

Building blocks for the internet of things

Citation for published version (APA):
Stolikj, M. (2015). Building blocks for the internet of things. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/84593333-7d87-4655-8fb2-4425a9664e55

Building Blocks for
the Internet of Things

by Milosh Stolikj

c©2015 - Milosh Stolikj, All rights reserved.
IPA Dissertation Series 2015-19
Printed by Gildeprint, Enschede
Cover by Slobodan Jakjoski

The work in this thesis has been carried out under the auspices of the
research school IPA (Institute for Programming research and Algorith-
mics).

This work has been supported in part by the Dutch P08 SenSafety
project, as part of the COMMIT program.

A catalogue record is available from the Eindhoven University of
Technology Library.
ISBN: 978-90-386-3928-4

Building Blocks for
the Internet of Things

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op maandag 19 oktober 2015 om 16.00 uur

door

Milosh Stolikj

geboren te Skopje, Macedonië

Dit proefschrift is goedgekeurd door de promotor en de samenstelling
van de promotiecommissie is als volgt:

voorzitter: prof.dr. J. de Vlieg
1e promotor: prof.dr. J.J. Lukkien
copromotor: dr.ir. P.J.L. Cuijpers
leden: prof.dr.ir. O.J. Boxma

prof.dr.ing. P.J.M. Havinga (University of Twente)
dr. L. Almeida (University of Porto)
prof.dr. H. Corporaal
prof.dr. M.G.J. van den Brand

PREFACE

This thesis is the result of four inspiring years of work in the System
Architecture and Networking Group (SAN) at the Eindhoven University
of Technology. It would not have come to life without the help of many
people, to whom I would like to express my gratitude.

First of all, I would like to thank my promoter, prof. dr. Johan J. Lukkien,
for giving me the chance to pursue a doctoral degree within SAN. I
thoroughly enjoyed our collaboration over the years, and I am grateful
for giving me freedom to explore my own path, as well as guiding me
when needed. My work and research would have not reached this level
without your enthusiasm to invest in and to expand my aspirations.

I also want to thank my supervisor, dr. ir. Pieter J. L. Cuijpers, for getting
me through the daily hurdles. I appreciate the discussions we had, the
useful observations and insights in a lot of strange, new topics, especially
since I always had an opponent with a different point of view.

I would like to thank all the members of the reading committee, prof.dr.ir.
Onno J. Boxma, prof.dr.ing. Paul J.M. Havinga, dr. Luis Almeida, prof.dr.
Henk Corporaal and prof.dr. Mark G.J. van den Brand for reviewing the
thesis. I enjoyed reading your comments and discussions, and I believe
that your feedback improved the quality of the thesis.

During the past four years, I collaborated with several people. Their
contributions were invaluable to me, and shaped my work. I would
like to thank Richard Verhoeven for helping out with the technical
problems that I struck upon. It is great when you know that there is
someone capable of solving practically anything you throw at them. I
was fortunate to supervise Nina Buchina as a Master student, and I am
grateful for her hard work. I would like to thank everyone involved in
the SenSafety project for listening to my ideas, contributing during the
plenary meetings, and socializing during the community days.

I especially want to thank Thomas M.M. Meyfroyt, for the effort and
energy spent during our collaboration. I really appreciated your strong
analytical view on things, and the endless motivation you bring. Thanks
to your eagerness and drive, we were able to quickly tackle some inter-
esting problems, and of course, share the experience of presenting them
to the rest of the community. This collaboration would not have been
possible without the support of prof.dr. Johan J. Lukkien and prof.dr.ir.

ii

Onno J. Boxma. I would like to thank them for their insights during our
meetings, and for reviewing our ideas and papers.

I probably would not have done my PhD in the Netherlands if it was not
for Jasen Markovski. I would like to thank him and Natasha Jovanovich
for reaching out and connecting me with the right people, for advising
me throughout these four years, and for helping me settle in. You were
an inspiration for me to push further when things were difficult.

I would like to thank my former colleagues from the Institute of Infor-
matics, in Skopje, Macedonia. In particular, I thank Katerina Zdravkova,
Nevena Ackovska, Anastas Mishev and Boro Jakimovski, for introducing
me to science, and striking that research vibe that I continued to explore
further.

My stay in the Netherlands was made a lot easier by my colleagues. I
would like to thank Mike Holenderski, Martijn van den Heuvel and Vinh
Bui, for making me feel welcome, for helping me with administrative
troubles, language barriers, and social endeavours. I would like to thank
everyone at SAN, for the shared lunches, coffee breaks, and social events.
Thank you for making life at work pleasant and entertaining.

Life in the Netherlands was a lot of fun. For that, I have to thank all my
friends in and around Eindhoven, for the many shared nights out, road
trips, table tennis sessions, barbecues, etc. Also, I would like to thank
my friends from Macedonia, for providing the necessary distractions
while being back home, as well as for visiting and helping me explore a
new country. Thank you for not forgetting your remote friends and for
staying in touch.

I owe a great deal of gratitude to my parents, Elica and Novica, and my
sister, Ana, for the constant love and support. Thank you for all your
sacrifices, patience and encouragement to become the person that I am
now. This thesis is as much your accomplishment as it is mine.

Last but not least, I would like to express deep gratitude to my partner,
Aleksandra, for all her love, caring and patience during these four years.
Thank you for encouraging me to endure this journey and for being
there every step of the way. I hope that I can be as supportive of you as
you have been with me.

Milosh Stolikj Eindhoven, September 2015

CONTENTS

Preface i

1 Introduction 1
1.1 Introduction . 2
1.2 IoT challenges . 4
1.3 Context and motivation 5
1.4 Questions and contributions 7
1.5 Outline . 10

2 System architecture 13
2.1 Introduction . 14
2.2 IoT use cases . 14
2.3 Requirements . 16

2.3.1 Domain constraints 16
2.3.2 Hardware constraints 17
2.3.3 Power constraints 18
2.3.4 Network constraints 19
2.3.5 Summary: Issues and Requirements 19

2.4 IoT application design 21
2.5 Software protocols for IoT 24

2.5.1 Physical and link layer 24
2.5.2 Network and transport layer 25
2.5.3 Application layer 27

2.6 IoT system architecture 29
2.6.1 Concepts . 31
2.6.2 Viewpoints . 34
2.6.3 Example implementation over IEEE 802.15.4 . . 38
2.6.4 Open problems 42

2.7 Conclusion . 43

3 Software update 45
3.1 Introduction . 46
3.2 Related work . 50

3.2.1 Incremental update 50
3.2.2 Incremental update in consumer electronic devices 51
3.2.3 Software update in WSNs 51
3.2.4 Multi-version software update 52

iv Contents

3.3 Optimizing software updates 53
3.3.1 Data compression algorithms 53
3.3.2 Delta encoding algorithms 54
3.3.3 Horizontal Patching 58

3.4 Evaluation . 63
3.4.1 Metrics . 63
3.4.2 Data compression and incremental updates . . . 65
3.4.3 Horizontal patching 76

3.5 Conclusion . 80

4 Service Discovery 83
4.1 Introduction . 84

4.1.1 Background . 86
4.2 Related work . 88

4.2.1 General-purpose SD protocols 89
4.2.2 SD protocols for LLNs 90
4.2.3 Summary: Solution for the IoT 93

4.3 mDNS/DNS-SD service discovery 96
4.3.1 Operational modes 97
4.3.2 Strategies for responding to queries 98
4.3.3 Problems in mDNS/DNS-SD for IoT 101

4.4 Proxy support for sleeping nodes 103
4.4.1 Active proxy delegation protocol 104
4.4.2 Passive proxy delegation protocol 104
4.4.3 Reliability . 107
4.4.4 Evaluation . 108

4.5 Support for context queries 115
4.5.1 Context tag descriptors 116

4.6 Future work: Packet size 120
4.7 Conclusion . 122

5 Trickle-Based Protocols 125
5.1 Introduction . 126
5.2 The Trickle Algorithm 127

5.2.1 RPL basics . 130
5.2.2 MPL basics . 132

5.3 Related Work . 133
5.3.1 Trickle as a data dissemination mechanism 133
5.3.2 Trickle as a part of RPL 134

5.4 Impact of the redundancy constant 136
5.4.1 Adaptive-k: a density-aware redundancy constant 137

Contents v

5.4.2 Evaluation of the adaptive redundancy constant . 138
5.4.3 RPL Evaluation 142
5.4.4 Summary . 147

5.5 Lower layer interference on Trickle operation 148
5.5.1 Low-power link layer protocols 148
5.5.2 Interference scenario 152
5.5.3 Cleansing MAC 157
5.5.4 Evaluation . 158
5.5.5 Summary . 165

5.6 Conclusion . 165

6 Conclusion 169
6.1 Contributions . 170
6.2 Limitations and future work 173

Bibliography 177

Acronyms 195

List of Figures 199

List of Tables 203

Accomplishments 205

IPA Dissertation Series 209

Summary 217

Curriculum Vitae 219

1
INTRODUCTION

Electronic devices are getting smaller and more ubiquitous than ever
before. We can see electronics in everyday consumer products such as
light bulbs, thermostats, and kitchen appliances. With recent techno-
logical advances, they are able to connect among themselves and to
other devices on the Internet. With the expected massive scaling of such
ubiquitous devices, we move towards the Internet of Things (IoT). In
this chapter, we give an introduction to the concept of IoT and its major
challenges. Then, we list the research topics which are explored in the
thesis.

