some software-based full factorial and/or Monte Carlo approach 

to see if any such behaviour is present, and account for this behaviour in simplified safety 

software at the cost of complexity [135]. 

 

In general, it is expected that the adaptive safety monitor concept is verifiable, with each of 

the verifiability concerns addressed with a possible course of action, being just short of a 

perfect score due to the novel work that is needed to validate and verify.   

 

6-2.2.4 – Compatibility 

 

6-2.2.4.1 – PCA Safety Monitor 

 

It is believed that if PCA is indeed a functionally suitable, verifiable, and reliable fault 

detection concept, then it can be incorporated into an existing torque structure with a few small 

changes. A fault monitor basically calculates an expected torque demand using the same inputs 

as the functional software, then compares the expected torque demand to what is actually being 

demanded, flagging a fault if there is an issue. The difference with the PCA in the current form 

is that the module output is not expected torque, but a T2 estimation of torque error based on 

the inputs and outputs of the functional software. Ultimately, however, the PCA T2 fault 

detection function is essentially a lookup table and some straightforward mathematical 

operations to obtain an output value.  

 

Compatibility becomes less clear when multiple sets of PCA models are needed for a defined 

functional software module scope, arranged in a unique architecture: for example, an 
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arrangement which may be required for discrete signals such as selectable drive modes. The 

architecture becomes more complex and dissimilar to the safety software module it would 

replace, but as long as the inputs and outputs remain the same it should not be considered as 

less desirable.  

 

Another aspect of compatibility, however, is how deriving the PCA models is substantially 

different to the development process of the current safety software. Engineers would need to 

be trained on how to develop the PCA correctly, including training data gathering, setting up 

the test and derivation environment, and integrating it within the torque structure, and the 

verification of the modules derived. It should be noted that much of the PCA derivation and 

optimisation work could be automated. 

 

6-2.2.4.2 – Adaptive Safety Monitor 

 

The adaptive safety monitor is, as stated, an adaptive version of the continuous torque demand 

monitor, with an adaptive module in the safety software. The strengths that the adaptive safety 

monitor has over the conventional method are accounting for the fact that the safety software 

model can be simplified. First, this potentially reduces the hardware and computational 

requirements, so less additional resources would be required to run the safety software. 

Secondly, since less needs to be compensated for due to the simplified safety model, there is 

potential for coexistence with further independence from QM-rated functional software. 

Thirdly, the new concept can quite simply replace the continuous torque demand monitor with 

little-to-no architectural changes to the way data is handled, other than changes relating to 

which signals are needed for the simplified safety software model.  

 

However, one change in the process the safety engineer follows to derive the simplified safety 

model is perhaps deciding which signals can be left for the adaptive safety monitor to 

compensate and which ones still need an explicit signal from the functional software. 

Understanding the adaptive nature of the safety monitor may require some additional training 

for engineers seeking to implement the adaptive module into the safety software.   

 

6-2.2.5 – Hardware and Computational Requirement 

 

6-2.2.5.1 – PCA Safety Monitor 

 

PCA is excellent at describing large amounts of data with just a few matrices. Linear models 

in particular are very simple to estimate using a single PCA, virtually regardless of the number 
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of data points. With non-linear data sets, however, multiple PCA models are needed to 

describe the dataset, which – while still vastly more efficient than storing the raw data – can 

significantly increase the storage requirements. This is related to the number of measured 

variables in the PCA module, as it was derived that both the storage of PCA module-related 

data, and number of computations required per timestep, had a second-order relationship with 

the number of measured variables. Significant improvements were made by pre-multiplying 

the eigenvector and inverse-eigenvalue matrices V and Ʌ−𝟏, but despite these improvements 

the storage requirement is nevertheless still an inhibiting factor with Subdivision PCA, due to 

the number of models needed for accurate operation. For this reason, this attribute score 

dropped significantly following the investigation.  

 

6-2.2.5.2 – Adaptive Safety Monitor 

 

In general, it is expected that an adaptive safety monitor with a simplified safety software 

model is expected to have a lower data storage and computational requirement than the 

continuous torque demand monitor with a typical safety software model. Naturally, this is due 

to – and depends on – the reduced number of components that are needed to calculate the 

nominal torque error, but the possible reduction is difficult to quantify. 

 

However, the added adaptive module adds a small amount to the storage and computational 

requirements. The length of the long-term and short-term sampling windows add to the 

memory requirement, as a moving average for both long-term and short-term error offsets are 

calculated using the most recent values for nominal torque error. Not accounting for the driver 

delay function and other rules relating to rate limits, the base functionality of the adaptive 

safety monitor requires additional summation, multiplication, and storage of previous 

variables as follows: 

 

 𝑜𝑝𝑠𝑠𝑢𝑚 = 𝑛𝑙𝑜𝑛𝑔 + 𝑛𝑠ℎ𝑜𝑟𝑡 + 2 (6-1) 

 𝑜𝑝𝑠𝑚𝑢𝑙𝑡 = 2 (6-2) 

 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑛𝑙𝑜𝑛𝑔 + 𝑛𝑠ℎ𝑜𝑟𝑡 (6-3) 

 

where nlong is the number of previous values of the nominal torque error needed, and nshort the 

number of long-term torque error values needed to calculate the short-term error offset. For a 

100 Hz operating frequency (a timestep of 0.01 s), the ideal nshort from the Chapter 4 

optimisation exercise would be 10, and the nlong ideal of 26.3 s would be 2630. Unlike PCA, 

however, the computational and storage requirements for the adaptive safety monitor do not 
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scale exponentially as these values are increased, as in general only the torque error is 

monitored. Possible future concepts that include parameter scheduling could use other ASIL-

rated signals to aid in the calculation, increasing the computational requirement to some extent, 

but much of this computational requirement is offset, by the simpler safety model that can be 

used.  

 

6-2.2.6 – Initial Design Effort 

 

6-2.2.6.1 – PCA Safety Monitor 

 

Reducing the initial design effort was a key driver to investigating PCA as a potential safety 

monitor, as the method would not need to have detailed expert knowledge of the system to 

derive PCA models, just the data. In reality, initial design effort is difficult to quantify given 

the novelty of this concept. Much of initial design work consists of defining the functional 

software scope within which the PCA module would be applied, which signals are necessary 

to capture for training, and how the PCA architecture would need to be designed. Also, initial 

design cost would include any additional modelling that could be required where PCA couldn’t 

be used, such as in time-variant systems. The verification of the derived PCA module(s) would 

also need to be undertaken.  

