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Abstract   

     Photonic crystals (PC) are periodic optical structures containing low and high refractive 

index layers that influence the propagation of electromagnetic waves. Photonic cavities can 

be created by inserting defects into a photonic crystal. Such structures have received 

significant attention due to their potential of confining light inside volumes (V) smaller than a 

cubic wavelength of light (λ/n)3 which can be used to enhance light-matter interaction.  

Cavity quality factor (Q) is useful for many applications that depend on the control of 

spontaneous emission from an emitter such quantum optical communication and low-

threshold lasing. High Q/V values can also result in an enhancement of the radiative rates of 

an emitter placed on the surface of the cavity by means of the Purcell effect.    

     This thesis concerns the fabrication and study of two types of optical cavity containing an 

organic-semiconductor material. The cavities explored are; (1) one-dimensional micropillar 

microcavities based on multilayer films of dielectric and organic materials, and (2) two-

dimensional nanocavities defined into a photonic crystal slab. 

     Firstly, light emission from a series of optical micropillar microcavities containing a thin 

fluorescent, red-emitting conjugated polymer film is investigated. The photoluminescence 

emission from the cavities is characterized using a Fourier imaging technique and it is shown 

that emission is quantised into a mode-structure resulting from both vertical and lateral 

optical confinement within the pillar. We show that optical-confinement effects result in a 

blue-shift of the fundamental mode as the pillar-diameter is reduced, with a model applied to 

describe the energy and distribution of the confined optical modes.  

      Secondly, simulation, design, and analysis of two dimensional photonic crystal L3 

nanocavities photonic crystal are presented. Nanocavities were then prepared from silicon 

nitride (SiN) as the cavity medium with the luminescence emitted from an organic material at 

red wavelengths that was coated on the cavity surface.  
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     To improve the quality factor of such structures, hole size, lattice constant and hole shift 

are systematically varied with their effect as cavity properties determined.  Finite Difference 

Time Domain (FDTD) modelling is used to support the experimental work and predict the 

optimum design for such photonic crystal nanocavity devices.  

     It is found that by fine-tuning the nearest neighbour air-holes close to the cavity edges, the 

cavity Q factor can be increased. As a result, we have obtained a single cavity mode having a 

Q-factor 938 at a wavelength of 652 nm. Here, the cavity Q factor then increases to 1100 at a 

wavelength of 687 nm as a result of coating a red-emitting conjugated polymer film onto the 

top surface of the nanocavity. We propose that this layer planarizes the dielectric surface and 

helps reduce optical losses as a result of scattering.    
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Chapter 1 
Introduction 

1.1 Introduction 

     Controlling the emission and absorption of light by a quantum emitter in an optical cavity 

is considered a key technique in photonic quantum technology and is a fundamental 

technique used in nanoscale photonics. During the last twenty years, a wide range of new 

technologies have been developed that are based on the interaction between light and matter, 

in which light is confined in micro and nanostructured cavities having a volume that is much 

smaller than a cubic wavelength (λ/n)3 [1-15].  The enhancement of light – matter interaction 

has allowed the size of photonic devices to be reduced compared to electronic devices [16]; a 

result that is used in a number of engineering applications such as ultra-small filters [17], 

single-photon sources [18], ultra-low threshold lasers [19], optical sensing [20], quantum sensing 

in quantum information applications [21-22], high-efficiency solar cells [23], optical biosensors 

[24], chemical sensor devices [25], and optical logic gates [26-27]. 

      In this thesis the effect of two types of optical cavity containing organic-semiconductor 

are studied. Specifically the cavities explored are; (1) one-dimensional microcavities based 

on multilayer films of dielectric materials, and (2) two-dimensional nanocavities defined into 

a slab photonic crystal.  To improve the quality factor of the two dimensional photonic crystal 

nanocavities the hole size, lattice constant and hole shift are systematically varied with their 

effect as cavity properties determined.  Finite Difference Time Domain (FDTD) modelling is 

used to support the experimental work and predict the optimum design for such photonic 

crystal nanocavity devices.  

     The second type of structure explored is a micropillar microcavities such structures have 

previously been widely explored using semiconductors such as Gallium Arsenide 
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(GaAs) [28-30], Silicon (Si) [31-32] and (GaAs/AlGaAs) [33-34] and emit light at near infra-red 

wavelengths. Here however, we explore micropillar microcavities containing an organic 

semiconductor that emits light at visible wavelengths. We expect that such structures may 

potentially have interesting applications [35-38] such as single photon devices [39] or microscale 

lasers [40] working at visible wavelengths.  

1.2 Thesis Plan 

     In this thesis, I have studied the interactions between the electromagnetic field in 

micropillar and nanostructured cavities in detail. A general description of each chapter in this 

thesis is as follows:  

      In chapter 2, I discuss the theoretical background, literature review and optical properties 

of one, two and three dimensional photonic crystals and optical nanocavities. The 

fundamentals of photonic crystals that work in the weak coupling regimes are discussed. I 

also describe the parameters that affect the optical properties of photonic crystals. The 

fundamental photophysics of organic molecular materials used in such structures are 

introduced and some applications are described.   

     Chapter 3 introduces the fabrication processes utilized to create one and two – 

dimensional photonic crystal and micropillars microcavities. The experimental techniques 

and operational principles of the equipment utilized in the samples characterisation are also 

presented. The deposition techniques and characterization of multilayer thin films and 

microcavity micropillars are also introduced in this chapter.   

     Chapter 4 discusses the optical properties of micropillar microcavities containing a 

fluorescent conjugated-polymer. The photoluminescence emission from the cavities are 

characterised using a Fourier imaging technique. Lumerical finite difference time domain 

(FDTD) modelling was also used to investigate the structure of the electromagnetic field in 
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   micropillar microcavities. Here, the Fourier imaging results were obtained in collaboration 

with Dr. Rahul Jayaprakash, and the measurement of the quantum efficiency of the Red- F 

fluorescent conjugated-polymer were obtained by collaboration with Dr Kyriacos Georgiou, 

both in the Department of Physics and Astronomy of the University of Sheffield.    

     Chapter 5 discusses the fabrication and design of two - dimensional photonic crystal 

nanocavities. The optical properties of silicon nitride semiconductor (SiN) L3 nanocavities 

are presented before and after coating with a thin film of a red- emitting organic 

semiconductor. Finite difference time domain (FDTD) computational modelling is again used 

to model the photonic crystals described in this thesis. This is utilized to investigate the effect 

of modifying the cavity structure on their resonant frequencies, field distribution and quality 

factors. 

       Chapter 6 contains conclusions and suggestions for future work. 
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Chapter 2 
Theoretical Background 

2.1 Introduction 

     Moore’s Law predicts that an exponential development in the complexity of electronic 

devices is expected and anticipates that problems will arise because of a reduction in the 

physical dimensions of electronic devices. These results from heating effects and 

electromagnetic interference in nanoscale transistor devices; a situation that will create a 

problem for the future of electronics. The science of photonics attempts to use light to carry 

out tasks that are conventionally performed by electronics. Nanophotonic devices have some 

similarities to conventional electronic circuits; for example they can act as optical delay lines, 

couplers and splitters, logical gates, optical memories, filters and multiplexers. Optical 

connectors also offer the promise of greater bandwidth, decreased power loss and optical 

memory system. Progress has been driven by semiconductor fabrication techniques that now 

make it possible to produce nanometre size photonic devices that can control light at the 

nanoscale [1-9].  

     Photonic crystals (PC) are periodic optical structures with low and high refractive index 

layers that can control the propagation of electromagnetic waves [10-11]. The term Photonic 

Crystal arises from the combination of a periodic crystalline material that has a length–scale 

that is defined at optical frequencies, allowing it to interact with light [12-13]. In a periodic 

dielectric material, light at a range of frequencies cannot propagate, thus creating a photonic 

band gap (PBG); an idea first suggested by Yablonovitch [14] and John [15]. If the structure of a 

photonic crystal prohibits the propagation of light in all directions, this means that the crystal 

possesses a complete photonic band gap [16-19]. Defects can be placed into the structure of 

such a photonic crystal, creating an optical nanocavity that can confine light inside a volume 
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 smaller than a cubic wavelength (λ/n) 3. Very high quality factor cavities can be formed from 

such structures, which lead to a strong localization of the optical field. This can be used in 

different applications that depend on the control of the spontaneous emission from a quantum 

emitter, such as thresholdless lasers [20]. This approach can also be used to improve the 

efficiency of organic light emitting diodes (OLED) [21-22]. The unusual optical properties of 

photonic crystals (such as anomalous reflection and negative refractive index) can also result 

as result of the interaction between periodic dielectric materials and light [23-26]. Artificial 

photonic crystals bear similarity to structures that appear in nature, such as the wings of 

certain butterflies [27-29] as in Figure 2.1 

 

 

 

 

 

 

 

             

 

Figure 2.1: (a) Photonic crystals found in nature. Here surface structure of butterfly wings leads to  

                                blue iridescence. (b) An SEM image of the cross-section of a butterfly wing. This 

                                Figure was taken from Ref [29] 
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2.2 General Literature review of photonic crystal-devices 

     The field of Photonic Crystals has been dominated by inorganic semiconductors for many 

years because such materials have a high refractive index, allowing the propagation of light 

that travels through a medium to be controlled with a high degree of precision. Inorganic and 

organic materials have been used to made photonic crystals. Inorganic materials have been 

used during the last decades in multiple microscale technology applications; for example 

GaAs/InGaAs microlenses, InAs/InGaAs/GaAs microdisks and microrings, InGaAs/GaAs 

microtube lasers and semiconductors containing GaAs/GaAlAs quantum dots [30-37]. 

      Lord Rayleigh was the first person to consider forbidden stop-bands in one dimensional 

periodic media [38]. The idea of photonic bandgap or photonic crystal was then suggested by 

Eli Yablonovitch and Sajeev John who used the physics of solid state and classical 

electromagnetism to illustrate the principle of photonic band gaps in three dimensions [14-15]. 

Yablonovitch et al then introduced a new face-centred-cubic structure that solved two 

problems in photonic band structure: (i) he showed that the band gap of a full three-

dimensional photonic crystal could exist in a dielectric structure and (ii) such structures could 

be made using the microfabrication techniques [39]. In 1991, Philip Russell introduced the 

concept of photonic crystal fibres (PCF). He suggested using a photonic bandgap to confine 

light in a hollow core fibre through engineering periodic, microscopic holes in a wavelength 

size lattice using Ge-doped silica semiconductors [40]. 

     Practical applications, such as the first Vertical Cavity Surface-emitting Laser devices 

were produced by Iga et al. in the late 1970s. These consisted of GaAs layers of a few 

micrometres in thicknesses that were coated with dielectric mirrors [41]. The first low 

threshold lasing operation was then demonstrated using a GaInAsP/InP SE laser by Iga et al. 

in 1979 [42].  
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     In 1991 Yablonovitch et al produced acceptor and donor modes in three-dimensional 

periodic dielectric structures using Si and GaAs semiconductors as evidenced a forbidden gap 

for electromagnetic wave propagation. The donor modes were produced by adding more 

dielectric material inside the photonic crystal. Conversely, acceptor modes were produced by 

the removal of dielectric material. This has led to the realization of high quality 

electromagnetic cavities of ~1 cubic wavelength operating at short wavelengths [43].  

      In 1992 Weisbuch, et al explored optical cavity devices in which quantum well excitons 

and the optical cavity are in resonance [44]. Rabi splitting behaviour was observed between the 

quantum well excitons and the electromagnetic field of the microcavity. Lasing at room 

temperature in strong- coupled inorganic GaN microcavities was first observed by 

Christopoulos et al in 2007, as a result of a high binding energy of Wannier-Mott excitons in 

GaN [45]. In 1976 Shyh Wang, et al invented an improved form of optical laser consisting of a 

two-dimensional distributed feedback periodic structure based on GaAs-GaAl-As 

semiconductors that supported controllable transverse modes [46]. In 1993 Wendt, et al 

explored the fabrication of two-dimensional photonic lattice structures in GaAs/AlGaAs 

using direct-write electron-beam lithography (EBL) and reactive-ion-beam etching (RIE) to 

etch features in size of 50 nm.  Using such a technique, a hexagonal array of air cylinders 

were etched into a semiconductor surface having a high refractive index contrast to form the 

lattice of a photonic crystal [47].  

     Following this, Gruning, et al reported the creation of a two-dimensional photonic band 

structure in a square lattice of circular air rods in macroporous silicon, with individual gaps 

observed for both E- and H-polarized radiation in the infrared region between 20–40 μm [48]. 

Laser devices have been fabricated from a single defect in a two-dimensional photonic crystal 

using III-V based semiconductors. Here, two different mechanisms were used to confine light 

inside the microcavity; first, trapping photons in the vertical direction was achieved using a 
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λ/2 high-index slab with total internal reflector at the air-slab interface to confine light in the 

cavity. Secondly, a 2D photonic crystal that was formed from a hexagonal array of air holes 

etched into the slab that was used to localize the light in plane [49]. In 1978 Ohtaka improved 

the formalism for photonic band structure calculations and discussed photonic crystals that 

exist in three-dimensions [50].  

Strong coupling observed by Weisbuch et al introduced an important era in solid state    

physics [44]. Strong coupling between single photons and excitons was be first demonstrated 

in GaAs and AlAs micropillars [51]. Following this, GaAs/AlAs micropillar microcavities 

with 10 μm diameter and a Q factor of up to 30,000 was then demonstrated. Such Q-factors 

were up to three times higher than the Q factor of planar microcavity structures. Here, 

electron-beam lithography was used together with inductively coupled plasma to fabricate the 

micropillars [52]. Increases in quality factors up to 48,000 were achieved using an oxide 

aperture to confine optical modes in a micropillar structure that operated in the weak coupling 

regime prepared using a molecular-beam epitaxy on a semi-insulating GaAs substrate [53]. In 

this structure the spontaneous emission rate of an atom was enhanced as compared to outside 

the cavity [54]. 

      Ho et al investigated the blue-shifts in GaAs/AlAs micropillar mode resonance as the 

micropillar diameter was decreased using 3-D finite difference time domain (FDTD)    

method [55]. Lecamp et al have also studied the effect of the oxide cladding and the 

corrugation of Bragg mirror on the quality factor of GaAs/AlGaAs micropillars with a Q- 

factor of 1,500 for a 600 nm diameter micropillar [56]. Reitzenstein et al fabricated micropillar 

microcavities having diameters between 1 μm and 4 μm. As a result a micropillar microcavity 

laser with a Q-factor of 23,000 from a weak coupling regime was demonstrated with a low 

lasing threshold [57]. One year later, the same authors designed AlAs/GaAs micropillar 

cavities with diameter up to 4 μm using a high reflectivity distributed Bragg reflectors DBRs 
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to produce a high quality factors up to 165,000 [58]. Boulier, et al have also demonstrated a 

strong enhancement of a novel squeezed light source in semiconductor micropillars based on 

15 pairs of GaAs–InGaAs [59].   

      Winkler et al demonstrated a new type of AlAs/GaAs micropillar microcavity containing 

InAs quantum dots embedded in its centre. This structure was able to confine the 

electromagnetic field in a horizontal direction without deep etching using a bullseye defect 

technique, allowing optical modes to be squeezed into a high Q factor cavity having a very 

small volume. As a result, a Q factor of up to 100,000 was obtained in a micropillar with a 

diameter less than 1.5 μm [60]. Stock et al observed an enhancement of emission from a 

weakly coupled microlaser that could operate as a light source to excite another microcavity 

structure [61]. Bonato et al studied the operation of quantum information schemes in a weak 

coupling regime. Here, a single electron charge confined in a quantum dot was imbedded in a 

micropillar microcavity. Such structure is used as a quantum CNOT gate [62].  

      Significant attention and an increasing number of studies have been directed toward the 

use of organic materials and hybrid organic-inorganic materials in photonics, due to the 

ability to customize their optical properties and the possibility of combining the properties 

both of inorganic materials such as high mobility, electrical pumping and band engineering 

with the properties of organic materials such as low cost and high luminescence quantum 

yield at room temperature. In 1997 a hybrid cavity combining inorganic and organic 

semiconductors was theoretically proposed [63-64]. One of the first studies of the physics of 

placing emitting molecules inside a cavity resonator explored its effect on spontaneous 

emission. Here, it was argued that the resonator’s dimensions should be similar to the 

emission wavelength to control spontaneous emission [65].  Dodabalapur et al. demonstrated 

red, green, and blue emissive devices based on a single organic material using Fabry-Perot  
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Cavity effects to selectivity enhance the broad luminescence from an organic      

semiconductor [66].  

     In 1996 Tessler and co-workers demonstrated the first optically pumped organic 

microcavity laser. Organic lasers offer the prospect of wavelength tunability, low-cost 

production and mechanical flexibility [67]. Following this, Dirr et al. observed the effect of the 

position of a thin film in a cavity on its luminescence spectra, with the cavity consisting of an 

organic material such as Alq3 positioned in a planar Fabry-Perot microcavity [68-69]. The first 

observation of the strong coupling regime within an optical organic semiconductor 

microcavity was reported in 1998 [70]. In 1999, Tokito et al. designed a planar microcavity 

composed of three pairs of SiO2/TiO2 dielectric mirrors between an organic layer and a top 

metal layer working as a mirror [71]. The same year, Kozlov et al at demonstrated lasing 

action using an assortment of cavity designs containing thin films of organic semiconductors 

by optical pumping [72]. Lin et al. studied the optical characteristics of microcavity organic 

light-emitting devices based on two metal mirrors. The study showed that a high-reflectivity 

back mirror and a low-loss high-reflection exit mirror were essential to enhance the 

luminance from such microcavity devices [73]. 

     Pisanello et al used two-dimensional photonic crystal fabricated resonators from silicon 

nitride as a platform to create photonic devices based on spontaneous emission technique of 

nanoemitters. As a result, spontaneous emission was observed in the visible spectral        

range [74]. Kitamura, et al used patterned SiO2 membranes to fabricate an organic 

semiconductor based two-dimensional photonic crystal nanocavity. The organic layer based 

on DCM2 doped into AlQ3 which was deposited on a SiO2 membrane to form an organic 

photonic crystal. Here, an increase in the intensity by more than ten times was observed at the 

resonant wavelength [75-76]. Adawi, et al have also fabricated light emitting diodes based on a 

conjugated polymer containing a two-dimensional photonic crystal (PC) placed between the 
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ITO anode and the glass substrate. It was observed that LEDs incorporating the PC had an 

increased electroluminescence external quantum efficiency by a factor of (2.3 ± 1.0) times 

[77]. Gourdon, et al fabricated and investigated a two-dimensional photonic crystal micro-

cavity containing an organic gain material (Alq3: DCJTB) deposited on a planar Si3N4 

photonic crystal microcavity. They illustrated lasing emission from the structure under optical 

pumping of the organic layer [78]. 

     Dusel et al. have recently used thermal imprint technology to produce three-dimensional 

pillar microcavities with this technique forming hemispherical pillar geometries rather than 

cylindrical pillars. Hemispherical pillars were imprinted directly on top of dielectric mirrors 

from an organic semiconductor with the pillars then capped by a thin layer of gold [79]. 

Organic photonic crystals have also been used to enhance the efficiency and to improve the 

performance of photovoltaic cells [80-82].   
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  2.3 Maxwell’s Equations in a Periodic Structure 

     In order to understand and describe the behaviour of the electromagnetic waves that 

propagate in a uniform dielectric medium (dielectric constant ɛ) we need to use Maxwell’s 

macroscopic equations [83-84]. In their differential form these are:     

                             ∇. B��⃗ = 0                                   2-1 

                             ∇. ���⃗ = ρ                                   2-2 

                             ∇ × ��⃗ +
���⃗

��
= 0                     2-3 

                             ∇ × ���⃗ −
����⃗

��
= J⃗                      2-4 

Here, E is the electric field (Vm-1), H is the magnetic field (Am-1), B is the magnetic flux 

density (T), D is the electric displacement (Cm-2), J is the electric current density (Am-2) and 

ρ is the electric charge density (Cm-3) [85]. Inside a mixed dielectric medium where light 

propagates but there are no sources of light, we can consider ρ = 0 and Ј = 0 [84]. The auxiliary 

fields can be defined as: 

              D = ��E + P                                              2-5 

             H = 1/�� B − M                                       2-6 

            P = ���⃡� .  E                                        2-7 

            M = �⃡� .  H                                          2-8 

 

Here, P is the “polarization field, M is the “magnetization field and � is the electric and the 

magnetic susceptibility [86]. The above equations can be written for local, nonmagnetic, linear, 

isotropic, and homogeneous materials using [87-88] 

                                                       D (r) = ɛ(r) E(r)                                 2-9 

                        B (r) = μ(r) H(r)                               2-10  
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Here, ε and μ are the permittivity and permeability respectively [89]. The refractive index n can 

then be expressed as√��, however for most dielectric media where μ ≈ 1 we can write n = √�.  

Let us assume unit magnetic permeability, so that B     H and ɛ(r) is the spatially dependent 

dielectric constant [10, 90]. 

In the limits of linear, homogeneous, non-magnetic materials with no free carriers or currents, 

���⃗  and  ��⃗   fields can be written as time and space dependent functions [89]. To understand the 

operation of photonic crystals it is necessary to solve equations 2-9 and 2-10 in the frequency 

domain. We can write H and E as expressed in equations 2-11 and 2-12 [89-91]  

                 ���⃗ (�⃗, �) = H�(�)e���                            2-11  

                ��⃗ (�⃗, �) = E�(�)e���                              2-12  

where E0 and H0 are vectors that define the amplitudes of the fields, and ω=2πƒ is the angular 

frequency of the propagating wave. Maxwell’s equations can be arranged into an equation 

that is given entirely in terms of H:  

        ∇ × �
�

�(�⃗)
 ∇ × H��⃗ (r⃗)� = �

�

�
�

�
���⃗ (�⃗)              2-13  

This equation is called the master equation [92]. The magnetic field equation is usually 

considered as the starting point for photonic band structure computation and is helpful when 

calculating the dispersion diagrams of different photonic crystals [91] as it takes the form of an 

eigenvalue problem:  

                                         ΘH(r) =
��

��
 �(�)                                 2-14  

where Θ is a Hermitian operator [90].  

