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ABSTRACT 
As computer platforms become more advanced, the need to teach advanced computing concepts grows 
accordingly. This paper addresses one such need by presenting XinuPi3, a port of the lightweight instructional 
operating system Embedded Xinu to the Raspberry Pi 3. The Raspberry Pi 3 improves upon previous generations 
of inexpensive, credit card-sized computers by including a quad-core, ARM-based processor, opening the door 
for educators to demonstrate essential aspects of modern computing like inter-core communication and 
genuine concurrency. 

Embedded Xinu has proven to be an effective teaching tool for demonstrating low-level concepts on single-core 
platforms, and it is currently used to teach a range of systems courses at multiple universities. As of this writing, 
no other bare metal educational operating system supports multicore computing. XinuPi3 provides a suitable 
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learning environment for beginners on genuinely concurrent hardware. This paper provides an overview of the 
key features of the XinuPi3 system, as well as the novel embedded system education experiences it makes 
possible. 
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1 INTRODUCTION 
Embedded Xinu is a lightweight operating system that is designed to assist in teaching embedded operating 
systems to undergraduate students.25 As a RISC adaptation of its original CISC ancestor, Xinu,11 Embedded Xinu 
has been ported to many embedded platforms, including multiple consumer-grade home networking appliances 
such as Linksys routers,25 the experimental Intel Single-Chip Cloud (SCC)29 processor, and the ubiquitous 
Raspberry Pi 1.6 In order to remain viable, Embedded Xinu must be continually updated to run on commercially-
available platforms and to support the current state of typical computer hardware. 

The Raspberry Pi 3 is the most recent addition to the popular Raspberry Pi series.18 Its low cost of US$3521 makes 
this platform uniquely suited to introduce systems concepts to students. 

While the Raspberry Pi and its upgraded models are typically used to run full-featured Linux-based operating 
systems such as Raspbian,16 it is increasingly difficult to teach operating systems (O/S) concepts to beginners 
using exemplars surpassing more than 15 million lines of code.16 Embedded Xinu contains approximately ten 
thousand lines of code15 in its entirety, which is equivalent to the size of one file in the Raspbian kernel’s process 
scheduling subsystem.12 This multi-tasking, interrupt-driven embedded O/S with device drivers, resource 
management, and interprocess communication primitives can thus be understood and modified by students in a 
single collegiate semester, orders of magnitude more quickly than general purpose O/S code bases. 

Our port, XinuPi3, of Embedded Xinu to the Pi 3, is a lightweight, open source, symmetric multiprocessing 
instructional operating system. The Xinu kernel has been used in many commercial embedded products over the 
years, and thus is no mere toy. The simplicity and clarity of its design allows educators to work with multicore 
concepts such as genuine concurrency on real embedded hardware in their courses, while still remaining 
comprehensible to undergraduate students. 

2 RELATED WORK 
Many O/S and systems architecture courses are taught using some form of educational operating system.13 The 
exact nature of these educational systems can be split into two main categories: simulated and those designed 
to run on physical hardware. Some of the systems in these categories can be run on either simulated or physical 
hardware but this grouping focuses on the platform on which they were primarily designed to run. 

Simulated operating systems, such as Nachos,10 Minix,27 and JaeOS,17 run on virtual machines. Simulated 
operating systems are beneficial in that they do not require the use of any specialized equipment. Because 
simulated operating systems operate on abstractions from physical hardware, they do not suffer from the same 
support, cost, and space constraints as physical operating systems. As a consequence of their hardware 

http:system.13
http:subsystem.12
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http:students.25
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abstraction, simulated O/Ses typically are of reduced utility in genuine embedded systems, and sharply limited 
in the types of interactions they may exhibit in student assignments. 

Physical hardware systems, sometimes called “bare metal” systems, expose students to actual hardware. 
Embedded Xinu is one example of such a system supporting the Raspberry Pi 1,6 the Intel SCC,29 and several 
MIPS-based consumer networking appliances such as Linksys wireless routers.8 These Embedded Xinu ports 
have been used to teach a variety of systems courses at many universities, including operating systems,8 

embedded systems,25 compilers,14 and hardware systems,7 among others. 

Other examples of bare metal educational operating systems include Cornell University’s PortOS,5 which is 
designed to run through emulation on a variety of handheld devices as well as desktop platforms. Tanenbaum’s 
Minix,27 a fully built instructional operating system, supports several different platforms. Stanford’s PintOS19 

project adapted the venerable Nachos operating system to run on the x86 platform. To date, none of the other 
widely-used bare metal instructional operating systems have been extended to support a commercially-available 
multicore platform like XinuPi3. 

