
Admission Control in Self Aware Networks
Georgia Sakellari, Maurizio D’Arienzo, Erol Gelenbe

Intelligent Systems and Networks Group
Electrical & Electronic Engineering Dept.

Imperial College
London SW7 2BT

{g.sakellari,m.darienzo,e.gelenbe}@imperial.ac.uk

Abstract—The worldwide growth in broadband access and
multimedia traffic has led to an increasing need for Quality-
of-Service (QoS) in networks. Real time network applications
require a stable, reliable, and predictable network that will
guarantee packet delivery under QoS constraints. Network self-
awareness through on-line measurement and adaptivity in re-
sponse to user needs is one way to advance user QoS when
overall network conditions can change, while admission control
(AC) is an approach that has been commonly used to reduce
traffic congestion and to satisfy users’ QoS requests. The purpose
of this paper is to describe a novel measurement-based admission
control algorithm which bases its decision on different QoS
metrics that users can specify. The self-observation and self-
awareness capabilities of the network are exploited to collect data
that allows an AC algorithm to decide whether to admit users
based on their QoS needs, and the QoS impact they will have
on other users. The approach we propose finds whether feasible
paths exist for the projected incoming traffic, and estimates the
impact that the newly accepted traffic will have on the QoS of
pre-existing connections. The AC decision is then taken based on
the outcome of this analysis.

I. INTRODUCTION

The worldwide growth in broadband access and multimedia
traffic has led to an increasing need for Quality-of-Service
(QoS) in networks. Real time applications, such as Internet
telephony (Voice-over-IP), video conferencing, remote teach-
ing, remote medical diagnosis and treatment, and online trad-
ing systems, require stable, reliable, and predictable networks
that will guarantee packet delivery under QoS constraints. This
is not secured by the current “best-effort” Internet architecture.
A promising solution, capable of satisfying those demands, is
Self-Aware Networks [1]. These are packet networks that use
the CPN [2] or other adaptive packet routing protocols and
address QoS by using adaptive techniques based on on-line
measurement. CPN is designed to perform Self-Improvement
by learning from the experience of smart packets and by
using neural networks and genetic algorithms. In Self-Aware
Networks, as with all types of networks, congestion needs to
be carefully examined. A way to control traffic congestion and
satisfy users’ Quality of Service requests without overprovi-
sioning, is to implement admission control (AC), which is the
purpose of the work presented in this paper.
AC is one of the classical problems in networks which

has been addressed since the early days of telephony. In
its simplest and broadest form, the problem is to determine
whether some user u who requests some service S and is

willing to pay a price ¶ for a level of Service Q should
be admitted into the network. The decision should obviously
be taken in terms of the network’s ability to satisfy the user,
the reward that the network expects to obtain by offering this
service to the user, and the risk that it might incur if it does
accept the user but is unable to provide this user and other
pre-existing users with a satisfactory service. Factors involved
in the AC decision are:

• The measurement of up to date QoS metrics that relate
to the request that is made by user u;

• The estimation of the impact of the new flow on the QoS
experienced by current users;

• The cost benefit analysis of the acceptance or rejection
decision with respect to overall economic or utility con-
siderations for the network.

In a Self-Aware network we propose to establish a connection
for user u to a service S with the following elements:

• The AC constantly gathers data on the ongoing users
QoS in the network by exploiting the network’s Self
Awareness.

• u turns to the AC system and indicates that it wants a
service S at QoS value Q for a price ¶.

• The AC executes an algorithm to discover at the feasi-
ble paths that may satisfy u’s requirements while other
existing flows’ QoS needs are also satisfied.

• All such paths are probed to see whether the addition of
the new user will preserve the preceding conditions.

• If a satisfactory path is found then u is accepted. Other-
wise it is rejected.

In this paper we will detail this approach, describe an im-
plementation in our network test-bed, and report on some
experimental results.
The paper is organised as follows: the next section reviews

the literature on AC and Section IV introduces a multiple
criterion AC algorithm based on a probing technique. In
Section III we present an existing architecture that implements
the Self Aware Network concept in the framework of the
CPN systems [1]. Section V reports preliminary results of the
AC algorithm we describe, using our existing CPN testbed.
Concluding remarks can be found in Section VI.