The total potential energy V(r) of a perfect solid crystal must reflect the periodicity of the 

crystal lattice. Therefore the Schrodinger equation solution  
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              �
h�

��
� ∇�� + [� − �(�)]� = 0            2-15  

is a Bloch function: 

             �(�, �) = u�(�)e���.�                              2-16  

in which  u�(�) is a function having the periodicity of the lattice [83-93]. The easiest solution  

for equation 2-15 is to consider V(r) to be constant and equal to zero. This produces plane 

waves and free electron wave functions in which electron energy is given by  

                     � =
h���

��
                                              2-17  

If we include the periodicity of the lattice, but define the perturbing potential to be arbitrarily 

weak, the energy of an electron can be expressed as 

                   � =
h�

��
 |� + �|�                                 2-18  

where G is a reciprocal lattice vector (V = 0, εi =1 in free space) and is given by [88, 93]  

                 � = n 
��

�
                                                2-19  

where n is an arbitrary integer. The value (2π/a) has an important connotation, as it defines 

the Brillouin zone [94]. In a photonic crystal, ε(r⃗) is periodic, and so Bloch's theorem can be 

used to expand the H field in plane waves as  

                            �(�) = ∑ ∑ ℎ�,�
�
���� �̂���(���).�                   2-20 

where k is a wave vector in the Brillouin zone of the lattice and �̂ is a unit vector 

perpendicular to (k+G) [95]. Thus is in a periodic medium, the H field behaves as a Bloch 

wave [96]. Furthermore the E field in a periodic medium with a 2d periodicity where d is the 

thickness of the layers, can also be written as 

                                             E(z + 2d) = eikB2d E(z)                             2-21  

where kB is a Bloch wavevector. When solving equation (2-21) in term of sin and cosine 
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where cos (2kBd) is usually in the range of [−1, 1], there are some solutions we cannot find. 

The absence of solutions leads to the concept of bandgaps. The Bloch wavevector at the 

band-edges is given by kBd = nπ/2. For a given direction of propagation characterized by k, 

one finds frequency regions in which propagation through the crystal is possible and 

frequency regions for which propagation is inhibited. The dispersion relation ω(k) can be 

found from each Bloch wavevector kB  [88-97].  

 

2.4 Photonic band structure and photonic crystal dimensionality  

     The dispersion relation of a photon in free space is given by ω = ck which relates the 

angular frequency ω = 2πν of the photon to its wave vector k = 2π/λ. The speed of light c 

is the slope of this linear dependence and in a periodic dielectric structure the dispersion 

relation can be modified due to the interaction between light and matter [84, 88]. From this, 

we can also determine the group velocity � =
��

��
  and the phase velocity  �� =

�

�
 [100- 101]. 

In a photonic crystal, the frequency intervals result from coherent scattering and 

interference of electromagnetic radiation from the structured dielectric medium with no 

photon modes being allowed. An emitter placed within the photonic crystal cavity 

undergoes a suppression of spontaneous emission, resulting from the absence of allowed 

optical modes inside the photonic gap [94].  

     Photonic crystals can be classified on the basis of the dimensionality of the refractive 

index modification. Depending on the wavelength of light, light reflected from the 

periodic dielectric interfaces can interfere constructively or destructively and thus the 

lattice leads to a band structure for photons and exhibits bands in which photons can 

propagate, as well as photonic band gaps in which they cannot [90]. Depending on structure 

design, there are three categories of PhCs, called one-dimensional (1D), two-dimensional 

(2D) and three-dimensional (3D) structures as shown in figure 2.2 [102, 103]:   
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Figure 2.2: Schematic depiction of photonic crystals that are periodic in one, two, and three dimensions, 

                    where the periodicity is in the material (typically dielectric) structure of the crystal. This 

                    Figure was taken from Ref [104]. 

 

One-dimensional (1D) photonic crystals are known as Distributed Bragg reflectors (DBR). 

Two-dimensional (2D) photonic crystals have been used in photonic crystal fibres. The 

most challenging structures to fabricate are three-dimensional (3D) photonic crystals in 

which light propagation can be controlled completely in all directions by a photonic 

bandgap [105, 106]. PhCs can act as both waveguides and mirrors similar to a 1D Bragg 

mirror [107].    

     The propagation of photons in such periodic structures are defined by Bloch function as 

summarized by equations (2-16) and (2-19) where the wave vector kr in Bloch theory can 

be referred to the Brillouin zone (BZ) of a periodic structure [84]. The dispersion relation 

for photon propagation in a two dimensional photonic crystal possessing a hexagonal array 

of holes, is shown in figure 2.2 (b). This is defined by three high symmetry points, which 

(known as Γ, K and M) define the irreducible Brillouin zone as shown in Figure 2.3:   

(a) (b) (c) 
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                                   Figure 2.3 A hexagonal lattice and irreducible Brillouin zone [108].  

  

By using the Bloch function, equation 2-16 and substituting it into the master equation 2-13 

we obtain   

         (∇ + ��) × �
�

�(�⃗)
 (∇ + ��) × u�(�)� = �

�(�)

�
�

�
u�(�)           2-22 

The eigenvalues �
�(�)

�
�

�
of equation 2-21 are continuous functions of the Bloch 

wavevector (k) inside the first Brillouin zone in both Γ-M and Γ-K directions and form a 

discrete set of eigenvalue (energies) when plotted in a band structure or dispersion diagram. 

This allows us to visualise the photonic band structure in a photonic crystal. The photonic 

band gap in a one dimensional photonic crystal consisting of dielectric layers with different 

dielectric constants (such as a Bragg multilayer stack or a Bragg mirror [84, 109]) is illustrated 

in Figure 2.4.   
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Figure 2.4 (a) A schematic photonic band diagram of a uniform one-dimensional medium in which the layers 

                 have the same dielectric constant (ɛ), with periodicity a. (b) A schematic of photonic band gap where 

                 there is a periodic dielectric variation, where the layers alternate between n1 and n2. Here, a gap has 

                 been opened by splitting the degeneracy at ±π/a, corresponding to the 1D Brillouin zone 

                 boundaries. This Figure was taken from Ref [110]. 

 

 In a multilayer structure, the size of the photonic band gap depends on the contrast between 

the refractive index of the layers with the smaller the contrast, the smaller the band gap [110]. 

By increasing the photonic band gap, it is possible to create strong light confinement [111-

113].     For a two dimensional photonic crystal consisting of a patterned layer, there are two 

main structures; a dielectric slab patterned with air holes in either a triangular or square           

array [114,116]. Villeneuve et al proved that the triangular lattice has a larger photonic band 

gap than a square lattice [116,117].This is as a result of having closer symmetry for the first 

Brillouin zone [118]. For this reason, the square lattice has been largely ignored as a result of 

its small bandgap with most effort focussed on a triangular lattice instead [119]. 

There are two different sets of optical modes in a 2D photonic crystal; transverse electric 

field modes (TE) which are even modes and transverse magnetic field modes (TM) that are 

-π/a -π/a K 
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ω 
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odd modes [109]. Figure 2.5 illustrates the vector component directions where the transverse 

electric field – TE modes, the magnetic field vector components (Hx and Hy )  are confined 

in the xy plane direction, and corresponding (Ez) field parallel to the Z- direction.  

 

 

  

 

 

To study the optical properties of a two dimensional photonic crystal, Maxwell’s equations 

can be used to determine the photonic band gap using a plane wave basis method (MPB) 

[120] and a guided mode expansion method (GME) [121]. Figure 2.6 is the photonic band gap 

structure for a two dimensional photonic crystal having a hexagonal lattice of air columns 

r/a=0.48 with a high dielectric constant εr=13 for both TE and TM polarized light. A large 

photonic band gap is observed which is located within the normalized frequency band, a/λ, 

at 0.43 to 0.52 [84] 

 

 

 

 

.   

  

 

 

 

 

Figure 2.5: illustrates the vector component directions for electromagnetic field that propagates in a 2D photonic 

                   crystal having a hexagonal lattice of air holes. (a)  The transverse magnetic field – TM mode  

                   polarization. (b) The transverse electric field – TE mode polarization.  
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Figure 2.6 shows the photonic band gap for a hexagonal lattice of air columns (r/a=0.48) and (εr=13)  
                 for TE/TM polarized light in a high dielectric material, This Figure was taken from Ref [11].  
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The frequency intervals in a photonic crystal results from coherent scattering and 

interference of electromagnetic radiation in a structured dielectric medium in which no 

photon modes are allowed [122]. Usually, photonic band gaps can be distinguished 

depending on size and position of the band gap, where some modes are allowed to 

propagate and others are prohibited [123,124]. The band size is defined as the relative band 

gap width which is determined as the gap to the mid gap ratio (∆λ/λ, ∆ω/ω or ∆E/E) [125-

127]. 

2.5 Parameters that influence the photonic band gap and the 

      optical properties of photonic crystals. 

     The main internal and external parameters that impact the size and position of a 

photonic band gap and the properties of a photonic crystal [128] are illustrated in        

figure 2.7.   

 

      

 

 

 

 

 

          Figure 2.7 Two dimensional photonic crystals having a hexagonal lattice of air columns with the main 

                              parameters shown that affect the size of the photonic band gap and the properties of the  

                              photonic crystals  

 Symmetry, or in other words the unit-cell arrangement of the PC structure. 

Square and hexagonal lattices are the main arrangements used in two 

dimensional photonic crystals [129-133]. 
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 Slab thickness. If the slab thickness is very high (more than half wavelength), 

higher order modes can be supported with little energy cost by increasing number of 

horizontal nodal planes. As a result, such modes will act to prohibit the formation of 

the photonic band gap [134].  

 Filling fraction (FF). This is the relative volume occupied by each material (air or 

dielectric) in a photonic crystal [135]. The photonic bandgap increases with 

increasing fill factor [136]. 

 Refractive index contrast (n). The refractive index contrast (n1/n2) is defined as the 

ratio between the refractive index of the different materials in a periodic structure. 

When the dielectric constant increases, the resonant wavelength shifts to the higher 

wavelengths [137]. Moreover, increasing the refractive index of the slab leads to an 

increase in the width of the photonic band- gap [138].  

 Lattice constant (a), is the length of the unit cell in a periodic structure [139,140]. This 

is the distance between air holes in a two dimensional photonic crystal. The position 

of a photonic band gap will undergo a red shift as a result of an increase in the 

lattice constant [141-143].  

 Temperature (T). The photonic band gap of the photonic structure will shift to 

shorter wavelengths as a result of a decrease in temperature. This is due to the effect 

of temperature on the refractive index of a periodic structure [144]. 

 The incidence angle (θ). Decreasing the incidence angle leads to a decrease in the 

width of the photonic band gap and a shift to longer wavelengths. This results from 

a change in the cosine function in the phase equation [144].  

 

                                             ∅ =
���

�
 � cos �                            2-23 

           Here, d and n are layer thickness and refractive index respectively.  
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2.6 Light confinement in a photonic nanostructure. 

     Light confinement without propagation is difficult, as photons do not like to be trapped 

for long times in a small volume. However, this is what Noda and his team achieved [145-

146]. Confining photons in a mode volume smaller than (λ/n)3 where λ is the wavelength of 

light results in an increase in interactions with matter, with effects controlled by the laws 

of quantum mechanics. This principle has been used in cavity quantum electrodynamics in 

which low-loss micro-resonators are used to confine light. The tight confinement of 

photons results in a strong coupling that can be used to build quantum gates between 

photonic qubits [147-148]. 

     Light confinement in a small mode volume for a relatively long time can be achieved 

using a photonic nanostructure. The strong localization of photons has resulted in 

important new applications in quantum and nonlinear optics, such as low-power optical 

switches, zero-threshold lasers and memory elements [149].  

Light can be confined by introducing a physical defect into a periodic photonic crystal. 

Such physical defects can act as a trap to confine light within the optical band gap of the 

photonic structure. We can determine the mode volume (V) over which light is confined 

by spatially integrating the total electric field energy and normalizing it, using the 

maximum electric field energy density as shown in equation 2-24 [ 150,151] :     

                                  � =
∭ ɛ (�)|�(�)|� ��

���[ɛ(�)|�(�)|�]
                              2-24 

Here, V is the mode volume, ɛ(r) is the dielectric constant and E(r) is the electric 

field strength. The strength by which light is confined can be determined from the 

ratio between cavity quality factor (Q) and the mode volume (V). One of the most 

important parameters for optical micro or nano cavities is the quality factor, which is 

the ratio between the total energy stored in the cavity to the energy loss per cycle as 
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shown in equation 2-25 below [152,153]: 

               � = �� = �
�

���

��

= 2��
�

���

��

                     2-25 

Here � is angular frequency of the optical field, � is photon storage lifetime, v is the 

optical frequency, W is the optical energy localized in the cavity and -dW/dt is the loss or 

attenuation of the optical energy per unit time [154]. This can also be defined as the ratio 

between the central wavelength of the cavity (λo) to the full-width half-maximum (FWHM) 

(Δλ) of the cavity resonance:  

                                                       Q = 
��

�� 
                                             2-26 

 Equation 2-26 can also be re expressed as: 

                                                       Q =  
E

ΔE 
=  

��

∆�
                                 2-27 

Optical microresonators with long cavity lifetimes, high quality factors (Q) and a small 

mode volume can be used to control the spontaneous emission rate of an emitter and can be 

used as optical memories, delay lines, or highly selective filters for photonics applications 

and bio or chemical optical sensors [155,156].  

     Experimentally, confining light in one, two and three-dimensional photonic crystals 

depends on one or both of the main mechanisms as illustrated in figure 2.8. The first is in- 

plane confinement where the quality factor (Qin) is determined via the total number of 

periodic layers in the dielectric structure around the nanocavity. The second mechanism is 

out-plane confinement, where the quality factor (Qout) depends on the total internal 

reflection (TIR) of the light confined inside the nanocavity. To confine light by total 

internal reflection, the light waves should reflect at an angle beyond the critical angle of 
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the dielectric material slab in the photonic crystal [157,158]. 

 

 

 

 

 

 

The total quality factor of a nanocavity can be expressed as:  

                                     
�

��
=

�

���
+

�

����
                            2-28 

where Qt is the total quality factor, Qin is the quality factor resulting from in-plane light 

confinement and Qout is the quality factor resulting from out of plane confinement. The 

efficiency of in-plane reflection can be improved by increasing the numbers of holes 

around the cavity region. This results in an increase in quality factor [159]. The out-plane 

confinement, (Qout) can be improved by increasing the thickness of the photonic crystal 

slab [160-162]. In spite of the fact that two-dimensional photonic crystal slabs can strongly 

confine light within a volume of optical-wavelength dimensions [163], optical losses [164] can 

lead to an increase in the density of leaky modes in the photonic crystal [165-167]. Moreover, 

optical losses may occur as result of structural defects that arise through the fabrication 

process [168]. Such losses reduce the ideal value (theoretical value) of the quality factor in a 

two dimensional photonic crystal microcavity. The experimental total quality factor can 

thus be re-expressed as [169,170]: 

Out of plane  

In of plane  

Figure 2.8 In-plane and out-plane mechanisms used to confine light in a two dimensional photonic crystal.  
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�

����
=

�

�����
+

�

���
+  

�

���
                2-29 

where Qtheo is the theoretical value of the quality factor expected using an ideal structure, 

while 1/Qab and 1/Qde quantifies the additional loss in the quality factor resulting from the 

material absorption and structural defects respectively.   

2.7 Distributed Bragg reflectors (DBRs). 

     The strength of light-matter interaction can be greatly enhanced by confining light in a 

small volume using planar semiconductor microcavities. A microcavity is a structure in 

which an active semiconductor layer is placed between two distributed Bragg reflectors 

(DBRs). A planar microcavity structure is illustrated in Figure 2.9. Here, the cavity layer has 

a thickness of around 200 nm and is placed between the DBRs. Such structures can be used to 

study either the weak and strong coupling regime [171-177]. The modification of the coupling 

between light and an atom placed in such a cavity was studied firstly by Kastler [178].  

 

 

 

 

 

Figure 2.9: A schematic depiction of a photonic crystal structure that is periodic in one dimension, 

                     where the periodicity occurs in the (z) direction. 

  

In this thesis, I describe the optical properties of micropillar microcavities. To create a 

micropillar, DBRs can be etched perpendicular to the substrate to create the structures shown 
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schematically in Figure 2.10. If a single photon source is placed into a micropillar, such 

devices can find applications in quantum-cryptography and quantum-computation       

systems [179, 182].    

 

 

 

 

 

 

 

 

 

 

 

 

 

A Distributed Bragg reflector is a mirror, in which each optical layer thickness is set to one 

quarter of the wavelength for which the mirror is designed. Bragg mirrors can be made using 

a range of technologies and different geometries, with such structures having different 

applications:   

 Electron beam evaporation or ion beam sputtering can be used to fabricate individual 

layers. This type of mirror is often used in solid-state lasers. 

Fig 2.10: Schematic of a micropillar cavity containing an organic material embedded in its centre. 
                 Alternating quarter wavelength layers of TiO2/ SiO2 known as DBRs, causes constructive  
                 interference, which allows them to act as mirrors.  
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 DBRs can be fabricated into fibre-optic cables. Such fiber Bragg gratings, including 

long-period fiber gratings are often used in fiber lasers and other fiber devices.  

 Semiconductor Bragg mirrors are often used in distributed feedback diodes laser and 

are produced using lithographic methods [183-184].  

DBR mirrors are used to enhance transmission or reflection of light over a certain wavelength 

range. The characteristics of a DBR are dependent upon the number of layers in the quarter 

wave stack and on the thickness of the individual layers, and the refractive index difference 

between the layers [185-186].  DBRs are often used on precision optics such as Anti-Reflection 

(AR) coatings, High Reflective mirror (HR) coatings, beam splitter coatings and filter 

coatings [187]. Indeed, anti-reflection coatings are included on most refractive optics and are 

used to maximize optical throughput and reduce unwanted reflections. Highly reflective 

coatings are designed to maximize reflectance at either a single wavelength or across a broad 

range of wavelengths and are most often used to create mirrors.  Beam splitter coatings are 

used to divide the incident light into transmitted and reflected light paths. In all cases, the 

index of refraction and thickness of the layers can be varied to optimize performance and to 

define the wavelength over which light reflectivity or transmission is required.  

 However, scattering and absorption are important loss processes in multilayer systems. 

Scattering happens as a result of defects in coatings which can be classified as either volume 

or surface defects (roughness). Absorption losses are connected with a material’s extinction 

coefficient, however the advantage of a quarter-wave stack composed of weakly absorbing 

layers is that absorption losses are small but non-zero [186-188]. Micropillar cavities can suffer 

from increased losses from side-wall scatter as the cavity diameter is reduced [189].      
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2.8 Interference in Single Layer Films. 

     A single zinc sulphide dielectric layer having refractive index of (n ≈ 2.3) and thickness of 

(d =134 nm) deposited on glass is able to reflect at most about 46% of the incident light at 

45o [190]. As light propagates through a thin film system, reflections will happen at the two 

interfaces at which the refractive index changes corresponding to either side of the coating. 

For reflection each interface index layer, a phase shift of π radians can occur. If the optical 

thickness of the layer is set to λ/4 the reflected beams R1 and R2 have a path – length 

difference of λ/2. The total phase difference between the two optical paths is therefore π, and 

therefore corresponds to destructive interference. Figure 2.11 illustrates this concept. Note 

here that nf < ns for a reflection at an interface where there is a reduction in refractive index, 

no phase change as reflection occurs.  

 

 

 

 

 

 

 

 

The refraction index both influences optical path length and also the reflection characteristics 

at each interface. To understand the confinement of light between two parallel reflectors, 

Figure 2.12 demonstrates of the concept of a Fabry-Perot cavity with facet reflectivities of R1 

and R2.  

 

Figure 2.11: A 180° phase shift between two reflected beams results in destructive interference and as a result 
                    there is no reflected beam, where nf is the thin film refractive index and ns is the substrate refractive 
                     index [191]. 
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The condition for constructive interference which confines light in a planar cavity having a 

distance L between two parallel reflectors is:  

                                                           

                                                             � =  
�

��
 �                                 2-30 

where m is an integer known as the cavity mode number. The reflectivity of the planar cavity 

is affected by a number of parameters as shown in equation 2-31:   

 

             � = 1 − 
[�� ��

������� ���(����)]

(����)�
− 

�

(��� ���� ∅)
                    2-31 

 

Where R1 and R2 are the intensity reflectivity for the first and second reflectors respectively, 

α is the linear absorption coefficient, L is cavity length, 2∅ is the cavity round trip phase 

change,   �� = (�� ��)�/� exp (−��) and   � = 4��/(1 − ��)� represents the finesse of the 

planar cavity which measures the average number round trips that a resonant photon 

reflectedbetween the mirrors inside the cavity makes before leaving the cavity. 

 

R1 R2 

Z= 0 Z= L 

Figure 2.12: A Fabry-Perot cavity with facet reflectivities R1 and R2. 
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 Finesse can be defined as: 

                                                   � =
∆����

��
                                               2-32 

 where �� is the resonance full width at half maximum and ∆���� is the free spectral range 

(FSR) that is defined as the frequency spacing between subsequent longitudinal modes.  

                                         ��� =  ∆� =
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��
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The net phase shift between two reflectors in a single round trip is given by 

                                        ∅ =  
����

�
                                                   2-34 

where n is the refractive index of the cavity medium and λ is wavelength of the light-      

source [192-202].   

2.9 Distributed Bragg Reflectors (DBRs) and Interference in   

       Multilayer Films.  

     The simplest example of a one dimensional photonic crystal structure is a Distributed 

Bragg Reflector. Such structures have frequency bands that are called stop bands [198, 200]. 

 Light having a wavelength within the stop-band is unable to propagate within the stack and 

is completely reflected. Such optical bandgaps arise as a result of Bragg scattering from the 

periodic dielectric structure which is similar in nature to the bandgaps that arise in the energy 

spectrum of electrons in a semiconductor crystals, which arise due to Bragg scattering of the 

electrons from the periodic potential of the atoms. 