3 PORTING EMBEDDED XINU TO THE PI 3 
The following subsections detail the new hardware of the Pi 3 as it pertains to the progression of Embedded 
Xinu. 

3.1 Hardware Overview and Changes 
The Raspberry Pi 3 uses the Broadcom BCM2837 SoC (System on a Chip), containing a quad-core, 1.2GHz ARM 
Cortex-A53 CPU implementing both 64-bit and 32-bit versions of the ARMv8-A instruction set.3 The 32-bit 
version is largely compatible with the ARMv7 instruction set, which is used by XinuPi,6 the previous port of 
Embedded Xinu onto the Raspberry Pi 1. XinuPi3 currently runs in 32-bit mode because of this overlap in 
compatibility as well as the desirability of a simplified instruction set in a teaching setting. 

The SoC also contains Broadcom’s VideoCore IV GPU and various peripherals such as microSD storage, a 40-pin 
General Purpose Input and Output (GPIO) header, two Universal Asynchronous Receiver/Transmitter devices, 
one on-board Bluetooth 4.1, and an 802.11n WiFi chip. It includes a microUSB port for power, an HDMI 1.4, a 3.5 
mm audio jack, four USB 2.0 ports, and Ethernet capability.20 

XinuPi does not require device driver support for all of these peripherals to provide a satisfactory educational 
user experience. In particular, the Bluetooth, WiFi and audio jack subsystems have been left as future work, and 
the device driver for accessing microSD storage is not generally included in student builds of the kernel. (Student 
kernels are loaded into RAM over Ethernet by the XinuPi bootloader; if students inadvertently overwrite the 
bootloader on microSD, the bootloader image will have to be manually restored before the platform can again 
be successfully booted.) 

3.2 Boot Process 
The Pi 3’s initial booting process is nearly identical to the boot processes of previous versions of the Pi.22 When 
the Pi turns on, all four cores are off and the VideoCore GPU is on. The GPU starts by executing the first stage 
bootloader that is located on the aforementioned SoC. The first stage bootloader’s primary function is to load 
the second stage bootloader which is located on the removable SD Card. The second stage bootloader initializes 
much of the hardware, including the RAM and L1 and L2 caches. It also prepares the CPU to execute the kernel. 
Once the kernel is loaded into memory, the processor starts execution at memory address 0x8000, where 
student kernel boot code is loaded. 

http:capability.20


     
  

 

 
   

 
       

        
       

      
     

  
 

 
    

     
      

     
 

      
    

 

 
     

    
    

     
    

  
 

     
        

        
   

 

 
      

        
    

  
 

s rO , cpsr I " Get CPSR val ue. * / 
orr rO , r O , #Ox l F I * Mask on System Mode. * I 
msr sps r _ cxsf, rO / * Set up return context* / 
add rO , pc , #4 / * to go to PC+4 in * / 
msr ELR_hyp , rO / * System Mode upon * / 
e r e t / * except i on return . */ 

Cores initially start in Hypervisor mode, but Embedded Xinu requires the cores to be in System mode in order to 
be able to execute properly. 

Figure 1: Changing privilege level to system mode 

Typically, when it is desired to change modes on the processor, bit manipulation is performed on the Current 
Program Status Register (CPSR),4 which can be simplified by using the cps (Change Processor State) opcode. 
However, in supervisor mode, the only way to change to a lower privilege level, such as system mode, is to use 
an exception return.4 An exception return loads the contents of the Saved Program Status Register (SPSR) into 
the CPSR, and continues execution at the address specified in the Exception Link Register (ELR). Figure 1 shows 
how it is done in assembly. In the case of Figure 1, the ELR is set to the instruction that comes immediately after 
eret. 

XinuPi3’s boot code also is responsible for the exception vector table. This is discussed more in-depth in Section 
3.5. The BSS memory segment is also set up during the boot process, as BSS initialization is necessary to run any 
C code. The boot code also initializes each core’s stack pointer and configures the Memory Management Unit 
(MMU) and L1 and L2 caches, as explained in Section 4.3. 

From an instructional standpoint, students can be given fewer than 100 lines of initial ARM assembly and C code 
as a starting point for a stripped down C execution environment on the bare metal ARM core. 