 

However, given that this is a software environment, and the fact that many of the development 

processes could be automated, once the expert design setup has taken place and the code 

environment for automated processes defined, there would not be much effort left other than 

verification, which itself could be automated to some extent. In fact, once the initial design of 

the automated environment had been completed it could be used for future PCA module 

developments, perhaps with some minor tweaks; in addition, lessons learnt through design 

setup can be carried forwards to future developments to decrease future design costs. There 

are three points for consideration:  

 

1. If there is a small change in the functional software, PCA would likely only need to 

be retrained on new training data, which can be automated and therefore would not 

require much effort. If a substantial change takes place in functional software that 

requires a redesign of the safety software, however, expert design setup would again 

be required; it should be kept in mind, though, that the current system does require 

expert design for any change in functional software.  

2. The second point is whether onboard vehicle testing is required for training data 

gathering, as to capture every operating condition would be a time-consuming and 
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expensive undertaking, especially if changes in functional software are continuously 

being made during development.  

3. The cost of verifying training data is not currently known, and likely has many 

variables affecting the effort required by the manufacturer.  

 

6-2.2.6.2 – Adaptive Safety Monitor 

 

By enabling a simpler safety model to be used, the adaptive safety monitor concept reduces 

the initial effort of design required by the manufacturer in this area. The simplified safety 

model is, however, still architecturally the same as the benchmark model and not 

fundamentally different (such as the PCA concept). As such, the simplified safety model lends 

itself to some of the same fundamental drawbacks faced by the current benchmark, but at a 

reduced magnitude. A source of additional initial design effort with the adaptive safety monitor 

over the benchmark is that more analysis may be required to know which software components 

that are left unaccounted for may affect the adaptive safety monitor negatively, as a somewhat 

large and fast change in the nominal torque error could negatively impact performance. The 

adaptive module itself, however, is easily transferrable and can be automatically calibrated for 

a given set of functional software and safety model through a systematic design of 

experiments.  

 

It is expected that development would become an iterative process of starting with an initial 

safety model, optimising the adaptive safety monitor for it and testing it. Then, the necessary 

additional functional software components would be included into the safety model, the 

adaptive module re-calibrated, and the concept tested again; this cycle is repeated until 

satisfactory results are achieved. The iterative process is similar to that of the benchmark, with 

the small added effort of including the adaptive safety monitor, but with less components that 

need including in the safety model. 

 

6-2.2.7 – Simplicity 

 

6-2.2.7.1 – PCA Safety Monitor 

 

There are many steps necessary to derive the PCA models during the initial design stage, and 

the investigation shows that some expert understanding of the PCA process will be required 

to perform the initial setup. PCA can quickly become quite an abstract method, particularly 

with regards to multiple-dimensionality of the eigenvectors, which in theory could be n-

dimensional. However, much of most complex work in deriving the PCA models can be 
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automated. The most complex aspect of this concept is the expert setup design, choosing which 

signals are necessary for the PCA to be trained on, and modelling and verifying non-PCA 

components that may be required within the scope, the last of which is necessary for the current 

safety software design to a greater extent.  

 

Once the PCA models have been derived in the initial design with the corresponding 

boundaries, T2 scalars and average normal offsets for each cell, the online process is a fairly 

simple one, since it is essentially a lookup table to find the correct PCA model given the current 

operating point, multiplying it by the current data sample, subtracting a stored number, and 

multiplying by stored scalar.  

 

6-2.2.7.2 – Adaptive Safety Monitor 

 

The adaptive safety monitor directly addresses the safety software complexity problem by 

enabling a simpler safety model to be used, with just the addition of a single module within 

the safety software. The solution is elegant, easy to understand by current engineers, and does 

not require a major change in the way the safety software is developed. Once the reasoning is 

understood, the adaptive safety monitor is intuitive, and uses familiar terms and units unlike 

the level of abstraction introduced through the PCA safety monitor.   

 

The adaptive safety monitor falls short of a perfect score, however, as some extra thought does 

need to be given as to which software components can be left out in the simpler safety software 

model. Additionally, the automated optimisation of the adaptive parameters require some 

expert knowledge of the system in order to set up the design of experiments programme 

properly. Overall, the creation of safety software package as a whole is understood to be a 

simpler task with the simpler safety model and adaptive safety monitor than the current 

benchmark demands. 

 

6-2.2.8 – Modifiability 

 

6-2.2.8.1 – PCA Safety Monitor 

 

If a PCA module needs to be modified, be it for a change in functional software or for 

application in a new powertrain, it is theorised that there would be four levels of modification; 

in ascending order of work required: 
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1) Partial Retrain: this would be the case where a distinct and containable part of the 

functional software was changed, for example a change in just the sand-based 

selectable drive mode pedal map. Since a change here would not affect the pedal maps 

in other selectable drive modes, only the PCA subdivision models that are affected 

here need to be retrained on new data. Depending on the architecture of the online 

PCA module, however, a full reverification may be required. Verification would only 

be necessary on the part of the PCA that was changed. 

 

2) Full Retrain: same as above, but where parameters are changed in the functional 

software that affect the whole operation for a PCA module. Reverification will likely 

be required for that PCA model.  

 

3) Partial Redesign: where a component within the safety software scope needs to be 

changed and re-verified that doesn’t also require retraining of a PCA module; typically 

this would be a module that accepts the PCA output as an input, whose output does 

not affect PCA operation. Verification would only be needed on the part that was 

changed, and not of the PCA module itself. 

 

4) Full Redesign: where a non-PCA component inside the scope has been changed, 

which would affect the training data and would thus also require reanalysis of PCA 

module signals, any required changes to non-PCA components, and naturally a full 

retrain of any PCA modules. The whole safety software scope would need to be 

rederived and reverified. 

 

The main assumption here is that the majority of PCA retraining would be automated in a 

software environment, making retraining straightforward and inexpensive. Otherwise, any 

retraining would be difficult, and would likely make Partial Redesign the least effortful 

modification task. Transferring the module between powertrains could be possible, if the same 

architectural design is used, requiring only retraining of the PCA module and possibly some 

parameter changes in non-PCA components.  