 The peak reflectivity of a DBR occurs when the wavelength of the incident light equals the 

Bragg wavelength λB of the DBR mirror. At this point, the reflected waves from every period 

of the structure add constructively in the backward direction, thereby enhancing the 

reflectivity [203-205]. 
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 Distributed Bragg reflectors can be created using a stack of multiple dielectric layers as 

shown in Figure 2.13 below: 

 

 

 

 

 

 

 

 

 

 DBR mirrors consist of alternating dielectric layers of different refractive index, nl and nh, 

forming a periodic structure. In a DBR mirror with a peak reflectivity at the wavelength λB, 

the phase accumulated by a wave propagating through one complete period must be π [207-209].  

The micropillar microcavities shown in figure 2.10 can control the radiative dynamics of light 

emission by confining photons vertically by the Bragg mirrors and horizontally by the 

refractive index contrast between air and the semiconductor. In general, it is necessary to 

confine light to precise resonance frequencies with little or no optical loss to obtain a high-

quality microcavity [210-213]. Indeed, scattering by sidewall roughness can decrease the photon 

lifetime inside the cavity [214].  

In a periodic multilayer dielectric mirror, constructive reflection occurs when 

(<neff>Ʌ/2=λ/4), where neff is an effective refractive index. This means for a given pitch Ʌ, 

there is only one wavelength that satisfies the Bragg condition. 

 

      Figure 2.13: Shows the light reflected from a multilayer DBR structure using periodic refractive index thin films [206]. 
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                                      � = �� = 2 < ���� > Ʌ                2-35 

where Ʌ is the pitch of the periodic thickness change and λB is Bragg wavelength [196]. The 

Bragg wavelength is also angle dependent as summarised by equation 2-36 

 

                     ���� (�) = ����(0)��� �
����

����
 ��                      2-36 

Here, Θ is the propagation angle of the cavity photon mode, and neff  is equal to ����� .                                                     

The reflectivity (R) of a DBR can be calculated at the centre of the stopband using equation     

2-37 [186]:  

                                � = 1 − 4
����

����
�

��

��
�

��
                           2-37 

where N is the number of dielectric pairs, nsub is the refractive index of the substrate, nair is 

the refractive index of air and (nl,nh) are the refractive index of low and high index materials 

respectively. Therefore, increasing N and increasing the refractive index contrast of the layers 

leads to a higher reflectivity and wider stopband. Furthermore, the stopband width ∆λ 

increases with increasing refractive index contrast. Figure 2.14 plots the simulated reflectance 

spectra of DBRs with specific numbers of layers from (N = 2, 3 and 4) for nh and nl equal to 

3.6 and 1.405 respectively.  The width of the stopband of a DBRs can be expressed as [215]   

 

                                            ∆� =  
�∆����� 

�����
                            2-38 

  Here, ∆n is the difference in refractive indices for materials used in the DBR, neff is the 

effective refractive index of the DBR and λDBR is the design wavelength which occurs at the 

centre of the stop band. The width of the stop-band for a high number of layers is given as: 
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The reflectivity can be calculated using Fresnel's Equations, which describes the reflectivity 

at each interface at normal incidence as a result of refractive index change [192-193]. 

                                             � = �
�����

�����

�
�

                                  2-40  

Here R is Fresnel reflection coefficient, nh is the high refractive index and nl the low 

refractive index of the layers [192].  

From Fresnel’s equation, the behaviour of the light at the interface between two thin films 

with different refractive indices can be determined [217-219]. For instance, in the case of DBRs 

used in a vertical-cavity surface-emitting laser (VCSELs), only light incident vertically to the 

surface is of interest. This simplifies the description of these structures, as the polarization no 

Fig 2.14: Shows Reflectivity simulation results of DBRs centred at λ0 = 1584 nm (nh-Si) = 3.6, (nl-SiO2) = 1.405 
             on InP substrates with different N values. This Figure was taken from Ref [216]. 
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longer matters at normal incidence. The amplitude reflection coefficient, r, going from layer 1 

having a high refractive index to layer 2 that has a low refractive index is then given by    

                                      � =
��

��
=

�����

�����
                              2-41 

 

Here, Ei and Er are the amplitudes of the incident and reflected electric fields respectively. 

The reflectance (R) can be defined as the ratio of the reflected power to the incident power; 

therefore equation 2-41 can be re written as:   
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                    2-42 

again, it is appears that a larger contrast in refractive index results in a larger reflectance. For 

instance, a glass window with nair = 1 and nSiO2 = 1.452 has a reflectance of 6 %. However, 

for thin film with a higher refractive index contrast with nTiO2 = 2.135 has a reflectance of 14 

%. Equation 2-41 also gives some information the phase shifts at the interface layers. For nh > 

nl, the value of the reflectance will be positive. This means that the electric field of the 

reflected and the incident waves have the same phase. As a result, a π-phase shift has to occur 

at this dielectric-air boundary. For constructive interference all reflections from a DBR have 

to be in phase with each other. Figure 2.15 is a schematic figure of a DBR that highlights the 

phase-shift from each layer in the stack.  
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It can be seen that the total phase shift is π when the light propagates through an odd number 

of multilayers before reflection, but there is no change in phase using an even number of 

multilayers. Furthermore, if the first thin film has a high refractive index, the reflection will 

occur at an interface between high and low refractive index materials, therefore no phase shift 

occurs. This means that an overall π-phase shift occurs for an odd number of multilayers. In 

the case of an even number of multilayers a reflection happens from low-to-high refractive 

index interface, so a π-phase change will happen resulting in a reflection at the surface with a 

π-phase shift. By this way all reflections will leave the surface with the same phase.  

The simplest microcavity can be described by considering the cavity thickness to be a half 

wavelength layer. Such structures correspond to a DBR that includes one layer in its centre 

having twice the optical thickness of the DBR layers [220-234]. This layer can be considered as 

a defect which creates a characteristic defect state. The phase shift of a wave travelling 

through a λ/2 layer equals π, instead of π/2 in all other single quarter wavelength layers of the  

 

Figure 2.15: A schematic cross-section of DBR with light incident from air. In yellow are  
                    phase changes of light propagating through the layer, in red are phase changes due to  
                    reflections with black giving the overall phase of light leaving the surface.  
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DBR. As result, the previous condition for constructive interference on reflection is removed 

and instead destructive interference at the design wavelength occurs [216]. 

To design a planar microcavity with an odd number of layers, the structure must start and end 

with a high refractive index layer; therefore there will be J layers in the structure. The 

reflectivity at λ=λ0 turns out to be [197]  
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where ns, is refractive index of the structure.  

The Q factor of a planar microcavity can be calculated from the reflectivity of the lower (rl) 

and higher (rh) mirrors using [235]: 

 

                                           � =
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�
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where Leff is the effective cavity length .   

 

2.10 Application of multilayer films. 

Distributed Bragg reflectors (DBR) having a high reflectivity are used in many      

applications [236-237], such as a high power distributed Bragg reflector lasers [238], bistable 

diode lasers [239-240], band-pass filters and sensors for some alcoholic compounds such as 

methanol, acetone, ethanol and chlorobenzene [241], high speed optical communication 

devices [242]  and ultra-violet (UV) wavelength emitting light emitting diodes (LEDs) [243]. 
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2.11 Light – matter interaction and enhancement of spontaneous 

      emission. 

     A theoretical description of the interaction between light and the matter was discussed 

by Bohr and Einstein last century. There are three forms of light – matter interaction, 

namely photon-absorption, spontaneous emission and stimulated emission. Photon 

absorption occurs as a result of an upward transition between energy levels in an atom, 

while photon emission occurs following a downward transition between energy levels [244].    

     Controlling the dynamics and directivity of spontaneous emission allows the 

efficiency of light emitting diodes to be enhanced, and the lasing threshold of a laser to 

be reduced. The process of spontaneous emission of light is widely used in 

optoelectronic devices such as light emitting diodes [245-247]. If an atom having two 

electronic levels is inserted into a cavity, it can undergo one of two kinds of coupling, 

depending on the strength of interaction between the atomic system and the cavity mode. 

Firstly, the strong coupling regime occurs when the spontaneous emission involves a 

periodic exchange of energy between the atom and the cavity mode (Rabi oscillation). 

This leads to the formation a doublet (vacuum Rabi splitting). Secondly, the weak 

coupling regime occurs when the atom couples to the part of the continuum that is at the 

same frequency as the atomic transition and undergoes a radiative decay of its         

energy [248].  

Figure 2.16 illustrates the interaction between light and an atom inside a cavity. Here the 

atom is placed inside a cavity and absorbs photons from the cavity modes and then re-

emits photons again into the cavity mode.  
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   Figure 2.16: A two-level atom in a resonant cavity with modal volume that described by three parameters: g0,  

                         κ, and γ. This Figure was taken from Ref [249].  

An important case is when the transition frequency of the atom and one of the resonant 

cavity modes are similar. This leads to a strong interaction between the atom and the light 

field. The strength of the interaction between the atom and the cavity depends on three 

parameters: the photon decay rate of the cavity (κ) that is governed by the properties of the 

cavity, the non-resonant decay rate (γ) and the atom–photon coupling parameter (go) that 

are defined as [250]: 
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Here τcavity is photon lifetime, µ is the emitter dipole moment, εo the vacuum permittivity, 

V is the mode volume and w is the cavity mode resonant frequency. The cavity photon 

decay rate κ is related to the quality factor using equation 2-46. As a result, a high quality 

factor value means relatively small photon loss rates.  
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2-11-1 Strong coupling of the cavity: 

     Strong coupling happens in quantum electrodynamics when the coherent energy 

exchange between the quantum emitters and the light mode is faster than the decay and 

decoherence of either constituent, which means that the atom–photon interaction is faster 

than irreversible processes due to loss of photons out of the cavity mode [251-252]. The 

interaction between light and matter is said to be in the strong coupling limit when          

go >> (κ, γ), where (κ, γ) represents the larger of κ and γ. This makes the emission of the 

photon a reversible process in which the photon is re-absorbed by the atom before it is 

lost from the cavity.  

     As a result, the spontaneous emission rate can be modified by the interaction between 

the emitter and local optical environment. This leads to a modification of the energy 

spectrum of the system, with modes obtained whose frequencies are different from the 

original oscillator modes [253]. Strong coupling in light-matter interactions is a 

fundamental phenomenon in physics that depends on the ratio of the quality factor of the 

cavity to the mode volume Q/V [254]. The absorption spectrum exhibits a characteristic 

doublet structure that arises from vacuum-field Rabi oscillations [255-257]. Strong coupling 

is associated with important phenomena such as polariton condensation [258-266].   

2-11-2 Weak coupling of the cavity: 

     In the weak coupling regime, the modification of the original energies due to the 

coupling is negligible. Here, the emission of a photon by an atom is an irreversible 

process, as in normal free-space spontaneous emission, however the emission rate is 

affected by the cavity. On other words, weak coupling occurs when go << (κ, γ). 

 High-quality cavities can be used to enhance the interaction times and enhance coupling 

strengths. However, in larger cavities the longer round trip for photons to return to the 
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same emitter decreases the coupling, which scales as g ∝ 1/√� , where V is the effective 

cavity volume and g is the coupling energy [267-268]. In this thesis I have concentrated on 

the study of micropillars and photonic crystal cavity structures that operate in the weak 

coupling regime.  

 2-11-3 Purcell effect 

     The Purcell effect occurs when the radiation of an atom in a wavelength size cavity 

is much faster than in free space [269]. Spontaneous emission is modified by the 

environment around the emitter depending on a change in the local density of states, 

with the cavity being able to enhance spontaneous emission [270].  

The integrated probability of transition for each single mode resulting from coupling 

between an emitter and the cavity modes now depends on Fermi’s Golden             

Rule [271-272]. This states that the emitter spontaneous emission rate � at energy (hω) is 

proportional to the local density of optical states ρ(ω) see equation 2-47.  

 

                                        ��→� =
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h
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 �(�)                        2-47 

 

Here |�⟩ and |�⟩ refer to the initial and final states of the emitter, �⃗ is the vector dipole 

moment of transition,  E��⃗  is the electric field at the location of the emitter and ρ(ω) is  

the photon density of states which in free space is given by 
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This emission rate can be enhanced in an optical cavity by comparing the emitter 

spontaneous emission rate Γcav to the free space spontaneous emission rate Γfree using 

equation 2-49 [273]  
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Here Γ [274] is the enhancement in the spontaneous emission rate, Q is the cavity 

quality factor, V mode is the mode volume, λ and λcav are the resonant wavelength of 

the emitter dipole and cavity mode respectively, n is the refractive index of the 

medium [273-275], ��
����⃗   is the amplitude of the electric field at the position of the emitter 

dipole, Emax is the maximum amplitude of the electric field and ∆λ is the linewidth of 

the optical mode [276-277]. 

Equation 2-49 is considered a key description of the Purcell effect and describes the 

modifications on the lifetime of an emitter inside a cavity. The first term in equation 

2-49 depends on the parameters of the cavity, such as the cavity refractive index n, 

effective volume V, wavelength of the cavity mode and quality factor Q.  The second 

term describes the spatial mismatch between the cavity mode and the emitter. The 

third term refers to the density of states of a single cavity mode in Fermi’s Golden 

Rule formula, or in other words, it defines the spectral mismatch between the cavity 

mode and the emitter.  

From equation 2-49, it can be seen that if the atomic transition frequency of an emitter 

is equal to the resonance of the cavity mode (i.e. λ equal to λcav) and possess a dipole 

moment located at the maximum of the electric field, the enhancement of the 

spontaneous emission takes a maximum value that is expressed by the Purcell factor 

FP which is defined as [278] :       
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Note that the Purcell factor depends on the Q/V ratio of the cavity [279-280].  

The enhancement of the spontaneous emission rate is important in many applications 

such as efficient single-photon sources [281], low threshold and ultra-low threshold 

photonic crystal nanocavity lasers [282-283].  

In the 1980’s, Drexhage and Kleppner [274] were the first to demonstrate an enhancement of 

spontaneous emission by 20 times. Brash et al [284] observed an increase in the spontaneous 

emission rate by up to 35 times using an InGaAs quantum dot as a single quantum emitter 

in a H1 photonic crystal where the quality factor was 764. In 2013 Gan et al, demonstrated 

an enhancement of the spontaneous emission rate by 70 times using a two dimensional 

photonic crystal containing a three-missing hole (L3) defect of a quality factor 880 with an 

enhancement in the photoluminescence intensity by up to 5.4 times [285]. A high 

enhancement in the spontaneous emission rate by up to 90 times was achieved by Pisanello 

et al using  H1 silicon nitride photonic crystal resonator with a quality factor of 750 [286].     

2-12 Finite Difference Time Domain (FDTD) modelling  

     Finite difference time domain (FDTD) is a computational method used to compute the 

resonant modes or eigenmodes in a cavity by solving Maxwell’s curl equations in the time 

domain by dividing space and time into a regular grid [287]. The algorithms of FDTD have 

been widely used and applied in microwave circuit problems and in optics for many years 

[288]. The first formulation of FDTD was introduced in 1966 by Yee [289-290]. The first step 

in a FDTD calculation is to divide the structure into a discrete grid which is smaller than 

smallest feature in the structure. The solutions of the Maxwell’s curl equations are then 
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solved sequentially. The electric field E is solved first at a given instant of time, and at the 

next instant the solution of the magnetic field is then solved. This process is then repeated 

until the desired number of time steps is reached. In this thesis a 3D FDTD code (Crystal 

Wave) produced by Photonic Design Ltd [291] was used to study and calculate the optical 

properties of micro-nanocavity structures, such as quality factor and cavity mode structure 

etc. 

2-13 Organic Semiconductors  

     Over the last twenty years, organic semiconductor materials have attracted a significant 

attention as a result of their optoelectronic properties and for their wide range of possible 

applications in optoelectronics and photonics [292-293]. In spite of the fact that inorganic 

semiconductor materials have been widely used in different applications, they frequently 

need to have very high purity and require very accurate processing under demanding 

conditions. Organic semiconductors however, combine ease of processing, tuning of 

optical and electric properties by changing their chemical structure; features that make 

such materials very attractive for optoelectronic applications [294-295].    

Organic semiconductors are materials whose electrical properties lay between those of 

conductors and insulators [296]. They are composed of carbon and hydrogen atoms together 

with heteroatoms such as sulfur, oxygen, and nitrogen [297]. Carbon is the fundamental 

constituent of an organic molecule and can form long chains of alternating sigle and 

double bonds which give rise to their semiconducting properties [298-299]. There are two 

kinds of organic semiconductors; polymers and small molecules or oligomers [300]. 

Organic molecular crystals are formed through van-der-Waals bonds which result in 

significantly weaker intermolecular bonding as compared to covalently bonded 

semiconductors. 
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 Sublimation or evaporation is used to deposit low-molecular weight materials from the gas 

phase however conjugated polymers can only be deposited from solution [301-303].  

 Organic semiconductors also combine other advantages such as the ability to effectively 

absorb light in a thin film only 100 nm thick [304], and to conduct electricity. Chemical 

synthesis [297], can also be used to modify optoelectronic properties [304-305]. Organic field-

effect transistors can also be used in low-cost applications in organic integrated        

circuits [306]. The photoluminescence (PL) efficiency of many organic semiconductors is 

high. They can also have low toxicity and good biocompatibility [307] and high charge-

carrier mobility at room temperature [308].  

Organic light-emitting diodes have been used in different applications such as 

smartphones and large-screen televisions [309], DNA chips and single-photon sources [310]. 

They can also be deposited over both small and large areas, and are easy to integrate with 

conventional technologies [311-312]. Moreover, emission and absorption spectra of numerous 

organic materials can be modified by local electric fields produced by surrounding polar 

solvent molecules [313].  

The formation of a molecular (Frenkel) exciton results from absorption of a photon by a 

molecule [302-303]. In the ground-state, electrons and holes are located in the highest 

occupied molecular orbital (HOMO) in a conjugated molecule. Excitons can be created 

following electronic transfer of an electron from the HOMO to LUMO levels following 

the absorption of light [314-315]. The exciton binding energy in an organic material is higher 

than the exciton binding energy for inorganic semiconductor materials by several orders of 

magnitude [316].  

Due to their enhanced oscillator strength, light – matter interactions can be significantly 

enhanced. By placing an organic emitter possessing a narrow linewidth in microcavity 

having a high quality factor, it may be possible to enhance the radiative processes of the 
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emitter and perhaps enhance quantum efficiency by controlling non-radiative rates.  This 

could be an interesting approach to create new types of low threshold laser devices [317]. 

However, chemical oxidation, low mobility and degradation under environmental effects 

are known disadvantages of conjugated polymers and organic semiconductor materials.   

2-13-1 The Electronic Structure of Organic Molecules  

The properties of a molecular material depend on its chemical structure. For example, the 

backbone of a conjugated polymer is usually composed of a series of carbon atoms 

connected by alternating single and double bonds. The ground state of the single carbon 

atom contains six electrons which are distributed in the following electron configuration: 

1s2 2s2 2p2. The carbon atoms are connected each other by two kind of bond; the first is a 

sigma bond (σ) sp3 hybridized which is the strongest kind of covalent bond. This is 

formed by the overlap of orbitals in an end-to-end style of the atomic orbitals where the 

density of the electrons is concentrated between the nuclei of the bonding atoms. The 

second type of bond is a (π) bond that is formed by the overlap of pz orbitals in a side-by-

side style where the density of the electrons is concentrated above and below the plane 

connecting the two carbon atoms [293-297]. The π bond is responsible for the different 

optical and electronic properties that result from delocalized electrons along the backbone 

of the molecule.  

 The distance between the individual bands of energy levels is called band gap which 

determines the optical properties of an organic semiconductor. The highest occupied 

molecular orbital (HOMO) i.e (highest filled molecular orbital) in a molecule 

approximately corresponds to the valence band while the lowest unoccupied molecular 

orbital (LUMO) i.e (lowest unfilled energy level) corresponds to the conduction band in a 

conventional in organic semiconductor [318-326].   
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2-13-2 Emission of Light in Organic Molecules 

The processes of absorption and emission of light in a conjugated organic semiconductor 

are usually summarised by a Jablonski diagram as shown in Figure 2.17.  

 

 

 

 

 

 

 

                

 

The electronic states in a conjugated molecule are arranged vertically depending on the 

energy levels that start from the ground state (So), then first and second exited singlet 

states (S1 and S2). T1 is the first excited triplet state.  Usually, several processes can occur 

after light absorption. When a molecule is excited to a higher vibrational level of either S1 

or S2, relaxation occurs by internal conversion to the lowest vibrational level of S1 within 

10–12 s or less. Emission of a photon can then occur, with fluorescence lifetimes being 

around 10–9 s. Therefore, internal conversion is usually complete before light emission. 

Generally, fluorescence emission results from the lowest vibrational energy level of S1. 

Phosphorescence can also occur after light absorption. Due to spin conversion, singlet 
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Figure 2.17: Shows a Jablonski diagram, illustrating the processes of absorption, fluorescence and 
                       phosphorescence of light from a conjugated organic semiconductor. 
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excitons in S1 can undergo intersystem crossing to the first triplet state T1, however 

relaxation to the ground state is spin-forbidden. Figure 2.18 illustrates the processes of the 

absorption and fluorescence. In the process of light absorption, the different distinct peaks 

in the absorption spectra occur as a consequence of electronic transitions from the             

0-vibrational level of the ground state to various higher vibrational levels of the S1 state. In 

the emission process, the electron returns from the 0-vibrational level of the S1 to various 

vibrational levels in the ground state. Frequently, the fluorescence spectrum tends to be 

red shifted as emitted photons have less energy than absorbed photons. This phenomenon 

is quantified by a Stokes shift where the energy is lost during internal nonradiative 

relaxation processes [327-335]:   

   

 

 

 

 

 

 

 

 

         

 
         Figure 2.18:  Shows the electronic absorption and emission bands in an organic molecule. 
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2-14 Summary and Conclusion  

In this chapter, I have reviewed theoretically the principle of the photonic crystal. The 

propagation of light in such structures was studied using Maxwell’s equations and physics of 

solid state. Here, Bloch theorem was applied to solve the eigen value problem over the unit 

cell of the structure of the photonic crystal as a result of the periodic function of photonic 

crystals. However, there are some solutions we cannot find. The absence of solutions leads to 

the concept of bandgaps. In a periodic dielectric material, light at a range of frequencies 

cannot propagate, thus creating a photonic band gap (PBG).  When the structure of a photonic 

crystal prohibits the propagation of light in all directions, this means that the crystal possesses 

a complete photonic band gap.  