3.3 UART Driver 
Output is essential when working with embedded software. The Raspberry Pi 3 contains two UARTs, one Mini-
UART and one PL011 (PrimeCell) UART,1 making it possible to interact with the device through a serial 
connection. The functionality of the UARTs differ in that the PL011 includes break detection, framing errors 
detection, and timeout interrupts.23 The PL011 UART is a straightforward starting point for students constructing 
their first simple device driver, as the overall functioning of the device is comparable to many predecessor 
UARTs that have been standard on personal computing platforms since the 1980s. 

The UART control and status registers, along with the other peripherals, are all memory-mapped, meaning that 
we access the peripheral registers as if they were addresses in memory. On the Pi 1, the base address for the 
peripherals was 0x20200000. As for the Pi 2 and Pi 3, this address has been changed to 0x3F000000,24 due 
to the increased size of RAM. 

3.4 Threads and Context Switching 
A thread (or task) is a basic unit of CPU utilization, each of which contains an ID, program counter, working 
register set, and stack of activation records.26 With multicore XinuPi3, each core now begins with its own null (or 
“idle”) thread. This null thread executes in an infinite loop until the scheduler gives the core a new thread to 
execute (see Section 4.4). 

http:records.26
http:interrupts.23


      
    

     
 

 
    

    
     
      

    
 

 
     

 
 

 
   

 
    

     
 

   
       

     
    

 

 
       

        
      

         
      

 
      

  
 

 
  

 
     

       
    

      
 

ldr rl , =_vecto r s 

mer p 15 , 0 , r 1 , c 12 , cO , 0 

l d r rO , = co r e _inil_ s p 

l d r s p , [ r O , #4 ] 

/ * Load table address * / 
I * i n to VBAR . 

/ .,. Lo ad i n i l i a l s l ack * / 

/ -, va lu e int o SP reg.*/ 

Scheduling threads across multiple cores is a rich area for educational activities. XinuPi3 includes a simple, 
priority-based global scheduler as the default, but many extensions and enhancements can delve into the 
complexities of load balancing, thread migration, and real-time scheduling algorithms. 

3.5 Interrupts 
An interrupt is a signal to the processor indicating that an event has occurred and that the processor should 
handle that event accordingly. When the processor receives an interrupt, it stops the task it is currently 
executing, and goes to a predetermined location in memory to access an exception vector table (EVT). The EVT 
associates a received exception or interrupt with the proper instruction address to begin handling the exception. 
The implementation of the vector table is architecture-specific, although the concept is similar across many 
platforms. 

It should be noted that for the Pi 3’s architecture, the exception vector table must be 32-byte aligned in 
memory.4 

Figure 2: Writing the address of the Exception Vector Table 

In order for the processor to find the vector table, following the protocol of the ARMv8-A architecture,2 the 
address of the vector table is loaded into the Vector Base Address Register (VBAR) system register (as shown in 
Figure 2). 

4 THE MULTICORE CPU: PREPARATION AND UTILIZATION 
The primary contribution of our new XinuPi3 port is the addition of support for the multiple processor cores on 
the Pi 3 platform. This requires attention to preparing and starting the cores, memory management and cache 
coherency, cross-core mutual exclusion, and multicore scheduling. 

4.1 Core Mailboxes 
Upon startup, the XinuPi3 kernel parks each of cores 1-3 into its own infinite loop. Only core 0 executes normally 
during the earliest stages of preparation. Each other core waits looping until a nonzero value is put into one of 
the following memory addresses: 0x4000009C, 0x400000AC, or 0x400000BC.28 Each of these memory 
locations is termed a core mailbox. For symmetry, 0x4000008C is set aside to be used as a mailbox for core 0, 
but the kernel does not use this mailbox to start core 0, which is already running. 

When a nonzero value is put into a parked core’s mailbox, the corresponding core will start execution at that 
address. In order for 

Figure 3: Storing core 1’s initial stack pointer. 

the core to execute C code properly, among the first instructions it is given must be an instruction to set up its 
stack pointer (as shown in Figure 3). XinuPi3’s startup code for Core 0 allocates main memory space for each 
core’s null process stack, and stores the initial value in the corresponding index of the global array, 
core_init_sp. The array is set up in file start.S, the entry point of the XinuPi3 kernel source code. 

http:0x400000BC.28


 
      

    
    

   
 

      
          

  
     

 
 

     
    

       
      

    
     

  
 

 
   

      
   

 
        

       
    

 
     

       
    

   
 

 
  

 
   

 
      

      

t ex _acquire : 

pld [ rO ] 
nop 
ldrex r 1 , [ rO ) 
cmp r l , #LOCKED 
beq mutex _ acqu ire 
m ov r 1 , #LOCKED 

strex r2 , r 1 , [ rO ) 
cmp r2 , #OxO 
bne mutex _ acqu ire 
dmb 
bx I r 

/ • P r eload da t a into cache to increase ch ance of success . • / 

/ • Load the value of the lock from mem ory. 
I • IF a l ready loc ked, 
/ • THEN try again . . . 
/ • ELSE unlocked , try to lock. 