2 1. Introduction

1.1 Introduction

The IoT is a paradigm where every physical object is connected to the
Internet and is able to uniquely identify itself to other devices. Such
physical objects are referred to as smart, meaning that they contain
embedded electronics which exhibits some form of intelligence. The
term IoT was first used by Kevin Ashton in 1999 [Ash09], to describe a
supply chain system using Radio-Frequency Identification (RFID) [Fin03]
to a potential customer. Today, we envision the IoT to cover a wide
range of applications, such as Smart Grids [ZR13], Smart Cities [She11],
Industrial Automation [AIM10], Home Automation [YN13] and Building
Automation [JRK12; VD10].

The history of the IoT can be traced in the area of Ubiquitous computing.
Mark Weiser proposed the idea of a smart environment: "a physical world
that is richly and invisibly interwoven with sensors, actuators, displays,
and computational elements, embedded seamlessly in the everyday objects
of our lives, and connected through a continuous network" [WGB99]. The
integration task of this idea is explored in the area of Wireless Sensor
Networks (WSNs), where the goal is to build a system of many cheap
computational components, called sensor nodes, wirelessly connected
and jointly working towards a common goal. One instance of a WSN
is Smart Dust, a large distributed system consisting of thousands of
tiny sensor nodes, with sizes as little as one cubic millimetre, using
solar energy for power supply, and a communication range of up to
several tens of kilometres [Pis97]. This system has been something of
a blueprint for WSN research, emphasising the need for systems for
low-power operation over inexpensive devices with limited capabilities.
WSNs are typically very optimized for a given task, and use special
devices, called gateways, to connect to other networks, and eventually,
end users. This optimization leads to the use of customized protocols,
which are incompatible with the existing Internet protocols. In that
sense, WSNs can be seen as islands that use gateways to connect to the
mainland. The further away the island is, the more complicated the
gateway becomes.

The emergence of small implementations of the Internet Protocol
(IP) [HC08], specifically built for WSNs, reduced the complexity of
gateways. With IP as the common protocol used both in WSNs and in
the Internet, it becomes a point of convergence in the IoT. As a result,
gateways became much simpler devices, which only have to translate

1.1. Introduction 3

between different physical media, at the level of common routers. This
trend will continue in the future, with the wider deployment of Inter-
net Protocol version 6 (IPv6) [RFC2460] and its adaptation layers for
WSNs.

This convergence process supports the main idea behind the IoT, that
end-to-end connectivity between any two devices is possible. The devices
can be of disproportionate nature, as for instance, a powerful server
reading out a temperature sensor, or a user controlling light bulbs via a
smart phone. The existence of a common communication infrastructure,
using standardized protocols, makes this communication possible. This
integration at a large scale is expected to improve many current systems,
as transport logistics and various automation systems. However, it will
also enable the development of new applications, as smart cities and
smart grids (Figure 1.1) [VD10; GBMP13].

Figure 1.1: The Internet of Things, by Esther Gons, December 2012. Online:
https://www.flickr.com/photos/wilgengebroed/8249565455/

https://www.flickr.com/photos/wilgengebroed/8249565455/

4 1. Introduction

The IoT is everything but a finished project. In fact, its realization faces
many problems. These problems vary from sociological challenges, as
making people aware and knowledgeable of the technology, to technolog-
ical challenges in the system design, data usability, security, and privacy.
In this thesis, we address a subset of the latter group of challenges,
involving the development of software protocols for the IoT.

1.2 IoT challenges

The technical challenges of the IoT can be identified in several areas.

Connectivity. Connecting trillions of devices in virtually the same net-
work is not an easy task. The heterogeneity of the involved devices
makes it even more difficult, since many different physical interconnec-
tions can be expected. These differences can completely break certain
communications. For instance, city wide ad-hoc wireless networks typ-
ically have large latencies, which break timing perspectives of current
Internet protocols. IoT solutions need to address this heterogeneity in
the design phase.

Power consumption. All electronic devices require power to operate.
On the one hand, mains powered devices, as servers and light bulbs, use
the power grid. On the other hand, sensors deployed in the wild either
rely on batteries, or use some form of energy harvesting. In both cases,
due to the scale of the IoT, the devices should be built such that they use
as little energy as possible. Furthermore, they open up new challenges,
such as the design of sustainable energy harvesting technologies, and
the optimization of energy consumption in the local (e.g. data centre,
building) or global energy distribution system (e.g. city-wide grid).

System Architecture. The multi-domain nature of the IoT makes it
difficult to create a single, killer architecture and application. Simply
put, solutions for a certain domain are inapplicable to others, either
due to functional requirements, or due to hardware differences. The
challenge in the IoT is to construct such architectures, with portability,
auto-configuration, integration and connectivity in mind.

Interoperability and integration. The IoT is built by many distinct
vendors, using various technologies. Their seamless integration can only
be possible if IoT systems are built on top of open standards. There
may be multiple standards for the same areas (e.g. different wireless

1.3. Context and motivation 5

networking standards), but interoperability between them has to be
established (e.g. gateways between different physical networks). We are
now at the stage were many of these standards are being defined.

Computational and storage complexity. The devices that comprise
the IoT will generate massive amounts of data. These data can be
continuous or bursty, and be in structured or unstructured form. In order
to extract the most from these data, they have to be transported, stored
and analysed. These operations put enormous pressure on networking,
storage and computational infrastructure. The challenge in the IoT is to
develop and maintain such complex infrastructures.

Security, Trust and Privacy. The penetration of the IoT in daily lives
emphasises the need of proper secure solutions. On the one hand, the
large number of devices involved makes the design of a completely
secure system difficult, as there are many points of potential attack.
Then, any solutions have to be portable to a wide set of devices, despite
their intrinsic differences. On the other hand, the potentially collectable
data and its impact is enormous. Unless proper control is enforced, the
IoT can lead to the creation of a dystopian world from Orwell’s 1984,
which is not what we expect.

From the listed challenges, it is obvious that the development of the IoT
depends on the progress of several disciplines, including wireless sensor
networks, control systems, cloud computing, and computer security.

1.3 Context and motivation

The motivation for this work comes from the SenSafety project i. Sen-
Safety aims to increase safety and security by offering real-time reporting
and analysis of potentially dangerous events and providing support to
first-responders in such situations (Figure 1.2). SenSafety achieves this
goal by gathering and analysing sensory data from any available sensors
in a given area. These sensors can be part of a fixed infrastructure,
or be completely opportunistic. Two examples of fixed infrastructures
are city-wide lighting systems and building automation systems. A
city-wide lighting system consists of networks of intelligent light poles,
equipped with cameras, sound sensors, presence sensors, air quality
sensors, and controllable lights, wirelessly interconnected and capable

ihttp://www.sensafety.nl

6 1. Introduction

of autonomously analysing data. Similarly, building automation systems
provide fully autonomous building control, including lighting, air con-
ditioning, heating, and access control, based on connected sensors and
actuators inside buildings. Opportunistic sensors come from various end-
user devices, including sensors on smart phones and wearable devices.
These devices can be used to complement data gathered from the fixed
infrastructure, as well as inform the general public of safety issues.

Information push:

• Early warning

• Safety instructions

Sensor input:

• Location (ID, GPS)

• Camera, Microphone

• Embedded sensors

Safety management:

• Control actuators

•lights, gates, ….

• Re-program network

•new behavior, application

Situation awareness:

• ‘Area 1: X people’

• Movement direction

• Danger location

Figure 1.2: SenSafety overview.

Even though many specialized safety systems have been developed,
we believe that SenSafety can be treated as another application in the
IoT landscape. It closely resembles the Smart City concept, where
digital technologies are used to improve common processes in cities,
actively engage citizens and enhance their daily lives. In that context, a
Smart City provides a platform which can be used to realize the safety
applications expected in SenSafety.

The main research focus in SenSafety is in four areas: system archi-
tecture, networking protocols, intelligent streaming data sensors, and
distributed signal processing. This work addresses the first two areas.

The design of the system architecture is difficult due to the heterogeneity
of the devices involved and the combination of different types of sensor
input: streaming and event-based. Additionally, the system architecture

1.4. Questions and contributions 7

should provide support for remotely reprogramming devices for a specific
task. Reprogramming is needed for maintenance (e.g. fixing bugs in
existing software), or for providing new functionality (e.g. deploying
new algorithms for analysing video streams). Reprogramming is also
important during the design of intelligent streaming data sensors, which
should be able to process audio and video streams in an energy-efficient
manner.

Networking protocols in large, wireless networks often have sub-optimal
performance due to varying radio conditions, unstable connections, or
incomplete network information due to size. The challenge then is how
to design protocols which are both energy efficient, as well as robust
against varying network conditions.

Finally, distributed signal processing deals with gathering sensor data
from different sources, analysing it and making decisions based on
current information. This is a challenge due to the unstable networking
conditions and the potentially massive amounts of data available.

1.4 Questions and contributions

The focus of this thesis is on the design and implementation of the soft-
ware architecture for the IoT. In particular, we focus on the integration of
resource constrained, low-power devices as part of the IoT infrastructure.
We try to answer the following questions:

RQ1: How do we design the software infrastructure for the IoT?

RQ2: How do we combine powerful and resource constrained devices in
a single logical network?

RQ3: How do we manage large networks of heterogeneous devices?

RQ4: How do existing IoT specific networking protocols scale in size and
in different topologies?

RQ5: What is the impact of low-power wireless radios on different IoT
applications?