 

6-2.2.8.2 – Adaptive Safety Monitor 

 

Modification of the adaptive safety monitor takes place in the two major components: the 

simplified safety model and the adaptive module. The simplified safety model is expected to 

contain less components in the first place, so a change at the functional level is less likely to 

require a corresponding modification at the safety software level. When a component that is 
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accounted for in the safety model is changed, however, the modification process in the safety 

model will be largely the same as the benchmark, though it is possible that such modification 

is less effortful as the number of interdependencies that could require reverification is less in 

the simpler safety software. The impact of all changes on the ability of the adaptive safety 

monitor to appropriately adapt to them would need to be assessed, however, so some 

reverification and re-tuning of the adaptive module would possibly be required with each 

change. A modification to a component in the functional software that is not accounted for in 

the simpler safety model could change the nature of the torque error under normal conditions 

in a way that the adaptive safety monitor cannot reliably handle, requiring that component to 

be included in the simplified safety model, making it slightly more complex. On the other 

hand, such a change could require no modification of the safety software, as the adaptive safety 

monitor would be able to account for it, significantly reducing the effort required when 

modifying the functional software, though general re-verification may still be required. 

 

Modifications to the adaptive module, on the other hand, are currently just a matter of tuning 

the parameters, which has been shown can be automated. Changes to the driver-delay function 

rules, and any other such components in the adaptive module, would need more careful 

consideration when modifying, but testing and verification would be carried out in the same 

way unless major changes are made.  

 

6-2.2.9 – Commercial Feasibility 

 

6-2.2.9.1 – PCA Safety Monitor 

 

PCA has shown a lot of promise as a fault detection concept in an automotive application, with 

the lure of automated model derivation and lessened expert knowledge requirement. It appears, 

however, that the PCA in its most basic form cannot handle non-linear systems, and while 

Subdivision PCA solves this shortcoming, it consequently now requires significantly more 

storage capacity, and some additional processing power. Despite overcoming the issue of non-

linear data handling, time-dynamics has shown to cause large variance in normal T2 torque 

error estimation, leading to faults are not reliably identifiable. In order to get Subdivision PCA 

to work, much architectural work is needed to the point that initial design effort becomes too 

great, and becomes more complex. While it is expected that Subdivision PCA can be verified 

with some more work, and that it could in fact be automated to reduce costs, it is ultimately 

the storage requirement that makes Subdivision PCA infeasible in a commercial application 

with the current and near-future hardware capabilities. 
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6-2.2.9.2 – Adaptive Safety Monitor 

 

The adaptive safety monitor sets out to address the problem of safety software complexity by 

directly enabling the use of a simplified safety model through the reframing of the term 

‘unexpected’ for the driver. The concept behaves almost identically to the benchmark when 

fast and significant faults are experienced, but crucially adds reliability of availability to the 

driver when slow, and less-hazardous faults propagate. In doing so, an adaptive safety monitor 

is more tolerant to the use of a simplified safety model, provided it is simplified in the right 

way.  

 

The adaptive safety monitor is, however, very compatible with the current benchmark, as it 

simply adds a tuneable adaptive module to the nominal torque error of the benchmark concept. 

The hardware requirement is lessened somewhat by the simplified safety model, though 

attention should be paid to the storage and computational requirements of the adaptive module, 

even though they are expected to be have a net reduction over the benchmark and would scale 

well. The initial design effort is lessened with a simpler safety model and the possibility of 

automated calibration of the adaptive safety monitor. Modifying the functional software 

should be less effortful in general, but the efforts required could be larger than expected if 

certain components are changed that require them to be included in the safety model; this is 

not unique to the adaptive safety monitor, but with less functional software components 

included in the simplified safety model than in the benchmark, it is more likely to occur. 

Finally, the adaptive safety monitor provides some level of evolution as it can adapt to changes 

in the powertrain over time. More active evolution of the adaptive module parameters 

themselves presents a difficult verification problem. Overall, the adaptive safety monitor 

provides a positive case for commercial feasibility.   

 

6-2.2.10 – Evolvable 

 

6-2.2.10.1 – PCA Safety Monitor 

 

The PCA concept is not evolvable currently, because the PCA models are trained offline and 

the calculated models stored on the vehicle. In order for the PCA models to evolve, they would 

need to be retrained online. Retraining would require again testing a range of different 

subdivision combinations, each time performing calculating the offset bk and T2 Scalar for each 

cell and verifying the subdivisions within a testing environment. The demand on the ECU in 

both processing power and memory is currently infeasible, but advances in future ECU 
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hardware could make online evolution possible. The main question remains as to whether 

online PCA evolution is verifiable, as the current verification method requires known fault 

data to compare and be discernible from known normal data. 

 

6-2.2.10.2 – Adaptive Safety Monitor 

 

As the vehicle ages, the performance of the vehicle may not match that of the functional 

software. Depending on the functional safety concept, and the assumptions made in the safety 

model (for simplicity) could lead to a great amount of nominal torque error produced under 

non-malfunction conditions; this could be due to sensor drift, mechanical wear, increased 

friction losses etc. As such, the reliability – and possibly even the functional suitability – of 

the safety software could be compromised. However, the adaptive safety monitor is able to 

adapt to these very slow-moving changes over time if they result in some sort of an offset.  

 

Active evolution could be realised through dynamically changing the adaptive module 

parameters, such that the adaptive module behaves optimally. Doing so presents an interesting 

yet challenging verification problem, as these changes must always ensure compliance with 

the FSRs and TSRs. This would require significantly more initial design effort, and greater 

computational requirements for active analysis and change. Most significantly, the verification 

effort would be significantly larger as it would be required not only the initial set of adaptive 

module parameters, but all possible states of tune. To include active evolution would require 

significant effort and appropriate constraints but could mean changes to the functional 

software could lead to reduced effort of modification to the safety software. As of now, 

however, the verification challenge is great and is not being considered as feasible.  

 

6-3 – Conclusions 

 

The investigation has shown that the PCA concept, while having many strengths, is not a 

suitable safety concept in the current form. Primarily, the poor functional suitability when 

faced with system dynamics over time diminishes the range of functional software components 

the PCA concept can monitor. Furthermore, the high hardware and computational requirement 

is a great limitation. While Moore’s Law [4] could be cited, the ACEs trends will similarly 

increase software complexity, resulting in an exponentially more complex PCA module. With 

regards to the adaptive safety monitor, however, the scores show the concept provides a 

feasible improvement to the benchmark continuous torque demand monitor, matching or 

exceeding its score in all areas except verifiability. The reason for that is a wider range of 
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verification techniques will be needed due to the adaptive module, though verification effort 

of the simplified safety model will be reduced. It is, however, expected to be the case that as 

software complexity increases further, the total verification effort is expected to be less than 

the continuous torque demand monitor. The investigation concludes with the recommendation 

of further investigation of the adaptive safety monitor as a replacement for the continuous 

torque demand monitor. 
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Chapter 7 
 

Conclusions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 – Summary 

 

The original research question is revisited following the completion of the research objectives, 

and an overall conclusion is made. The novel research outcomes are then discussed, before 

intended future work is stated.   
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7-1 – Overall Conclusion 
 

The prospect of increased software complexity is a concern of modern automotive OEMs. It 

has been brought on by the propagation of the ACEs trends: autonomy, connectivity, and 

electrification. Of the three trends, electrification is the most immediate with EV or electrified 

vehicle already widely available from most major OEMs; autonomy and connected vehicle are 

in development with some degree of each trend already finding itself on the market; they are, 

however, less pressing in the present than electrification. In this context, software complexity 

is problematic for the OEM who is responsible for still meeting the development, verification, 

and implementation requirements as before, but with a much more complex software product.  

