106,943 research outputs found

    CAM04-1: Admission control in self aware networks

    Get PDF
    The worldwide growth in broadband access and multimedia traffic has led to an increasing need for Quality- of-Service (QoS) in networks. Real time network applications require a stable, reliable, and predictable network that will guarantee packet delivery under QoS constraints. Network self- awareness through on-line measurement and adaptivity in response to user needs is one way to advance user QoS when overall network conditions can change, while admission control (AC) is an approach that has been commonly used to reduce traffic congestion and to satisfy users' QoS requests. The purpose of this paper is to describe a novel measurement-based admission control algorithm which bases its decision on different QoS metrics that users can specify. The self-observation and self- awareness capabilities of the network are exploited to collect data that allows an AC algorithm to decide whether to admit users based on their QoS needs, and the QoS impact they will have on other users. The approach we propose finds whether feasible paths exist for the projected incoming traffic, and estimates the impact that the newly accepted traffic will have on the QoS of pre-existing connections. The AC decision is then taken based on the outcome of this analysis

    CAM04-1: Admission control in self aware networks

    Get PDF
    The worldwide growth in broadband access and multimedia traffic has led to an increasing need for Quality- of-Service (QoS) in networks. Real time network applications require a stable, reliable, and predictable network that will guarantee packet delivery under QoS constraints. Network self- awareness through on-line measurement and adaptivity in response to user needs is one way to advance user QoS when overall network conditions can change, while admission control (AC) is an approach that has been commonly used to reduce traffic congestion and to satisfy users' QoS requests. The purpose of this paper is to describe a novel measurement-based admission control algorithm which bases its decision on different QoS metrics that users can specify. The self-observation and self- awareness capabilities of the network are exploited to collect data that allows an AC algorithm to decide whether to admit users based on their QoS needs, and the QoS impact they will have on other users. The approach we propose finds whether feasible paths exist for the projected incoming traffic, and estimates the impact that the newly accepted traffic will have on the QoS of pre-existing connections. The AC decision is then taken based on the outcome of this analysis

    Clustering Algorithms for Scale-free Networks and Applications to Cloud Resource Management

    Full text link
    In this paper we introduce algorithms for the construction of scale-free networks and for clustering around the nerve centers, nodes with a high connectivity in a scale-free networks. We argue that such overlay networks could support self-organization in a complex system like a cloud computing infrastructure and allow the implementation of optimal resource management policies.Comment: 14 pages, 8 Figurs, Journa

    Enabling limited traffic scheduling in asynchronous ad hoc networks

    Get PDF
    We present work-in-progress developing a communication framework that addresses the communication challenges of the decentralized multihop wireless environment. The main contribution is the combination of a fully distributed, asynchronous power save mechanism with adaptation of the timing patterns defined by the power save mechanism to improve the energy and bandwidth efficiency of communication in multihop wireless networks. The possibility of leveraging this strategy to provide more complex forms of traffic management is explored

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated
    corecore