We address these questions by investigating various aspects of IoT sys-
tems. We start by analysing the fundamental requirements and proper-
ties expected of IoT use cases. These requirements, such as low energy
footprint and portability to constrained devices, pose serious challenges

8 1. Introduction

to existing software protocols. Therefore, we conduct a survey of exist-
ing software protocols and discuss their applicability in IoT use cases.
From this survey, we select a mix of existing standardized protocols and
protocols under development to propose a Service Oriented Architecture
(SOA), for realizing IoT applications over low-power wireless networks.
SOA allows decomposition of complex systems into applications that
use smaller, simpler components with well-defined interfaces [Deu+06].
This decomposition is beneficial for the IoT, as it enables re-use of
both hardware and software, and naturally accepts devices with dis-
proportionate capabilities. The proposed architecture is built on open
standards, which enables easier interoperability, and is flexible enough
to facilitate different IoT use cases, from remote telemetry applications
to local control systems.

The successful implementation of the proposed architecture depends on
the proper operation of all of the software protocols involved. Due to
the scale of the network, and low-power properties of the nodes, this is
not a trivial task.

Firstly, the entire software architecture needs to be deployed and main-
tained. This step covers the distribution of software components to
many devices in the network simultaneously. However, remote software
update is tedious over low-power wireless networks, as it consumes a lot
of energy and can be slow due to the imperfections of the wireless media
and the periodic unavailability of nodes. To resolve these issues, we
perform a study for reducing the size of software updates. We analyse
the trade-off between processing effort and communication cost, and
show that in large networks, various data compression schemes can be
used even on constrained devices, to greatly reduce energy consumption
and improve dissemination time. We apply the same methods to update
smart phones as well, with similar results.

Secondly, the service-oriented nature of the architecture requires that a
specialized protocol for discovering services is in place. Such a protocol
is currently not identified for the IoT. Therefore, we conduct a survey
on the applicability of existing service discovery protocols in the IoT
domain. The survey shows that Multicast Domain Name System (mDNS)
with DNS-Based Service Discovery (DNS-SD) is a potential candidate
due to its wide spread usage in Local Area Networks (LANs), strong
industry support and flexible deployment options. Upon more detailed
analysis, we discover that the performance of the protocol is suboptimal
when used in networks where many alternative services are available,

1.4. Questions and contributions 9

and they are hosted on devices with low-power properties. To resolve
these issues, we propose two backward compatible extensions of the
protocol. The first extension adds support for proxy server, which cover
the imperfections of low-power hosts. The second extension enables
clients to discriminate between distinct services as early as possible.
These two extensions enable better performance of the protocol in large
IoT deployments.

Chapter 2: System architecture

Chapter 3: Software
updates

Chapter 4: Service
discovery

Chapter 5: Trickle-based
protocols

C
h

ap
te

r
6

:
C

o
n

cl
u

si
o

n

C
h

ap
te

r
1

:
In

tr
o

d
u

ct
io

n

Figure 1.3: Thesis outline.

Finally, for the entire architecture to work properly, appropriate network-
ing protocols for unicast and multicast forwarding need to be in place.
The research community is in the process of standardizing two such
protocols for the IoT: IPv6 Routing Protocol for LLNs (RPL) [RFC6550]
and Multicast Protocol for LLNs (MPL) [HK14]. Both of these protocols
use the Trickle algorithm [LPCS04] to quickly propagate information,
while limiting redundant traffic. We contribute in the development of
these protocols by analysing how they operate over low-power radios,
and how robust they are against network topology. We show that in their
current design, due to the lack of communication between the network
layer and the link layer, MPL can suffer from large delays and significant
overhead. We address this problem by modifying the link layer. Then,
we demonstrate that the Trickle algorithm is unfair in terms of load dis-
tribution, when used in networks of varying density. As a consequence,
RPL can suffer from slow route stabilization and redundant traffic. We
solve this issue by modifying the Trickle algorithm, to locally optimize
fairness properties based on the estimated local network density.

The contributions in this thesis are geared towards a more seamless
adoption and implementation of the IoT.

10 1. Introduction

1.5 Outline

The outline of this thesis can be visualized as in Figure 1.3. First,
we identify the problems expected in the IoT and propose a possible
solution for the system architecture in Chapter 2. Then, we address the
problem of updating software in large networks of constrained devices
in Chapter 3. Next, in Chapter 4, we cover software protocols for
service discovery with emphasis on scalability and interoperability. In
Chapter 5 we focus on various issues from the implementation of the
Trickle algorithm in routing and multicast forwarding protocols for the
IoT. Finally, in Chapter 6, we give conclusions and directions for future
work.

2
SYSTEM ARCHITECTURE

The success of the Internet of Things (IoT) depends on the capability to
seamlessly interconnect the plethora of available devices on the market
today. Due to the heterogeneity of the market, many architectures and
protocols have been developed and are in use. Therefore, in this chapter,
we address the system architecture of the IoT with interoperability and
scalability in mind. We cover existing state-of-the art protocols which
power the IoT, and analyse how they can be used to realize different
applications. In the end, we propose a flexible architecture, which is
used as motivation for the rest of the thesis.

14 2. System architecture

2.1 Introduction

The multi-faceted nature of the IoT raises significant challenges in the de-
sign of its system architecture. The number of possible IoT applications
is large, and these applications cover a very broad range of design prob-
lems. These applications also come with different requirements, which
makes the development of a generic system architecture difficult.

In the IoT, the end-to-end connectivity concept based on the Internet
Protocol (IP), mitigates many interoperability-related problems inherited
from typical Wireless Sensor Network (WSN) systems. However, end-
to-end IP connectivity also introduces additional requirements on all
devices that form the IoT, irrespective of their type. At the most basic
level, all devices need to run an IP software stack. This is an issue for
low-capacity devices with a few kilobytes of memory, as they would
have limited space for other applications. Next, the physical properties
of certain IoT deployments, as city-wide lighting networks, foresee
unstable connections to parts of the network, with variable access latency
and possible packet loss. Many existing IP protocols, as the Hyper
Text Transfer Protocol (HTTP), cannot handle such environments. To
resolve the situation, the community has developed several protocols
tailored for the constrained domain of the IoT, ranging from routing,
data dissemination to application protocols. The challenge now is to
integrate these protocols into one functional unit.

In this chapter, we cover various aspects of system architectures for
IoT applications. We start by giving an overview of IoT use cases in
Section 2.2. Then, we analyse the requirements for IoT solutions in Sec-
tion 2.3. Next, we give an overview of the fundamental IoT application
design styles in Section 2.4. In Section 2.5, we take a closer look at the
main software protocols, which constitute the IoT. In Section 2.6, we
present a general system architecture, which can be used to implement
different application design styles. Finally, we summarize our results in
Section 2.7.

2.2 IoT use cases

The use cases of the IoT can be categorized in three groups: consumer,
enterprise and government [Gre14; Cor13] (Figure 2.1).

2.2. IoT use cases 15

Internet of Things

Enternainment

Street

lighting
Wearables Smart

grid

Emergency

services

Remote

telemetry

Factory

automation

Logistics

Smart

appliances

Home

automation

Figure 2.1: List of IoT use cases.

The first category covers various IoT scenarios, which involve a hu-
man end-user interfacing with an electronic device. In such use cases,
communication traffic is confined between the set of end-user devices
and the access point in the IoT. Typical examples of consumer IoT
use cases are smart appliances (e.g. smart phones, kitchen appli-
ances [GBMP13]), wearables (e.g. smart watches, fitness trackers,
body area networks [Wei14]), home automation (e.g. home light-
ing [Dan+15], temperature control [YN13]), home entertainment (e.g.
smart television sets, connected sound systems [GBMP13]) and other
ways which improve daily life. The success of the consumer IoT de-
pends on the ease of use of the technology, plug and play operation, and
interoperability between distinct vendors.

The second category covers various industrial automation processes,
which can be improved with the expansion of the IoT. Industrial automa-
tion relies on fully autonomous operation, where groups of devices work
together to achieve a common goal. A typical example is a building au-
tomation system [JRK12], where, for instance, the internal temperature
of a building is maintained by close cooperation between temperature
sensors, ventilation and heating elements, shade controllers etc. These
systems often use external servers for reporting and storing periodic
information about the latest state of the system. Therefore, industrial
automation systems need support for peer-to-peer communication be-
tween nodes in the network, proper identification of devices based on

16 2. System architecture

their properties, reliable operation without human intervention, and
other similar features.

The third category of IoT use cases is made possible by integrating vari-
ous IoT systems into a larger system. For instance, the energy usage from
every household, which is already available via home automation sys-
tems, can be used to optimize the global energy distribution grid [ZR13],
and waste collection systems [She11]. Similarly, telemetry from cars,
available from automotive systems, can be used to predict and to avoid
traffic congestions, detect accidents, better inform governmental insti-
tutions, and optimize performance of street lighting systems [GBMP13;
AIM10]. Such global applications can be possible if the sub-systems are
built in an open fashion, with interoperability and data re-use in mind.

2.3 Requirements

The requirements of IoT systems come from various sources. Firstly,
the IoT domain defines its own requirements for the system design
and system behaviour. Secondly, the hardware devices which form
the IoT come with certain requirements and constraints. Thirdly, the
deployment characteristics of various IoT applications influence the
overall system design. Finally, network properties are an important
factor in the selection of appropriate software protocols. We analyse
each of these four factors and provide an overall list of requirements in
the following subsections.

2.3.1 Domain constraints

The IoT is built on the premise that the existing Internet will grow
massively, to include the previously described smart objects, and that
end-to-end IP connectivity will be possible between any endpoints in
the network. Therefore, any solutions for the IoT need to be scalable to
operate in large networks, and need to integrate all devices.

The proper operation of such an infrastructure depends on the inter-
operability of solutions for various sub-systems, possibly originating
from various vendors. This interoperability can only be possible if the
core protocols are built on commonly accepted open standards. This
view has been backed by the community, with calls for "commitment to

2.3. Requirements 17

openness from companies" [Ger14], "curated openness - standardization
of a few core functions..." [MM12], and acceptance and use of common
standards [Sub14; Yoo15].