I • IF lock acquire failed th i s t ime around, 
/ • THEN try aga in back up at the top. 
/ • Data Memory Ba r rier opcode waits for memory accesses • / 
/ • t o comp lete before ret u rning. 

4.2 Memory Management Unit and Caches 
The Memory Management Unit (MMU) is a piece of computer hardware that provides a layer of abstraction 
between the processor and memory, hiding the details of underlying physical memory hardware. The MMU is 
primarily used to perform translation of virtual memory addresses to physical memory addresses as well as 
handle memory protection and cache control. 

A cache, in the context of the CPU, is an intermediary piece of memory between the processor and main 
memory. Typically, CPUs use multiple levels of cache. The Raspberry Pi 3 has two levels of cache: L1 and L2. Each 
core has its own L1 cache that is probably 32- kilobytes (there is no publicly available documentation specifying 
this), and all share a larger 512-kilobyte L2 cache. The caches are separated into two parts, one for instructions 
and another for data. 

Some of the features provided by the MMU are not necessary for student-focused Embedded Xinu, such as 
configuring a virtual address space. Therefore, we use a minimal configuration of the MMU to map virtual 
addresses one-to-one with physical addresses, so that, for example, virtual address 0x8000 is equivalent to 
physical address 0x8000. Embedded Xinu configures the peripheral address space as non-cacheable memory, 
as caching peripheral address space may cause coherency issues when attempting to access peripherals. The 
primary focus of this configuration is to enable cache on certain memory spaces rather than providing a virtual 
memory address space. 

4.3 Mutual Exclusion 
The ARMv8-Aarchitecture includes two instructions, load-exclusive (ldrex) and store-exclusive (strex),3 that 
provide essential synchronization primitives. Building atop these primitives, Embedded Xinu implements more 
familiar synchronization mechanisms like mutex locks and semaphores. 

A mutex lock is one of the simplest tools to solve the critical-section problem.26 Mutex locks are used to address 
the problem of resource sharing and are used to ensure mutual exclusion during a critical section. Mutex locks 
are essential as they provide a means to prevent race conditions within embedded systems. 

While implementing a simple spin-lock mutex, a few caveats were discovered regarding the use of the ldrex 
and strex opcodes on the Raspberry Pi 3. Specifically, the memory that is being accessed by these instructions 
has to be loaded into cache and marked as shareable by the MMU.3 The reason for the minimal configuration of 
the MMU and cache, which was described earlier in 

Figure 4: XinuPi3’s spin-lock mutex acquire in ARM assembly.
 

Section 4.2, is largely because of these requirements for exclusive memory access.
 

Another caveat that may not be obvious at first can be seen in Figure 4. To load the data into cache the pld

(Preload Data) instruction is used. This ARM opcode starts a request to load the data into cache, if it is not
 

http:problem.26


      
  

    
 

 
 

 
       

     
     

     
 

 
     

     
   

    
 

 
    

    
   

     
   

 
 

     
    

     
         
        

     
  

 
  

 
      

 
    

  
    

   

again 

Prel oad 
data int.o 

cache 

Locked Failed to 
lock 

Success Mutex 
Acquired 

already there. However, the pld instruction does not wait for the data to be loaded into cache, it only sends the 
request to do so.2 Therefore, a slight delay is achieved using nops for the purpose of increasing the probability 
that the data has been loaded in cache before an exclusive memory access is invoked. 

Figure 5: Spin-lock flow Diagram 

The spin-lock mutex implementation was intentionally made to be verbose for the purpose of enabling students 
to understand and conceptualize the workings of a spin-lock mutex. In keeping with most multicore systems, 
this spin-lock implementation is optimistic. Mutual exclusion is guaranteed, but in the worst case, a core might 
be perpetually denied the lock by competing cores. In practice, such a degenerate case is highly unlikely. 

4.4 XinuPi3’s Multicore Scheduler 
The Scheduler is the component of the kernel that controls what threads are running, how long they run, and 
when they stop running. Single core versions of Embedded Xinu use multitasking, a scheduler design that 
emulates concurrent processing by rapidly switching the thread that is running on the CPU. XinuPi3’s multicore 
scheduler allows genuine concurrency, scheduling threads to execute in parallel on distinct cores with shared 
memory. 

