9 research outputs found

    Computation of Earth Science Products on Spaceborne Platforms

    Get PDF
    Spaceborne sensors like NASA's Hyperion hyperspectral imager generate huge data volumes, and several near-term trends indicate that data volumes will only increase. Next-generation hyperspectral missions, such as NASA's Hyperspectral Infrared Imager (HyspIRI), will operate at higher duty cycles and higher data rates, and their users will expect products to be generated from the data in near real time [1]. Barring a sudden advance in satellite downlink capacity, these trends point to a need to process data and generate products onboard the spacecraft. Rather than downlink an entire hyperspectral image cube, onboard processing enables satellites to downlink partial or completed scientific data products, which are often one to two orders of magnitude smaller than the original image. In addition, a satellite with onboard data processing resources and direct broadcast transmission equipment could send data products directly to first responders, research scientists or other users on the ground. Next-generation space-capable data processors will have a combination of reconfigurable gate arrays, digital signal processors and general-purpose CPUs. Correctly programmed and configured, these resources are sufficient to run sophisticated data analysis programs, including hyperspectral image processing algorithms that commonly run on desktop computers [2]. This paper describes how we implemented one such program, the HSEG hierarchical image segmentation algorithm, software commonly used on desktop and parallel processors, on a hardware platform designed to mimic a next-generation space-capable data processor [3]. We also describe our approach to porting the algorithm to and optimizing it for the new platform, and determine the expected performance gains enabled by our design. This extended abstract will describe the HSEG algorithm and hardware platform in greater detail, provide an analysis of the key function within the algorithm that required hardware acceleration, and describe our implementation of that function in hardware

    Sparse Coding Based Dense Feature Representation Model for Hyperspectral Image Classification

    Get PDF
    We present a sparse coding based dense feature representation model (a preliminary version of the paper was presented at the SPIE Remote Sensing Conference, Dresden, Germany, 2013) for hyperspectral image (HSI) classification. The proposed method learns a new representation for each pixel in HSI through the following four steps: sub-band construction, dictionary learning, encoding, and feature selection. The new representation usually has a very high dimensionality requiring a large amount of computational resources. We applied the l1/lq regularized multiclass logistic regression technique to reduce the size of the new representation. We integrated the method with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) to discriminate different types of land cover. We evaluated the proposed algorithm on three well-known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit, and image fusion and recursive filtering. Experimental results show that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification

    Hyperspectral image representation and processing with binary partition trees

    Get PDF
    The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure. Hence, the Binary Partition Tree succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Based on region-merging techniques, the construction of BPT is investigated in this work by studying hyperspectral region models and the associated similarity metrics. As a matter of fact, the very high dimensionality and the complexity of the data require the definition of specific region models and similarity measures. Once the BPT is constructed, the fixed tree structure allows implementing efficient and advanced application-dependent techniques on it. The application-dependent processing of BPT is generally implemented through a specific pruning of the tree. Accordingly, some pruning techniques are proposed and discussed according to different applications. This Ph.D is focused in particular on segmentation, object detection and classification of hyperspectral imagery. Experimental results on various hyperspectral data sets demonstrate the interest and the good performances of the BPT representatio

    Comparison of merging orders and pruning strategies for Binary Partition Tree in hyperspectral data

    Full text link

    Sparse Coding Based Feature Representation Method for Remote Sensing Images

    Get PDF
    In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further verify the power of the new feature representation method, we applied it to a pan-sharpened image to detect seafloor scars in shallow waters. Propeller scars are formed when boat propellers strike and break apart seagrass beds, resulting in habitat loss. We developed a robust identification system by incorporating morphological filters to detect and map the scars. Our results showed that the proposed method can be implemented on a regular basis to monitor changes in habitat characteristics of coastal waters

    Detección temprana de la Sigatoka Negra en hojas de banano mediante imágenes hiperespectrales: Un enfoque aplicando los métodos PLS-PLR y HS-BIPLOT

    Get PDF
    [ES] INTRODUCCIÓN El banano (musa spp) es uno de los productos agrícolas más cultivados en el mundo y es el principal producto agrícola en muchos países. Por sus beneficios nutricionales, esta fruta tropical es considerada un producto básico y contribuye a la seguridad alimentaria en gran parte de los países en desarrollo. Sus principales centros de producción están ubicados en Asia, América Central, Sudamérica y África, siendo los principales países exportadores de la fruta Ecuador, Filipinas, Guatemala, Costa Rica, Colombia y Honduras, en ese orden (Yeturu et al. 2016; FAO 2017). Las plantaciones de banano son afectadas por una serie de problemas fitosanitarios entre los cuales se destaca la Sigatoka negra (BLSD, por sus siglas en ingles Black Sigatoka Disease), enfermedad foliar considerada la principal amenaza de la producción bananera por su impacto devastador que causa pérdidas de hasta 80% de los rendimientos. BLSD es originada por el hongo patógeno Pseudocercospora fijiensis (Perera, Kelaniyangoda, & Salgadoe, 2013) y su desarrollo ocasiona necrosis de la planta en seis estados sintomáticos..

    Advanced Processing of Hyperspectral Images

    No full text
    International audienceHyperspectral imaging offers the possibility of characterizing materials and objects in the air, land and water on the basis of the unique reflectance patterns that result from the interaction of solar energy with the molecular structure of the material. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral data processing. Our main focus is on the development of approaches able to naturally integrate the spatial and spectral information available from the data. Special attention is paid to techniques that circumvent the curse of dimensionality introduced by high-dimensional data spaces. Experimental results, focused in this work on a specific case-study of urban data analysis, demonstrate the success of the considered techniques. This paper represents a first step towards the development of a quantitative and comparative assessment of advances in hyperspectral data processing techniques

    Advanced processing of hyperspectral images

    No full text

    al: Advanced Processing of Hyperspectral Images

    No full text
    Abstract — Hyperspectral imaging offers the possibility of characterizing materials and objects in the air, land and water on the basis of the unique reflectance patterns that result from the interaction of solar energy with the molecular structure of the material. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral data processing. Our main focus is on the development of approaches able to naturally integrate the spatial and spectral information available from the data. Special attention is paid to techniques that circumvent the curse of dimensionality introduced by high-dimensional data spaces. Experimental results, focused in this work on a specific case-study of urban data analysis, demonstrate the success of the considered techniques. This paper represents a first step towards the development of a quantitative and comparative assessment of advances in hyperspectral data processing techniques. I
    corecore