2.3.2 Hardware constraints

The massive scaling in the number of connected devices in the IoT is
challenging both from an economical and an infrastructure point. Firstly,
since these devices have to be purchased by the interested parties, they
have to be relatively low in price. However, cheaper devices are always
inferior to their more expensive counterparts. Secondly, these devices
have to be powered by either the current energy grid, or be adapted
to use energy harvesting methods. Finally, in long-term deployments,
which often involve placing devices at hardly accessible places, as smart
parking systems or forest fire monitoring systems, devices are expected
to operate for long periods of time on battery power, without human
intervention. In any case, it is preferable that they are able to operate
using as little power as possible.

Due to these economical and physical constraints, many of the devices
that comprise the IoT exhibit certain limitations. These limitations can be
seen as lack of features which are taken for granted in today’s common
Internet-enabled devices. Typical examples of such limited features are
small memory, lack of constant power supply, and slow processor speed.
In the rest of this text, we refer to such devices as constrained nodes.

We categorize constrained nodes into different hardware classes based
on the Internet Engineering Task Force (IETF) informational docu-
ment [RFC7228]. The categorization is made on two distinguishing
features: the processing capabilities of current devices on the market
(Table 2.1, henceforth class or j) and the expected power consumption in
various deployments (Table 2.2, henceforth power profile, covered in the
next section) i. The categories shown in Table 2.2 will inevitably shift
over time, with new, more powerful devices appearing on the market.
However, due to the cost factor involved and the energy restrictions
shown in Table 2.2, the improvements in the constrained sector will
most likely move at a slower pace, compared to the high-end devices.

iNote: In the remainder of this thesis, we use the following units: b = bit, B = byte, 1
KiB = 1024 B, 1 MiB = 1024 KiB, 1 kB = 1000 B, 1 MB = 1000 kB.

18 2. System architecture

With the exception of class C0, which only corresponds to power profiles
P0 and P1, all other constrained node classes C1-C9 can be required
to operate with any given power profile P1-P9. The class determines
the functional capabilities of the constrained nodes: nodes of class C1
and C2 can host a real time operating system with a limited IP stack,
and can control basic peripherals as sensors and actuators, but cannot
support additional functional code. Nodes of class C3 are an upgrade,
and besides basic functionality, have enough capacity to run additional
supportive code. Nodes of class C9 are the very high-end of resource
constrained devices, and correspond to powerful portable devices.

Table 2.1: Processing class: constrained classes of nodes, based on available
computing resources.

Class
Non-volatile
memory
(ROM)

Volatile
memory
(RAM)

Platform CPU freq. Examples

C0 ≤ 1KiB 0B 8 bit 0MHz Passive RFID tags
C1 ≤ 64KiB ≤ 2KiB 8 bit ≤ 16MHz ATmega644RFR2
C2 ≤ 128KiB ≤ 10KiB 16 bit ≤ 16MHz RC230X, TI MSP430
C3 ≤ 256KiB ≤ 128KiB 32 bit ≤ 96MHz MC13224, STM32W
C9 ≥ 512MiB ≥ 128MiB 32, 64 bit ≥ 400MHz Raspberry Pi

2.3.3 Power constraints

The power profile limits the complexity of the code which can be run
on given nodes, as well as the node’s availability in the network. Nodes
with power profile P0 are activated by an external source, and are
able to deliver information only to the source. Therefore, they are not
accessible to other nodes in the network. Nodes with power profile P1
are available in the network during short bursts, during which they can
be used to quickly deliver or fetch data. They may be treated as P0
nodes, or as nodes with extremely large offline periods. Nodes with
power profile P2 need to efficiently manage their power consumption,
so often employ some form of Radio Duty Cycling (RDC). As a result,
they can be seen as periodically online nodes, but with large latencies
for access, which can render existing IP protocols as inapplicable. Nodes
with power profile P3 exhibit some form of a power constraint: they
may be part of a large network, with overall energy restrictions, or may

2.3. Requirements 19

have interleaved periods of battery supply and mains charging. A typical
example are nodes in street light poles, which are connected to the grid
during the night, but run on batteries during the day. These nodes can
switch between power saving mechanisms, and can exhibit low-power
behaviour, but with moderate access latencies. Lastly, nodes with power
profile P9 do not have power constraints that influence their operation
within the IoT.

Table 2.2: Power profile: constrained classes of nodes, based on
power requirements.

Profile Type Examples

P0 passive RFID tags
P1 energy harvesting buttons, switches
P2 ultra low-power battery operated, inaccessible devices
P3 low-power large scale deployments
P9 mains powered light bulbs, infrastructure devices

2.3.4 Network constraints

The presence of constrained nodes in a network has an impact on the
network operation. The IETF defines networks formed of a large portion
of constrained nodes as constrained-node networks. A typical example
of a constrained-node network is a Low-Power and Lossy Network (LLN),
where constraints come in the form of limited memory and processing
capabilities, various interconnection links and limited power supply of
constrained nodes. Due to these constraints and radio medium proper-
ties, LLNs face considerable data loss at the physical layer, asymmetric
links, temporal unavailability of nodes, low throughput, high latency,
and other similar properties. As a result, LLNs have difficulty attaining
network characteristics which are taken for granted with link layers
commonly used in the Internet.

2.3.5 Summary: Issues and Requirements

Based on the given constraints, we summarize the key properties and
issues that system solutions and software protocols for the IoT should
address. These broad properties can be made exact when applied to a
specific use case and application:

20 2. System architecture

R1: Scalability. Scalability is an important issue, since the number
of nodes in the system can grow drastically (e.g. thousands of
devices in a single network), which results in growth of data
produced by these nodes, and an increase in the number of possible
applications. Therefore, scalability has to be addressed on all
levels of the system architecture. For instance, scalability in size
in routing and forwarding protocols refers to the capability to add
new nodes in the system, without overloading the capacity of the
existing nodes. This can be achieved by applying de-centralized
design, limiting control traffic, condensing topology information.
At the application level, among other things, scalability poses
a challenge in the identification of devices and resources, their
discovery and access in a timely manner. Finally, for security
solutions, scalability involves distribution and management of
encryption keys, distributed authorization and attestation.

R2: Connectivity. Since IoT systems can partially consist of LLNs, they
need to operate in constrained environments, such as networks
which exhibit:

R2a: Small data payload, as for instance, in IEEE
802.15.4 [IEEE15.4e], where the maximum usable
layer 2 payload is around 80 bytes, or the 22 byte maximum
of Bluetooth Low Energy [Blu12].

R2b: Low bandwidth (e.g. 250 kb/s in IEEE 802.15.4, up to 1
Mb/s in Bluetooth Low Energy).

R2c: Large latency for access, due to multi-hop traffic forwarding
in LLNs, or due to using radio duty cycling.

R2d: Temporal unavailability of parts of the network.

R3: Self-awareness and responsiveness. The distributed nature of the
IoT implicitly requires systems to be able to automatically organize
themselves within a short period, to fulfil the given tasks. This self-
organization includes the initial setup of the infrastructure, such
as setting up routing paths, clustering of nodes, as well as setup
and maintenance of applications (i.e. application deployment and
subsequent updates), automatic discovery of devices, resources
and services needed for the application, resilience to failing nodes
and so forth. Specific metrics for each of these functionalities

2.4. IoT application design 21

can be derived from the particular use cases. Due to the long-
term nature of particular IoT use cases, such systems they should
be capable to be expanded at runtime, with new hardware and
software components.

R4: Interoperability. The IoT is built by integrating hardware and soft-
ware components and systems, built by multiple vendors, using
various technologies. This integration can be made possible only
if common open standards are in place. Interoperability at differ-
ent levels can be verified through certification authorities, as for
instance, the WiFi Certified trademark by the WiFi Alliance ii, and
the Bluetooth trademark by the Bluetooth Special Interest Group iii,
or through integration tests, as the European Telecommunications
Standards Institute (ETSI) Plugtests iv.

R5: Portability and heterogeneity. Depending on the domain, hetero-
geneity can come in hardware (i.e. various devices, communica-
tion interfaces, architectures) and software (i.e. various software
stacks, protocols, policies). Due to this heterogeneity, IoT systems,
and many of the software components that comprise it, should also
be portable to constrained nodes, with small memory footprint
and low computational capabilities, as listed in Table 2.1.

R6: Security and privacy. Security is essential in most IoT use cases, as
they can either be of critical nature, as for instance, infrastructure
monitoring, or can carry sensitive data, as in health systems. Secu-
rity issues include data integrity, device and user authentication,
and encryption of communication links. Therefore, security should
also be addressed on all levels of the system architecture.

2.4 IoT application design

A crucial step in the design of the IoT infrastructure is the decision where
the application logic should be placed. The two prevailing extreme views
are the distributed and the cloud-based approach.

In the distributed computing paradigm (Figure 2.2), the application
logic remains within the LLN, and is distributed among nodes in the

iihttp://www.wi-fi.org/
iiihttps://www.bluetooth.org/
ivhttp://www.etsi.org/about/what-we-do/plugtests/

22 2. System architecture

Gateway

External storage

User interface

Management

LLN

Self-management

Closed control loop

Figure 2.2: Distributed IoT infrastructure. Application logic is mostly confined
in the LLN domain, with limited need of outside interaction.

network. This approach keeps communication and data local, inside
of the LLN, which is important for both performance and safety. Addi-
tionally, hardware cost is decreased, as there is no need of additional
expensive hardware. Examples of fully distributed IoT systems are
SOFIA [TPSBO09], COSMOS [BMT03], and SensibleThings [FKOJ14].