II. AC: RELATED WORK

There is abundant literature about AC in networks and
we will only point to some of the relevant work. Rate or

Simple Sum is the simplest parameter-based algorithm, and
the most widely implemented by switch and router vendors
[3]. It ensures that the sum of requested resources does not
exceed the link capacity. The Simple Sum algorithm does not
take into account QoS metrics other than bandwidth, and it
assumes that every user will use all of its reserved bandwidth.
A measurement-based version of Rate Sum isMeasured Sum
[3] which tries to increase the network utilization by measuring
the actual network load and substitutes the reserved rates of the
existing users with the measured load . Again the admission
decision is based only on the availability of bandwidth and
does not consider any other QoS metric.
Acceptance Region schemes decide whether to admit a new

flow based on the current state of the system and whether the
state lies within the “acceptance” or “rejection” region. The
acceptance region is calculated in order to maximize the line
utilization for a nominal packet loss, given a set of flows with
a given declaration of peak and mean rates. The calculation
in both [4] and [5] assumes that calls arrive according to a
Poisson process, that the calls admitted are independent and
stay in the network for exponentially distributed time, that they
have identical bandwidth requirement statistics and they are
described by a continuous-time ergodic Markov fluid process.
Though the acceptance region algorithms are quite simple,
this simplicity comes as a result of simplifications of the
network model, which results in limitations in such algorithms.
For instance, they perform quite poorly at low link capacity.
Another limitation is related to the often made assumption of
homogeneous on-off sources. Thus it may not be clear whether
such algorithms are still applicable when the traffic sources do
not fit this model.
Measurement Based Admission Control with Delay and

Bandwidth Constraint schemes do both delay and bandwidth
checking and are used with predictive service for “tolerant”
applications which allow a certain degree of QoS viola-
tions. When a new flow requests service, the network must
characterize its traffic. The algorithm described in [6], is a
measurement based admission control algorithm for predictive
service which approximates the maximum delay of predictive
flows by replacing the worst-case parameters in the analytical
models with measured quantities. The computation of worst-
case queueing delay is different for guaranteed and predictive
services. Such algorithms cannot be used in networks with
strict QoS requirements and are only applicable in networks
with predictive service. Also the schemes tend to exceed
the needed bandwidth reservation, since they use worst-case
delays, which is rarely the case since multiple sources will
rarely simultaneously transmit packets at peak rate.
Equivalent Bandwidth, is the minimum bandwidth that

is needed to carry the traffic that is generated by a source
in isolation, without violating the QoS requirements. In this
approach, each source is assigned an equivalent bandwidth
and a new call is accepted if the sum of these equivalent
bandwidths is less than the capacity of the links. In [7] and [8]
a fluid-flow model for the source and a bandwidth allocation
process is used to calculate the equivalent bandwidth either

by taking into account the impact of source characteristics
(the duration of the burst period) when the impact of in-
dividual connection characteristics is critical, or when the
effect of statistical multiplexing is of significance. Equivalent
bandwidth schemes are characterised by their simplicity, since
determining whether a given set of traffic sources can be
accommodated without any QoS violation comes down to
comparing the sum of the equivalent bandwidths of individual
sources to the link capacity. This approach does not consider
the effect of buffering which increases the effective capacity of
a system. Moreover, since Equivalent Capacity AC algorithms
reserve the resources that are specified by the source traffic
description, users could request more resources than they
require leading to low network utilization.
The Diffusion based statistical AC uses statistical band-

width based on closed-form expressions that use diffusion
approximation models [9]. It exploits information about buffer
sizes and the multiplexed traffic that shares a common link
to obtain a diffusion approximation based cell loss estimate
and assumes that traffic follows an “On-Off” behaviour. A
new connection is admitted if the statistical bandwidth on
every intermediate link along the selected path is less than
the link capacity. The use of diffusion-based techniques has
been shown to be conservative with respect to cell loss, but
more economical in bandwidth allocation.
Endpoint Admission Control [10], [11], [12], [13], [14] is

a measurement-based scheme in which the end host (endpoint)
probes the network by sending probe packets at the data rate
it would like to reserve and records the resulting level of
packet losses, specially marked packets, or other QoS criteria.
The host then admits the flow only if the loss (or marking)
percentage is below some threshold value. Endpoint admission
control requires no explicit support from the routers that do not
need to keep a per-flow state or process reservation requests.
This approach simply uses the fact that routers may drop or
mark packets in a normal manner. In some cases the probe
packets are treated equally with the data packets and in others
they are sent at a different priority level. This approach suffers
from the shortcomings of any measurement based scheme
where estimates may not be in line with what will be observed
when the real traffic is sent instead of the probe traffic.

