704 research outputs found

    Nanobeam photonic crystal cavity quantum dot laser

    Full text link
    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.Comment: 8 pages; 6 figure

    Vertical-external-cavity surface-emitting lasers and quantum dot lasers

    Full text link
    The use of cavity to manipulate photon emission of quantum dots (QDs) has been opening unprecedented opportunities for realizing quantum functional nanophotonic devices and also quantum information devices. In particular, in the field of semiconductor lasers, QDs were introduced as a superior alternative to quantum wells to suppress the temperature dependence of the threshold current in vertical-external-cavity surface-emitting lasers (VECSELs). In this work, a review of properties and development of semiconductor VECSEL devices and QD laser devices is given. Based on the features of VECSEL devices, the main emphasis is put on the recent development of technological approach on semiconductor QD VECSELs. Then, from the viewpoint of both single QD nanolaser and cavity quantum electrodynamics (QED), a single-QD-cavity system resulting from the strong coupling of QD cavity is presented. A difference of this review from the other existing works on semiconductor VECSEL devices is that we will cover both the fundamental aspects and technological approaches of QD VECSEL devices. And lastly, the presented review here has provided a deep insight into useful guideline for the development of QD VECSEL technology and future quantum functional nanophotonic devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with arXiv:0904.369

    Purcell Effect in the Stimulated and Spontaneous Emission Rates of Nanoscale Semiconductor Lasers

    Get PDF
    Nanoscale semiconductor lasers have been developed recently using either metal, metallo-dielectric or photonic crystal nanocavities. While the technology of nanolasers is steadily being deployed, their expected performance for on-chip optical interconnects is still largely unknown due to a limited understanding of some of their key features. Specifically, as the cavity size is reduced with respect to the emission wavelength, the stimulated and the spontaneous emission rates are modified, which is known as the Purcell effect in the context of cavity quantum electrodynamics. This effect is expected to have a major impact in the 'threshold-less' behavior of nanolasers and in their modulation speed, but its role is poorly understood in practical laser structures, characterized by significant homogeneous and inhomogeneous broadening and by a complex spatial distribution of the active material and cavity field. In this work, we investigate the role of Purcell effect in the stimulated and spontaneous emission rates of semiconductor lasers taking into account the carriers' spatial distribution in the volume of the active region over a wide range of cavity dimensions and emitter/cavity linewidths, enabling the detailed modeling of the static and dynamic characteristics of either micro- or nano-scale lasers using single-mode rate-equations analysis. The ultimate limits of scaling down these nanoscale light sources in terms of Purcell enhancement and modulation speed are also discussed showing that the ultrafast modulation properties predicted in nanolasers are a direct consequence of the enhancement of the stimulated emission rate via reduction of the mode volume.Comment: 12 pages, 5 figure

    High-Q photonic crystal nanocavities on 300 mm SOI substrate fabricated with 193 nm immersion lithography

    Get PDF
    On-chip 1-D photonic crystal nanocavities were designed and fabricated in a 300 mm silicon-on-insulator wafer using a CMOS-compatible process with 193 nm immersion lithography and silicon oxide planarization. High quality factors up to 10(5) were achieved. By changing geometrical parameters of the cavities, we also demonstrated a wide range of wavelength tunability for the cavity mode, a low insertion loss and excellent agreement with simulation results. These on-chip nanocavities with high quality factors and low modal volume, fabricated through a high-resolution and high-volume CMOS compatible platform open up new opportunities for the photonic integration community

    The development of micropillars and two-dimensional nanocavities that incorporate an organic semiconductor thin film

    Get PDF
    Photonic crystals (PC) are periodic optical structures containing low and high refractive index layers that influence the propagation of electromagnetic waves. Photonic cavities can be created by inserting defects into a photonic crystal. Such structures have received significant attention due to their potential of confining light inside volumes (V) smaller than a cubic wavelength of light (λ/n)3 which can be used to enhance light-matter interaction. Cavity quality factor (Q) is useful for many applications that depend on the control of spontaneous emission from an emitter such quantum optical communication and low-threshold lasing. High Q/V values can also result in an enhancement of the radiative rates of an emitter placed on the surface of the cavity by means of the Purcell effect. This thesis concerns the fabrication and study of two types of optical cavity containing an organic-semiconductor material. The cavities explored are; (1) one-dimensional micropillar microcavities based on multilayer films of dielectric and organic materials, and (2) two-dimensional nanocavities defined into a photonic crystal slab. Firstly, light emission from a series of optical micropillar microcavities containing a thin fluorescent, red-emitting conjugated polymer film is investigated. The photoluminescence emission from the cavities is characterized using a Fourier imaging technique and it is shown that emission is quantised into a mode-structure resulting from both vertical and lateral optical confinement within the pillar. We show that optical-confinement effects result in a blue-shift of the fundamental mode as the pillar-diameter is reduced, with a model applied to describe the energy and distribution of the confined optical modes. Secondly, simulation, design, and analysis of two dimensional photonic crystal L3 nanocavities photonic crystal are presented. Nanocavities were then prepared from silicon nitride (SiN) as the cavity medium with the luminescence emitted from an organic material at red wavelengths that was coated on the cavity surface. To improve the quality factor of such structures, hole size, lattice constant and hole shift are systematically varied with their effect as cavity properties determined. Finite Difference Time Domain (FDTD) modelling is used to support the experimental work and predict the optimum design for such photonic crystal nanocavity devices. It is found that by fine-tuning the nearest neighbour air-holes close to the cavity edges, the cavity Q factor can be increased. As a result, we have obtained a single cavity mode having a Q-factor 938 at a wavelength of 652 nm. Here, the cavity Q factor then increases to 1100 at a wavelength of 687 nm as a result of coating a red-emitting conjugated polymer film onto the top surface of the nanocavity. We propose that this layer planarizes the dielectric surface and helps reduce optical losses as a result of scattering

    Single-mode photonic crystal nanobeam lasers monolithically grown on Si for dense integration

    Get PDF
    Ultra-compact III-V nanolasers monolithically integrated on Si with ultra-low energy consumption and small modal volume have been emerged as one of the most promising candidates to achieve Si on-chip light sources. However, the significant material dissimilarities between III-V and Si fundamentally limit the performance of Si-based III-V nanolasers. In this work, we report 1.3 m InAs/GaAs quantum-dot photonic-crystal (PhC) nanobeam lasers directly grown on complementary metal-oxide-semiconductor compatible on-axis Si (001) substrates. The continuous-wave optically pumped PhC nanobeam lasers exhibited a single-mode operation, with an ultra-low lasing threshold of ~ 0.8 W at room temperature. In addition, a nanoscale physical volume of ~ 8 0.53 0.36 m3 (~ 25 (n1)3) was realized through a small number of air-holes in PhC nanobeam laser. The promising characteristics of the PhC nanobeam lasers with small footprint and ultra-low energy consumption show their advanced potential towards densely integrated Si photonic integrated circuits

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe
    • 

    corecore