The main drawback of this paradigm is that due to the limited processing
capabilities, the application logic has to be simple enough to run on
constrained nodes. Therefore, most applications are in the form of
closed control loops between sensors and actuators. Implementation-
wise, the direct interaction between nodes (point-to-point traffic) poses
a challenge in large networks. Namely, the infrastructure would have to
either maintain routes for each control loop, or resort to using only group
communication patterns (i.e. broadcast or multicast). Both solutions are
non-trivial and can be detrimental to network performance.

In the cloud computing paradigm (Figure 2.3), smart objects are seen
as information providers. Sensed data is carried via an LLN to the cloud,
in the form of multipoint-to-point communication. Then, all complex
data processing and decision making take place in the cloud. When the
decision involves actuation, it is fed back into the LLN in the form of
a point-to-multipoint command. The cloud computing paradigm takes
away most of the complexity from constrained nodes, which remain
responsible only for sensing/actuation, simple data aggregation and
forwarding. However, this comes at the cost of relatively high latency for
detecting events. The communication patterns in the cloud computing
paradigm are suitable to be implemented over a tree-based organiza-

2.4. IoT application design 23

Gateway

Storage

ApplicationManagement
LLN

Cloud

Only sensing and

actuating

Figure 2.3: Cloud-based IoT infrastructure. Devices in the LLN are used only
as information providers, with application logic taking place in the cloud.

tion of nodes, with gateways acting as the root. Then, all traffic is
either directed upwards, towards the root, or disseminated downwards
to the entire tree. Typical examples of cloud-based IoT systems are
WoTKit [BL12], SicsthSense [McN+14], Xively [Inc15].

Storage

ApplicationManagement

Gateway

Storage

Computation

LLN

FogCloud

Figure 2.4: Fog-based IoT infrastructure. Application logic is located in the
’fog’, close to the boundaries of the LLN.

Fog computing (Figure 2.4) is aimed to improve the performance of
cloud computing by moving part of the cloud capabilities locally, at the
edge of the network [BMNZ14]. It is an intermediate step between the
distributed and the cloud based approach in the IoT, with additional
processing/storage capacity located on the borders of LLNs. This prox-
imity can improve the overall computational and storage capacity of
the LLN, with smaller latency compared to the cloud based approach.
Typical examples of fog-based IoT systems are Mobile Fog [Hon+13],
BETaaS [MTVDG13] and SmartGateway [AH14].

24 2. System architecture

2.5 Software protocols for IoT

Currently used IP based protocols in the Internet are unusable in the
IoT due to the constraints of LLNs. As a result, several new protocols
aimed at LLNs have been developed and standardized. We now present
an overview of the most important ones, according to the software layer
where they operate. The protocols are summarized according to the
4-layer internet model [RFC1122] in Figure 2.5.

Physical/Link layer

IEEE 802.11 IEEE 1901 IEEE 802.3IEEE 802.15.4

Internet layer

IPv4 IPv6

Transport layer

TCP UDP
Application layer

CoAP HTTP XMPPMQTT

TCP UDP

Figure 2.5: List of various IoT protocols in the 4-layer Internet model.

2.5.1 Physical and link layer

Several technologies have been seen as potential solutions for differ-
ent aspects of the IoT at the physical and link layer. They range from
semi-long range wireless solutions, as the IEEE 802.15.4 standard for
low-rate wireless personal area networks [IEEE15.4e] and the Low-
Power WiFi standard (IEEE 802.11) [KLKG15]; short-range wireless
connectivity, with Bluetooth [Blu12], Radio-Frequency Identification
(RFID) [Fin03] and Near-field Communication (NFC) [Wan11] being
most dominant; and wired technologies, as IEEE 1901 Power Line Com-
munication (PLC) [FGHHV01] and Ethernet [IEEE3bt]. Due to the vari-

2.5. Software protocols for IoT 25

ous deployment requirements, all technologies are expected to play a
role in the IoT, and interconnections between them are required.

The focus of this thesis is on LLNs built on top of the IEEE 802.15.4 stan-
dard, called a Low-power Wireless Personal Area Network (LoWPAN).
LoWPANs are characterized with small packet sizes of at most 127 bytes
at the physical layer, low bandwidth ranging between 20 kb/s, 40 kb/s
and 250 kb/s, depending of the radio frequency used (868 MHz, 915
MHz, or 2.4 GHz, respectively). LoWPANs can operate in an ad-hoc
manner, and can span up to thousands of nodes. Even though the appli-
cation layer is agnostic of the physical layer and the link layer, these two
layers are of particular importance in the design of the network layer, as
we will show in Chapter 5.

2.5.2 Network and transport layer

The network and transport layer are a convergence point in the Internet,
and potentially, in the IoT. In modern Internet applications, end-to-
end IP connectivity is available between any two endpoints, with the
Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP) as prevalent transport layer protocols. Any Internet-enabled
device is capable of processing IP packets, irrespective of the physical
media through which they are transferred. Then, a variety of application
protocols can use this information for different purposes (Figure 2.6).

End-to-end IP connectivity in LoWPANs is one of the open research areas
in the IoT. As a solution, the IPv6 over LoWPAN (6LoWPAN) adaptation
layer is proposed [RFC4919], which provides an adaptation layer for
delivering Internet Protocol version 6 (IPv6) packets to and from LoW-
PANs. 6LoWPAN resolves many challenges posed by the incompatibility
between IPv6 and IEEE 802.15.4, among which:

• Support for packet fragmentation and packet reassem-
bly [RFC4944]. IPv6 defines a maximum transmission unit
of 1280 Bytes, while IEEE 802.15.4 is limited to a maximum of
of 127 bytes at the physical layer, of which, depending on the
encryption mechanism used, between and 81 and 102 bytes are
useful for payload. Therefore 6LoWPAN defines how large IPv6
packets can be fragmented for delivery over IEEE 802.15.4.

26 2. System architecture

Diverse applications

Diverse physical layers

HTTP/UDP, HTTP/TCP

Transport layer

(UDP, TCP/IP)

convergence

divergence

Figure 2.6: The Internet/Transport layer is point of convergence in the current
Internet architecture. Courtesy of Johan J. Lukkien. (Lecture notes on Internet
of Things. [Online] http://www.win.tue.nl/~johanl/educ/IoT-Course/
IoT-01-v2%20The%20Things.pdf).

• Support for header compression [RFC4944; RFC6282]. IPv6 pack-
ets have a default header of 40 bytes, which leaves only 40 bytes
for payload when used over IEEE 802.15.4. Therefore, 6LoWPAN
defines mechanisms for compression of the IPv6 header, to reduce
overhead. Some of the mechanism can also compress transport
layer headers as well.

• Address auto-configuration [RFC4944]. IPv6 uses hierarchical 128
bit IPv6 addresses, while IEEE 802.15.4 uses extended 64 bit ad-
dresses, or 16 bit short addresses within LoWPANs, and maintains
a separate 16 bit LoWPAN identifier. 6LoWPAN defines a state-
less address auto-configuration algorithm for generating a pseudo
48 bit address from the 16 bit short address and the LoWPAN
identifier.

• Routing support. This includes mesh routing, within LoWPANs,
which is transparent to nodes outside of the LoWPAN, as well as
routing between the IPv6 domain and the LoWPANs. For routing
within LoWPANs, a graph-based overlay routing protocol, called

http://www.win.tue.nl/~johanl/educ/IoT-Course/IoT-01-v2%20The%20Things.pdf
http://www.win.tue.nl/~johanl/educ/IoT-Course/IoT-01-v2%20The%20Things.pdf

2.5. Software protocols for IoT 27

IPv6 Routing Protocol for LLNs (RPL) [RFC6550], is standard-
ized, and a stateless multicast forwarding protocol called Multicast
Protocol for LLNs (MPL) [HK14] is under development.

2.5.3 Application layer

Traditionally, application layer protocols for WSNs have been particularly
tailored for the overall application area of the WSN. This approach has
been abandoned in the IoT, where application protocols are developed
to be as general as possible. Currently, the most popular application
layer protocols in the IoT community are RESTful HTTP, Constrained
Application Protocol (CoAP) [SHB13], the Message Queuing Teleme-
try Transport for Sensor Networks (MQTT-SN) [SCT09] and the Ex-
tensible Messaging and Presence Protocol (XMPP) [RFC6120; KK12a;
Ben+13]. The data payload of these protocols is usually encoded accord-
ing to the Extensible Markup Language (XML) [Bra+08], the JavaScript
Object Notation (JSON) [RFC7159] or the Efficient XML Interchange
(EXI) [SKPK14] format.

Table 2.3: Comparison of application protocols for the IoT.

Protocol Communication Transport Scalability Security

RESTful HTTP Client/server TCP Limited HTTPS

CoAP
Client/server
Publish/subscribe

UDP Excellent DTLS

MQTT-SN Publish/subscribe TCP/UDP Excellent TLS/SSL

XMPP
Client/server
Publish/subscribe

TCP Fair TLS/SSL

RESTFul HTTP is one of the leading protocols in the so called Web of
Things [GT09], a variant of the IoT, where the RESTful approach of
application development is extended to include ’things’ or smart objects.
RESTFul HTTP is a realization of the Representational State Transfer
(REST) architectural style over HTTP. REST is a style for developing
distributed applications by distributing application logic in components,
which can communicate using a stateless, cacheable client-server com-
munication protocol. This allows separation of concerns, such as servers
dealing with data access, and clients only handling user interface. To
improve scalability, components can be layered hierarchically. RESTful

28 2. System architecture

HTTP uses HTTP as the unifying communication protocol, which de-
fines the mechanism for accessing components. Due to the overhead of
HTTP, RESTful HTTP within the IoT is mostly used in small-scale con-
sumer networks of more powerful devices, such as home entertainment
systems.