III. SELF AWARE NETWORKS
Self Aware Networks (SAN) is a proposal of QoS enabled

networks with enhanced monitoring and self improvement
capabilities. A promising SAN architecture is Cognitive Packet
Network (CPN). CPN [1],[2],[15],[16],[17], a packet routing
protocol which addresses QoS using adaptive techniques based
on on-line measurements. In CPN, users declare their QoS
requirements (QoS Goals) such as minimum delay, maximum
bandwidth, minimum cost, etc.
CPN makes use of three types of packets: smart packets

(SP) for discovery, source routed dumb packets (DP) to
carry payload, and acknowledgements (ACK) to bring back
information that has been discovered by SPs which are used
in nodes to train neural networks. Conventional IP packets

may tunnel through CPN to seamlessly operate mixed IP and
CPN networks. SPs are generated either by a user requesting
to create a path to some CPN node, or by a user requesting to
discover parts of network state, including location of certain
fixed or mobile nodes, power levels at nodes, topology, paths
and their QoS metrics.
SPs discover routes by using random neural networks

(RNN) [18] with reinforcement learning (RL). RL is carried
out using a QoS Goal (such as packet delay, loss, hop count,
jitter, etc) which is defined by the user who generated a request
for the connection, or by the network itself. The decisional
weights of a RNN are increased or decreased based on the
observed success or failure of subsequent SPs to achieve the
Goal. Thus RL will tend to prefer better routing schemes, more
reliable access paths to data objects, and better QoS.
When a Smart Packet arrives to its destination, an ACK

is generated and heads back to the source of the request,
following the reversed path of the SP. It updates mailboxes
(MBs) in the CPN nodes it visits with the information which
has discovered, and provides the source node with the success-
ful path to the node. All packets have a life-time constraint
based on the number of nodes visited, to avoid overburdening
the system with unsuccessful requests or packets which are
in effect lost. A node in the CPN acts as a storage area
for packets and mailboxes (MBs). It also stores and executes
the code used to route smart packets. It has an input buffer
for packets arriving from the input links, a set of mailboxes,
and a set of output buffers which are associated with output
links. The route brought back by an ACK is used as a source
route by subsequent DPs of the same QoS class having the
same destination, until a newer and/or better route is brought
back by another ACK. ACK messages also contain timestamp
information that can be used to monitor the QoS metrics on a
single link and/or partial or complete paths.

IV. A MULTIPLE CRITERION AC ALGORITHM

The AC algorithm we propose is based on the ability of
CPN to collect QoS information on all links and paths that
the SPs have explored and on all paths that any user is using
in the network. Furthermore, since it is the users that determine
the QoS metrics that interest them, CPN collects data for the
different QoS metrics that are relevant to the users themselves.
Thus, collectively, users may be concerned with m distinct

QoS metrics qv 2 R, v = 1, ...m that are specified in terms of
QoS constraints [qv 2 Cv(u) for each user u, where Cv(u) Ω
R] is typically an interval of acceptable values of the QoS
metric v for user u. We will detail the AC algorithm in terms
of forwarding packets from some source s to a destination d.
However this approach can be generalised to the case where
u is requesting some service S.
The starting point of our approach is that every QoS metric

can be considered as a value which increases as the “traffic
load” increases. Obviously, the addition of a new connection
will increase the load of the paths it may be using, and
therefore it is assumed that the value taken by the QoS metrics
will increase. For example, delay increases as the network

traffic load increases. Now consider some path º, and assume

Fig. 1. Illustration of the variation of a QoS metric W as a function of load

that a small increase x in the load that is obtained in a
controlled manner, e.g. by sending probe packets at rate x,
yields an estimate of the manner in which the QoS metric q

varies around the current load point Y :

q̂

0 =
q(Y + x)° q(Y)

x

. (1)