To create optical nanocavities and micropillar microcavities that can confine light inside a 

volume smaller than a cubic wavelength (λ/n) 3, defects were placed into the structure of such 

a photonic crystal. High quality factor cavities were obtained from such structures, which 

lead to a strong localization of the optical field. This can be used in different applications that 

depend on the control of the spontaneous emission from a quantum emitter. 

  The main internal and external parameters such as filling factor, slab thickness, lattice 

constant, refractive index contrast, symmetry and temperature that influence the size and the 

position of the photonic band gap and the properties of the photonic crystal were discussed.  

Moreover, the theoretical description of the three forms of light – matter interaction between 

light and the matter was discussed. Finite difference time domain (FDTD) as a computational 

method was used to compute the resonant modes or eigenmodes in a cavity by solving 

Maxwell’s curl equations in the time domain. Finally, the optoelectronic properties of an 

organic semiconductor materials and conjugated polymers were studied because of placing 

such materials in the photonic crystal cavities.  
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Chapter 3 
Experimental Methods   

 3.1 Introduction  

     The fabrication and characterization of two-dimensional photonic crystals and micropillar 

microcavities is discussed in this chapter. The fabrication of two-dimensional photonic 

crystals involves four steps: a hard mask deposition, Electron Beam Lithography (EBL), 

resist development and finally dry etching using Reactive Ion Etching (RIE) and Inductively 

Coupled Plasma (ICP). Such fabrication steps will be described in detail. The deposition of a 

thin film of an organic material on the surface of a nanocavity structure and inside micropillar 

microcavities is also discussed. The fabrication of micropillar microcavities similarly 

involves two steps: Electron Beam Evaporation and Focused Ion Beam (FIB) lithography. 

Finally, the photoluminescence (PL) and optical properties of the samples were measured and 

investigated using a number of spectroscopy techniques.  

3.2 Description of nanocavity substrate    

      In this work, freestanding silicon nitride (Si3N4) membranes having a refractive index        

n = 2.1 were used. Such SiN substrates were purchased from Silson Ltd [1]. Silicon nitride is a 

dielectric material having a high refractive index. SiN is widely utilized in silicon-on-

insulator (SOI) semiconductor platforms because the large refractive index difference 

between the SiO2 cladding (∆n ≈ 0.5) and the refractive index of the SiN core allows light to 

be effectively confined. Si3N4 also has high transparency over the infrared and visible 

regions. It can also be integrated into photonic applications, has low optical losses and low-

cost. Silicon nitride has been used in bio-sensing applications at visible and near-infrared 

wavelengths due to its low thermal loss and weak sensitivity to thermal changes [2-14]. 
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     The SiN membranes used were fabricated from a 200 nm SiN layer deposited on a 381 μm 

thick silicon wafer having a maximum surface roughness of about 4 nm. Here, the Si frame 

size was 5×5 mm2 with a SiN window opened by chemical etching having a lateral size of 

0.5 × 0.5 mm2. Such samples are fragile, and care needs to be taken during subsequent 

fabrication processes. Figure 3.1 shows a schematic diagram of (a) the top the SiN 

membrane, (b) a cross-section through the membrane and (c) an image of a real sample. Here, 

my thumb is visible to give a sense of scale.    

      

 

 

 

 

 

 

     Before starting deposition, the SiN membranes have to be cleaned to remove any 

contamination or dust particles from their surface by rinsing in isopropyl alcohol (IPA) for 30 

sec. They are then dried using a nitrogen (N2) gas jet. Finally, the membranes are placed on a 

hot plate at 100o C for 60 sec to evaporate any remaining solvent.   

3.3 Sample Fabrication 

3.3.1 Hard mask deposition 

     The pattering of a Si3N4 membrane starts with the deposition of a hard mask such as poly-

methyl-methacrylate (PMMA) [15-16] or chemical semi amplified resist CSAR [17-21]. 

 

Figure 3.1: Shows (a) a schematic diagram from the bottom of the SiN membrane, (b) a cross-section and 
                   (c) an image of a real sample.  

200 nm                     

381μm 

 

(a) (b) (c) 
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 Here, films have a typical thickness of 200 nm and a maximum surface roughness of ≈ 1.8 

nm. The deposition of this resist is by spin coating at a speed of 4000 rpm. After that, the 

solvent of the hard mask layer is allowed to evaporate by baking the samples at a temperature 

of 180º for 10 minutes. This baking reduced the thickness of the mask layer to 180 nm. 

Figure 3.2 shows the thickness of the PMMA e-beam resist before and after baking at a 

temperature of 180ºc.    

 

 

 

 

 

 

 

3.3.2 Electron Beam Lithography (EBL) 

     Lithography is a process used to transfer a desired pattern or design into a sensitive thin 

film of a resist material. Thermal, x-ray, optical, ion beam and electron beam radiation 

sources are some different techniques that have been used to define a desired pattern into a 

hard mask. The feature size of a design of interest determines the appropriate radiation 

source. For example, optical lithography can also be used to print micron size features 

because of the optical diffraction limit. For this reason, electron beam sources are used to 

create patterns having a feature size of sub-ten nanometers, with very high resolution of a 50 

Ȧ precision possible [22-28].   

 

Figure 3.2: Shows (a) the thickness of the e-beam resist hard mask before baking and (b) after baking.   
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     Electron beam lithography (EBL) is a popular advanced lithography technique in which a 

high-energy beam of focussed electrons is used to expose a pattern having sub-nanometer 

features into an e-beam resist. The advantages of using EBL are that a CAD (Computer-aided 

design) tool can be rapidly changed and used to improve the structure of the samples. This 

flexibility is useful and allows a user to reduce the time and cost of the work. 

     In the work described here, a high performance electron beam lithography system (Raith 

150- Voyager) was used to create two dimensional photonic crystal nanocavities. The EBL 

system is located in the Centre for Nanoscience and Technology at the University of 

Sheffield as shown in figure 3.3 (a). The Raith 150 – Voyager software has its own built-in 

design tools based on the GDSII format. GDSII is a binary format that supports a hierarchical 

library of structures. Here, polygons, circles, open paths, filled rectangles and single dots are 

the basic structures that can be drawn using the GDSII as shown in figure 3.3(b).       

 

 

 

 

 

 

 

      

 

 

 

 

 

(a) (b) 

Figure 3.3: (a) The EBL system located in the Centre for Nanoscience and Technology at the  
                     University of Sheffield, (b) an image of GDSII format software having a library of different 
                     structures.  
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Moreover, the system enables dose rate to be controlled for each element in the design, with 

any part of the structure to be removed, shifted or rotated [29-32]. 

    Three layers were utilized to design two dimensional photonic crystal nanocavities. The 

first layer (layer 0) is used to label the properties of the nanocavities and is called the text 

layer. The second layer (layer 1) defines the structure of 14 photonic crystal nanocavities that 

are located close to the edge of the membrane. Finally, a manual mark layer (layer 2) is used 

to determine the membrane and nanocavity border. Figures 3.4 (a) and (b) illustrate the 

software used to design the structures and an image of the resultant photonic crystal 

nanocavities fabricated. Table 3.1 shows the EBL parameters used in thiswork. 

3.3.3 Electron beam resists 

Electron beam resists are sensitive materials that are based on organic materials / polymers 

that can be developed using specific developers after exposure. There are two type of e-beam 

resist; positive and negative [33]. When the EBL resist is exposed using an electron beam, it 

undergoes a fundamental change in its physical or chemical properties. For a positive e-beam 

resist, the bonds of the polymer chains in the exposed area are broken, creating an increase in 

its solubility in the developer solvent. As a result, a positive image is created in the exposed 

pattern. Negative resists however become insoluble in the developer after exposure and can 

be utilized to produce a negative image of the exposed pattern as illustrated in Figure           

3.5 [34, 35]. The position and the intensity of the e-beam can be controlled using the Raith -150 

to obtain the desired structure.  
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E- beam energy (KV) E- beam current (nA) Dose ( μC/cm2) 
Dose factor 

50 0.46 350 1.8 

Table 3.1 EBL parameter used to fabricate two dimensional photonic crystal nanocavities. 

Figure 3.4: (a) An editing window for photonic crystal nanocavities designed using Raith-150 software. (b) a 
                   SiN membrane window containing 14 PC nanocavities and (c) an image of a PC nanocavity. 

(a) 

(b) (c) 
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3.3.4 Proximity effect correction 

     The most important problem in E- beam lithography is the proximity effect that impacts 

on the pattern resolution. Here, during the exposure process, a beam of electrons collides with 

atoms of the resist or the substrate. As a result, the trajectories of the electrons change in the 

resist or the substrate. This leads to an exposure of an undesired area, causing a deviation and 

distortion in the pattern. Forward and back scattering are two type of scattering in the 

samples. Forward scattering results from electrons being scattered by the resist. Here, 

electrons deflected through small angles lead to an increase the incident beam diameter that 

affects the size and shape of the pattern. The second process is back scattering that results 

from the electron beam striking atoms in the substrate. This leads to an increase of the 

background dose over lateral distances of several micrometres. This phenomenon is often 

known as a proximity effect [36-43]. 

 

 

 
  

Substrate 

         SiN membrane 

 

 
  

Substrate 

         Resist 

         SiN membrane 

Electron beam 

 

 
 

Substrate 

         SiN membrane 

(a) (b) 

Figure 3.5: Shows (a) a positive e-beam resist and (b) a negative e-beam resist. 
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      To overcome or reduce the problem of the proximity effect, higher electron beam 

voltages are often used to expose resists. As a result, the spread of the electrons reduces as 

the electron beam passes through the resist. Back scattering is also reduced due as the high 

energy electrons can penetrate the substrate [44].  Figure 3.6 shows a Monte Carlo simulation 

of forward and back scattering leading to proximity effect. The absorption of energy as a 

function of the beam voltage in the resist (such as PMMA) can be modelled to adjust the 

appropriate exposure for the electron beam [45- 47].   

3.3.5 Resist Development  

     To transfer a pattern to a substrate (such as a SiN membrane), the exposed pattern in the 

resist is developed in a solution called a developer. It is important that the developed resist 

sidewalls are perpendicular. Non-perpendicular resist side walls result from problems with 

either electron beam dose or the development time. In experiments reported here, the exposed 

positive resist was developed for 30 seconds using a 1:3 MIBK: IPA (1:3 methyl- iso-butyl-

ketone: Isopropyl alcohol) solution that is a commonly used developer for PMMA resists. 

The sample was then rinsed for 15 seconds to remove the remaining solution from the 

samples. In other experiments, a Xylene developer (Dimethylbenzene) was used for CSAR 

resists. Here, the exposed resist was developed for 60 seconds with the sample then rinsed for 

30 seconds. Finally, the sample was dried gently using a N2 gas jet for 30 seconds to be ready 

for the etching process [48, 49]. 
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(a) 

X (nm) 

  Beam Energy 5 kV 

PMMA 100 
nm 

Si - Substrate 

PMMA 100 
nm 

Si - Substrate 

  Beam Energy 30 kV 

Figure 3.6: A Monte Carlo simulation of forward and back scattering causing proximity effect  
                    phenomena in a PMMA resist on a silicon substrate at (a) 5 kV and  
                    (b) 30 kV (image taken from technical notes produced by Raith Ltd). 
 

(b) 
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3.3.6 Dry Etching  

     After resist development, a patterned structure is defined into the resist. An etching 

process is then used to transfer the patterned structure from the resist to the substrate using 

either a reactive ion beam etching (RIE) or an inductively coupled plasma (ICP)       

technique [50-56]. Dry etching techniques can be classified into three categories; physical, 

chemical and physical - chemical dry etching. A chemical reaction that uses gases or plasmas 

is used in chemical dry etching to remove substrate materials. Physical dry etching uses a 

high kinetic energy ion beam to knock out the atoms from a substrate’s surface. Reactive ion 

etching (RIE) is a physical - chemical dry etching technique. A dry etching technique is 

distinguished by the use of low temperature plasma that generates free radicals or ions to 

remove material, and does not use any liquid chemicals. This main advantage of this 

technique is the ability to control sidewall through anisotropic etching [52], [57-62].   

3.3.7. Plasma dry etching systems (RIE and ICP) 

     In this thesis, two dry etching systems have been used; reactive ion beam etching (RIE) 

and inductively coupled plasma etching (ICP) to transfer EBL structures patterned in a resist 

to a SiN membrane. These systems have many advantages such as high etching rates, low 

active-layer damage, smooth sidewall morphology, vertical anisotropic etching (producing a 

pattern of narrow lines), and high selectivity to the masking material [63-66].  

     High selectivity is one of the most important issues in the selection of etching gas. 

Fluorocarbon based gasses (halocarbons and hydrogen-rich fluorocarbon) such as CF4 and 

CHF3 can be used to etch a SiN membrane. It is known that adding gases such as Ar or O2 to 

the plasma allows the angle of the hole sidewalls in the structure to be controlled [67-71].      

The mechanism of the etching process can be described as follows; first during etching of  
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SiN3 in a pure CHF3 plasma, a layer of fluorocarbon gradually forms on the membrane 

surfaces. Ions and radicals are created as a result of this process which reacts with the Si in 

the SiN. The etching then starts as chemical species pass through this layer and then are 

converted to volatile products that come out of the system in the gas exhaust. Finally, Oxygen 

is used to control the angle of the sidewalls and remove any remaining resist from the surface 

of the membrane.      

Figure 3.7 illustrates a schematic of the RIE system chamber. Here, upper and lower 

electrodes are positioned between a base where the samples are placed. An electromagnetic 

field is created inside the chamber by connecting electrodes to a radio frequency (RF) power 

source.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: A schematic of RIE system [72]. 
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     By maintaining a gas flow inside the chamber at low pressure, the upper and lower 

electrodes produce plasma (radicals, ions and electrons) and direct the plasma towards the 

surface of the sample thereby enhancing the etching rate [66-67]. Various gas recipes, flow 

rates, pressures, RF power levels and etching times can be used to control the rate of the 

etching process. The value of the etching parameters used in this work is summarised in 

Table 3.2. 

 

 

The final step in the fabrication process is the removal of residual resist from the surface of 

the SiN membrane. This is done using an oxygen asher tool for 10 minutes. Figure 3.8 

summarizes the whole fabrication process used to pattern the SiN membranes. Figure 3.9 

shows four images of SiN photonic crystal L3 nanocavity structures that were fabricated and 

then imaged using a scanning electron microscope (SEM). Figure 3.9 (b) shows an image of a 

SiN photonic crystal L3 nanocavity using PMMA as a resist. Here, unwanted material can be 

seen on the surface of the cavity, whereas Figure 3.9 (c-f) shows images of SiN photonic 

crystal L3 nanocavity patterned using CSAR as a resist. It is clear that the holes in all 

structures are circular in shape having straight side-walls, indicating the cavity is likely to 

have a high quality factor using RIE as a coarse etching system and ICP as a fine etching 

system respectively. The high quality of the nanocavities results from a number of factors, 

including using a high energy E- beam lithography system (50 kV), using different type of  

resists (PMMA and CSAR), dry etching systems (RIE and ICP) and the use of the asher tool. 

Etching 
system 

Gas Gas Rate 
(sccm) 

 

Pressure 
(mTorr) 

RF power 
(W) 

Etching Time 
(min) 

RIE CHF3 40 35-25 75 16 
 

ICP CHF3 30 16 200 10 
 

Table 3.2 RIE and ICP parameters used to etch a SiN membrane. 
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The taper angle of the air holes in the structures can be measured from the underside of the 

SiN membrane using SEM [73] as illustrated in Figure 3.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) A 200 nm SiN membrane 

supported in a Si wafer.  

(b) A 180 nm resist layer spin 
       coated on the top surface of  
       the SiN and then baked at 
       180o C for 10 min. 

(c) An L3 nanocavity structure 
      defined into the resist using EBL. 
      The sample then is developed using 
       Xylene or MIBK: IPA (1:3) solvent.     

(d) The structure in the resist is 
        then transferred into the SiN 
        membrane using a plasma etching 
        system    

SiN 
SiN, 

SiSi
, 

SiN  

Si 

Resist 

SiN  

Si 

SiN  

Si 

Resist 

(e) The residual resist is removed 
        using an oxygen plasma asher.    

Figure 3.8: A schematic showing the fabrication process used to pattern the SiN membranes. 
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(a) 

Figure 3.9: shows (a) The SEM system, (b) shows an image of SiN photonic crystal L3 nanocavity using PMMA as an 
                 e beam resist. (c, d, e and f) a number of different L3 nanocavities structure designed in this work that were  
                 patterned using  CSAR as a resist.  

(b) 

(c) (d) 

(e) (f) 
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     From Figure 3.9 and Figure 3.10, it can be seen that the smallest air hole size is reduced 

from 103 nm to 94 nm, which indicates a side-wall taper angle of around 4o. Taper angles in 

previous work on SiN based photonic crystal nanocavities ranged from 4o
 to 8o

 
[74].  

 

 

Figure 3.10: Shows (a-d) SEM images of four different undersides of the SiN membranes based photonic crystal 
                     nanocavities using a SCAR e-beam resist.  

(a) (b) 

(c) (d) 
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3.4 Electron Beam Evaporation 

     Planar multilayers composed of quarter-wave thin films of periodic low and high 

refractive indices were deposited onto a S151 synthetic quatrz coated substrates in the form 

of a stack using an electron beam evaporation technique. This allowed highly reflecting 

structures called aDistributed Bragg Reflectors (DBR) to be created as shown schematically 

in Figure 3.11. 

 

 

 

 

 

 

Figure 3.11: A schematic depiction of a one dimensional photonic structure called a Distributed 

                       Bragg Reflector (DBR).   

 

     The S151 synthetic quatrz coated substrates used had a thickness of 1.1mm and were 

purchased from Ossila. The substrates were first cleaned in an ultrasonic cleaner bath (Sonic 

3MX) using a dilute 2 % Hellmanex solution for 10 min and then rinsed in dionized water. 

After that, they were cleaned again in an ultrasonic cleaner bath using isopropyl alcohol 

(IPA) for 10 min. Finally, substrates were dried using a N2 gas jet and UV ozone cleaned for 

10 min to remove any remaining IPA. They were then ready for the evaporation process 

using a low temperature reactive electron-beam evaporation system.  

 

 

DBRs 

Substrate 
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      The electron-beam evaporation system is shown schematically in Figure 3.12(a). This is a 

physical evaporating deposition device that uses thermal evaporation created by an electron 

beam to deposit a wide range of materials. The electron-beam evaporation equipment used in 

this work is provided by Angstrom Engineering as shown in Figure 3.12(b). The deposition 

occurs when a target material is placed in a crucible in a high vacuum chamber (around        

8×10-8 mbar). A crucible containing the material to be deposited is then irradiated using a 

high voltage unified electron beam from a charged tungsten filament. This can be used to 

evaporate metal and dielectric materials having very high melting temperatures. These 

materials are then converted to a gaseous state and are then deposited as a thin film coating 

on the substrate of interest [75-82].    

      During the evaporation process, a partial pressure of a reactive gas such as oxygen is 

added to oxidise the evaporating metals, producing a metal oxide thin film on the substrate.  

Here, dielectric mirrors consisting of a number of quarter- wave pairs of TiO2 and SiO2 were 

used. The thickness and the rate of each metal oxide deposition (2Ȧ /s) were controlled using 

a quartz-crystal microbalance. A uniform deposition was obtained by rotating the substrates 

around a fixed axis inside the chamber. The reactive electron beam evaporation system has 

many advantages such as high purity material can be deposited, with any contamination from 

other materials being reduced. A single source can be used to deposit different materials 

using pocket indexing system that moves in a circular motion to provide higher deposition 

rates. Using this technique, DBR mirrors with thickness λ/4n were deposited. A thin film of a 

Red-F polymer having a thickness of 195 nm was then spin-cast on top of a DBR to create a 

λ/2n layer. 

     A second DBR was then deposited onto the top of the organic material at room 

temperature using electron beam evaporation. Micropillar microcavities were then fabricated 

from such structures using a focused ion beam lithography technique. 
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Figure 3.12: (a) A schematic of the electron-beam evaporation system. (b) The electron-beam  
                         evaporation system located inside a glove-box at Sheffield University.  
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3.5 Focused Ion Beam Lithography (FIB) 

     A focused ion beam (FIB) technique was used to fabricate three dimensional photonic 

structures such as micropillar microcavities. Here, a focused beam of Gallium ions was used 

to etch a specific area from a planar microcavity. In this thesis, a FEI Quanta 200 3D 

SEM/FIB was used as shown in Figure 3.13 (a). A FIB system consists of eight parts; a 

chamber, vacuum system, ion source, electron source, sample stage, detector, camera and 

computer to control the melting process. The melting process is shown schematically in      

Figure 3.13 (b). A gallium liquid metal ion source (LMIS) is used in the melting (etching) 

process, with the Ga ions having a much greater momentum than electrons used in            

EBL [83-89].   