CoAP is an improvement of RESTFul HTTP, in the form of a generic ap-
plication protocol for realizing RESTful architectures in constrained net-
works. It is optimized for Machine to Machine (M2M) applications, with
emphasis on simplicity, low memory footprint, small message overhead,
operation over unreliable links and asynchronous message exchanges.
Furthermore, unlike HTTP, CoAP supports multicast operation for one-to-
many traffic patterns, and resource discovery for enabling automatic con-
figuration and deployment. For interoperability with the Web of Things,
CoAP defines a stateless HTTP mapping, which allows CoAP resources to
be accessed by RESTful HTTP clients. CoAP has been proposed for sev-
eral IoT applications, including transport logistics [KBBG11], building
control [SL12], and smart metering [ASGT12].

MQTT-SN is a lightweight publish/subscribe communication protocol
aimed at M2M applications between constrained nodes over lossy, low-
bandwidth links. It is a many-to-many communication protocol, where
clients communicate to other clients via a central broker. Each client can
post messages to the broker, categorized under an arbitrary topic. Then,
other clients can choose to subscribe to an arbitrary number of topics.
Whenever a topic is updated, all subscribed clients will get notified.
The broker itself does the matching between clients, and is agnostic
to the message content. MQTT is primarily used in remote telemetry
scenarios, where periodical sensor readings or events are reported to
an external party, such as home energy monitoring and remote patient
monitoring [L+12].

XMPP is an XML based protocol for message delivery between endpoints.
It was initially designed for real-time data streaming and Instant Mes-
saging applications, using XML schemas for message transport over
TCP links. It supports both publish/subscribe and client/server opera-
tion. Since recently, a set of IoT related extensions are under develop-
ment [Wah14a; Wah15a; Wah15b; Wah15c; Wah14b; WK14], including
extensions for reducing XML complexity, for reading and controlling
sensor and actuators. XMPP has been proposed for usage in remote pa-
tient monitoring [Baz+12], disaster management [KGKS11], and smart
homes [WKKK13].

2.6. IoT system architecture 29

To summarize, there are several application protocols which may be
used in the IoT. Each of them has its benefits and drawbacks, and the
selection of the most appropriate one depends on the specific use case.

2.6 IoT system architecture

Due to the broad scope of the IoT, it is difficult to predict whether a single
architectural style or a single application protocol will prevail. The more
likely outcome will be that they will all be used, for realizing different
applications. Therefore, we focus on defining a general architecture,
which can support the mentioned application protocols, to realize the
described application paradigms. The goal is to build the IoT as an
open platform, which is agnostic to a particular domain or a particular
application. This view has been backed by recent research trends, as
the Architectural Reference Model (ARM) by the Internet of Things
- Architecture (IOT-A) consortium [TA13], and the M2M Functional
Architecture by ETSI [Eur11].

As an architectural style, we take a hybrid approach between fog and
completely distributed computing. We assume that an LLN is built of a
mixture of extremely resource constrained (classes C0 to C2) nodes, and
some more powerful nodes (classes C3 and above). The former group
of nodes can only deliver basic functionality, which is implemented at
production or commissioning time. These devices are not expected
to support software changes other than parameter changes and up-
grades/bug fixing scenarios. The latter group of nodes is more flexible,
and can deliver additional functionality to the network. These nodes
can be re-programmed at run time, and support parameter changes,
application maintenance (e.g. addition/removal of components) and
system updates.

Next, we adopt the Service Oriented Architecture (SOA) design pattern,
which enables separation between services and applications. A service
is a self-contained unit of functionality, whose internal behaviour is
abstracted to clients. An application is then built by connecting services,
for providing a higher-level functionality. This allows for late binding
between applications and services, and ability for incremental growth.
Underneath the service layer lies a standardized platform, or so called
Operational Service Layer, which provides utility methods to services.
This view is a refinement of similar service-based middleware solutions

30 2. System architecture

for the IoT solutions, which aim to abstract physical objects and their
communication capabilities as services [Spi+09; AIM10].

This hybrid approach and the adoption of SOA gives enough flexibility
to implement any of the three previously described paradigms, and can
be used with any of the described application level protocols. Due to
the de-coupling of application, services and basic functionality provided
by the platform, system designers can migrate between the different
paradigms by moving the services between the LLN, the fog and the
cloud.

When compared to other architecture efforts, this architecture lies be-
tween the ARM efforts of IOT-A and the M2M Functional Architecture
by ETSI. On the one hand, ARM aims to model the entire IoT domain,
the entities which contribute to it and their relationships. ARM consists
of a Reference Model (RMO), a Reference Architecture (RAR) and a set
of guidelines. RMO provides a high-level description of the IoT domain
for which the system architecture is built. This description includes a
domain model, which gives a general specification of the domain, an
information model, which explains how IoT knowledge is to be mod-
elled, and a communication model, which specifies the communication
patterns. RAR provides different views and perspectives of the architec-
ture, according to the stakeholders of the system. Finally, by using the
guidelines, the RMO and RAR can be implemented to build a concrete
architecture. As such, ARM has a very broad scope, and needs further
implementation before an explicit architecture is built.

On the other hand, due to its industry backing, the Functional Architec-
ture by ETSI is very specific, and focuses on defining a service-abstraction
layer, which serves as a middleware between applications and devices.
Applications provide the wanted behaviour of the network, by accessing
and using services using open interfaces. The architecture focuses ex-
clusively on M2M communication, and integrates both legacy devices,
which have no service capabilities, as well as constrained devices, using
gateway applications. The entire system is resource based, and follows
the RESTful approach. The exact description of resources, and their
mappings to HTTP and CoAP is further specified in [Eur14]. Our ar-
chitecture is compatible with the view taken by ETSI. While we take a
more general view in the definition of the concepts, with the definition
of a platform for common services, the final implementation of both
architectures can be the same.

2.6. IoT system architecture 31

2.6.1 Concepts

Next, we describe the fundamental concepts of the proposed architecture,
including the services, the applications and the platform.

2.6.1.1 Service

In SOA, services are the basic building blocks which can be used to build
an application. According to the Organization for the Advancement of
Structured Information Standards (OASIS), a service "is the mechanism
by which needs and capabilities are brought together" [Mac+06]. For
the IoT domain, we can further constrain this definition, by limiting the
entities which provide services, so called Service Providers (SPs), and
the entities which use services, so called Service Clients (SCs), to be
only software components. The information necessary to interact with
a service, as the protocol used, interfaces for network access, inputs,
outputs, pre-conditions, post-conditions and general semantics, are
promoted through service descriptions, associated with each service.
Services can be local, as for example, a service providing the reading
of a sensor connected to the same node, or can be composite, as for
example, an aggregation service, which collects and processes data from
other services in the network. The life cycle of a service can be defined
with the following steps:

S1: Specification, design and implementation of a software component
capable of delivering a given functionality to a network.

S2: Analysis and testing, resulting in a profile of the software com-
ponent, with information on resource usage and performance
metrics.

S3: Deployment, i.e. the placement of the component onto a physical
platform that can execute it.

S4: Activation, i.e. initial start-up of the component which makes the
service available to the network.

S5: Execution of the service.

S6: Termination of the service, which includes de-activation and re-
moval of the software component.

32 2. System architecture

S1: Specification,
design and

implementation

S2: Testing,
profiling and
certification

S3: Deployment

S4: Activation

S5: Execution

S6: Termination
(migration/

update)

Figure 2.7: Lifecycle of a service.

From the given life cycle, shown in Figure 2.7, steps S1 and S2 are
done offline, while steps S4 to S6 are done at runtime. Step S3 can
be done at manufacturing or commissioning time for all services, or
even at runtime, for services hosted on powerful nodes. The underlying
assumption for the given specification is that there is a platform capable
of running software components.

2.6.1.2 Application

In the context of the IoT, we can define an application as the emergent
behaviour of a system. In SOA, we implement an application as an
assembly of software components, services and their interactions which
result in the wanted behaviour. In other words, an application is built
by using available services in a network, connecting them and providing
logical flows based on their output. The application specific logic, the
coordination of services, additional processing of input from services
is located in software components. Each application goes through the
following life cycle (Figure 2.8):

A1: Specification, design and implementation, resulting in one or more
software components.

A2: Deployment of the software components on a single node or on a
set of nodes.

A3: Execution of the software components. At run time, the application
is able to:

a) Discover available services.

2.6. IoT system architecture 33

b) Access services.

c) Connect services, i.e. instruct one service to use another
service as input.

d) Process and react to input from services.

A4: Termination of the application, including de-activation and re-
moval of the software components.

A1: Specification,
design and

implementation
A2: Deployment

A3.1 Discover
services

A3: Execution

A4: Termination

(migration/
update)

A3.2 Access
services

A3.2 Use services

Figure 2.8: Lifecycle of an application.

2.6.1.3 Platform

The role of the platform is to provide common primitive functionality
needed by most services. It is a distributed middleware, which lies on
top of the operating system on each node, and contains the necessary
features to enable service orchestration in the network. As such, the
platform hides the inner working of the lower layers and abstracts from
their complexity. In a certain way, it can be seen as the operating system
for networked services. Unlike other architectures, as [AIM10; KLD12],
which provide service abstractions to hardware-specific features (e.g.
sensors and actuators), here the platform is open-ended, and can be
used to host and provide arbitrary services as well.

For the IoT, we want the platform to at least provide the following
functionalities:

P1: Manage services in a network (Install, Start, Stop, and Uninstall
software components on an individual node or on a set of nodes).