 

In light of the concerns that increased software complexity raise for the OEM, novel functional 

safety monitoring software concepts were investigated to answer the following research 

question: 

 

• Could a new approach or method of implementing safety software reduce the cost 

burden on the manufacturer, while still ensuring the safe operation of the functional 

software in vehicle powertrains? 

 

In summary, the answer to the original research question is “yes”. After identifying ideal safety 

monitoring attributes and investigating two novel safety concepts, an adaptive safety monitor 

has shown great promise as a feasible alternative functional safety monitoring concept through 

enabling simpler safety software to be used to meet safety requirements, whilst maintaining 

sufficient reliability. A PCA safety monitor has also shown promise as a method of reducing 

the burden of initial design effort through automated model derivation, perform sufficiently 

within a limited scope.  

 

7-2 – Summary and Discussion of Research Outcomes 

 

7-2.1 – Ideal Safety Monitoring Attributes 

 

The identification of the ideal monitoring attributes was an important step in selecting suitable 

and viable concept candidates for detailed investigation. ISO 26262 is an excellent tool and 

engineering framework, but is broad enough to cover both safety-critical software and 

hardware. That is why ISO 25010 was explored: while functional safety and verifiability are 

primarily derived from ISO 26262, the extra attributes that impact software design are captured 
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in this software quality standard instead. The weightings given to each attribute for scoring 

was chosen through discussion with safety experts at Jaguar Land Rover. It is possible that a 

different application of safety software could look to alter the weightings to be more in line 

with constraints. For example, if a safety monitor is needed for a relatively simple power 

assisted braking – as opposed to a full set of powertrain control functional software – the 

attribute of simple may be more important. Or, for example, a bespoke one-off sports car may 

heavily weight importance to modifiability to aid in setup and calibration, and less importance 

on hardware and computational requirements, because adding a more expensive/capable ECU 

hardware for one car is much more feasible than a mass-market production run. The aim with 

the ideal monitoring attributes was to distil the desirable attributes for safety from ISO 25010 

and ISO 26262, and allow the engineering safety manager to decide which attribute weighting 

best captures their application, and be able to make informed decisions on safety concept 

suitability.  

 

7.2.1.1 – Novel Research Outcomes 

 

• Ideal Safety Monitoring Attributes: This was the first time a set of ideal safety 

monitoring attributes were identified beyond the basic requirements of ISO 26262, 

where additional desirable traits are also considered to this extent. Combining 

elements from both ISO 26262 and ISO 25010, and distilling them into a set of distinct 

attributes that include crossovers from both standards is the novel highlight in this 

chapter. These are: Functional Suitability, Reliability, Verifiability, Compatibility, 

Hardware and Computational Requirement, Initial Design Effort, Simplicity, 

Modifiability, Commercial Feasibility, Evolvable, and Security. 

 

7-2.2 – Principal Component Analysis Safety Monitor 
 

During literature review, a safety concept based on PCA seemed promising. The prospect of 

being able to let the safety software learn for itself the complexities of the functional software 

as opposed to the safety engineer needing to understand, interpret, and design, was desirable 

and novel. The investigation proved successful, with it being successfully applied to a vehicle 

torque structure, and it yielding favourable results in detecting torque errors. The initial 

investigation has shown that using a PCA safety monitor requires a rethink of how to derive 

safety software, as the ecosystem surrounding the PCA concept derivation had to be 

conceived. It was also found that for something as complex as functional software in a torque 

structure, the nonlinearities are such that an exponential number of PCA models would likely 

be required to meet the functional suitability requirements in the first place. However, a 
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handful of alternative architectures were also identified, using numerous PCA modules 

arranged in such a way that each set is responsible for a smaller part of the full system. Any 

linear subsystem would benefit from the low storage requirement of a single PCA model, but 

there are still a few limitations that need to be overcome by PCA, primarily, the handling of 

temporal-dynamics. Overall, there are certainly benefits in using PCA as a safety concept in 

vehicle software in certain situations, but its current limitations make it unsuitable for this 

application.  

 

7-2.2.1 – Novel Research Outcomes 

 

These are the set of novel research outcomes relating to the PCA safety monitor: 

 

• Implementation of PCA module as a vehicle software safety monitor: This was 

the first time PCA has been investigated and shown to hold some merit as a real-time 

powertrain control software safety monitor, including compatibility with the existing 

fault reaction mechanism. Despite the current limitations, there is scope that certain 

applications could benefit from this concept, not just a torque structure. It is abstract 

enough that any software where an error is quantifiable, a PCA module may be able 

to monitor the output.  

 

• PCA safety monitor derivation process: A PCA-based safety monitor of any kind 

has not been seen in the automotive sector before. The investigation established a full 

workflow process for producing a PCA module for real-time fault detection 

application, starting with appropriate training data collection, derivation of PCA 

models for a torque structure, refining the models for better performance, 

testing/verification of these models, and implementation into a software monitoring 

application. The whole process has not been seen before in any industry, and indeed, 

many of the smaller elements of the process are believed to be completely novel across 

all industries.  

 

• Output signal offset: This is the first time, as far as the author is aware, that a method 

was applied to extract qualitative information about fault directionality, through the 

simple process of adding a constant offset to the output signal of the plant training 

data – in this case, the torque demand. It also has the added benefit of resulting in a 

more linear mapping of T2 to estimated torque error. While it does not result directly 

in the T2 estimated torque error, it is a crucial step towards it.  
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• Local PCA Concept: The local PCA concept is a novel method of estimating torque 

error in the functional software based on comparing training data with current software 

states. Similar concepts have been seen before and certainly linearizing a non-linear 

surface is a well-established practice, but has not been seen in the application PCA to 

software monitoring.  Being initially conceived as a solution to modelling nonlinear 

data, local PCA uses known information about the training data to correctly adjust and 

scale the measured T2 signal to produce a reasonable torque error estimation. 