   

 

 

 

 

 

 

 

 

 

The melting process occurs under vacuum of 8×10-5 mbar. During lithography, Gallium metal 

is placed in contact with a tungsten needle and heated. Once the emitted ions are extracted 

from the source, they enter an ion column that contains an electrostatic condenser and 

objective lens which accelerates and focuses the 30kV ion beam onto the sample surface, 

with the beam current being in the range from 10 pA to 5nA depending on the desired milling 

Sample  

Stage  

52o  

Electron beam  
Ion beam  

FIB chamber  

(b) (a) 

Figure 3.13: (a) Focused ion beam system (Quanta 200 3D SEM/FIB) in the Sorby centre at Sheffield University, (b) A 
                     schematic showing the melting process inside the FIB system. 
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rate. Here, the sample is placed on a slanted holder at 52o with respect to the ion column. A 

SEM inside the chamber is used to focus the ion beam on the surface of the sample to ensure 

high resolutions etch.  A large quantity of DBR material can be removed by the lithography 

process, allowing the sample to be patterened at a nanometer scale. 

Using this technique, three dimensional micropillar microcavities were created as shown in 

Figure 3.14.  The optical properties of the micropillars microcavities were explored using far 

field optical spectroscopy as described in Chapter 4.   

 

 

 

 

 

  

 

 

Figure 3.14: Shows three dimensional micropillar microcavities that were created using the FIB (a) A 

                     micropillar microcavity having a diameter of 4 μm (b) A vertical image of a micropillar  

                     microcavity having a diameter of 2 μm.     

 

3.6 Atomic force microscope (AFM) 

     An atomic force microscope (AFM) is an instrument that uses a sharp probe to record an 

image from a surface of a specimen. It cab be used to study surfaces at near atomic scale on 

conducting and non-conducting materials and create an image in both vertical and lateral 

directions. During this work, a Veeco-Dimension 3100 (AFM) operating in tapping mode as 

(b) 

2 μm 

(a) 
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shown in Figure 3.15 was used to measure the maximum high and surface roughness of SiN 

membranes and polymers that were spin coated onto their surface.  

An AFM works by allowing a sharp probe at the end of a cantilever to make contact with the 

surface of the sample. When the tip of the sharp probe approaches a surface, the forces 

between the tip and the atoms of the sample deflect the cantilever. By measuring the motion 

of a laser signal reflected from the cantilever using photodiode detector, a three-dimensional 

image can be recorded.  Here, a silicon cantilever (model TESPA- having a force constant 

20-80 N/m and resonant frequency 290-357 kHz) was used. Tapping mode was used to avoid 

sample damage because of lateral forces. The motion of the cantilever is achieved using a 

piezoelectric scanner. Using such techniques, an image of structure topography of a specimen 

surface can be obtained [90-98].       

 

 

 

 

 

 

 

3.7 Organic thin film deposition. 

In this work, spin casting [100] was used to coat polymer films onto the surface of photonic 

crystal nanocavities and other substrates. Here, solutions were prepared by dissolving a     

Red-F polymer in 1, 2-Dichlorobenzene at a concentration of 2.5 mg/ml. A spin speed of 

4000 rpm was then used to produce a thin film of 10 nm thickness having a maximum surface 

(b) 

Figure 3.15: shows (a) Veeco- Dimension 3100 atomic force microscopy device. (b) Schematic of an atomic force microscope [99].   
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roughness of 1.9 nm. A thicker film of 195 nm could be deposited by dissolving Red-F 

polymer in 1, 2-Dichlorobenzene at a concentration of 50 mg/ml using a spin speed of 3500 

rpm.  

3.8 Photoluminescence (PL) Spectroscopy 

     The optical properties of the photonic crystal nanocavities and micropillar microcavities 

were explored using far field optical spectroscopy as illustrated schematically in Figure 3.16. 

Here, a diode laser at 405 nm was used in a dark field configuration to excite the sample at a 

room temperature. The laser beam was focused on the samples using a 100X objective lens 

having a numerical aperture (NA) of 0.77, with a working distance of 6mm and spot size 

diameter of 10 μm. Equation 3-1 shows the relation between the numerical aperture and the 

spatial resolution of the objective lens [101-104].  

                                           R =
�.���

�(��)
=

�.���

�(� ��� �)
                        3-1 

     Here, n is the refractive index of the medium between the sample and the objective lens 

and θ is the half angle of the collection cone of the light. The intensity of the laser beam 

incident on the sample surface was controlled using a neutral density filter. The objective lens 

was placed on a 3D piezo motor stage that moved the lens close to the sample. The emission 

from the cavities was then collected using the objective lens at normal incident from the 

nanocavity surface.  

      A polarizer and a long pass filter having a cut-off wavelength of 488 nm was placed after 

the beam splitter to prevent any scattered or reflected laser beam from entering the 

spectrometer.  Light emitted from the samples was collected using a convex lens having a 

focal length of 20 cm and then directed through a 0.08 mm width entrance slit to a 

spectrometer (Jobin Yvon Triax 320). The advantage of reducing the entrance slit width is to 

control the spectral resolution. The emitted light from the nanocavities was dispersed inside 
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the spectrometer using one of two different gratings having either 1200 lines/mm with a 

spectral resolution of 0.07 nm or 300 lines/mm having a spectral resolution of 0.3 nm. 
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3.16: A schematic of the photoluminescence system used to study the optical properties of the photonic 
         structures explored in this thesis. 
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Finally, the emission from the samples was imaged onto a nitrogen cooled charge coupled 

device (CCD) which is a highly sensitive photon detector [105-106]. The system in Figure 3.12 

was aligned using a white light source and a camera to direct the laser spot on the PC 

nanocavity.        

 3.9 Spectral tomography techniques and K-Space imaging   

     Spectral tomography can be used to obtain information from the micropillar microcavity 

samples. Here, an image from a sample is divided into a number of slices on the entrance slit 

of the monochrometer depending on the size of the slits and the size of the luminescence 

image on the slits as illustrated in Figure 3.17(a). This technique allows the energy dispersion 

of emission to be characterized in a single measurement by projecting the Fourier-image into 

the spectrometer. Fourier space imaging can be used to study the energy of photons emitted 

from a micropillar microcavity along a given azimuth angle [107-111]. 

     Here, by horizontally shifting the imaging lens that is placed at a distance from the 

monochrometer slit, the image that is formed on the slits is displaced. As a result, different 

lines of the initial image are permitted to enter the monochrometer to perform spectral 

tomography on a variety of images. Finally, each slice represents a two dimensional image 

with real or momentum space on one axis and energy on the other. This tomographic 

technique can be used to determine real space and k-space images.  

     In this thesis, the angular distribution of light by quantum emitters coupled to micropillar 

microcavity was investigated. To study the allowed modes and the dispersion relation in our 

samples, K-space imaging was used. In This technique, a Fourier plane imaging lens was 

placed between the objective and the final collection lens with the K-space image being the 

Fourier transform of the real space image [112-116].   

To do this, a Ti: Sapphire laser having a wavelength of 445 nm was focused on the 

micropillar microcavity at normal incidence using an aspherical lens with a NA = 0.63 
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(Edmund Optics 20X), with the PL signal collected through the same optical path using a 

beam splitter. The emitted light was then focused into the spectrometer using a final 

collection lens. For k space imaging, an additional Fourier-plane imaging lens was placed 

before the final lens allowing the Fourier plane to be imaged by the spectrometer. Here, the 

unwanted real space signal was rejected by using a pinhole that was positioned before the 

final collection lens that leads the emission to be spatially filtered as shown schematically in 

Figure 3.17 (b).  
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Figure 3.17 (a) shows the spectral tomographic imaging technique performed in K-space. Here, each of the slices  
                   on the left side corresponds to a specifc ky and has energy versus kx information[106]. (a) A schematic  
                   of K-space imaging system used to study the allowed modes and this dispersion relation in the 
                   micropillar samples studied in this thesis. 
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3.10 Summary and Conclusion 

This chapter discussed the fabrication and characterization of two-dimensional photonic 

crystals nanocavities and three-dimensional micropillar microcavities. Here, all of the four 

fabrication steps for the two-dimensional photonic crystals were performed in the clean room 

of Nanoscience and Technology building laboratories at the University of Sheffield. The 

fabrication of two-dimensional photonic crystals involves four steps: a hard mask deposition, 

Electron Beam Lithography (EBL), resist development and finally dry etching using Reactive 

Ion Etching (RIE) and Inductively Coupled Plasma (ICP). The fabrication of micropillar 

microcavities was also discussed. Electron Beam Evaporation and Focused Ion Beam (FIB) 

lithography were the main two steps to fabricate micropillar microcavities. Here, the 

micropillar microcavities were performed using the Focused Ion Beam (FIB) in the Sorby 

centre laboratories at the University of Sheffield.  The deposition of a thin film of an organic 

material on the surface of a nanocavity structure and inside micropillar microcavities was 

also described. Finally, the photoluminescence (PL) and optical properties of the samples 

were measured and investigated using a number of spectroscopy techniques such as far field 

optical spectroscopy, spectral tomography techniques and K-space imaging. 
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Chapter 4 
The optical structure of micropillar microcavities containing a 

fluorescent conjugated-Polymer 
 

4.1 Introduction 

     Optical microcavity micropillars containing an organic emitter have attracted a significant 

interest as a result of their different applications in optoelectronic devices such as light 

sources for optical communication, quantum computing and quantum information 

technology. These structures allow a three dimensional confinement of light in small volumes 

of the order of few wavelengths of the confined light, providing a considerable opportunity to 

study light-matter interactions and increase the efficiency of  controlling the radiative 

dynamics of single-photon sources [1-11].  

     In this chapter, light emission from a series of micropillar microcavities containing a thin 

fluorescent, red-emitting conjugated polymer film in one dimensional micropillar 

microcavities are investigated. We characterise the photoluminescence emission from the 

cavities using a Fourier imaging technique and find that emission is quantised into a mode-

structure resulting from both vertical and lateral optical confinement within the pillar. We 

show that optical-confinement effects result in a blue-shift of the fundamental mode as the 

pillar-diameter is reduced, with a model applied to describe the energy and distribution of the 

confined optical modes. The results in this chapter have recently been published as Al-

Jashaam et al, Advanced Quantum Technologies, 2019, 1900067.  Here, the Fourier imaging 

results were obtained in collaboration with Dr. Rahul Jayaprakash, and the measurement of 

the quantum efficiency of the Red- F fluorescent conjugated-polymer were obtained by 

collaboration with Dr Kyriacos Georgiou.  
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4.2 Micropillar microcavities structure 

     By defining a pattern into a dielectric material at sub-micron length-scales, it is possible to 

create a structure that can confine photons within a localised volume and thus act as an 

optical cavity [12-16]. By depositing a light-emitting semiconductor within such a cavity, it is 

possible to engineer a range of effects - for example within the so-called ‘weak-coupling 

regime’ it is possible to modify the local density of optical states such that the spontaneous 

emission rate can be modified via the Fermi Golden Rule (Purcell Factor) [17-18]. Such an 

approach is widely used in a range of advanced photonic devices; for example, planar 

resonant cavity light emitting diodes are structures in which an active emissive region is 

placed between two dielectric mirrors forming a 2-dimensional optical cavity [19-23]. The 

resulting optical confinement can be used to enhance the intensity of emission from the 

semiconductor within the cavity and also control its emission-colour [24-25]. 

      A higher level of photon confinement can be achieved in so-called micropillar structures. 

Such structures typically take the form of a 1 dimensional cylinder, in which an emissive 

material is positioned between two dielectric mirrors as shown in Figure 4.1. Such structures 

are usually fabricated from a 2D resonant cavity structure that is vertically etched following 

micro-patterning using electron-beam lithography. Micropillar structures achieve optical 

confinement both parallel to the pillar axis (by in-phase reflection from the dielectric mirrors) 

and normal to the pillar axis through total internal reflection due to the large different in 

refractive index [26]. The high level of sophistication achievable using inorganic 

semiconductor processing techniques has allowed micropillar structures to be realised having 

very high quality (Q) factors [27], with recent pillar-structures demonstrated having Q-factors 

in excess of 250,000 [28]. This strong confinement can be used to realise to engineer 

enhancements in spontaneous emission rates (the Purcell Factor) [29-31], and thus by placing a 
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single quantum emitter in a micropillar, a device can be created that acts as a source of near 

indistinguishable single photons [32].  

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 For this reason, micropillar structures and devices are now being explored as practical 

systems for quantum-cryptography technologies [33,34]. They also allow a range of phenomena 

to be explored, including strong coupling between single photons and a single quantum-      

dot [35, 36] and the realisation of low-threshold polariton lasing [37]. 

 

TiO2 

SiO2 

Photon  
Emission 

195 nm 

77.3 nm 

λ/2n 

113.6 nm 

PFR Polymer 

Figure 4.1: Schematic of micropillar cavity. The distributed Bragg reflectors (DBRs) consist of 
             alternating λ/4n-thick layers of dielectric materials with contrasting index of  
             refraction, where λ is the centre of the mirror stop-band. The active layer is a pure 
             spin-cast film of the conjugate polymer PFR. The micropillar geometry shown is etched into the full  
             planar structure after fabrication. 
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     In contrast to inorganic semiconductors, organic-semiconductors combine the advantages 

of strongly-bound excitons having high oscillator strength which survive to room   

temperature [38], high fluorescence quantum efficiency [39] and ease of processing into thin-

film light-emitting devices [40]. There is thus growing interest in the development of micro-

pillar structures in which the active material is based on an organic semiconductor. Here, 

Adawi et al first reported the fabrication of a micropillar microcavity containing a fluorescent 

molecular dye using an ion-beam etching technique. Using near-field optical imaging 

techniques, it was shown that such structures were able to modify spontaneous emission   

rates [41]. Organic micropillars have also previously been fabricated using a thermal imprint 

technology to pattern a liquid-crystalline molecular dye into pillar shapes on the surface of a 

dielectric mirror. By coating such structures with a thin film of gold, the hemispherical pillar 

geometry-cavities created were shown to support several families of quantized optical   

modes [42]. Other work has used an optical writing technique to selectively change the 

refractive index of a thin film of a biologically produced fluorescent protein by 

photobleaching [43]. Such films were then used as the active layer of a micropillar, with lateral 

photonic confinement leading to a reduction in lasing thresholds compared to an un-patterned 

control. Further approaches to fabrication of laterally quantised states in organic photonic 

structures include the use of advanced shadow-masking techniques. [44] Conjugated-polymers 

operating in the strong-coupling regime have also been engineered into microcavities 

containing a zero-dimensional Gaussian-defect, fabricated by focussed ion-beam milling [45]. 

Such structures have been shown to undergo polariton-condensation at high excitation 

density, and are of interest as analogue quantum simulators. 

Depending on the desired emission wavelength, micropillar microcavities designs with 

different material compositions can be fabricated. For example, single-mode stimulated 
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 emission at a wavelength of 510 nm using micropillar microcavity having a diameter of 

3.5μm based on II-VI semiconductors was observed by Kruse et al [46]. Additionally, 

micropillar microcavities emitting in the blue wavelength was achieved by Nathan et al [47]. 

Moreover, an organic film placed in micropillar microcavities emitting in the red wavelength 

was achieved by Adawi et al [48]. Such structures have been shown to enhance spontaneous 

emission rate of organic dyes by a factor of 1.78 times [41].  

Here, we have explored the optical structure of a micropillar containing a thin film of a 

highly fluorescent red-emitting conjugated polymer. Following our previous methodology [41] 

using a focussed ion beam to directly pattern a planar cavity, we have created a series of 

micropillar structures characterised by a number of optical modes. We image the 

luminescence from such structures using a Fourier-technique and use an optical model to 

provide a comprehensive description of the cavity mode structure. We note that the polymer 

used in our cavities is typical of many conjugated organic-semiconductors used to create high 

efficiency light emitting diodes, and thus our work represents a step towards the development 

of new types of electrically-driven light-sources. Importantly, we believe the techniques used 

here could be used to create lattices of micropillars in which there is a delocalised band-

structure within the plane of the substrate. Such systems are currently receiving significant 

interest as structures in which there is a unidirectional flow of a polariton wave packet around 

the edge of the lattice, forming a topological insulator [49].   

4.3 Experimental methods 

4.3.1 Preparation of the samples 

A schematic of the micropillars fabricated is shown in Figure 4.1. To create such structures, a 

dielectric mirror (Distributed Bragg Reflector [DBR]) consisting of a number of quarter-wave 

pairs of TiO2 and SiO2 (n = 2.135 and 1.452 respectively) was first deposited on a quartz 
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substrate. Here, we used the TiO2 as it has a high refractive index ( > 2.1), lower optical 

absorption which is ten times less than silicon, small thermal expansion coefficient and a high 

degree of transparency over the visible spectrum. Such material is also a desirable candidate 

for photonic crystal engineering [50].   

The DBR was designed to have a centre-wavelength of 660 nm to coincide with the peak of 

the fluorescence of the organic semiconductor. Here, all dielectric films were deposited using 

electron-beam evaporation from TiO2 and SiO2 sources that were placed in graphite 

crucibles. The growth of the individual layers in the DBR was monitored using a quartz-

crystal microbalance (deposition rates maintained at 2 Ås-1), with each TiO2 and SiO2 layer 

having a thickness of 77.3 and 113.6 nm respectively. The reflectivity of a DBR consisting of 

TiO2 / SiO2 mirror pairs is shown in Figure 4.2 along with its simulation obtained using a 

standard transfer matrix model. As is can be seen, the reflectivity stop-band extends from 546 

nm to 734 nm, with the maximum mirror reflectivity being around 96% at 660 nm. 
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Figure 4.2: Shows the reflectivity spectrum of the bottom DBR with its simulation. 
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A 195 nm thick film of the polymer PFR was then spin-cast onto this DBR from a 

dichlorobenzene solvent. PFR was chosen as it has a high fluorescence quantum efficiency of 

45%, and emits luminescence that peaks around 660 nm. Figures 4.3(a) and (b) show the 

chemical structure of PFR and its UV-V is absorbance and fluorescence emission 

respectively. As it can be seen, the peak of the PFR emission approximately coincides with 

the centre of the DBR stop-band. A second DBR (8.5 pairs TiO2 / SiO2) was then deposited 

onto the surface of the PFR film, forming a planar microcavity. Transfer matrix modelling 

indicates that this cavity supports a  λ /2 modes around 650 nm, with the cavity having an EM 

field antinode positioned in the centre of the PFR active layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The conjugated polymer PFR. (a) Chemical structure of PFR and (b) its absorption (blue) 
                  and photoluminescence (red) spectra.   
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Before fabricating the planar cavity into micropillars, we have firstly characterised the optical 

properties of the un-patterned cavity. This is shown in Figures 4.4 (a) and (b) respectively, 

where we plot white-light reflectivity and photoluminescence emission (PL) recorded as a 

function of angle. Here, measurements were made using a goniometer system, which used a 

series of lenses to deliver or collect light from the cavity surface that were coupled to optical 

fibres. White light (for reflectivity measurements) was generated using a fibre coupled 

deuterium halogen lamp, with luminescence generated using light at 405 nm from a Thorlabs 

continuous wave laser. In all cases, spectral measurements were made using a fibre-coupled 

Andor Shamrock SR-303i-A triple-grating imaging spectrograph, with a focal length of 

0.303m. The spectra were recorded using a 300 grooves / mm grating blazed at 500 nm, 

where the smallest angle at which white light reflectivity could be measured was 12°, 

although PL emission could be recorded at all angles including normal incidence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Shows the planar cavity characteristics. (a) Angle-resolved reflectivity of the unpatterned 
                   full cavity (DBR-PFR-DBR). The confined cavity mode is evident as a dip in the 
                   reflectivity in the centre of the DBR stop-band. (b) Angle-resolved photoluminescence of 
                   the un-patterned full cavity. The emission is limited to the spectral range 600-675 nm, 
                   constrained by the overlap of the cavity mode with the PFR film emission spectrum. At 
                   high angles a slight TE/TM splitting can be observed in both reflectivity and 
                   photoluminescence.  
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It can be seen in Figure 4.4 (a) that the white-light reflectivity is characterised by a broad 

stop-band onto which a sharp dip is apparent; a feature that corresponds to the cavity mode.  

This mode has a strong angular dispersion which we can fit using a transfer-matrix model 

(see dashed line). We find that the PL emission as shown in Figure 4.4 (b) undergoes a 

similar angular-dependent dispersion, however emission is approximately concentrated over 

the angular / wavelength range 0 - 50° (675 – 600 nm). This angular / wavelength range is in 

fact defined by the emission properties of the PFR, which emits PL at wavelengths longer 

than approximately 575 nm. Interestingly, we observe some splitting of the cavity emission, 

with this effect observed both in reflectivity and in emission.  

We have used such planar cavities to construct micropillar devices. Here, a FEI quanta 200 

3D ion-beam lithography system was used to write a series of micropillar structures into the 

cavity surface as illustrated in Figure 4.5 (a). This was done using a 30 keV beam of Ga ions 

that was directed to the microcavity surface at normal incidence to write a series of circular 

trenches of depth 5 μm having diameters between 4 and 11 μm. To avoid charging the surface 

of the sample during ion-beam writing, the planar microcavity was coated with a 10 nm thin 

film of gold. This gold film remained on the micropillar surface, with a transfer-matrix model 

indicating that it slightly attenuated the PL emitted by the structure by around 16%. An SEM 

image of a typical micropillar (in this case having a diameter of 11 μm) is shown in Figure 

4.5(b).  
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4.3.2 Results and discussion 

We have characterised the emission from our cavities using a 405 nm semiconductor laser 

that was focused onto the sample surface in a spot having diameter of 10 μm. The emitted PL 

from the micropillars and some of the surrounding un-patterned cavity was collected through 

a 0.7 NA lens and directed into a 0.25 m nitrogen-cooled charge-coupled device (CCD) 

spectrometer having a spectral resolution of 0.5 Å, with all measurements performed in air 

and at room temperature. Here, the use of high NA lens collects all light emitted in a forward 

cone of ± 44.4°. Photoluminescence emission from an un-patterned region of the cavity is 

shown in Figure 4.6 (a) together with emission from pillars having a diameter of 4, 6 and 7 

μm. When this un-patterned cavity is etched into a micropillar, we find a significant evolution 

in emission pattern, with emission now characterised by a series of sharp peaks having a  

 

10μm 

Figure 4.5: Micropillar array. (a) Optical microscope image of micropillars etched out of full planar 
                 cavity, with diameters indicated. (b) SEM image of a typical micropillar with 11 µm diameter. 
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 typical FWHM linewidth of 1.8 nm. In the figure, it can be seen that this mode undergoes a 

progressive blue-shift as pillar diameter is reduced as illustrated in Figure 4.7. Here, the 

planar cavity emission wavelength of 670.9 nm was recorded as shown in the blue straight 

line. The micropillar microcavity fundamental mode wavelength then decreased as the pillar 

diameter decrease as shown in the red curved line.  We also find that as pillar diameter is 

reduced from 11 to 4 μm, the spacing between adjacent modes increases, with the 

fundamental cavity mode undergoing a blue shift of around 5.3 nm.   