34 2. System architecture

P2: Expose a service to the network.

P3: Discover an interface for accessing a service in the network based
on selection criteria.

P4: Access a service using a known interface.

P5: Enforce security restrictions.

In the current IoT world, application protocols are built to provide P1-P5,
which poses integration problems as complex application-level gateways
are required to provide interoperability with other application protocols.
Therefore, we leave P4 and P5 to the application protocol, and we take
P2 and P3 in a separate service discovery layer, which expose constructs
for describing, publishing and discovery of service in a network. P1
then uses both layers to deliver the wanted functionality: the service
discovery layer is used to find nodes which can host arbitrary software
components, and the components themselves are transferred via the
application protocol. Finally, the security component maintains proper
protection and reliability of the platform.

2.6.2 Viewpoints

For describing the proposed architecture in more detail, we resort to
using several architectural views on the system, concerning different
stakeholders. Rozanski et al [RW11] define a view as "a representation
of one or more structural aspects of an architecture that illustrates how
the architecture addresses one or more concerns held by one or more of its
stakeholders". The generic creation of a view is done via the concept of a
viewpoint, defined according to the IEEE Standard 1471 [IEEE1471] as
"a collection of patterns, templates, and conventions for constructing one
type of view. It defines the stakeholders whose concerns are reflected in the
viewpoint and the guidelines, principles, and template models for construct-
ing its views". We now show the following common architectural views:
Context, Functional, Development and Deployment/Operational.

2.6.2.1 Context view

The context view describes the main elements of a system, and their
interactions with the environment. These are shown in Figure 2.9.

2.6. IoT system architecture 35

Application

Service
Software

component

consist of

provide

use

Platform

run on

Physical node hosted on

provide basic
functionality

use

use

Figure 2.9: Context view of the architecture.

End-users interface with the system through applications, or directly, by
accessing services. Applications are built of software components, which
provide services. Software components are executed in the platform,
which is located on a physical devices. Finally, each platform contains
a set of basic software components, which expose basic services to
applications and users.

2.6.2.2 Functional view

The functional view, shown in Figure 2.10, describes the main elements
of the system, which are responsible for delivering its functionality. It
is a three-layer model, where applications are built on top of services,
which use the platform. The platform itself consists of services, which
are made available for use to other services, both located on the same
physical device, and on the network. The critical functional components
of the platform here are:

• Networking component, for enabling connectivity (e.g. IP network-
ing stack).

36 2. System architecture

• Access component, the application protocol for accessing services
(e.g. CoAP, MQTT-SN).

• Management component, for controlling services and monitoring
the system.

• Discovery component, for publishing service descriptions and dis-
covering interfaces for accessing other services.

• Security component, for encrypting traffic and authorization.

Device

Platform

AccessDiscovery Networking Service ServiceManagement

enforce

manage

Security

discover and publish access communicate

Application

Figure 2.10: Layered model which shows the functional elements of the archi-
tecture and their relationships.

2.6.2.3 Development view

The specification of applications depends on the abstraction level pro-
vided by the underlying platform, as well as the available tooling. In
service oriented WSNs, this typically varies between development of
software components in:

1. Low-level programming language (e.g. C code for real time oper-
ating systems as Contiki [DGV04], TinyOS [Lev+05]);

2. Interpreted or scripting language (e.g. Open Service Architecture
for Sensors (OSAS) [BLV09], Mate [LC02]);

3. High-level domain-specific language (DSL) which is compiled in
native code before deployment (e.g. SEAL [EJS13], Midgar [GG-
BECF14]).

In this view, illustrated in Figure 2.11, we assume that a DSL is available,
which provides abstractions for services. The source code written by
developers, is first compiled into a low level source code for an embedded
operating system. In this step, service abstractions are expanded into
source code constructs available in the embedded operating system.
Then, the produced source code is compiled in a native executable, with

2.6. IoT system architecture 37

appropriate features taken from system libraries, which are provided
by the platform. The executable can then be deployed onto a physical
device.

C
o

m
p

ile
r

Application
protocol
Library

Service
Discovery

Library

Security
Library

Source Code
(e.g. in Domain

Specific
Language)

Source Code
(e.g. Contiki)

Loadable
Module (ELF)

Service
abstractions

Figure 2.11: Development view of the architecture.

2.6.2.4 Deployment and operational view

Figure 2.12 shows the deployment and operational view of the architec-
ture. It shows how entities are mapped onto devices, and how compo-
nents in the system interact. Firstly, an application is developed by a user
of the system. The user can be a human entity, or be another device (e.g.
external system). From the application executable, the system knows
which services the application uses, and which software components
contain the application logic. Then, the application is installed by plac-
ing the software components onto physical devices capable of running
them, and activating the components. This is done via the management
component of the platform. Finally, upon activation, the application
components start accessing the wanted services. This is done either lo-
cally, on the same device, or via the network, remotely. In the end, each
node may host multiple software components, which belong to different
applications, and may use any services available in the network.

38 2. System architecture

Device 1

Platform

Management

4. Local access

5. Remote access

3. Remote management:
Deploy component A

1. Develop

Application

Uses: Implements:

Service A

Service C

Component A 2. Install

Network

Service A Component A

Device 2

Platform

Management Service C Service D

Figure 2.12: Deployment view of the architecture.

2.6.3 Example implementation over IEEE 802.15.4

To demonstrate the applicability of the proposed architecture, we use it
to implement one of the previously described IoT use cases - building au-
tomation systems, or so called smart buildings. The main concept behind
building automation systems is that control over heating, ventilation,
lighting and other systems can be done automatically. Such automation
is expected to reduce both operational cost and energy usage. From a
system perspective [Bot11], building automation systems are challeng-
ing due to the large number of devices involved, low cost and low power
technology requirements, longevity of the deployment, and the interop-
erability between various vendors. From end-user perspective [Bru+11],
some of the challenges come from the unreliable behaviour of existing
systems, limitations in flexibility of already deployed systems and poor
management.

The basic physical building blocks of a building automation systems are

2.6. IoT system architecture 39

Bulding 1
Floor 1

Room 1

Controller

Actuator

Sensor

Room 2

Controller

Actuator

Sensor

Controller

Floor 2
Room 1

Controller

Actuator

Sensor

Room 2

Controller

Actuator

Sensor

Controller

Controller

Figure 2.13: Physical view of a smart building.

the various sensors and actuators used to read and control the physical
environment (Requirement R5). We assume that these are the least
powerful devices in the system (constrained class C0 - C2), and are
connected wirelessly, using IEEE 802.15.4. Furthermore, these devices
have some pre-knowledge of their environment, as their physical and
logical location, type of available sensors/actuators, type of power supply,
and processing characteristics, stored as context.

Beside these fundamental devices, we assume that fewer, more powerful
devices (class C3 and above) are present in the network as well. We
consider these as controllers, as they have mostly management roles.
Controllers can be logically organized in a hierarchical fashion, as in
Figure 2.13, even though several logical controllers may be hosted on
the same physical device. We use controllers to perform management op-
eration in the network, to control actions between sensors and actuators,
and to interface with end users.

Figure 2.14 shows a layered view of the proposed system architecture
on top of a standardized protocol suite for IEEE 802.15.4 based LLNs.

40 2. System architecture

Similar architectures have been proposed in [KDD11; Pal+13]. In these
architectures, the low-power optimizations are done at the link layer, as
part of a separate RDC sub-layer. This separation preserves the layering
hierarchy, and allows the application protocol to be built in isolation of
the low power behaviour.

Internet layer

Application layer

Physical/Link layer

Transport layer

UDP

802.15.4 PHY

Media Access Control
CSMA/CA

Radio Duty Cycling
ContikiMAC

IPv6

802.15.4 MAC

Chapter 3 Chapter 4 Chapter 5

Service abstraction

Platform

Access
CoAP

Discovery
mDNS/DNS-SD

Management
CoMI

Security
DTLS

Routing
RPL

Multicast
MPL6LowPAN

Chapter 2

Application

Figure 2.14: Software stack for low-power networks, according to the 4-layer
Internet model.

In our specific architecture, we adopt the RESTful approach, with CoAP
as the application protocol. RESTful architectures have been shown
to be scalable to large number of components and interactions (Re-
quirement R1), improve interoperability by defining simple interfaces
(Requirement R4) and are easily extensible (Requirement R3). As pre-
viously mentioned, CoAP is lightweight, standardized and ported to
many platforms [KDD11] (Requirements R2, R5). Furthermore, the
CoAP specification recommends using Datagram Transport Layer Secu-
rity (DTLS) as the security mechanism (Requirement R6). IETF is also
standardizing an integrated management interface - CoAP Management
Interface (CoMI) [Sto+15], which we use (Requirement R3).

2.6. IoT system architecture 41

For service discovery, we use the Multicast Domain Name System
(mDNS) with DNS-Based Service Discovery (DNS-SD), with several
extensions for context-based service discovery and proxy support.
mDNS/DNS-SD is a well-known protocol for service discovery in Lo-
cal Area Networks (LANs), and supports completely distributed opera-
tion, without the need of dedicated servers (Requirements R3, R4). We
elaborate the protocol and its extensions in Chapter 4.

We resolve to use an IP based Internet layer, consisting of the IPv6 pro-
tocol and the 6LoWPAN adaptation layer. These protocols have been
designed to scale to large LLNs (Requirements R1 and R2). Finally,
the link layer is specific to low-power operation over IEEE 802.15.4,
and consists of unslotted Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) as the Medium Access Control (MAC) protocol,
and ContikiMAC [Dun11b] as an RDC protocol. Unslotted CSMA/CA
is a probabilistic MAC protocol, which does not need third-party or-
chestration as the beacon-enabled version. ContikiMAC is an efficient
sender-initiated RDC protocol, capable of keeping the radio off on de-
vices for 99% of the time. Both CSMA/CA and ContikiMAC are part of
the IEEE 802.15.4e standard, and are able to operate without synchro-
nization between nodes.