We use this estimate to evaluate the impact of a new flow with
total traffic rate X by using the measured derivative from (1):

q̂(Y + X) = q(Y) + q̂

0
X, (2)

without having to know the initial load Y . This estimate may
be optimistic or pessimistic. However it is likely that the path
that we will select because it provides the most favorable
impact on current flows and because it satisfies the QoS needs
of the new flow, is also likely to also be the best path in
terms of actual observed QoS after the new user’s full traffic
is inserted.
Now consider the network graph G(N,E) with nodes N ,

n = |N |, and the set E of directional links (i, j), where i, j 2
N . The CPN algorithm explores G(N,E) and collects QoS
data about the parts of the network that are being currently
used, or which have been explored by SPs. We assume that
this data is available in one or more locations in the form of
n£ n link QoS matrices Qv with elements:

• Qv(i, j) = r where r ∏ 0 is a real number representing
the QoS of link (i, j) which has been measured at some
recent enough time, and

• Qv(i, j) = unknown if a SP has not explored the link
for QoS metric v or if this happened so long ago that the
value could be inaccurate.

From the link matrices Qv we can compute:
• The set of known (explored) paths P (i, j) from i to j,
and

• The path QoS matrices Kv , where Kv(i, j) is the known
best value of the QoS metric v for any path going from i

to j if such a path exists and if the links on the path have
known entries in the link QoS matrices. Other entries in
Kv are set to the value “unknown”.

By “best value” we mean that several paths may exist for
the source-destination pair (i, j), but Kv(i, j) will store, for
instance, the smallest known delay for all paths going from i

to j if qv is the delay metric. We will discuss later how the
path QoS matrices are computed from the link matrices.
The proposed AC algorithm proceeds as follows. Let u be

a new user requesting admission for a connection from source
s to destination d carrying a traffic rate X and with QoS
constraint qv(u). Suppose also that the network is currently
carrying other users z, any one of which will be generically
represented by some QoS constraint qw(z).

• Find the set P (s, d). If it is empty, send SPs to discover
paths. If unsuccessful, reject the request. Otherwise find
the path which corresponds to the best value of the QoS
metric Kv(s, d) and send probe traffic at rate x along that
path.

• Use the probe traffic to obtain q̂

0
w(i, j) for each QoS

metric w of interest, including w = v, and for all
concerned links (i, j). Note that most links will not be
concerned by the probe traffic which only travels along a
particular path so that for the unconcerned links we take
q̂

0
w(i, j) = 0.

• Then compute

Q̂w(i, j) = Qw(i, j) + Xq̂

0
w(i, j) (3)

for all concerned links and all QoS metrics. For uncon-
cerned links we take Q̂w(i, j) = Qw(i, j).

• Compute K̂w from Q̂w in the same manner (to be detailed
below) as we compute Kw from Qw for all the QoS
metrics of interest, including v.

• If K̂v(s, d) 2 Cv(u) AND K̂w(s0
, d

0) 2 Cw(z) for all
other current users z with source-destination pair (s0

, d

0)
and QoS metric qv , then accept u; else reject the request.

A. Computing the QoS matrices
The well known “Warshall’s algorithm” [19] determines

for each i, j 2 N whether there is a path from node i to
node j by computing the Boolean matrix P , the transitive
closure of the graph’s adjacency matrix A, in less than n

3

Boolean operations. Floyd’s algorithm [20] extends Warshall’s
algorithm to obtain the cost of the “smallest cost path” between
any pair of vertices in the form of a real-valued matrix.
The n £ n QoS matrix Qv has elements Qv(i, j) which

either contain the currently known value of the v ° th QoS
metric for link (i, j), or the value “unknown”. An unknown
value can be handled as a non-existent link until some new
information is obtained. If the QoS metric qv is additive, i.e.
if the value of the metric over a path is the sum of the metrics
over the links which compose the path, then we can construct
the matrix Kv using the Floyd-Warshall algorithm so that
Kv(i, j) is the smallest value of the QoS metric among all
known paths from i to j. Thus well known techniques can
be used to construct Kv from Qv , and hence K̂v from Q̂v

if the metrics of interest are additive. Note that delay, and
the variance of delay, are both additive metrics. Although loss
rate is not additive (it is sub-additive in the sense that the path
loss rate is smaller than the loss rate of individual links in
the path), the number of lost packets is an additive metric.
For non-additive metrics we have developed a generalisation

of the Floyd-Warshall algorithm which we will not detail in
this paper because of space limitations.