Translating and scaling data is itself not a new method, but combined with using 

known artificially injected faults into the system training data to correctly calibrate the 

T2 scale normalisation is novel, as is the investigation indicating the validity of using 

a single scalar as opposed to having to map the whole.  

 

• Automated Subdivision process: The automated derivation and refinement of Local 

PCA models through subdivision, and the inception of the performance metric e used 

for refinement of PCA models in the automated routine, is a creative way to ease the 

manual calibration effort required by the development engineer in deriving PCA 

models for fault detection. Additionally, the idea of a weighted subdivision for 

improving PCA module performance per model stored is also a creative solution to 

reducing the storage and computational requirement.  

 

7-2.3 – Adaptive Safety Monitor 
 

A new functional safety concept called the adaptive safety monitor was investigated, seeking 

to address the issue of safety software complexity by enabling a simpler safety software model 

to be used with an adaptive element in the safety monitor, overcoming many of the drawbacks 

that would otherwise prevail. The novel thought process behind this concept has led to an 

investigation and development of a viable functional safety concept to ease the development, 

implementation, and verification burden on vehicle manufacturers. It was shown in the 

investigation that the adaptive safety monitor can successfully improve the robustness of a 

less-complex variant of safety software by adapting to slow-propagating torque errors as a 

human would be able to adapt, while still capturing real faults with more accurate 

quantification. It also enables more accurate indication of safety goal violation, as it provides 

a better depiction of what the driver is experiencing at the vehicle level, as opposed to simply 

measuring how the system is behaving or malfunctioning. It was also shown how the adaptive 

safety monitor parameters could be analysed for sensitivity using a design of experiments 

approach, which can also be used to calibrate the adaptive safety monitor for optimal 
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performance. Future research will focus much on this aspect, seeking to derive a similar 

automated calibration process from lessons learnt through the PCA derivation process.  

 

While the adaptive safety monitor is a commercially feasible answer to the software 

complexity problem for powertrain safety software, a possible exception could be in the case 

of autonomous vehicles. The adaptive safety monitor relies on the fact that a driver is still 

driving the vehicle. Though autonomous vehicles are actively being developed, the current 

market is still very much non-autonomous, and as such most cars currently sold and in 

foreseeable future will still require a driver in the loop. The adaptive safety monitor could still 

be used in an autonomous context, but possibly with a calibration suited to the autonomous 

driver. More investigation needs to be taken on this matter, but it can be argued that vehicle 

autonomy will not make the adaptive safety monitor redundant. The added benefits of being 

simpler, less resource intensive, and demanding less initial design effort than the benchmark 

continuous torque demand monitor ensures the viability of the adaptive safety monitor as a 

successful concept candidate in this research into novel safety monitoring concepts. 

 

7-2.3.1 – Novel Research Outcomes 

 

These are the set of novel research outcomes relating to the adaptive safety monitor: 

 

• Adaptive safety monitor reasoning: The reasoning behind the adaptive safety 

monitor is the core of its innovation. By redefining the nature of ‘safety’ by examining 

the word ‘unintended’ (as in ‘prevent unintended acceleration’), and including the 

human driver into the equation, a better-defined understanding of safety can be used 

to justify the possibility of the adaptive safety monitor. Whereas before just the fault 

magnitude was examined, now it can be justified that all slow-propagating faults can 

be adapted to by the driver, and do not cause a threat. If this is permissible, it opens 

the door to making adaptive safety software, that itself can adapt to unmodelled noise 

factors in a less complex safety software model. All of this stems from the innovative 

reasoning that precedes the adaptive safety monitor. 

 

• Two-stage adaptive algorithm: Reasoning aside, the way the adaptive safety monitor 

fundamentally operates is not exactly new, as it is simply a statistical moving average 

being subtracted from the current value. However, the two-stage algorithm that has 

been developed leverages the long-term and short-term memory of the driver in its 

design to better imitate expected driver behaviour, and allow for more tuning options. 

Additional adaption parameters also expand the capabilities of the adaptive safety 
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monitor beyond its fundamental diagram, and are essential in achieving the calibration 

to match driver behaviour; indeed, these were developed and tested specifically to that 

end. 

 

• Automated optimisation procedure: The automated optimisation procedure was 

conceived to improve the performance of the adaptive safety monitor. It is a design of 

experiments approach, which itself is not novel, but the performance metric and trend 

analysis conducted to improve adaptive safety monitor performance is the foundation 

for possibly an innovative parameter scheduling derivation process; this will be 

discussed more in Future Research. 

7-3 – Future Research 
 

The investigations in this project were completed insofar as meeting the objectives set out in 

the introduction. Throughout the investigation, it has been alluded to that plans have been 

made for future work. The overall aim of the future research activities is different for the two 

concepts: for the adaptive safety monitor, the aim is to deploy it on a production vehicle, which 

means addressing the verification and validation concerns; for the PCA safety monitor, it is 

continuing the investigation to overcome the limitations of the concept. Verification and 

validation concerns will not be looked at for the PCA safety monitor until the functional 

suitability limitations are overcome. For the sake of brevity, the topics will just be noted here, 

with detail and initial work on these topics found in Appendix C. 

 

For the PCA safety monitor, the following topics are to be investigated in the future: 

 

• Using alternative PCA module architectures to improve performance. 

• Using last eigenvalue for determining T2 scalar ck.  

 

For the adaptive safety monitor, the following topics are to be investigated in the future: 

 

• Using a Driver Task Analysis to validate the driver delay parameter. 

• Development of a systematic test environment to verify the concept. 

• A parameter scheduling concept based on varying operating scenarios. 
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Appendix A 

 

 

 

Figure A-1: ISO 26262 Safety Lifecycle [26] 
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Appendix B 
 

 

B-1 – Data Collection 
 

At the start of the project, seven sets of vehicle data were collected using a test vehicle at the 

Gaydon Proving Ground in Warwickshire, UK. The Proving Ground is home to a range of 

different driving circuits used to simulate various operational conditions that could be 

encountered by a production vehicle; Figure B-1 highlights these circuits. The data was 

collected in a 2014 Range Rover Hybrid development vehicle, captured using INCA software 

[136] as the vehicle was being driven on four different circuits of the Proving Grounds, with 

appropriate Terrain Response mode [137] selected. A description of the conditions under 

which each dataset was produced is shown in Table B-1 

 

Table B-1: Vehicle Data driving conditions 

 

Data Circuit TR mode Description 

1 Emissions General Tarmac, general drive; high speed. 

2 Emissions General Tarmac Special programs off; high speed 

3 
Developing 

World 
General Light off-road; low speed 

4 
Developing 

World 

Grass-Gravel-

Snow 
Light off-road; low speed 

5 
Cross Country 

and 4x4 
Mud Ruts 

Cross country, including boulders; low 

speed 

6 
Cross Country 

and 4x4 
Sand 

Sand and muddy; low speed, though much 

wheel spin. 

