147 research outputs found

    Method and device for live-streaming with opportunistic mobile edge cloud offloading

    Get PDF
    A novel, pervasive approach to disseminating live streaming content combines secure distributed systems, WiFi multicast, erasure coding, source coding and opportunistic offloading using hyperlocal mobile edge clouds. The solution disclosed to the technical problem of disseminating live streaming content without requiring a substantial equipment, planning and deployment of appropriate network infrastructure points offers an 11 fold reduction on the infrastructural WiFi bandwidth usage without having to modify any existing software or firmware stacks while ensuring stream integrity, authorization and authentication

    Real-time video streaming using peer-to-peer for video distribution

    Get PDF
    The growth of the Internet has led to research and development of several new and useful applications including video streaming. Commercial experiments are underway to determine the feasibility of multimedia broadcasting using packet based data networks alongside traditional over-the-air broadcasting. Broadcasting companies are offering low cost or free versions of video content online to both guage and at the same time generate popularity. In addition to television broadcasting, video streaming is used in a number of application areas including video conferencing, telecommuting and long distance education. Large scale video streaming has not become as widespread or widely deployed as could be expected. The reason for this is the high bandwidth requirement (and thus high cost) associated with video data. Provision of a constant stream of video data on a medium to large scale typically consumes a significant amount of bandwidth. An effect of this is that encoding bit rates are lowered and consequently video quality is degraded resulting in even slower uptake rates for video streaming services. The aim of this dissertation is to investigate peer-to-peer streaming as a potential solution to this bandwidth problem. The proposed peer-to-peer based solution relies on end user co-operation for video data distribution. This approach is highly effective in reducing the outgoing bandwidth requirement for the video streaming server. End users redistribute received video chunks amongst their respective peers and in so doing increase the potential capacity of the entire network for supporting more clients. A secondary effect of such a system is that encoding capabilities (including higher encoding bit rates or encoding of additional sub-channels) can be enhanced. Peer-to-peer distribution enables any regular user to stream video to large streaming networks with many viewers. This research includes a detailed overview of the fields of video streaming and peer-to-peer networking. Techniques for optimal video preparation and data distribution were investigated. A variety of academic and commercial peer-to-peer based multimedia broadcasting systems were analysed as a means to further define and place the proposed implementation in context with respect to other peercasting implementations. A proof-of-concept of the proposed implementation was developed, mathematically analyzed and simulated in a typical deployment scenario. Analysis was carried out to predict simulation performance and as a form of design evaluation and verification. The analysis highlighted some critical areas which resulted in adaptations to the initial design as well as conditions under which performance can be guaranteed. A simulation of the proof-of-concept system was used to determine the extent of bandwidth savings for the video server. The aim of the simulations was to show that it is possible to encode and deliver video data in real time over a peer-to-peer network. The proposed system achieved expectations and showed significant bandwidth savings for a sustantially large video streaming audience. The implementation was able to encode video in real time and continually stream video packets on time to connected peers while continually supporting network growth by connecting additional peers (or stream viewers). The system performed well and showed good performance under typical real world restrictions on available bandwith capacity.Dissertation (MEng)--University of Pretoria, 2009.Electrical, Electronic and Computer Engineeringunrestricte

    On Fault Resilient Network-on-Chip for Many Core Systems

    Get PDF
    Rapid scaling of transistor gate sizes has increased the density of on-chip integration and paved the way for heterogeneous many-core systems-on-chip, significantly improving the speed of on-chip processing. The design of the interconnection network of these complex systems is a challenging one and the network-on-chip (NoC) is now the accepted scalable and bandwidth efficient interconnect for multi-processor systems on-chip (MPSoCs). However, the performance enhancements of technology scaling come at the cost of reliability as on-chip components particularly the network-on-chip become increasingly prone to faults. In this thesis, we focus on approaches to deal with the errors caused by such faults. The results of these approaches are obtained not only via time-consuming cycle-accurate simulations but also by analytical approaches, allowing for faster and accurate evaluations, especially for larger networks. Redundancy is the general approach to deal with faults, the mode of which varies according to the type of fault. For the NoC, there exists a classification of faults into transient, intermittent and permanent faults. Transient faults appear randomly for a few cycles and may be caused by the radiation of particles. Intermittent faults are similar to transient faults, however, differing in the fact that they occur repeatedly at the same location, eventually leading to a permanent fault. Permanent faults by definition are caused by wires and transistors being permanently short or open. Generally, spatial redundancy or the use of redundant components is used for dealing with permanent faults. Temporal redundancy deals with failures by re-execution or by retransmission of data while information redundancy adds redundant information to the data packets allowing for error detection and correction. Temporal and information redundancy methods are useful when dealing with transient and intermittent faults. In this dissertation, we begin with permanent faults in NoC in the form of faulty links and routers. Our approach for spatial redundancy adds redundant links in the diagonal direction to the standard rectangular mesh topology resulting in the hexagonal and octagonal NoCs. In addition to redundant links, adaptive routing must be used to bypass faulty components. We develop novel fault-tolerant deadlock-free adaptive routing algorithms for these topologies based on the turn model without the use of virtual channels. Our results show that the hexagonal and octagonal NoCs can tolerate all 2-router and 3-router faults, respectively, while the mesh has been shown to tolerate all 1-router faults. To simplify the restricted-turn selection process for achieving deadlock freedom, we devised an approach based on the channel dependency matrix instead of the state-of-the-art Duato's method of observing the channel dependency graph for cycles. The approach is general and can be used for the turn selection process for any regular topology. We further use algebraic manipulations of the channel dependency matrix to analytically assess the fault resilience of the adaptive routing algorithms when affected by permanent faults. We present and validate this method for the 2D mesh and hexagonal NoC topologies achieving very high accuracy with a maximum error of 1%. The approach is very general and allows for faster evaluations as compared to the generally used cycle-accurate simulations. In comparison, existing works usually assume a limited number of faults to be able to analytically assess the network reliability. We apply the approach to evaluate the fault resilience of larger NoCs demonstrating the usefulness of the approach especially compared to cycle-accurate simulations. Finally, we concentrate on temporal and information redundancy techniques to deal with transient and intermittent faults in the router resulting in the dropping and hence loss of packets. Temporal redundancy is applied in the form of ARQ and retransmission of lost packets. Information redundancy is applied by the generation and transmission of redundant linear combinations of packets known as random linear network coding. We develop an analytic model for flexible evaluation of these approaches to determine the network performance parameters such as residual error rates and increased network load. The analytic model allows to evaluate larger NoCs and different topologies and to investigate the advantage of network coding compared to uncoded transmissions. We further extend the work with a small insight to the problem of secure communication over the NoC. Assuming large heterogeneous MPSoCs with components from third parties, the communication is subject to active attacks in the form of packet modification and drops in the NoC routers. Devising approaches to resolve these issues, we again formulate analytic models for their flexible and accurate evaluations, with a maximum estimation error of 7%

    2012 PWST Workshop Summary

    Get PDF
    No abstract availabl

    Building blocks for the internet of things

    Get PDF

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field
    corecore