Embedded Xinu stores information about each thread in a continuous table structure called the thrtab. The 
structure of this table allows for simple O(N) insertions and O(1) removals, while still being simple enough for 
students to understand the structure. This table associates a key (tid) with a thread entry (thrent). Each 
thrent structure stores important information about the current state of the thread, which core the thread is 
running on, its current execution state, a name, and a stack pointer. This information is vital to maintaining a 
concurrent multiprocessing operating system. 

In order for a thread to begin execution, it must go through several steps in Embedded Xinu. First, it must be 
created programmatically. Once a thread has been created it is put into the ready queue and given the state 
THRREADY. When a core calls resched() to ask the scheduler for a new thread to run, the scheduler 
dequeues from the ready queue and the core context switches to that thread using the ctxsw() function. If a 
core calls resched() and there are no thrent’s in the ready queue then the processor continues to loop in 
its null thread. The null thread is always ready to run, ensuring that if a CPU has no current jobs it continuously 
requests a new one from the scheduler. 

When a thread is running it can perform the following tasks: 

•	 Voluntarily call resched() and allow another thread to run. The calling thread is put back into the 
ready queue, 

•	 Call sleep() and put itself on the sleep queue. After it has slept for the specified length of time, it will 
be put back into the ready queue, 

•	 Call on an I/O or physical device driver. While waiting for the corresponding interrupt to be called, the 
thread is stored in the I/O Queue, and 



    
       

 
 

    
   

    
    
  

 
     

     
  

 

 
 

   
      

    
    

     
   

 
 

  
    

   
     

      

schedule () 

resched () 

create () 

Ready 

exit() 

Wai.ting 
for IO or 
semaphore 

signal() 

Sleeping 

wakeup() 

•	 Wait for a semaphore to be free in order to access a protected resource. Once the semaphore is 
signal()ed, and the waiting thread makes it to the front of that semaphore’s wait queue, the thread 
resumes. 

Within XinuPi3, each core has access to the central ready queue which, upon idle, dequeues the next element. 
This allows for a simple load balancer that affirms each core is equally busy, while giving headroom for students 
to expand its implementation in future assignments. For example, a possible extension could instruct students 
to add a thread migration system which would ensure that the number of threads assigned to each core remains 
balanced, even after certain threads are done executing. 

Information about each individual core is placed in a new table called the coretab which stores the state of 
the core and its physical address. In utilizing a single coretab, this structure may support platforms that have a 
varying amount of cores. 

Figure 6: Xinu Process State diagram. 

5 TEACHING WITH MULTICORE EMBEDDED XINU 
The most obvious course in the standard curriculum to benefit from the first multicore port of Embedded Xinu is 
Operating Systems. University O/S courses range from "hands-free" surveys of O/S concepts, to hardcore 
explorations of queuing theory, to introductory systems programming, to deeply applied O/S-building project 
courses. For any course that includes an applied system programming component, Embedded Xinu on Raspberry 
Pi 3 offers an inexpensive but powerful platform for students to directly interact with genuinely concurrent 
embedded software. 

As an example, Marquette University’s three-credit-hour Operating Systems course is required for our Computer 
Science majors, Computer Engineering majors, and also counts as a specific technical elective for many 
Biocomputing majors. Computer Science majors normally take this course during their fourth semester, 
immediately following the course’s prerequisite class, Hardware Systems. Engineering majors typically take the 
O/S course during their third year. The hands-on, low-level system programming experiences in this course are 



      
   

 
  

       
   

    
  

 
     

      
 

 
  

 
     

  
 

     
 

 
      

    
    

   
 

    
     

    
   

• lDOO: Initialize two cores . • I 
I• Have each core output via the •I 
I• shared seria l port . •I 
vo id nulluser () 

/ • lDOO: use unpar kcore (int , void •) • / 
I • method to start core 1 • / 
/ • at spec i f i ed code location . • / 

void testcore0 ( vo i d ) 

/ • TOOO: Add print statements • / 
/ • and o ther testcases •/ 
kprintf ( "This " is "core"%d . " , cpuid ); 

vo id t estcorel ( vo i d ) 

I • lDOO: Add print statements • / 
/ • and o ther testcases • / 
k print f ( " This " is " core "%d . " , c p u id ) ; 

I 

highly valued by those majors who go on to take more advanced coursework in embedded and real-time 
systems, as well as courses in internetworking and cybersecurity. 