V. EXPERIMENTAL RESULTS
In this section we report some experimental results obtained

with the AC algorithm that we propose using the test-bed of
Figure 2. We have developed a two-tier user level application
to test the AC algorithm, where the lower layer exploits the
existing CPN capabilities in order to gather real time QoS
metrics related to each link. The current implementation re-
peatedly collects values of the following QoS metrics: average
delay, jitter, loss rate, and available bandwidth.

Fig. 2. The CPN testbed

Figure 2 shows a real testbed composed of 46 nodes with
100 Mbps links. Connection requests are made from three
edge nodes, S1, S2, and S3. The QoS requested by the users
takes the form of the average delay which must not exceed
1.2 milliseconds, the delay’s standard deviation which must
not exceed 2.5 milliseconds, loss rate less than 5%, and path
bandwidth that must exceed 10 Mbps. If a request is accepted
by the AC algorithm, the source will generate a constant bit
rate UDP traffic at 10 Mbps that lasts 150 seconds. After
making a request, if the request is satisfied then the user will
wait for a random time W and then make a request again. The
same is true if its request is not satisfied. We set the random
waiting time W among requests in order to have different rate
for the arrivals. W is chosen to be uniformly distributed in a
range of values which is [0, 120] seconds, [0, 90] seconds, and
[0, 70] seconds, which coincides with an average arrival rate ∏

of 3, 4 or 5 requests per minute respectively. Thus the load on
the system is increased in each of the successive experiments.
Each experiment is repeated twice, first with the AC algorithm
and then without. Figures 3,4,5 summarizes the experimental
results. The left column contains the total acceptance rate
for the connection requests, while the second column reports
the satisfaction rate of a user (here user S2) when the AC
is enabled and disabled. By satisfaction of a user we mean
that all four QoS requirements of that user are fulfilled. The
acceptance rate when the AC is disabled is obviously 100%,

but the consequence is seen in the second column. We observe
that when the AC algorithm is enabled the percentage of times
that the S2 user is satisfied is much higher with the AC than
without.

VI. CONCLUSIONS

In this paper we have proposed an AC algorithm that
uses measurements that are gathered by the CPN self-aware
network architecture. The AC algorithm uses multiple QoS
criteria and estimates whether a request for a connection
should be accepted based on the incoming connection’s QoS
request and the impact it will have on ongoing connections.
We report an implementation on a 46 node laboratory test-
bed showing the effectiveness of AC with respect to user
satisfaction.
Much further work can be done in this area. In a forth-

coming paper we will present the algorithm in detail when
non-additive QoS metrics are used and provide experimental
results showing how the network’s operation can be optimised
from the viewpoint of its total traffic carrying capability in
addition to the users’ QoS needs. Further work is also planned
concerning the application of this approach to peer-to-peer
networks.

REFERENCES

[1] E. Gelenbe, R. Lent, and A. Nunez, “Self-aware networks and QoS”,
Proceedings of the IEEE, vol. 92, no. 9, pp. 1478-1489, Sep 2004.

[2] E. Gelenbe, Z. Xu, and E. Seref, “Cognitive packet networks”, Pro-
ceedings of the 11th International Conference on Tools with Artificial
Intelligence, pp. 47-54, Nov 1999.

[3] S. Jamin, S. J. Shenker, and P. B. Danzig, “Comparison of Measurement-
based Admission Control Algorithms for Controlled-Load Service”, Pro-
ceedings of INFOCOM ’97, vol. 3, pp. 973-980, Apr 1997.