To gain further insight into the origin of the optical modes observed in the spectra shown in 

Figure 4.6, we have performed Fourier-space (k-space) imaging of the pillar emission. This 

technique permits the energy dispersion of emission to be characterised in a single 

measurement by projecting the Fourier-image of the pillar directly onto the slits of a 

spectrometer (Andor Shamrock SR-303i-A). This was achieved by placing a Fourier plane 

imaging lens between the objective (Edmund Optics, NA = 0.6) and the final collection lens. 

It should be noted that the real-space image has been spatially filtered to extract k-space 

emission from just the pillar and reject emission from the surrounding un-patterned cavity 

region.  Typical energy-angle dependent photoluminescence dispersion data recorded from an 

un-patterned cavity region is shown in Figure 4.6 (b), with emission from 4, 6 and 7 μm 

diameter pillars shown in Figures 4.6 (c), (d) and (e) respectively. We can use the emission 

dispersion curve of the un-patterned cavity (Figure 4.6 (b)) to determine the cavity Q-factor. 

Here, we find that the PL emission linewidth at k = 0 is 1.3 nm, corresponding to a cavity Q-

factor of 520.  
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On etching the planar cavity into micropillars, it can be seen that the cavity mode dispersion 

is characterised by a series of optical modes having an approximately parabolic dispersion. 

As the diameter of the micropillars is reduced, we find that emission is dominated by two 

discreet modes that are evident between 662 and 665 nm (corresponding to angles 0               

to ± 10°), together with a series of modes that are less well defined that exist at higher energy. 

 

 

 

 

 

Figure 4.6: Confined micropillar optical modes. (a) Integrated emission from an un-patterned region of the cavity 
                   (planar cavity) and three micropillars, revealing significant additional structure due to 1- 
                   dimensional confinement. The gradual red-shift of the primary cavity mode with increasing 
                   diameter is highlighted. (b) Fourier-space imaging of un-patterned region photoluminescence 
                    reveals no structure aside from TE/TM splitting at high angles. Equivalent measurements on 
                    (c) 4 µm, (d) 6 µm and (e) 7 µm micropillars reveal finer mode structure. Emission through 
                   additional modes is particularly evident in 4 µm micropillars. 
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We have also performed real-space tomographic imaging of the pillar emission using a slight 

modification of the Fourier-space imaging setup described above. Here an additional lens was 

placed between the imaging and final collection lenses, forming two telescopes that result in 

an overall magnification of 113X. By scanning the piezo-controlled final collection lens 

across the spectrometer slits (x-axis), and by extracting intensity data from pixels along the 

CCD columns (y-axis) we can precisely map the real-space energy distribution of the 

emission and thus energetically map the optical mode-structure of the pillars.    

A series of real-space tomographic images recorded from a 4 μm pillar at wavelengths 

corresponding to four distinct modes are shown in Fig. 4.8 (a). From a comparison to the k-

space distribution and modelling (see below) we assign these modes as E0,1, E1,1, E0,2/2,1, and 

E3,1. The fundamental mode is centred on the middle of the micropillar, although it is found 

to be slightly asymmetric. This asymmetry is most likely attributed to a slight ellipticity 

arising from the FIB etching of the planar cavity; an effect that is also evident in the E1,1  

 

Figure 4.7: Shows the relationship between the cavity fundamental mode wavelengths with micropillar diameter. The  
                   blue straight line indicates to the fundamental mode of the planar cavity. The micropillar microcavity 
                   fundamental mode wavelength as a function of the pillar diameter is shown in the red curved line.  
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mode. By contrast, the higher order modes have larger mode volume and appear less affected 

by the slight ellipticity of the pillar. We note that the mode labelled E0,2/2,1 is in fact a 

combination of two distinct modes (a four-lobed structure around the pillar perimeter and a 

single peak in the pillar centre) that are too close in energy to be separately resolved by our 

system. In the E3,1 mode most emission occurs from the perimeter of the pillar and can thus 

be assigned to a whispering-gallery mode. 

To understand the origin of such modes, we have modelled the cavities using Schrödinger’s 

equation for a particle in an infinite circular well, which in the relevant polar coordinates is 

given by  

               −
ħ�

�µ
�

��

���
+

�

�

�

��
+

�

��

��

���� ψ(r, �) = �ψ(r, �)                     4-1  

      

Here, ψ(r, �) corresponds to the real-space wavefunctions, � to their respective 

eigenenergies and µ the effective mass of a photon which is ~ 10-5��
 (where ��

 is the 

effective mass of an electron). Taking into account appropriate boundary conditions defined 

by the cavity geometry, equation 4-2 summarises the energy of the various confined optical 

states within the cavity.  

                                 �(�,��) =
ħ�

�µ�� ��(�,��)�
�
                   4-2 

      

Here � is the azimuthal quantum number, �� is the radial quantum number, � is the radius of 

the circular well and �(�,��) is the ��-th zero of the regular Bessel function ��(�). The 

wavefunction of the various azimuthal and radial modes is then given by 
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                          �(�,��)(�, �) = �(�,��)�� �
�(�,��)

�
�� ����                 4-3 

    

where �(�,��) is a normalisation factor calculated using 

 

                                       2�. �(�,��)
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�(�,��)

�
�� ���

�

�
= 1                    4-4 

       

The wavefunction in Fourier space is then obtained by integrating the wavefunctions in real-

space using 

 

     �(�,��)(�) = ∫ �(�,��)(�, �) . exp ���������(�)�� . �����            4-5 

 

where � is the wavevector. This yields the following solutions of the circular micropillar. 

 

                  �(�,��)(��) = �(�,��)
��(���)

�(�,��)
� �����

                                      4-6 

       

The spatial distribution of the modes calculated using the model is plotted in Fig 4.8 (b). It 

can be seen that there is an excellent match to the real-space tomographic measurements, 

both in mode distribution and energetic position. We superimpose the calculated energies of 

the various modes onto the dispersion data shown in Fig 4.8 (c) and also plot their 

corresponding Fourier-space distributions in Fig 4.8 (d).  
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Figure 4.8: Real- and Fourier-space distributions of micropillar modes. (a) Real-space tomographic 
                 images of the 4 µm micropillar, measured at 664.8 ± 1 nm (E0,1), 662.6 ± 1 nm (E1,1), 
                 658.3 ± 1 nm (E0,2/2,1) and 654.4 ± 1 nm (E3,1). The emission intensity corresponds 
                 directly to distribution of the confined optical modes within the pillar. (b) Corresponding 
                 calculated real-space distribution of the various confined modes. The micropillar centre is at 
                 the origin in parts (a and b. c) Fourier-space image of the 4 µm micropillar, reproduced 
                 from Figure 5c. Dashed lines indicate the calculated energy of the various optical modes in 
                 the structure (see text for details). It can be seen that emission is dominated by the E0,1 and 
                 E1,1 modes. (d ) Calculated Fourier-space distribution of each mode. 
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It can be seen that the modes that dominate the micropillar emission correspond to modes E0,1 

and E1,1. These modes are predominantly localised within the centre of the pillar, with the 

emission from modes having higher azimuthal and radial quantum number being relatively 

weaker in emission intensity. This observation most likely indicates that modes that are closer 

to the pillar walls are more likely to suffer from scattering-induced loss mechanisms as a 

result of roughness caused by the focussed-ion beam lithography process. 

4.3.3 FDTD modelling 

     We have also used finite difference time domain (FDTD) simulation method to predict 

and analyse the emission spectra series of micropillar structures [51-54]. Here, the micropillar 

structure was explored using a Lumerical FDTD program with the design of the structure 

shown in Figure 4.9(a). A micropillar microcavity consisting of TiO2 and SiO2 stack having a 

diameter of 4 μm was designed for the simulation process. The thickness of the organic 

material used in the modelling was then calculated using transfer matrix software as 

illustrated in Figure 4.9 (b). This program allows the thickness of the organic material to be 

adjusted to determine the required cavity mode wavelength    (660 nm).    
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Figure 4.9: (a) shows a schematic of a micropillar cavity and an organic material was embedded in the 
                   centre by using Lumerical FDTD program. (b) The thickness of the used organic material 
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A source was placed on the micropillar at a placed defined by the arrow place as shown in 

Figure 4.9 (a). The emission from the micropillar was then recorded using a sensor on the top 

of the micropillar. The emission was found to be consistent with the results from experiments 

as shown in Fig. 4.10. Here, in Figure 4.10 (a) the calculation indicates a series of sharp 

peaks having a fundamental mode of 665 nm, and another sharp peak of 660 nm. To compare 

these results with the experiments, Figure 4.10 (b) plots far-field emission from a micropillar 

microcavity designed having a diameter of 4 μm. Here, the structure has a fundamental mode 

of 665.5 nm, and another sharp peak of 662 nm. 

It can be seen that there is a good agreement between the fundamental mode wavelength 

between the simulation and the experimental measurement. There is however a difference of 

2 nm for the second peak between measurement and FDTD simulation. This could be due to 

errors in the fabrication process.        

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Shows the emission spectra from a micropillar with a diameter of 4 μm using (a)  
                       Lumerical FDTD program. (b)  Experimental measurement.    
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The series of emission peaks are characteristic fingerprint of Whispering-gallery modes, 

resulting from closed circular waves trapped by total internal reflection (TIR) inside an 

axially symmetric dielectric body [55-65]. As a result of this three- dimensional confinement, 

the optical mode spectrum is split into a set of discrete states as given by [66]    

 

                   ���
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where E� =   h c k�/ √ε   is the energy of the un-patterned cavity and k0 is the corresponding 

wave vector. In the case of a circular cavity with perfectly reflecting sidewalls, the energies 

of the optical modes in Figure 4.10 can be expressed  
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where Eo here is the energy of the fundamental cavity mode, R is the radius of the pillar and 

x 
���

,  ��
,  is the nrth zero of the Bessel function, that describes the separation of the wave 

equation in cylindrical or polar coordinates as a result of using the function of zero order as a 

solution to the problem of an oscillating chain suspended at one end [67-72]. Here, Equation 4-8 

was used to calculate the energy of the fundamental optical mode  ���
,  ��

for the micropillar 

microcavity having a diameter of 4 μm as shown in the appendix A.  

 

 

 



Chapter 4                                The optical structure of micropillar microcavities 
                                                  containing a fluorescent conjugated-Polymer                          

129 
 

4.4 Summary and Conclusion 

In summary, we have fabricated micropillar structures that contain a red-fluorescent 

conjugated polymer. We have characterised the optical mode structure of such pillars using 

combined white-light reflectance and photoluminescence emission (recorded using both far-

field and Fourier-space imaging techniques). Structures having a Q-factor of 520 were 

deserved in a 4 μm diameter micropillar.  

We characterised optical emission properties for such cavities and observed a gradual blue-

shift of the energy of all cavity modes as the pillar diameter is reduced. A series of emission 

peaks deserved are characteristic of whispering gallery mode spectra from micropillars.  

Optical modelling of the pillar emission on the basis of the Schrödinger equation was also 

successfully used to describe the distribution of the cavity modes, with modes localised 

towards the centre of the pillar dominating the emission. A Lumerical FDTD program was 

used to simulate the experimental results and a good agreement was obtained. 

 The fabrication of such structures based on the use of focussed ion-beam now presents an 

exciting opportunity to explore polaritonic effects in micropillars. It has been shown that 

molecular dyes dispersed into a polymeric matrix undergo strong-coupling and lasing [73] 

when fabricated into a 2-dimensional (planar) microcavity. It will be interesting to utilise 

such material systems in a micropillar to explore whether polariton condensation and lasing 

thresholds can be reduced. Furthermore, organic semiconductors can also be diluted into an 

inert matrix at low concentration, allowing single chromophore emission to be identified 

from spatially-separated molecules [74,75]. If such single-chromophore emitting films were 

placed in a micropillar, it would potentially offer a route to creating high repetition-rate, 

single-photon light sources that operate at room-temperature. Finally, there are opportunities 

to study optical-band structure within two-dimensional lattices of such micropillar structures. 
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Chapter 5 
The optical properties of L3 Silicon Nitride photonic 

crystal nanocavities 
5.1 Introduction 

  The Study of optical nanocavities based on photonic crystal slabs (PCSs) has received high 

attention as a result of possible optoelectronic device applications such as optical sensing, 

enhancement of spontaneous emission, low-threshold lasers and optical switching [1-5].      

Two dimensional (2D) photonic crystals (PC) having dimensions of the order of the cubic 

wavelengths defined into thin periodic optical structures of dielectric semiconductors can also 

control light propagation at the nanoscale [6-16].  

By deliberately introducing a physical defect into a 2D photonic crystal, an optical 

nanocavity can be formed where light can be effectively confined. Such structures can act as 

nanocavities with high quality factors (Q) and very small modal volumes (V) with the 

resultant high Q/V values resulting in an enhancement of the radiative rates of emissive 

emitters placed on the surface of the cavity by means of the Purcell effect [17-20]. 

 The majority of ongoing work in this field has focused on PCs structures having high 

refractive index based on III-V semiconductors such as GaAs and silicon that emit in the near 

infrared (NIR) [21]. Organic materials such as PMMA, polystyrene are transparent at the 

visible wavelength and are of interest for material for nanocavity applications. However, they 

cannot strong confine of the light as a result of their low refractive index which leads to high 

optical losses and thus low quality factor nanocavities [22].  

 Consequently, to create a two dimensional nanocavity working at visible wavelengths 

requires the use of a high refractive index material that is transparent at the visible 

wavelengths. 
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 Gallium nitride (GaN), AlN, InGaAlP, diamond and TiO2 are materials that have been used 

to design photonic crystals that emit at violet-green and red wavelengths respectively. Such 

materials have some disadvantage as nanocavities require the fabrication of a high-quality 

periodic structure with a lattice constant between 100 and 200nm and these materials can 

have rough surfaces, poor structural properties and are difficulty to pattern. However, silicon 

nitride has been utilized for nanocavity application as a result of its emission at yellow to red 

wavelengths at room temperature [23].  

To create a high quality factor nanocavity, Adawi et al were the first authors to use a hybrid 

structure that combined a semiconductor having a high refractive index that is transparent at 

visible region with an organic material having a high photoluminescence quantum efficiency 

that was deposited onto the nanocavity structure using either a spin casting or a thermal 

evaporation technique [24].  

In this chapter, SiN membranes are used as a thin dielectric slab to create a PC nanocavity 

that emits light at visible wavelengths. Here, the optical properties of two dimensional 

photonic crystal nanocavities are explored with hole size, lattice constant and hole shift being 

varied to improve cavity quality factor. A cavity with quality factor up to 1100 was obtained 

as a result of modifying the size and location of the air holes around the nanocavity; a value 

that is 6 times higher in comparison with an unmodified structure. Finally, the optical 

properties of the nanocavities in SiN membranes coated with an organic emitter are explored 

using fluorescence spectroscopy.  

5.2 Silicon Nitride photonic crystals 

Silicon nitride (Si3N4) is a wide-band gap semiconductor that has been used to fabricate 

photonic crystals having band gaps in the wavelength range between 500 nm and 875 nm [25].  
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Si3N4 is a polymorphic dielectric material composed of silicon and nitrogen having refractive 

index of (n ≈ 2.1). It is transparent at visible wavelengths with the bonds that bind silicon to 

nitrogen being about 70% covalent and 30% ionic [26-27]. Thin films of silicon nitride, silicon 

oxynitride SiOxNy and silicon-on-insulator (SOI) are widely used in integrated circuit 

technology and electronic device applications [28-29].   

The wide use of Si3N4 comes from its useful properties including high refractive index and 

compatibility with standard technology of complementary metal oxide semiconductor 

(CMOS). Furthermore, scattering and two-photon absorption (TPA) close to infrared 

wavelengths is low. Si3N4 has also been explored for bio-sensing applications at visible and 

near-infrared wavelengths due to its low thermal loss and weak sensitivity to thermal   

changes [30-31]. 

 Si3N4 also has favourable mechanical properties such as high strength, high hardness, 

chemical corrosion resistance and a high chemical stability [32-37]. This is useful properties as 

it allows established etching processes to be used with designs being easy to transfer from the 

e-resist to the SiN membrane [10-24-38].  However, it is weakly luminescent [39] with broad PL 

emission that peaks around 600 nm with a full width at half maximum (FWHM) of 200 nm as 

illustrated in Figure 5.1 (a). The broad emission has been attributed to quantum confined 

emission from silicon nanocrystals in the SiN structures or emission from defects and 

interface states. Figure 5.1(b) shows the basic building unit of Si3N4 which is a silicon-

nitrogen tetrahedron, in which Si is bonded to four N atoms.   
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Confinement of light in a two dimensional photonic crystal nanocavity occurs through both 

total internal reflection (TIR) at the membrane – air interfaces and horizontally as a result of 

the photonic band gap created by differences in the refractive index of air holes and patterned 

dielectric [40-42].         

The quality factor of such structure is determined through radiation losses from the 

nanocavity surface as illustrated by equations 5-1 and 5-2,  
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Figure 5.1: Shows (a) the photoluminescence (PL) emission of SiN, (b) a basic tetrahedral unit in Si3N4 [27]. 
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Generally, differences between experimental and theoretical values of the Q factor result 

from imperfections in the fabrication of the nanocavities. There are two types of losses; the 

first is scattering loss resulting from structural imperfections in the air holes, which can be 

reduced by modifying the design of the air holes. The second process is absorption loss that 

can be reduced using materials having relatively a high refractive index [43]. Equation 5-3 

shows the relation between absorption coefficient of the materials and the cavity Q factor.  

                                                       � =  
����

��
                                   5-3 

where no, α and λ are the refractive index, the absorption coefficient of the material, and the 

resonant wavelength of the cavity respectively [42-44].  

Netti et al have experimentally shown the existence of a complete PBG in a SiN based 

photonic crystal waveguide using a broadband waveguide characterization [45]. A high quality 

factor up to 45,000 was obtained experimentally by Akahane et al using L3 (three missing air 

holes) defect that was the first type of photonic crystal nanocavity. A number of attempts 

have been reported on the fabrication and characterisation of S3iN4 photonic crystal 

nanocavities [46]. Makarova et al studied the emission properties of Si-rich S3iN4 photonic 

crystal membranes. They demonstrated optical modes between 600-800 nm in a L3 

nanocavity structure, reporting Q-factors in the range of 200-300 that resulted in a seven 

times enhancement of the photoluminescence intensity [47]. Adawi et al in later used a guided 

mode expansion method to demonstrate that full band-gap exists in non-modified L3 

nanocavities having a refractive index as low as 1.6. They predicted that the quality factor in 

such structures increases in a super-linear fashion with the refractive index of the photonic 

crystal membrane. However, by shifting the nanocavity side holes, the cavity quality factor  
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should improve by a factor of three times for cavities based on a dielectric with n=2.45, and 

by a factor of 10 times for n = 3.4 as illustrated in Figure 5.2 [48]. 

 

 

 

 

 

 

  

 

 

 

Adawi et al later reported an L3 nanocavity photonic crystal based on a free standing silicon 

nitride (SiN) membrane that was coated with a thin-film of a fluorescent molecular-dye 

having a quality factor of 2650 [49].       

5.3 The thickness of a Silicon Nitride membrane  

The dielectric slab thickness used to create a nanocavity has a high influence on the position 

and the size of the photonic band gap. If the slab thickness is too thick, higher order modes 

can be supported with little cost in energy. Therefore, such modes will take a position slightly 

overhead the lowest-order mode to prohibit the formation of an energy gap. If the thickness 

of the slab is around one wavelength or more, some energy cost is required to produce 

higher-order modes [50-52]. However, such modes cannot be supported by the slab if its 

thickness is less than half a wavelength [53].   

 

Figure 5.2: The Q-factor of a three missing air hole nanocavity as a function of the outside hole 
                  displacement S, and refractive index n. This Figure was taken from ref [48].  
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The optimum slab thickness (h) has been estimated by Johnson et al is expressed using 

equation 5-4 

                                  ���� �ℎ������� ℎ ≈  
�

������������√�
                     5-4 

Here, the slab thickness h is in units of a (the lattice constant) and ω����������  is the angular 

frequency expressed in units of (a/c) where c is the speed of light and ɛ is the effective 

dielectric constant. The impact of slab thickness on the photonic band gap in a Si3N4 was 

investigated by Pisanello et al. They observed that a PBG existed for t = 0.7a which then 

vanished when the slab thickness was increased to 1.55a [54]. In a two dimensional photonic 

crystal, it is necessary to use a S3iN4 membrane thickness in which the reflectivity is high at a 

wavelength coinciding to the required photonic band gap wavelength. Here, the reflectivity of 

a 200 nm SiN membrane thickness was calculated using the complex matrix form that 

depending on Fresnel equations [55]. Figure 5.3 illustrates the membrane reflectivity as a 

function of wavelength; here it can be seen that reflectivity spectrum covers a broad range of 

the visible spectrum (425 nm to 775 nm) and peaks 540 nm.  

  

 

 

 

 

 

 

 

 Figure 5.3: The reflectance of a 200 nm thick of SiN membrane.  
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5.4 Fabrication of an L3 Two Dimensional SiN based 

      Photonic Crystal Nanocavity 

Two dimensional photonic crystal nanocavities of the type Ln, where n is the number of 

missing holes, have attracted high attention because of their applications in various fields 

such as low threshold nano-lasers and single-photon emitters for quantum         

communication [53-56].  