7 Emissions General Tarmac, general drive; low speed. 
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Figure B-1: Map of Gaydon Proving Grounds with test circuits highlighted [138]. 

 

B-2 – Range Rover Hybrid Powertrain 
 

The vehicle model is based on the vehicle in which the data was collected, the 2014 Range 

Rover Hybrid. It utilises a parallel-hybrid powertrain with a 250 kW 3.0L Diesel V6 ICE 

coupled to a ZF 8-speed automatic transmission. Along this connection, and between the K0 

clutch and automatic transmission, a 35 kW e-machine is located. The transmission is 

connected to a transfer case that distributes the torque to the front and rear axles, via their 

differentials. An inverter connects the high-voltage battery with the e-machine. Figure B-2 

shows the schematic for this HEV powertrain [17].  
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Figure B-2: Schematic of Range Rover Hybrid HEV powertrain. Black connections 

indicate mechanical coupling, and orange indicates HV electrical connections. 

 

B-2.1 – Simscape Model 
 

Using the available known parameters of the vehicle, a Simscape model of the Range Rover 

Hybrid was created in Simulink, with the top-level model layout is shown in Figure B-3. 

 

 

 

Figure B-3: Range Rover Hybrid Simscape Vehicle Model 

 

The model contains rotating mechanical connections (green), electrical connections (blue), 

Simulink control signals and calculations (black), and Simscape physical signals (brown). A 

high-fidelity model is not necessary for the purpose of testing safety concepts, especially at 
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the expense of runtime. A fast runtime was an important design driver, as it would allow a fast 

throughput of automated design of experiments test schedules, ideal for any verification, data 

collection, and comprehensive performance analysis of safety concepts. Additionally, since 

the safety concepts will be novel, a high-fidelity model would contain much complexity, 

slowing research time.  

 

Many of the top-level components are modified versions of example models that are included 

in the Simscape package. The initial model used a distributed control strategy in order to track 

a target vehicle speed, whereby an individual PID controller and surrounding gains and 

saturation limits would produce a control signal for each torque actuator (ICE engine, e-

machine, brakes), based on the error created between target vehicle speed and current vehicle 

speed. While this was not ideal for testing safety concepts, seeing as the effective functional 

software was distributed and not controlled by a central supervisory controller, this allowed 

rapid development of the individual components. These controllers were then calibrated 

together once each component performed correctly and the powertrain is assembled. Problems 

with a fully cohesive clutch control program and stable runtime led to the omission of a K0 

Clutch for simplicity, which only affects the model during gearshift events. An 8-speed 

epicyclical automatic transmission model was attempted, but a working version was unable to 

be completed. Therefore, a simulated 8-speed automated manual gearbox with synchronisers 

was created, which is acceptable within the scope of the project. However, this component, 

required very small simulation time steps during gear changes to avoid diverging continuous 

states, leading to longer runtimes. The brakes were simply modelled with negative ideal torque 

actuators, as was engine friction using a tabulated friction model supplied by Jaguar Land 

Rover. The vehicle dynamics uses a half-car model, since this project is focused on forward 

longitudinal motion (as per the safety goal).  

 

The inverter is, in fact, a DC:DC inverter, and the e-machine technically a DC motor/generator 

as opposed to AC. The e-machine is an ideal torque source controlled directly by the e-machine 

controller, and the required current draw to deliver the torque demand and account for 

mechanical and electrical losses would be calculated. Such a ‘backwards’ strategy differs from 

the actual powertrain, in which the torque demand would instead be received by the inverter, 

which then decides the correct amount of current to drive the e-machine. However, within the 

scope of this project, the torque demand simply needs to be actualised by the e-machine, and 

how this is calculated does not matter. The equations governing the calculation of current draw 

are as follows: 
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𝐼𝑒𝑚 =

{
  
 

  
 

  

𝑃𝑒𝑚 + (𝜏𝑒𝑚
2 𝜂𝑒𝑙)

𝑉𝑖𝑛𝑣
     𝑖𝑓 𝑃𝑒𝑚 > 0
 

𝑃𝑒𝑚 − (𝜏𝑒𝑚
2 𝜂𝑒𝑙)

𝑉𝑖𝑛𝑣
   𝑖𝑓 𝑃𝑒𝑚 < 0

 
               0               𝑖𝑓 𝑃𝑒𝑚 = 0

 (B-1) 

 

where Iem the current draw by the e-machine, Vinv the voltage from the inverter, Pem and τem the 

mechanical power and torque generated by the e-machine, and ηel a constant electrical 

efficiency, which includes the resistance of the system and also the proportional torque-to-

current coefficient. The numerator being subtracted from Pem is a simple model of electrical 

losses, proportional to the square of the current.  When Pem > 0, the e-machine is in motoring 

mode so these losses are added to the total motor current draw. When Pem < 0, the e-machine 

is in generating mode, so the current draw is negative, and the current losses must be 

subtracted. Figure B-4 shows the e-machine model, based on the model provided by the 

Simulink Simscape Driveline package [139]: 

 

 

Figure B-4: E-machine Simscape Model, with controller torque demand input (black, 

bottom right), mechanical connection (green), and electrical connection (blue). 

 

B-2.2– Model Validation 
 

The simplified Simscape model of the Range Rover Hybrid powertrain was validated using 

vehicle test data collected at the Gaydon Proving Ground [138]. The control target of each of 

the individual actuator controllers is a desired vehicle speed. A recorded speed trace was used 

as the control target for a simulation, with the notion that if the model vehicle speed closely 

matches the recorded vehicle speed, a valid comparison of the model and recorded powertrain 

torque outputs could be made. The transmission was controlled by the recorded gear position 

signal from data. It was expected that there would be some error in the torque comparison 
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owing to the simplified nature of the vehicle model versus a production vehicle. However, the 

aim of this exercise was to identify whether the torque outputs are generally within a 

reasonable range at the vehicle level, not that they necessarily match up entirely at all points.  