The single core version of the O/S course challenged student teams to design, implement and test significant 
components of Embedded Xinu O/S, such as the synchronous serial driver, context switch, process scheduler, 
and memory allocator. Synchronization primitives such as mutexes and semaphores could be implemented 
inmany variants, and applied to classic interprocess communication problems, such as “Dining Philosophers” or 
concurrent readers and writers. 

Multicore XinuPi3 enables a sequence of new activities that highlight the genuine concurrency capabilities 
available on modern platforms. An early assignment now asks the students to unpark 

Figure 7: First multicore demonstration. 

each of the cores, initialize them with valid C execution environments, and demonstrate serial port output from 
each core. See Figure 7. 

The scheduling assignment now tasks students with one or more variants on the simple global scheduler with 
näive load balancing. 

For the thread synchronization project, students use the platform-provided ldrex and strex ARM opcodes to 
guarantee mutually exclusive updates to a shared, global value, free of race condition contention from other 
cores. Using this basis, students can construct counting or binary semaphores with queues, bounded-wait 
mutexes, simple concurrent monitors, or condition variables. 

When learning about interprocess communication, (a standard topic in any O/S course,) the multicore system 
can run genuinely concurrent examples, greatly increasing the opportunities to observe race conditions in 
action, and to think deeply about proper avoidance techniques. Furthermore, simple parallelizable 
computations can be deployed, demonstrating measurable speed-up over single-core implementations. 



 
    

      
   

       
     

    
    

      
    

    

  
     
   

   
      

    
 

   
    

       
       

 

 
     

      
    

      
   
 

 
      

     
       

   
      

     
 

 
 

      
   

 
   

 

Single-core Embedded Xinu provides the standard C library function malloc(), which allocates memory from 
the Pi’s available heap. Completing or improving upon malloc() and free() is a commonplace student 
assignment in this context. The Pi 3 platform uses shared memory between all the cores, so the simplest 
baseline memory allocator for XinuPi3 uses the same malloc() code with an additional mutex to prevent multiple 
cores from accessing the critical section of the memory allocation code concurrently. This heavy-handed 
solution works correctly but presents grave efficiency concerns that grow quickly as the number of concurrent 
cores scales. Multicore embellishments for the memory allocator include cordoning off dedicated “mini heaps” 
for each core, which would allow faster local heap allocation when needed. Of course, this only raises new 
resource-balancing questions, as well as a host of intellectually challenging quandaries involving allocation of 
shared space, migration of heap-allocated blocks, and delegation of responsibility for deallocation. 

6 SUMMARY AND CONCLUSIONS 
XinuPi3 is a novel port of the venerable Embedded Xinu O/S to the multicore Raspberry Pi 3. The need to 
provide students with hands-on experience programming modern embedded platforms frequently outstrips the 
availability of well-tested instructional tools and curricula. XinuPi3 occupies a unique niche as an established 
bare metal instructional O/S that is actively maintained, used in a wide variety of courses at many schools, and 
that now supports genuine concurrency on a modern multicore platform. 

Maintaining practical embedded system educational tools remains difficult in the face of rapid hardware 
evolution, and a persistent lack of detailed, low-level documentation and datasheets for widely available 
commercial platforms. In this paper, we have presented our contribution to this toolset, as well as many of the 
technical insights that may allow others to port bare metal tools to the multicore Pi 3 board. 

6.1 FutureWork 
In order for Embedded Xinu to continue its service in computer systems courses at universities, there must be 
extensive documentation available explaining how to use it as a teaching tool, whether it runs on a Linksys 
router or a board within the Raspberry Pi series. Currently, such instructional information exists for the past 
ports of Embedded Xinu on the Embedded Xinu Wiki.9 We are currently developing instructor-friendly 
documentation detailing the importance of teaching using XinuPi3 and how to set up the laboratory 
environment accordingly. 

As an instructional tool, it is essential to measure the impact of XinuPi3 on actual student learning in an 
educational context. XinuPi3 will be deployed as a teaching tool in Spring of 2018 at Marquette University in the 
courses COSC 3250: Operating Systems, and COEN 4820: Operating Systems and Networks. Previous instances of 
these courses have collected ample baseline data on student learning outcomes with single-core Embedded 
Xinu on several platforms, including Raspberry Pi 1 boards. The data collection in 2018 will focus on changes to 
students’ understanding of concurrency and syncronization in the context of hands-on laboratory projects using 
multicore XinuPi3. 
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