977,813 research outputs found

    CRT 210T.01: Advanced Operating Systems

    Get PDF

    Application of advanced technologies to small, short-haul transport aircraft

    Get PDF
    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft

    Energy efficient engine preliminary design and integration studies

    Get PDF
    The characteristics and systems benefits of an energy efficient engine (E3) suitable for use on advanced subsonic transport aircraft were determined. Relative to a current CF6-50C engine, the following benefits were estimated: 14.4% reduction in installed cruise specific fuel consumption, and a reduction in direct operating cost of more than 5%. The advanced technology E3 system would also permit: compliance with FAR 36 (1977) noise limits, and compliance with 1981 EPA emission standards

    Interference coordination for LTE-advanced and FM broadcasting interoperability

    Get PDF
    The surest way to guarantee that multiple wireless systems can concurrently exist harmlessly, when operating in the same or adjacent channel, is by analyzing spectrum overlapping. This paper proposes a more accurate model to evaluate the interference power from co-channel and adjacent channel of orthogonal frequency division multiplexing-based long term evolution-advanced (LTE-Advanced) towards broadcasting frequency modulation systems at 800 MHz. Power spectral density overlapping factor is employed, and closed form of the interference power loss is derived. Numerical results demonstrate that the proposed method evaluates more exact interference power than the advanced minimum coupling loss (A-MCL) method, where the co-channel and adjacent channel interference powers are reduced by 1.3 and 3 dB, correspondingly, compared to that obtained using the AMCL method. This decreases the minimum separation distance between the two systems, which can eventually lead to efficient radio spectrum resources utilization

    Advanced propfan analysis for the family of commuter airplanes

    Get PDF
    Advanced propfans were selected to be used throughout the family of commuters. These propulsion systems offer a 25 to 28 percent fuel savings over comparably sized turbofans operating in the 1990s. A brief study of the propulsion systems available for the family of commuters is provided and the selection of the advanced turboprops justified. The propeller and engine designs and performance are discussed. The integration of these designs are examined. Also addressed is the noise considerations and constraints due to propfan installation

    Component research for future propulsion systems

    Get PDF
    Factors affecting the helicopter market are reviewed. The trade-offs involving acquisition cost, mission reliability, and life cycle cost are reviewed, including civil and military aspects. The potential for advanced vehicle configurations with substantial improvements in energy efficiency, operating economics, and characteristics to satisfy the demands of the future market are identified. Advanced propulsion systems required to support these vehicle configurations are discussed, as well as the component technology for the engine systems. Considerations for selection of components in areas of economics and efficiency are presented

    Turboprop cargo aircraft systems study

    Get PDF
    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion

    XinuPi3: Teaching Multicore Concepts Using Embedded Xinu

    Get PDF
    As computer platforms become more advanced, the need to teach advanced computing concepts grows accordingly. This paper addresses one such need by presenting XinuPi3, a port of the lightweight instructional operating system Embedded Xinu to the Raspberry Pi 3. The Raspberry Pi 3 improves upon previous generations of inexpensive, credit card-sized computers by including a quad-core, ARM-based processor, opening the door for educators to demonstrate essential aspects of modern computing like inter-core communication and genuine concurrency. Embedded Xinu has proven to be an effective teaching tool for demonstrating low-level concepts on single-core platforms, and it is currently used to teach a range of systems courses at multiple universities. As of this writing, no other bare metal educational operating system supports multicore computing. XinuPi3 provides a suitable learning environment for beginners on genuinely concurrent hardware. This paper provides an overview of the key features of the XinuPi3 system, as well as the novel embedded system education experiences it makes possible

    Laboratory test methodology for evaluating the effects of electromagnetic disturbances on fault-tolerant control systems

    Get PDF
    Control systems for advanced aircraft, especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met for adverse as well as nominal operating conditions. Adverse conditions can result from electromagnetic disturbances caused by lightning, high energy radio frequency transmitters, and nuclear electromagnetic pulses. Tools and techniques must be developed to verify the integrity of the control system in adverse operating conditions. The most difficult and illusive perturbations to computer based control systems caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. A methodology is presented for performing upset tests on a multichannel control system and considerations are discussed for the design of upset tests to be conducted in the lab on fault tolerant control systems operating in a closed loop with a simulated plant
    corecore