 

The dataset chosen to for validation was dataset number 2 (see Table 4-4), due to the fact that 

the least number of noise factors are present, such as wheel spin from varying road surface 

conditions and wading, and since it has special programs turned off that could interfere with 

torque demand and delivery. These are not accounted for in the model, with the exception of 

road surface through a set constant friction coefficient similar to the tarmac of the Emissions 

Circuit. Figure B-5 shows the vehicle speed for both recorded and model vehicle speed over a 

period in dataset 2; only a portion of the dataset is shown for detail in subsequent figures. 

 

 

Figure B-5: Simscape model tracking recorded vehicle speed in Dataset 2. 

 

Figure B-5 shows the model is able to track the vehicle data very well, with the largest error 

reading below 0.5 m/s. There is a small amount of lag, visible in the acceleration events around 

260 s and 300 s, which can be attributed to transient dynamics and lag in the controllers; while 

this could be fixed with some feed-forward control or recalibration, for the purposes of this 

project this is sufficient. Figure B-6 compares the total torque output of the model actuators 

(no brake) with the combined torque output from the recorded vehicle data, measured at the 

transmission layshaft. 
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Figure B-6: Model powertrain torque output compared to total torque output from 

recorded vehicle data. 

 

In general, the torque outputs from the model are within reasonable range of the recorded data. 

Particularly at steady state, the model torque stays very close to the recorded torque (averaging 

4.6% of the maximum 600 Nm, or 27.6 Nm error-per-second between 279 s and 295 s, for 

example) with some noise that is likely due to the various controllers working individually and 

not cohesively. There are, however, two areas where the model differs from real world data. 

First is during gearshift events, such as at 275 s, and a number of times between 320 s and 330 

s. The result is a large, sudden increase in torque as vehicle speed drops or increases relative 

to the recorded vehicle speed in between gear changes, leading to an undesired reaction by the 

controllers. The model does, however, quickly settle back to a reasonable torque output 

following the gearshift. The second discrepancy occurs during the acceleration events seen in 

Figure B-5, where torque tends to be slightly higher in the model than the recorded data. 

Between 250 s and 275 s an average error of 16.4% is seen, and between 295 s and 303 s an 

average error of 23.2% is experienced. This is primarily due to a combination of modelling 

limitations in the ICE engine, and a reactive control strategy attempting to ‘catch up’ with the 

velocity target. The test vehicle was a development vehicle, whereas some vehicle parameter 

values (such as the vehicle mass and component inertias) are from the production vehicle. 

However, in general, the vehicle model is a close match of overall performance of the test 

vehicle recorded data, close enough to be considered a valid test bed for qualitative concept 

testing. 

 

B-3 – Twin-EV Powertrain Model and Functional Software 
 

The rapid development of the Range Rover Hybrid powertrain in the first year of research led 

to a distributed control system developed to match the general performance of the test vehicle. 

However, no design information was available regarding the central functional software of the 
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vehicle, so much of the calibration was a system identification exercise. As is apparent in 

Figure B-6, the calibration lacks refinement, and sometimes the systems could work against 

each other. It was planned, therefore, to change the control system such that a total torque 

demand was calculated by a controller, and the responsibility of meeting that demand split 

between the e-machine and ICE; this matches the Continuous Torque Demand Monitoring 

concept adapted from E-Gas, and is the basis for the current functional safety concept used by 

the OEM. Before this modification could be implemented for the Range Rover Hybrid, at the 

start of the second year of research, the OEM provided control software for a pre-production 

twin-EV powertrain, which led to the decision to work on this platform instead of the hybrid 

one.  

 

It is at this point the investigation in Section 3-3 is detailed.  
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Appendix C 
 

C-1 – Future Research 

 

The investigations in this project were completed insofar as meeting the objectives set out in 

the introduction. Throughout the thesis, it has been alluded to that plans have been made for 

future work. The overall aim of the future research activities is different for the two concepts: 

for the adaptive safety monitor, the aim is to deploy it on a production vehicle, which means 

addressing the verification and validation concerns; for the PCA safety monitor, it is 

continuing the investigation to overcome the limitations of the concept. Plans for these future 

investigations will be discussed in this section. Verification and validation concerns will not 

be looked at for the PCA safety monitor until the functional suitability limitations are 

overcome.  

 

C-1.1 – Adaptive Safety Monitor 
 

The adaptive safety monitor showed the most promise of the concept candidates during the 

main investigation. In order to deploy the concept on a road vehicle, the validation and 

verification concerns in Chapter 6 need to be addressed. 

 

C-1.1.1 – Driver Task Analysis 

 

A concern was identified with ensuring the adaptive module adapts in a way that is 

commensurate with driver expectation. If it adapts too slowly robustness of the system suffers, 

and if too fast it could adapt to a hazardous malfunction faster than a human can, leading to a 

safety goal being violated without detection. Therefore, a driver task analysis has been 

suggested as a way to validate correct driver behaviour. 

 

A driver performance testing framework has been proposed by Fastenmeister and Gstlater 

[140] through a driver task analysis and driver requirement assessment called SAFE (‘Situative 

Anforderungsanalyse von Fahraufgaben’, or ‘Situational Requirement Analysis of Driving 

Tasks’), for the purpose of aiding traffic safety research. SAFE seeks to approach driver task 

analysis by combining objective task properties (including the physical nature of the task, the 

subject matter etc.) with the behavioural requirements (mental and psychomotor performance, 

which establish the target level of task achievement). Through defining the road traffic 
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situations being investigated precisely, driving tasks can be derived as analytical units and 

analysed through a human information processing model, which the SAFE framework 

proposes using Rasmussen’s model of information-processing [141]. These activities lead to 

a compiled list of all the necessary behavioural requirements – such as driver reaction time – 

that can be used to drive tuning of the adaptive safety monitor. The outline of the SAFE 

framework is shown in Figure C-1. 

 

 

 

Figure C-1: Structure of SAFE driver task analysis and behavioural requirements 

derivation [140] 

 

Surprisingly, but perhaps predictably, Rasmussen’s model of informational processing 

resembles the two-stage adaptive algorithm in many ways, with the inclusion of long and 

short-term memory functions, generation of expectation, decision making, and error checking 

aspects; this is encouraging as it gives further credibility to the foundational reasoning of the 

adaptive safety monitor. A schematic of a model for deriving behavioural requirements as part 

of the SAFE driver task analysis – modified from Rasmussen’s model – is shown in Figure C-

2. 
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Figure C-2: SAFE behavioural requirement derivation model for driving tasks [140]. 