The structure explored in this chapter is termed an L3 (three missing holes) nanocavity 

designed in a hexagonal 2D photonic crystal membrane. This form of cavity was first 

explored by Akahane et al [46]. The cavity was defined in a Si PC membrane, with the side 

holes on the long x- axis of the cavity being shifted out from the centre by an amount S, with 

S being some fraction of the lattice constant (a). Chalcraft et al illustrated that such structures 

can support a multitude of optical modes, with the longest wavelength mode being the 

fundamental mode, together with a number of additional modes having a shorter    

wavelengths [57-58]. 

L3 nanocavity structures have been extensively studied due to their small mode volume, high 

Q- factor and large spectral separation between the fundamental cavity mode and the other 

higher order modes. Indeed, a Q-factor up to one million was achieved by Pirotta et al using a 

L3 photonic crystal nanocavity based on a Si membrane having a thickness of 220 nm. Here, 

a group of five holes at both sides of the cavity were shifted to optimize cavity quality    

factor [59].   
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In this chapter, I investigate the effect of a shift in the position of the edge- side holes along 

the long x- axis of the cavity on the mode wavelength and cavity Q-factor which is effective 

used to reduce the leaky components, thereby maintaining the small V of a cavity.                   

A schematic diagram of the structure explored is shown in Figure 5.4. Here, the nanocavity is 

located at the centre of a photonic crystal that was etched into a SiN membrane having a 

thickness (d) of 200 nm, a refractive index (n) of 2.1, lattice constant (a) of 260 nm, hole 

radius (r) of 78 nm, with the hole structure having a lateral size of (31×16√3)a . Here, it is 

necessary that the size of the PC should not be smaller than (28×14√3)a, as in-plane losses 

increase due to weaker lateral confinement [60]. However, in-plane losses could be reduced by 

increasing the number of the air holes around the nanocavity [61]. Furthermore, the energy 

losses by out plane losses due to a weakly total internal reflection are fundamentally 

determined as a result of the leaky modes (see Figure 2.8). The L3 nanocavity PC design 

need to be modified to obtain a Gaussian field distribution of nanocavity’s resonant mode that 

result in  increasing the vertical confinement of cavity mode to reduce the out-of-plane    

losses [62].  

 

 

 

 

 

 

  

 

 
Figure 5.4: A schematic diagram of the L3 nanocavity PC having a hexagonal lattice of air holes of  
                   lattice constant a = 260 nm, radius r = 78 nm, slab thickness is d = 200nm and S is the  
                  cavity side hole shift. 
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5.5 L3 2D PC nanocavity modes using FDTD 

To design photonic crystal nanocavities, a FDTD-program was used comprising of four 

essential parts: first, boundary conditions are defined. Secondly, the main algorithm 

calculates the electromagnetic field over time and points in space. Thirdly, a source term is 

included in the structure. Finally, the data is extracted.  

Such FDTD calculations have been applied to the structure shown in Figure 5.4. The model 

indicate that an unmodified nanocavity (S=0) can support five confined modes that exist at 

visible wavelengths over the range 1.87eV to 2 eV which fall within the band gap as 

illustrated in Figure 5.5 (a). This result corresponds to the other calculations also obtained 

using FDTD [63], a plane wave expansion (PWE) [64] and a guided mode expansion method 

(GME) [65]. Here, the fundamental mode M1 is spectrally separated from higher order modes 

and possesses the highest Q-factor of 825 compared with the other modes M2, M3, M4, and 

M5 [66,67]. A similar calculation was applied to L4 nanocavity as shown in Figure 5.5(b). This 

structure can also support a number of confined modes existing at visible wavelengths over 

the spectral range between 1.8eV to 2.006 eV. However, in the L4 cavity, the fundamental 

mode appears to be more weakly confined and red shifted as a result of the increased cavity 

length. 

Figure 5.6 shows a calculation of the field distribution (E2) for the fundamental mode in an 

L3 cavity for the field components (Ex and Ey). This can be used to understand the 

polarization characteristics of the fundamental mode and the other modes in terms of the 

symmetric (even) and anti-symmetric (odd) electric field lobes around the x and y axes [68]. 
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For instance, the Ex component of the fundamental mode undergoes destructive interference 

as a result of anti-symmetric lobes around the x and y axis, leading to a reduction in intensity 

in the far –field (i.e. z>>0). However, for the Ey component, M1 undergoes constructive 

interference as a result of the symmetric lobes around the x and y axis, thus has stronger 

amplitude for (z>>0) [69-70].    
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Figure 5.5: Demonstrates results of a FDTD calculation that indicate multimode emission from an 
                    unmodified (S=0) (a) L3 nanocavity and (b) L4 nanocavity having a lattice constant 
                    a = 260 nm and hole radius r = 78 nm. The slab thickness is t = 200 nm. Here M1 indicates 
                    the fundamental mode.  
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Figure 5.6: Demonstrates a FDTD calculation of unmodified L3 nanocavity field distribution of the  
                    fundamental mode M1 (a) for the Ey component (b) for the Ex component respectively.    
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The fundamental mode and Q- factor of the nanocavities can be tuned by adjusting four 

parameters; lattice constant, hole size, edge-hole position and the number of shifted edge-

holes. The quality factor of the photonic nanocavity can be affected by varying these 

parameters as shown in Figure 5.7 as revealed using FDTD modelling depending on the 

nanocavity design shown in Figure 5.4.  
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Figure 5.7: Shows the impact of (a) changing lattice constant (b) hole size (c) hole displacement and (d) the  
                    number of shifting holes on the Q. factor and the peak of the fundamental mode.   
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It was found that a maximum quality factor of 550 could be obtained for a lattice constant of 

a= 260 nm at a wavelength in the red end of the spectrum as shown in Figure 5.7(a). The 

influence of the hole size on the Q factor was explored as shown in Figure 5.7(b). Here the 

modelling shows that a best Q-factor of 927 could be obtained for a hole size of 150 nm. 

However, the model shows that the wavelength of the fundamental mode tends to a blue shift 

as a result of increasing hole size. The effect of edge hole shift on the value of the Q factor 

was studied as shown in Figure 5.7(c). Here, the model shows that the Q factor increased 

significantly when the cavity edge holes are shifted by S1= 0.20a in the opposite direction, 

where a is the lattice constant. Finally, effect of number of shifting holes on of Q factor is 

shown in Figure 5.7 (d). Here, it can be seen that if three edge holes (S1, S2 and S3) are shifted 

in opposite direction, a Q factor of 12,565 can be obtained. 

 According to these calculations, cavity quality factor can be increased by modifying the 

structure that surrounds the cavity, with Q factor increasing by a factor of 2 as a result of 

increasing one edge hole shift and by factor of 12 times as result of a three hole shift. Here, 

such increases in Q factor results from reduced vertical losses because of decreases the leaky 

regions, with shifted side holes resulting in a smooth decay of the electric field in the 

surrounding PC structure as shown schematically in Figure 5.8 [71].  
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Figure 5.8: Shows (a) A non-modified L3 nanocavity structure. (b) and (c) An electric field profile 
                  of the fundamental mode inside the nanocavity and the spatial Fourier transform (FT) 
                  spectra respectively. It can be seen the leaky region is pointed as a blue area. (d) A 
                  modified L3 nanocavity structure with S = 0.15a. (e) and (f) An electric field profile of  
                   the fundamental mode inside the modified nanocavity and the spatial Fourier transform  
                  (FT) spectra respectively. This Figure was taken from ref [71]. 
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  5.6 Experimental results and discussion 

5.6.1 Optical Properties of the SiN Based on L3 Nanocavity  

The optical properties of an unmodified (S=0) L3 nanocavity structure are first studied before 

exploring the effect of modifying the holes surrounding the nanocavity using far field optical 

spectroscopy. Here, the photonic crystals had a lattice constant a=260 nm, hole radius = 77 

nm and membrane thickness d=200 nm. Figure 5.9 shows scanning electron microscope 

(SEM) images of the structure. The cavity PL emission spectrum is shown in Figure 5.9 (c).  

This spectrum was recorded from an L3 nanocavity using a laser focussed onto the cavity 

region. The sharp peaks evident result from the different optical modes confined within the 

L3 nanocavity structure.      

It can be seen that only four modes are evident instead of the five modes that were predicted 

using FDTD modelling. The reason for this is most likely attributed to fabrication errors that 

impact on the higher modes more than on the fundamental mode [72].  Previous work            

has shown that L3 nanocavities based on a SiN membrane often only display four optical 

modes [63-73]; a result in agreement with result shown in Figure 5.9(c). It can be seen that the 

emission intensity of modes M2 and M3 are relatively enhanced compared to the surrounding 

background PL by a factor of 2 to 3 times respectively. Such modes are predicted to lie in the 

band gap in such a structure.    
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Figure 5.9: (a) and (b) show SEM images of the SiN based L3 nanocavity. Here a = 261 nm, r = 77 nm and d = 200 
                   nm. (c) PL emission spectra recorded from the centre of the cavity. 
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5.6.2 PL Polarisation properties of the SiN membrane based 

            L3 nanocavity.   

The PL emission from L3 SiN nanocavity was measured as a function of polarisation angle as 

illustrated in Figure 5.10. This should be compared with the unpolarised emission from the 

same nanocavity as shown in Figure 5.9 (c). Figure 5.10 (a) shows the PL emission polarised 

perpendicularly to the nanocavity short axis (here called y- polarisation). The fundamental 

mode (M1) is the dominant peak and has a Q factor of 590. The polarisation parallel to the 

nanocavity long axis is shown in Figure 5.10 (b). Here, it can be seen that modes M2, M3 and 

M4 are polarised along the cavity long axis (termed x- polarisation).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Shows the PL emission of a SiN L3 cavity with a polarisation (a) perpendicular to the nanocavity  
                  short axis and (b) parallel to the nanocavity long axis. Here, the green dashed line identifies the  
                  modes in both polarisations.   
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5.6.3 Q factor and position of the fundamental mode 

          vs. side hole shift   

The effect of shifting the side holes of two dimensional nanocavity is an important parameter 

that can be used to control both cavity Q factor and the fundamental mode wavelength. The Q 

factor of the fundamental cavity mode was calculated from PL emission through a Lorentzian 

fit where Q=λ/∆λ in which λ is the fundamental mode wavelength and ∆λ is its FWHM. 

 Figure 5.11 illustrates the experimental values of Q factor of the fundamental mode M1 for 

different nanocavities with the holes radius of 78 nm as a function of the first nanocavity 

edge-hole shift (S1). It can be seen the highest Q factor value recorded was 685 corresponding 

to a side hole shift of S= 0.20, without modifying around the cavity.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: (a) Q factor and the peak position of the fundamental as a function of the cavity edge- hole shift  
                     (S/a), (b) the PL emission from the nanocavity with a side-hole shift of S=0.22 with the cavity 
                      having a Q factor of 685.  
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 5.6.4 Q factor and position of the fundamental mode vs. side hole 

           shift for SiN L3 cavity having a large hole size   

The air hole size of L3 nanocavity structure is an important parameter that can be used to 

control the value of Q factor and position of the fundamental cavity mode wavelength. The 

influence of hole size on the fundamental mode M1 of an L3 nano-cavity has been studied.    

A triangle lattice shape was used with a lattice constant of a=260 nm and a 200 nm thick 

membrane. The diameter of the hole size was systematically changed from 120 nm to 180nm. 

Figure 5.12 (a) to (d) shows the structures for four different L3 nanocavities having a hole 

size of 130, 140, 150 and 160 nm respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.12: SEM images of four different nanocavities fabricated having a hole size of (a) 130 nm, (b) 140 nm, 
                    (c) 150 nm and (d) 160 nm.  
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The sensitivity of cavity mode wavelength to hole size is clear, with a shifts to higher 

frequencies observed as hole size increases as shown in Figure 5.13. 

Here, we find that the peak position of the fundamental mode shifts from 720 nm to 612 nm 

as the hole size is increased from 120 nm to 180 nm. This result agrees with the results from 

FDTD modelling (see Figure 5.7(b)). It is also apparent that Q factor decreased from 560 to 

395 as a result of increasing hole size [74]. Q factor cavity is sensitive to loss from in-plane 

scattering of the optical mode inside the cavity, and so increasing the hole size can lead to 

increase optical losses as observed here [75].       

 

 

 

 

 

 

 

 

 

 

 

The side holes around an L3 cavity having a hole size of 160 nm ( see Figure 5.12 (d)) were 

shifted away from the centre of the cavity to study the effect on the Q factor and M1 peak 

position in a large hole size nanocavity. Here, Figure 5.14 illustrates the impact of side hole 

shift on Q factor and peak position of the fundamental mode M1. 

  

 

Figure 5.13: The peak position of the fundamental mode M1 and Q factor as a function of hole size  
                      for different nanocavities having a hole size of 120 to 180 nm.  
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Figure 5.14: (a) and (b) the peak position of the fundamental mode M1 as a function of the nanocavity first side 

                      hole (S1) shift for both TM and TE respectively. 

It can be seen experimentally that, a red shift is observed of the fundamental mode, going 

from 637 nm in an unmodified nanocavity (S1 = 0) to 643 nm after the side holes are shifted 

by S1 = 0.24a. This is accompanied by an increase in Q factor from 455 to 630. It can also be 

seen that the fundamental mode is clear in TM polarization (y- polarised) in Figure 5.14(a), 

but disappears for TE polarization (x- polarised).  
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5.7 An L3 Nanocavity having a high Q factor.  

Developing nanocavities having a high Q factor are of considerable interest for a range of 

different applications such as sensors, high resolution filters and low threshold nano-laser. 

Many varied designs have been introduced to increase Q factor based on tow dimensional 

photonic crystal nanocavity [48-76]. For example, a Q factor of 11,700 was achieved by Fu et al 

using a H1 nanocavity based on GaAs PhC membrane [77]. A higher Q factor of 320,000 was 

achieved by Tanabe et al using a 2D hexapole PhC nanocavity [78]. A much higher Q factor of 

1.45 × 106 was achieved by Lai et al by optimizing a 2D L3 PC nanocavity designed into a Si 

slabs having a small effective mode volume of  0.96(λ/n)3 [79]. The highest Q factor of 9 × 106 

reported was achieved by Sekoguchi et al using a Si based PhC. This cavity was fabricated 

using a line defect of 17 missing air holes in which the lattice constant was increased every 

two periods in the x-direction [80]. 

 Here, I have used the FDTD to study the parameters by which Q-factor can be increased. 

Three mechanisms have been studied. First, the refractive index was varied between 1.5 and 

2.5. Here, a significant increase in the Q factor in an unmodified structure from 500 to 37,000 

is seen, which is accompanied by a red shift of the fundamental mode M1 from 512 nm to 

781 nm as shown in Figure 5.15 (a). However, the Q factor then decreases once the value of 

the refractive index increase to 2.7. Secondly, the membrane thickness was increased from 

100 nm to 450 nm as illustrated in Figure 5.15 (b). It can be seen that the Q factor increased 

from 500 to a maximum value of 13,557 at a membrane thickness of 300 nm. Beyond this 

thickness the Q factor then decreased. Again, it can be seen a red shift occurs in the 

fundamental mode as a function of increasing membrane thickness. 
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Finally, more sophisticated modification of the L3 nanocavity structure explored increase the 

Q factor using the two different designs as shown in Figure 5.16. Here, the lattice constant             

was a= 260 nm, with the size of the first hole (shown as r1 red color) at each side of the 

nanocavity was reduced to a radius of 52 nm and then shifted by a value of between S/a = 0 

to 0.26. The size of the holes around the cavity (shown as r2 purple color) was also reduced to 

a radius of 65 nm, with the other holes (shown as r3 white color) having a radius of 78 nm 

have not been changed.  A Q factor of 8657 for the fundamental mode M1 at 654 nm was 

predicted for this structure as shown in Figure 5.16 (a). The second design (see Figure       

5.16 (b)) had reduced size of three edge holes with the first and the second hole at both sides 

of the cavity shifted by value of S/a = 0 to 0.26. A higher Q factor of 12,565 was predicted 

for this structure.    

 

 

 

 

Figure 5.15: Shows a calculated value of Q factor and peak position of the nanocavity fundamental mode as a 
                     function of (a) refractive index, (b) membrane thickness using FDTD simulation.    
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We have used FDTD to simulate the PL emission from these structures. Figure 5.17 (a) 

shows the relation between the number of shifted hole (shown as r1 red color) on the Q factor 

and peak position of the fundamental mode M. Parts (b) and (c) show a simulation of the TM 

and TE modes for L3 cavity with a non-displaced air holes (S=0). 

Figure 5.16: A schematic diagram of a modified 2D PhC L3 nanocavity illustrating the design of the air holes.  
                    In part (a) the size of one hole is decreased and shifted in an opposite direction from the centre of 
                    the cavity (red circles) with the four holes surrounding the cavity (purple circles) having reduced  
                    size. The structure in part (b) has three holes at the edge of the cavity that are shifted and having  
                    reduced size.       
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X 
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 It can be seen that there are five modes, two modes appear on the short axis polarisation     

(y- polarised), with the M1 fundamental mode having a wavelength of 654 nm and mode M4 

being at 604 nm. Three modes appear on the long axis polarisation (x-polarised) having a 

wavelength of 629, 626 and 595 nm for modes M2, M3 and M5 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.17: Shows the PL emission spectrum of a modified L3 nanocavity with shifted holes of S=0 using 
                       FDTD simulation for (a) TM modes and (b) TE modes 
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5.7.1 Towards a high Q factor L3 Nanocavity.  

In this section, I describe attempts to experimentally fabricate modified L3 structures having 

a high Q-factor that operate at visible wavelengths. Here, reducing the radiation loss is a 

central goal to increase cavity Q factor, and therefore it will be necessary to reduce light 

scattering due to roughness at the hole side-walls and the top interface with the air. As I show 

below, this requires close control of the etching process. Initial experiments however only 

produced cavities with a low Q factor. 

  Here, Scanning Electron Microscopy (SEM) indicated that there was unwanted material 

(presumed to be remaining PMMA) stuck on the surface of the nanocavities that most likely 

resulted in unwanted scattering and thereby reduced the cavity Q factor as shown in figure 

5.18. Therefore, a chemical solvent remover called 1165 was used to remove unwanted 

material from the cavity surface. This treatment caused an enhancement of luminescence for 

such cavities.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18:  A SEM image showing indicated unwanted material (PMMA resist) stuck on the surface of the 
                      nanocavities. 
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It was also found that the small size hole at the edge of the nanocavity (r1=52 nm) required 

increased etching time for 1.5 time compared with a large sized holes size (r3=78 nm). This 

meant that the etching time needed to transfer the modified design from the resist to the SiN 

membrane was increased. Here however, another issue was encountered; it was found that the 

PMMA resist was damaged after etching for a long times. Figure 5.19 illustrates a nanocavity 

covered by a PMMA resist that had been etched for 18 minutes.    

 

 

 

 

 

 

 

 

 

 

It was therefore necessary to identify a new e-beam resist that could allow an L3 nanocavity 

to be fabricated with one and three shifted side holes at both side of the cavity. Here, a 

SCAR-62 e-beam resist was then selected as an alternative to PMMA, due to its hardness and 

high resistance to etching.   

The optical properties of a one hole modified L3 nanocavity structure was first studied before 

exploring the effect of modifying the three holes structure, with the cavity fabricated using 

the SCAR-62 e-beam resist. 

 

 

Figure 5.19: A SEM showing the modified nanocavity structure after extended etching time.  
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 The structure of the membranes fabricated had a thickness of d=200 nm, lattice constant of 

a=260 nm, hole radius (r1, r2 and r3 = 52 nm, 65 nm and 78 nm respectively) as shown in 

Figure 5.16 (a). Figure 5.20 shows (a) scanning electron microscope (SEM) image and (b) an 

atomic force microscopy (AFM) image of the resultant structure. Here, it can be seen that the 

cavity surface appears much smother and more homogeneous.    

 

 

 

 

 

 

 

 

 

 

 

The PL emission spectrum recorded from such nanocavities fabricated using the SCAR-62 

shown in Figure 5.21 (a). Here, it can be seen that a number of sharp peaks are visible due to 

the strength of the confined optical field inside the modified L3 nanocavities. Moreover, a red 

shift in the peak position of fundamental mode M1 is evident as the lateral edge hole is 

shifted away from the centre of the cavity as shown in Figure 5.21 (b).        

Figure 5.20: Shows (a) a scanning electron microscope (SEM) image and (b) an Atomic force microscopy (AFM) 
                     image of the structure.   
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Here, a Q factor of 838 is obtained as a result of using a modified structure as shown in 

Figure 5.22. Here, the effect of shift in the edge holes of the cavity on the Q factor was 

explored. The Q factor was found to increase from 645 for (S=0) to 838 for (S=0.20). It can 

be seen that there are five modes, two modes appear on the short axis polarisation                 

(y- polarised) having a wavelength of 671 nm for M1 (fundamental mode) together with three 

modes on the long axis polarisation (x-polarised). 

 

 

Figure 5.21: (a) the PL emission spectrum recorded from a modified L3 nanocavities as a function of  
                     the hole shift and (b) the peak position of the fundamental mode M1 as a function of hole shift.   
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 Interestingly, we found that the peak position of the fundamental mode is shifted of 17 nm 

compared with the FDTD simulation results as predicted in Figures 5.17 (b) and (c). This is 

most likely due to small differences between modelled and fabricated structures.    
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Figure 5.22: The measured PL emission spectrum of a modified L3 nanocavity with shifted holes of S=0.20a 
                      experimentally. Part (a) is TE modes and part (b) shows TM modes. 
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5.7.2 An L3 Nanocavity containing a Red-F Fluorescent 

            Molecular Dye.  

Organic semiconductor materials have attracted significant attention as result of their 

optoelectronic properties and for their wide range of possible applications in optoelectronics 

and photonics [81-82]. These include ease of manufacture and tuneable electronic properties by 

changing chemical structure and efficient operator in light emitting devices, features that 

make these materials very attractive [83-84]. The photoluminescence (PL) efficiency of many 

organic semiconductors is high with such materials also having high charge-carrier mobility 

at room temperature [85]. Organic semiconductors are also able to effectively absorb light in a 

thin film only 100 nm thick making these ideal materials for photovoltaic application [86-87].  