[4] R. Gibbens, F. Kelly, and P. Key, “A Decision-Theoretic Approach to Call
Admission Control in ATM Networks”, IEEE Journal on Selected Areas
of Communications, vol. 13, no. 6, pp. 1101-1114, Aug 1995.

[5] D. Tse and M. Grossglauser, “Measurement-based Call Admission Con-
trol: Analysis and Simulation”, Proceedings of the INFOCOM ’97, pp.
981-989, Apr 1997.

[6] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang, “A Measurement-
based Admission Control Algorithm for Integrated Services Packet
Networks”, IEEE/ACM Transactions on Networking, vol. 5, no. 1, pp.
56-70, Feb 1997.

[7] R. Guerin, H. Ahmadi, and M. Naghshineh, “Equivalent Capacity and
Its Application to Bandwidth Allocation in High-speed Networks”, IEEE
Journal on Selected Areas in Communications, vol. 9, no. 7, pp. 968-981,
Sep 1991.

[8] R. Guerin and L. Gun, “A Unified Approach to Bandwidth Allocation
and Access control in Fast Packet-Switched Networks”, Proceeding of
INFOCOM’92, vol. 1, pp. 1-12, May 1992.

[9] E. Gelenbe, X. Mang, and R. Önvural, “Diffusion based statistical call
admission control in ATM”, Performance Evaluation, vol. 27-28, pp. 411-
436, Oct 1996.

[10] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and H. Zhang, “Endpoint
Admission Control: Architectural Issues and Performance”, Proceedings
of ACM SIGCOMM 2000, vol. 30, issue 4, pp. 57-69, Oct 2000.

[11] G. Bianchi, A. Capone, and C. Petrioli, “Throughput analysis of end-
to-end measurement-based admission control in IP”, In Proceedings of
IEEE INFOCOM 2000, vol. 3, pp. 1461-1470, Mar. 2000.

[12] V. Elek, G. Karlsson, and R. Ronngren, “Admission control based on
end-to-end measurements”, Proceedings of IEEE INFOCOM 2000, vol.
2, pp. 623-630, Mar 2000.

[13] R. Gibbens and F. Kelly, “Distributed connection acceptance control for
a connectionless network”, Proceedings of ITC 99, vol. 2, pp. 941-52,
Jun 1999.

[14] C. Cetinkaya and E. Knightly, “Egress admission control”, Proceedings
of IEEE INFOCOM 2000, vol. 1, pp. 1471-1480, Mar 2000.

[15] E. Gelenbe, R. Lent, and Z. Xu, “Design and performance of cognitive
packet networks”, Performance Evaluation, vol. 46, pp. 155-176, 2001.

[16] E. Gelenbe, R. Lent, and Z. Xu, “Measurement and performance of a
cognitive packet network”, Journal of Computer Networks, vol. 37, no.
6, pp. 691-701, Dec 2001.

[17] E. Gelenbe and P. Liu, “QoS and routing in the cognitive packet
network”, Proceedings of the IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks, pp. 517-521, Jun 2005.

[18] E. Gelenbe, “Learning in the recurrent random neural network”, Neural
Computation, vol. 5(1), pp. 154164, 1993.

[19] S. Warshall, “A theorem on boolean matrices”, Journal of the ACM, vol.
9, no. 1, pp. 11-12, 1962.

[20] R. W. Floyd, “Algorithm 97: Shortest path”, Communications of ACM,
vol. 5, no. 6, pp. 345, 1962.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

%

Number of Request

Acceptance Rate

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

%

Time (min)

User’s satisfaction Rate

AC ON
AC OFF

Fig. 3. Average waiting time W before new request is 60 secs
(Average arrival rate ∏ = 3 requests/min)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

%

Number of Request

Acceptance Rate

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

%

Time (min)

User’s satisfaction Rate

AC ON
AC OFF

Fig. 4. Average waiting time W before new request is 45 secs
(Average arrival rate ∏ = 4 requests/min)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

%

Number of Request

Acceptance Rate

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

%

Time (min)

User’s satisfaction Rate

AC ON
AC OFF

Fig. 5. Average waiting time W before new request is 35 secs
(Average arrival rate ∏ = 5 requests/min)