 

The driver task analysis will be an interesting avenue to explore in future research, as it leads 

further into human-machine interaction, and how this can be leveraged to both improve safety, 

and maximise the results of the efforts spent by automotive OEMs developing safe and reliable 

systems. It will also form a justifiable basis from which to validate adaptive safety monitor 

parameters.  

 

C-1.1.2 – Systematic Test Environment 

 

Another concern was that of the verification of the simplified safety model. If the safety 

software is simplified in such a way that a noise factor causes a sudden switch between modes 

that changes the nominal torque error very suddenly, it would cause a sudden change in the 

offset torque error too, which either results in a false positive, or a torque error that would be 

adapted to over time. If a true fault were to occur during this period, it could be possible that 

an inaccurate offset torque error is produced, depending on the change in nominal torque error. 

Therefore, the safety model needs to be verified in such a way that this does not occur, as well 

as the other verification procedures. 

 

The suggested method would be to build a systematic testing environment to identify these 

potential issues in the software, their source, and let the engineer decide whether to adapt to 

them or add them to the simplified safety model, at the expense of simplicity. The investigation 

will seek to determine if a full vehicle model is needed for the systematic testing environment, 

or if simply a software perturbation or Monte Carlo simulation [132] would be enough to 

identify these types of noise factors. Combined full-factorial and Monte Carlo approaches have 
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also seen success previously [135]. The experiment would be completed in Matlab/Simulink 

to make use of the existing code of the adaptive safety monitor.  

 

C-1.1.3 – Parameter Scheduling 

 

The investigation will also look at improving the performance of the adaptive safety monitor, 

as discussed in Chapter 6. A set of adaptive parameters will often be the “best compromise” 

in order to meet functional suitability requirements, but will not necessarily be the most robust, 

or least complex, or won’t take full advantage of the adaptive safety monitor capabilities. As 

mentioned in Chapter 6, subdividing the operating range into cells, each with a set of adaptive 

parameters calibrated to it for optimised localised performance. In principle, this is similar to 

the PCA subdivision concept which significantly improved performance of the PCA safety 

concept. Such a method is expected to enable even further simplification of the safety software 

through improved localised – and thus global – robustness.  

 

The process will effectively involve performing optimisation processes (as detailed in Chapter 

4) on tests covering limited operational boundaries to produce a set of localised adaptive 

parameter values. Within a single function, this could be localised calibration regions, and on 

discrete functions this could be separate adaptive safety monitor modules altogether. When 

the monitor is deployed, these values can then be referenced in a lookup-table based on those 

operating conditions for optimum performance. A necessary caveat, however, would be that 

only readily available ASIL inputs (e.g. pedal position and vehicle velocity) can be used for 

parameter scheduling, as performance gains would likely be minimal for the effort required to 

conduct additional ASIL verification on another input during development 

 

Furthermore, investigation into the potential of blended or interpolated parameters across the 

operating space could yield even further improved performance, balancing outright functional 

suitability with hardware storage and computational requirements, but could also bring with it 

further verification concerns. Similar blending studies were initialised as part of the PCA 

safety monitor investigation, but tabled due to more promising avenues of research; those 

initial findings could potentially be better suited for this avenue of future research.  
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C-1.2 – PCA Safety Monitor 
 

C-1.2.1 – PCA Module Architectures 

 

The most significant limitation of PCA is that of handling temporal-dynamics found within 

the model. Initial attempts were made at using one or many PCA modules in an arrangement 

such that the time-based dynamics can be separated or accounted for explicitly, and more 

investigation could yield alternative arrangements that overcome some of the PCA concept 

limitations; identification of possible research avenues were shown in Chapter 5. One example, 

is to extract and explicitly model temporally-dynamic functions in the safety software outside 

of the PCA safety monitor, on either the output or the inputs of the PCA module.  

 

The investigation could also look at whether separate PCA modules are useful for some 

discrete noise factors, such as switching between driving modes. Some initial work was 

conducted on this topic during the Chapter 5 investigation, whereby three pedal maps could 

be switched between. Using a discrete input such as drive mode led to data resembling a 

layered surface, with some sections of the data surfaces intersecting and passing through one 

another. This leads to a very difficult dataset to train PCA models on, with poor performance. 

Instead, an arrangement with separate PCA modules for each discrete operational mode could 

extract the nonlinearity and better manage the transition between these modes or whichever 

discrete signals are noise factors.  

 

In summary, the investigation will seek to find what software systems or functional software 

components could benefit from a PCA-based safety monitor in such a way, which dynamics 

can be extracted and modelled explicitly. 

 

C-1.2.2 – Using last eigenvalue for determining T2 scalar ck  

 

One of the novel developments during the PCA investigation was that of method of 

normalising all cell outputs through the derivation of the T2 scalar, ck, for each subdivision cell 

k. Without scaling, the T2 values after offset would vary significantly, seen before scaling was 

introduced in Chapter 5. Prior to this development, a number of possible avenues were 

explored for deriving this scalar, the most promising of which is related to the smallest 

eigenvalue (the mth eigenvector or principal component in an m-dimensional PCA model). To 

illustrate this, PCA models were derived for a four-dimensional plant (pedal position, velocity, 

actuator temperature, and torque demand) but T2 normalisation through scaling was not 

applied. Then, the PCA module was tested on a set of data that conducted input value sweeps, 
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and the cells ordered by increasing value of the last (4th) eigenvalue; Figure C-3 compares 

these to the maximum T2
 value for a constant 100 Nm fault each cell outputs. 

 

 

 

Figure C-3: Maximum T2 value in each cell for 100 Nm fault, sorted in ascending order 

by PC4 eigenvalue, scaled linearly on y-axes. 

 

Figure C-3 does seem to show some relationship between PC4 and maximum T2 fault, where 

the cells with the largest maximum T2 values roughly correlate to where the smallest PC4 

eigenvalues are. Since the eigenvalues appear to change logarithmically, the y-axes of Figure 

C-3 are scaled logarithmically in Figure C-4. 

 



 

240 

 

 

 

Figure C-4: Maximum T2 value and (unfiltered and Savitzky-Golay Filtered) in each cell, 

sorted in ascending order by PC4 eigenvalue, scaled logarithmically on y-axes. 

 

Savitzky-Golay filtering [119] was applied to better identify the general trend the maximum 

T2 values follow by ascending PC4 value. While the unfiltered maximum T2 values are quite 

noisy, through filtering it is clear that there is some inverse relationship between maximum T2 

value and eigenvalue. It is theorised that there is some way that the last eigenvalues can be 

used to better predict ck for each, possibly reducing development time and improve model 

accuracy.  

 