We have therefore explored placing an organic material on the top surface of the an L3 

nanocavity [88-91]. This leads to change the L3 nanocavity structure with such surface emitter 

structures being of potential interest in different optoelectronic applications. We also expect 

the cavity to modify optical transitions of the organic thin film as a result of the confined and 

enhanced electromagnetic field at the nanocavity surface [92].    

We have again used the red-luminescent polymer Red-F and deposited it on the top surface of 

the nanocavities.  The red- emission from these materials makes it ideal to be combined with 

the nanocavities explored here. Figure 5.23 shows in part (a) the PL emission of Red-F and 

(b) its chemical structure.  
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The nanocavity surface was coated with a thin film of 10 nm of Red emitter fluorescent 

conjugated polymer having a surface roughness of 1.26 nm. The emission from the cavity 

now results from an overlap of the luminescence from the thin film with the cavity mode  

 

 

 

Figure 5.23: Shows (a) the PL emission of Red - F organic materials. (b) Its chemical structure. 
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wavelength that results in an enhancement of the emission of the film. Here, the 

photoluminescence quantum yield of the Red-F is significantly higher compared to the SiN.  

The Red-F solution was prepared of a concentration 2.5g/L in 1,2-Dichlorobenzene solvent. 

Such material is considered typical of polymers that are used in light emitting diodes [93] and 

lasing [94]. Figure 5.24 (a) shows a schematic image of the cavity and (b) and (c) an AFM 

image taken for the cavity shown in Figure 5.20 after coating with 10 nm of Red- F polymer. 

Figure 5.24(c) confirms that the conjugated polymer covers the complete nanocavity suface 

without filling the holes of the photonic crystal.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: (a) A schematic diagram of a hybrid L3 nanocavity and (b) and (c) images after coating with a Red-F 
 polymer film. 
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Far field spectroscopy was used to record the PL emission from the Red-F on the cavity as 

shown in Figure 5.25. It can be seen that the PL emission spectrum consist of a number of a 

sharp lines that are superimposed on the spontaneous emission spectrum of the Red-F that 

peaks at 660nm that leaks from the nanocavity surface.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25: Illustrates (a) The PL emission of a Red-F / L3 SiN nanocavity, (b) and (c) TE and TM modes for 
                     a polarisation parallel and perpendicular to the nanocavity long axis respectively and (d) the 
                     close-up of the emission of the fundamental mode M1. 
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It can be seen that the PL emission from the L3 cavity coated with a thin film Red- F  

polymer is different from the same SiN L3 nanocavity that emits much weaker fluorescence, 

has a broad emission spectrum with mode peaks observed at shorter wavelength. Here, the 

sharp peaks result from an overlap between the Red-F emission and the optical modes of the 

cavity. 

interestingly, it is clear from figure 5.25 (d) that the fundamental mode M1 has a Q factor of 

942; a value that is higher than those recorded from the uncoated nanocavity, with the peak 

position of the M1 undergoing a red shift. This red shift can be explained as a result of 

changing the hole size together with changing the top surface refractive index and the 

effective thickness of the slab.  

By comparing Figures 5.22 and 5.25 (c), it can be seen that the intensity of the fundamental 

mode M1 was inhanced by a factor of  6 times after coating with the Red-F polymer. This 

enhancement has a number of origins. Firstly, the quantum efficiency of the Red-F polymer is 

much higher than SiN. Secondly, the absorption of the laser exatation wavelength is 

enhanced, allowing more energy to be deposited into the cavity. Finally, we may also expect 

a degree of enhancement of emission intensity as a result of the Purcell effect. Indeed, the 

spontaneous emission of an emitter was spectrally located at the cavity mode of the 

nanocavity. However, it should be noted that the emitters are placed at the surfaces of the 

membrane, where the intensity of the confined electric field is around 20% of  ��(�)
�������⃗ �

���

�
 

value in the centre of the membrane, a result that would reduce the possible Purcell factor by 

around 20% [95]. 
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5.7.3 An L3 Nanocavity containing a Red-F Fluorescent 

         Molecular Dye having three shifted holes.  

 

In this section, the optical properties of the second design shown in Figure 5.16 (b) were 

explored using a red-emitting polymer. A higher Q factor of 12,565 was predicted for this 

structure as a result of reducing the size of three neighbouring holes and shifting the first and 

the second holes at both cavity sides by value of S/a = 0 to 0.26. Here, the membranes on 

which cavities were fabricated had a thickness of d=200 nm, with the PC having a lattice 

constant of a=260 nm and hole radius of r1, r2 and r3 = 52 nm, 65 nm and 78 nm respectively. 

Figure 5.26 shows (a) a SEM image and (b) an AFM image of the uncoated structure.   

 

 

 

 

 

 

 

 

 

The PL emission spectrum was recorded from the such structures as shown in Figure 5.27 (a). 

Again, it can be seen that emission is characterized by sharp peaks due to the strength of the 

optical field confined inside structure. Moreover, a red shift in the position of the 

fundamental mode M1 is clear as the lateral three edge holes are shifted away from the centre 

of the cavity as illustrated in Figure 5.27 (b).        

Figure 5.26: (a) A SEM image and (b) an AFM image of the uncoated structure.   
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Here, a Q factor of 931 was obtained as a result of using the modified structure as shown in 

Figure 5.28. The effect of shifting the edge holes on the cavity Q factor was explored. The Q 

factor increased from 710 for S=0 to 931 for S=0.20a where a is the lattice constant. Again it 

can be seen that there are five modes, two modes appear on the short axis polarisation          

(y-polarised) with a fundamental mode M1 wavelength of 652 nm. Three modes appear on 

the long axis polarisation (x-polarised). We find that the peak position of the fundamental  

 

(a) 

Figure 5.27: (a) The PL emission spectrum recorded from modified L3 nanocavities as a function of the hole shift and 
                     (b) the peak position of the fundamental mode M1 as a function of hole shift.   
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mode is shifted by 2 nm compared with the FDTD simulation as illustrated in Figure 5.16     

(b) and (c). This could be result from small errors in the structure fabrication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, the Q factor of this structure is lower than predicted by FDTD simulation indicating 

optical losses, such as unwanted material causing roughness of the surface of the nanocavity. 

To create this structure, the etching dose factor was modified in order to improve the 

uniformity size and quality of the etching holes. Figure 5.23 shows an AFM image of some 

samples that were etched using a different dose factor. 

 

 

Figure 5.28: Shows the PL emission spectrum of modified L3 nanocavity with three shifted holes of S=0. 20a 
                      experimentally (a) TE modes and (b) TM modes. 
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Figure 5.29: Shows an AFM images for different modified L3 nanocavities with three shifted holes that 
                      exposed with different dose factor in the EBL (a) dose factor = 1, (b) dose factor = 1.2, (c) dose 
                      factor = 1.4 and (d) dose factor = 1.6. 
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Here, the best dose factor that was used to etch the of L3 modified structure with three shifted 

holes in the SCAR e-beam resist was 1.8. Figure 5.26 illustrates the structure after using such 

dose factor. This high quality of the etch is likely due to the use of SCAR resist. This 

modified L3 nanocavity was then coated using 10 nm of film of the Red-F conjugated 

polymer.  Here, as demonstrated in the previous structure, the emission from the cavity 

results from an overlap of the luminescence of the thin film with the cavity mode wavelength, 

leading to a high emission intensity from the cavity. 

Figure 5.30 (a) shows the unpolarised PL emission spectra from the nanocavity. Figures 5.30 

(b) and (c) illustrate the PL emission from the cavity having a polarisation parallel and 

perpendicular respectively to the long axis of the cavity. It can be seen that the PL emission 

spectrum consists of a number of sharp lines that are superimposed on the spontaneous 

emission spectrum of the Red-F. Moreover, it can be seen that the intensity of the 

fundamental mode M1 enhanced significantly by a factor of 3 times having a Q factor of 

1100.  

The improvement in the Q factor of such L3 modified nanocavity structure can be attributed 

to the small taper angle of the air holes that surround the cavities. A scanning electron 

microscope was used to measure the taper angle in our samples by measuring the air hole 

diameter at both sides of the membranes with a value of 3o deduced. Reducing this angle 

results in an improvement of the symmetry in the vertical direction, previous work has found 

that Q-factor can be reduced by 40% as a result of a 5o taper-angle [96].        
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Figure 5.30: Illustrates (a) the unpolarised PL emission of a Red-F / L3 SiN nanocavity with three shifted holes. (b) and (c) 
                      show TE and TM modes for a polarisation parallel and perpendicular to the nanocavity long axis respectively. 
                      (d) illustrates the fundamental mode M1 having a Q factor of 1100. 
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5.8 Amplified spontaneous emission of the Red- F polymer.  

I have explored whether laser action can be obtained using the high Q factor of a modified L3 

nanocavity photonic crystal. Such structures are promising laser resonators due to present of 

photonic band gap (PBG) that is able to modify the optical density of optical modes and 

enhance the spontaneous emission rate of the emitter [97-99]. Optical gain is an essential 

demand for materials that are utilized as laser media. Amplified spontaneous emission (ASE) 

results after an optical excitation of the Red-F film and then spontaneous emission result in a 

stimulated emission of identical photons. 

Experiment was achieved using a Picolo pulse laser having a wavelength of 532 nm, 

repetition rate of 5 KHz and pulse length of 500 ps. The PL emission measurements as a 

function of the excitation power were performed on samples prepared by the deposition of 

200, 400 and 500 nm of Red-F polymer on the top surface of a SiN membrane nanocavity 

structure. Figure 5.32 shows the PL emission from the structure. It can be seen that by 

increasing the excitation power, a superlinear increase of intensity was obtained of the thin 

film of 200 nm as shown in Figure 5.31. 

 

 

 

 

 

 

  

 

 Figure 5.31: Shows the peak intensity of the PL emission as a function to the excitation power. 
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This is clear evidence of an amplified spontaneous emission process. It can be seen that the 

excitation power of 0.6, 1 and 1.36 mW  is below ASE threshold (blue dots line), 2.4, 3.4 and 

5.7 mW corresponds to the ASE threshold (black dots line) and excitation power by 10.8 is 

above threshold. Then, the PL emission from 200 nm, 400 and 500 nm film thickness was 

recorded as shown in Figure 5.32 (a), (b) and (c) respectively.  

Here, it can be seen that the PL spectrum for several excitation power that adjusted to get a 

high output. Figure 5.32 (c) shows that a gain narrowing at red (678 nm) was obtained from 

500 nm film thickness at excitation pulse of 300 μW. Such structure is a promising for 

application as laser or optical amplifiers. This result can be explained as, the gain threshold is 

reduced as a result of increasing the concentration of the film, indicating that the 

intermolecular distances of the polymer used are reduced result from using a larger number of 

molecules per unit volume. In addition to using a high concentration of the polymer leads to 

increase the effective refractive index of the waveguide of the film, leading to reduce the 

amplified spontaneous emission threshold [100-104]. 

Unfortunately there are two reasons that prevented us from getting laser from the Red-F 

nanocavity structure. First is the degradation of the PL signal from the thin film of the Red- F 

polymer caused by gradual photo oxidation. Second, using a high power resulted in the 

polymer burning as shown in Figure 5.32 (d). This did not allow us to reach the lasing 

regime. 



Chapter 5                                        The optical properties of L3 Silicon Nitride 
                                                         photonic crystal nanocavities 
 

180 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.32: Shows the PL spectra of different thickness of Red- F films as a function of excitation energy, (a)  
                    200 nm, (b) 400 nm, (c) 500 nm and (d) an image of a modified L3 nanocavity after coated with thin 
                    film of Red-F After exposure to high excitation energy. 

(a) (b) 

(c) 

(d) 

600 620 640 660 680 700 720 740

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

In
te

n
si

ty
 (

a
.u

.)

Wavelength (nm)

 2100 uW
 2200 uW
 2200 burn
 3000 uW
 4000 uW

600 620 640 660 680 700 720 740

2000

4000

6000

8000

10000

12000

In
te

n
si

ty
 (

a
.u

.)

Wavelength (nm)

 600 uW
 1mW
 1.36mW
 2.4 mW
 3.4 mW
 5.7 mW
 10.8 mW

600 620 640 660 680 700 720 740

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

In
te

n
si

ty
 (

a.
u

.)

Wavelength (nm)

 300 uW
 2200 uW
 2100 uW
 1300 uW



Chapter 5                                        The optical properties of L3 Silicon Nitride 
                                                         photonic crystal nanocavities 
 

181 
 

 5.9 Summary and Conclusion  

In this chapter, I have explored the optical properties of SiN membrane based L3 

nanocavities before and after coating with a thin film of Red-F conjugated polymer. Three 

different designs were explored; an unmodified structure, a cavity with one shifted hole and a 

cavity with three shifted holes. Theoretical calculations using FDTD simulation and 

experiments have investigated the influence of shifting the side and surrounding holes on the 

Q factor and the peak position of the fundamental mode. 

Experimental showed that the first modified SiN, one shifted hole, nanocavities had a high Q 

factor for the fundamental mode of 645 was obtained as a result of using a modified structure. 

Here, the effect of shift in the edge holes of the cavity on the Q factor was explored and the Q 

factor is increase from 645 at wavelength of 671 nm for S=0a to 838 for S=20a at wavelength 

of 673 nm. Then, a Red- F solution was coated on the top surface of the nanocavity. The 

experimental results showed that the first modified structure got a higher Q factor for the 

fundamental mode of 942 at the fundamental mode at the wavelength of 707 nm after coating 

a red-emitting conjugated polymer film.  

Moreover, the experimental results showed that the second modified SiN, three shifted hole, 

based a modified L3 nanocavity had a higher Q factor for the fundamental mode of 710 is 

obtained as a result of using such structure. Here, the effect of shift in the edge holes of the 

cavity on the Q factor was explored and the Q factor was increase from 710 at wavelength of 

640 nm for S=0a to 931 for S=26a at wavelength of 652 nm. Again, a Red- F solution was 

used to coat the top surface of the nanocavity. The experimental results illustrated that the Q 

factor for the fundamental mode increased to reach at 1100 after coating a red-emitting 

conjugated polymer film. The PL emission was recorded as a function of polarisation mode 

with a good agreement with FDTD calculations in both perpendicular and parallel polarised 
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modes. The PL emission intensity of the fundamental mode was enhanced by factor of 6 for 

the first design and by factor of 3 in the second design.  

Different thicknesses of thin films of the Red-F conjugated polymer were explored in order to 

study the amplified spontaneous emission process. However, when such films were place on 

the cavity, lasing was not achieved, and instead the cavity surface was burnt by the pulsed 

laser excitation source. This indicating in the structures studied, the threshold for lasing is 

higher than the damage threshold. 
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Chapter 6 
Conclusions and Suggestions for Further Work 

6.1 Conclusion 

     In this thesis, I introduced and demonstrated two major topics. Firstly, the optical 

properties of optical microcavity micropillars containing an organic emitter were explored. 

These structures result in a three dimensional confinement of light in a small volume of the 

order of few wavelengths of the confined light, and provide a considerable opportunity to 

study the light-matter interaction and control radiative dynamics of emissive molecular 

materials. Secondly, the optical properties of two dimensional photonic crystal L3 

nanocavities were investigated. Significant effort has been made to develop these structures 

to create structures having high quality factor. Indeed, we discuss process techniques that 

result in high Q factor photonic crystal nanocavities. 

     In Chapter 4, I have fabricated and explored the light emission from a series of micropillar 

microcavities containing a thin fluorescent, red-emitting conjugated polymer film. The 

fabrication of such structures was based on the use of electron-beam evaporation to prepare 

the DBR layers and focussed ion-beam to create the micropillars microcavities. The optical 

modes structure of such pillars are characterised using combined white-light reflectance and 

photoluminescence emission using both far-field and Fourier-space imaging techniques. It 

was found that cavities having a maximum Q-factor of 520 were obtained in structures 

having a diameter of 4 μm.  

      Optical modelling of the pillar emission was used to describe the distribution of the cavity 

modes with modes localised towards the centre of the pillar dominating the emission. Finally, 

it was shown that the wavelength of the emitted light depended on the diameter of the 

micropillars, with a gradual blue-shift of the energy of all cavity modes occurring as the pillar 
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 diameter was reduced. A series of emission peaks suggestive of whispering gallery modes 

were observed as a result of smooth sidewalls of the micropillars. A FDTD model was used 

to simulate the experimental results and a good agreement was obtained. 

     In Chapter 5, I investigated the influence of a number of parameters such as the size of air 

holes, hole shift and the lattice constant on the photoluminescence (PL) emission from a SiN 

based L3 two dimensional photonic crystal nanocavity. The advantage of using SiN 

membranes in this application comes from its transparency at visible wavelengths, allowing it 

to be combined with organic materials as the emitting source. Here, it was observed that the 

cavity fundamental mode can be shifted toward longer wavelengths by increasing the lattice 

constant (a) and reducing the size of the air holes (r) of the two dimensional photonic crystal. 

These results were supported by theoretical calculations performed using FDTD simulation. 

Experiments explored the effect of shifting the position of the edge holes around the cavity 

on the Q factor. It was found that the Q factor increased from 645 at wavelength of 671nm in 

the control structure to 838 for a side-hole shift of 52 nm at wavelength of 673nm. A Red- F 

conjugated polymer was then coated onto the top surface of the nanocavity. This was shown 

to increase the cavity Q factor of the fundamental mode to 942. Moreover, by combining a 

three side hole shift structure and a Red-F polymer, a cavity having a high Q-factor was 

realised.  

Finally, to compare between the merits of the two dimensional nanocavities and three 

dimensional micropillar microcavities photonic crystals we should summarize the following: 

 Firstly, thin film membranes of silicon nitride (Si3N4) having refractive index of (n ≈ 2.1) 

were used to fabricate L3 photonic crystal nanocavity. Such structure is transparent at visible 

wavelengths. Si3N4 also has favourable mechanical properties such as high strength, high 

hardness, chemical corrosion resistance and a high chemical stability. This is useful 

properties as it allows established etching processes to be used with designs being easy to 
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transfer from the SCAR e-beam resist to the SiN membrane. Here, L3 photonic crystal 

nanocavity emits light at visible wavelengths as a result of having band gaps in the 

wavelength range between 500 nm and 875 nm. A cavity with a high quality factor was 

obtained as a result of modifying the size and location of the air holes around the nanocavity; 

to reduce the leaky components, thereby maintaining the small V of a cavity a value that is 6 

times higher in comparison with an unmodified structure. 

Lithography process (EBL) was used to transfer a desired pattern or design into a sensitive 

thin film of a resist material. The feature size of a design of interest determines the 

appropriate radiation source. For this reason, an electron beam source was used to create 

patterns having a feature size of sub-ten nanometers, with very high resolution of a 50 Ȧ 

precision possible. Then, reactive ion beam etching (RIE) and an inductively coupled plasma 

(ICP) technique dry etching techniques was used to transfer a desired pattern from the resist 

material to the SiN membrane. The main advantage of this technique is the ability to control 

sidewall through anisotropic etching.  

Secondly, a micropillar microcavity is a structure in which an active semiconductor layer is 

placed between two distributed Bragg reflectors (DBRs). The optical structure of a 

micropillar containing a thin film of a highly fluorescent red-emitting conjugated polymer. 

To create such structures, a dielectric mirror (Distributed Bragg Reflector [DBR]) consisting 

of a number of quarter-wave pairs of TiO2 and SiO2 (n = 2.135 and 1.452 respectively) was 

used. The TiO2 was used because it has a high refractive index, lower optical absorption 

which is ten times less than silicon, small thermal expansion coefficient and a high degree of 

transparency over the visible spectrum.  

Here, a focused ion beam (FIB) technique was used to fabricate three dimensional photonic 

structures such as micropillar microcavities. The focused beam of Gallium ions was used to 

etch a specific area from a planar microcavity. A gallium liquid metal ion source (LMIS) was 
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used in the melting (etching) process without using e-beam resist, with the Ga ions having a 

much greater momentum than electrons used in EBL. Using this technique, a series of 

circular trenches three dimensional micropillar microcavities of depth 5 μm having diameters 

between 4 and 11 μm were created. 

A thin and thick film of the polymer PFR was used with the nanocavities and micropillar 

microcavities structures because it has high fluorescence quantum efficiency and emits 

luminescence that peaks around 660 nm. Confinement of light in the both structures occurs 

through both total internal reflection (TIR) and Distributed Bragg Reflector (DBR) 

mechanisms.  

6.2 Future work 

In this study, the physics and applications of two different kinds of PC have 

been investigated. The high Q factor obtained from such structures either microcavities 

micropillars or two dimensional photonic crystal based L3 modified nanocavities suggest a 

promising potential for further work.    

I believe that using such designs with more accurate etching will result in structure with 

reduced sidewall roughness and decreased the taper angle. This will enhance light 

confinement inside such structures and will result in further increases in cavity Q-factor. I 

think the use of a low current beam in the FIB etching process will be useful to decrease the 

sidewall roughness to create micropillars having a diameter of less than one μm. Here, 

decreasing the mode volume will lead to an increase in the strength of light confinement in 

both micropillars and the two dimensional photonic crystals. Such high Q-factor cavities 

containing organic materials will be of significant interest in the creation of a range of 

devices including high efficiency organic nanoscale light sources and integrated nanoscale 

organic-lasers. 
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Appendix A 
 
The solution of equation 4.3 in Chapter 4 
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λo= 670.9 nm  
Eo= 1.86 eV , Eo

2= 3.46 eV = 8.85 × 10-38 J2 

h�= 1.1121×10-68 J2.s2 
C2= 9×1016 m2/s2 
n2= 2.3 
R2= 4×10-12 m2  
h���

���
 = 1.01630×10-40 J2= Cons. 

 
E1

2= 8.85 × 10-38+ (1.01630×10-40*5.783)= 8.85 × 10-38+0.058772629× 10-38 

E1
2= 8.91× 10-38 J2 

E1= 2.985×10-19 J= 1.8625 eV 
λ1= 665.7 nm  
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