Controller ActuatorSensor
Sense

CoAP: GET/Observe
Actuate

CoAP: POST

Discover
DNS-SD: context (location, sensor)

Discover
DNS-SD: context (location, actuator)

Exception
CoAP: POST

Exception
CoAP: POST

Figure 2.15: Information flow between sensors, actuators and controllers
within a smart building.

In this architecture, devices can be programmed both at commissioning
time and at runtime. Fundamental devices are usually programmed
with the basic services from the platform and any necessary drivers at
commissioning time. Controllers are programmed at commissioning
time with the platform, but can be re-programmed at runtime at the
request of end users. The execution of software components creates
a binding between controllers, sensors and actuators, based on type
of control and the context properties of the devices. First, the control
component discovers relevant services for its functionality based on the

42 2. System architecture

context properties it has. Typically, this context includes the type of
service wanted and its physical location. Then, it reads data from a
sensor service, processes the input, and controls actuator services. Lastly,
it can exhibit basic kind of emergency control over both sensors and
actuators, in case of unforeseen circumstances (Figure 2.15).

2.6.4 Open problems

Even though the presented architecture is based on existing protocols,
its implementation opens several problems. We address the following
ones in the remainder of the thesis.

(Re)-programming a large network of constrained devices. Firstly,
the entire system has to be deployed and maintained, as software
changes over time. An important aspect is then the initial delivery
of system software in the network, i.e. the platform, and all subsequent
changes in software components. Due to the constrained nature of the
nodes involved, and the massive scale, this is a non-trivial task. We
explore this problem in Chapter 3.

Service discovery over large low-power networks. Secondly, it is
currently unclear which is the most appropriate protocol for service
discovery in the IoT. Solutions for service discovery, as the selected
mDNS/DNS-SD have to scale well, have a low memory footprint, and
have to manage devices with large access latencies. We conduct a survey
of existing protocols, and propose extensions for mDNS/DNS-SD in
Chapter 4.

Basic network functionality in large, lossy networks. Thirdly, cur-
rent networking protocols standardized by the IETF use the Trickle
algorithm [LPCS04] for fast and efficient dissemination. Trickle is used
in the RPL routing protocol for disseminating routing information, and
in the MPL multicast forwarding protocol for disseminating multicast
traffic and management information. However, the performance of both
protocols is not thoroughly analysed when it is used with low-power
radios in different networking topologies. We address these issues in
Chapter 5, and propose changes to the Trickle algorithm for improved
performance.

2.7. Conclusion 43

2.7 Conclusion

In this chapter, we presented a general system architecture for the IoT,
which addresses research questions RQ1 and RQ2. In order to build the
architecture, we first analysed IoT use cases and various constraints to
proposed solutions. We used the given constraints to evaluate differ-
ent application design styles for the IoT, as well as existing software
protocols operating at various software layers.

We decided to adopt a service oriented system architecture, which is
flexible enough to implement any of the different application styles.
We described a potential implementation of the system architecture for
low-power wireless networks using standards based protocols. Within
the given implementation, we identify open research areas which are
investigated in depth in the following chapters.

3
SOFTWARE UPDATE

In this chapter, we address a particular problem in the management
of large networks of heterogeneous devices (research question RQ3):
software update. Software update is an essential feature of any long
term deployment in the Internet of Things (IoT), and a core functionality
of the system architecture in Chapter 2. Due to the limited network ca-
pacity, energy restrictions and low computational capabilities, updating
software in Low-Power and Lossy Networks (LLNs) is not trivial.

This chapter improves the state of the art in software updates for LLNs
by reducing the size of the updates - smaller updates take less time and
less energy to be disseminated. We compare three black-box approaches:
directly compressing updates, exploiting version similarities for incre-
mental updates, and exploiting similarities in updates and broadcast-
based update schemes to build meta-updates. We verify our approach on
two data sets, for software updates of sensor nodes and smart phones.

The chapter is based on the following publications:

• Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. "Energy-
aware Reprogramming of Sensor Networks Using Incremental Update
and Compression". In: Procedia Computer Science 10 (2012), pp.
179–187.

• Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. "Efficient re-
programming of wireless sensor networks using incremental updates".
In: IEEE Conference on Pervasive Computing and Communications
Workshops. PERCOM Workshops. 2013, pp. 584–589.

• Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. "Patching
a patch - software updates using horizontal patching". In: IEEE
Transactions on Consumer Electronics 59.2. 2013, pp. 435–441.

46 3. Software update

3.1 Introduction

Software changes over time for various reasons: bugs are being fixed,
new features are added, or some pieces of code get completely replaced
by others. Therefore, any long term deployment, as are many applica-
tions of the Internet of Things, needs to be reprogrammable, i.e. have the
capability to change software functionality of devices within a network
at run time. Due to the massive scale of the IoT, and the lack of direct
access to most devices, the only reasonable way for reprogramming is to
do it remotely.

Reprogramming is important both during development, for fast proto-
typing and debugging, and after deployment, for adapting functionality.
The frequency of reprogramming depends on the particular use case.
For instance, sensor networks need to be calibrated on a regular basis
for proper operation. Similarly, dynamic networks, such as home enter-
tainment systems, are frequently upgraded with new features. In both
cases, it is important that the reprogramming is swift, since during that
period, the network is usually not available for normal operation.

We can categorize reprogramming according to the type of change that
is required in the network and on the devices themselves. In general, we
call these modifications updates. We distinguish the following types of
software updates:

• an update of the operating system;

• an update of an application;

• an addition of a new application;

• a modification of parameters in an existing application.

Resource constrained devices in Wireless Sensor Networks (WSNs) are
usually programmed in two ways: either by flashing the devices with
a complete firmware image, or by loading a partial executable binary.
The second approach is more flexible and allows easier extension of
applications, without the need to reboot the operating system. Despite its
flexibility, it has limited support on existing sensor network platforms.

In both cases, the software update is prepared at an external host,
and then distributed in the network, reaching every intended device
(Figure 3.1). Hence, while the devices that need to be updated can be

3.1. Introduction 47

resource constrained, there is no such requirement for the host where
the update is prepared. Furthermore, previous research has shown that
when many devices in a single network need to be updated, a broadcast-
based dissemination scheme is more efficient than a unicast one [SHE03;
LPCS04]. In summary, remote software update in LLNs, suffers from
four major issues:

• Low-bandwidth, high-latency, and lossy links make the delivery of
large data packets difficult.

• Many networks are heterogeneous, and require separate soft-
ware updates for different node types. In broadcast-based update
schemes, as a consequence, all updates would be spread to the
entire network (Figure 3.2).

• Nodes can have limited power supply. Since the radio chip con-
sumes considerable energy, often more than the processor, radio
transmissions should be kept as low as possible.

• Low processing and storage capabilities render many approaches
developed for non-resource constrained devices to be inapplicable.

Low-Power Network

Gateway

Update hostUpdate server

Gateway

Figure 3.1: Software update in a low-power network. The update is prepared
at an outside host, and distributed in the network via a gateway.

In this chapter, we explore means for optimizing broadcast-based remote
software updates in LLNs. Based on the previously mentioned issues, as
key performance metrics we take:

• Delay for completing a software update.

• Energy consumed for distributing and applying a software update.

48 3. Software update

• Memory footprint of the involved optimization algorithms.

Our hypothesis is that due to the nature of the distribution network,
considerable gains can be achieved at the start of the software update
process - by reducing the size of the software updates. With smaller
software updates, energy is saved directly, by sending and receiving
less data, and indirectly, by keeping the media free, thus reducing
the chances for collisions to occur. Many studies have already identi-
fied that the radio transmitter as the largest energy consumer within
a node [SM06; ZSLM04]. Therefore, we assume that the additional
processing is favourable to wireless transmission. We focus on three
approaches for reducing the size of software updates:

• Applying data compression algorithms directly on software up-
dates.

• Using incremental updates, i.e. distributing only the difference
between two consecutive software versions, captured by delta en-
coding algorithms in scripts called deltas. We refer to this method
as vertical patching, since the delta is between two different soft-
ware versions.

• Packing updates of similar devices together, to exploit any similari-
ties in the software of heterogeneous devices and the broadcast-
based distribution mechanism. This approach improves the scal-
ability of software updates in large networks. We refer to this
method as horizontal patching.

Update A
Update B

Node 1
type A

Node 4
type A

Update A
Update B

Node 2
type B

Update A
Update B

Node 3
type A

Node 5
type B

Figure 3.2: Consider a network of multiple devices, which are of one of two
types, i.e. run two different software executables. When updating multiple de-
vices of the same type in the same network, broadcast/multicast dissemination
is preferred to unicast. However, even though both device types might share
components, currently individual updates are prepared for each of them. As a
result, the updates for both device types will be broadcasted to all devices.

3.1. Introduction 49

We start with five data compression algorithms and three algorithms for
delta encoding. We take these algorithms as black boxes, without mod-
ifying their inner workings. We first port these algorithms to resource
constrained devices, and profile their size and memory requirements.
Then, experimentally, we test how much we can reduce the size of the
updates by applying each data compression algorithm alone, or in com-
bination with the three delta encoding algorithms. As a test set, we use
several types of updates: an update of the operating system, parameter
change in an application and a major update of an application. Our
results show that using only data compression can degrade performance,
while delta encoding always gives improvements. The improvements de-
pend on the type of update and the algorithms involved, but we observed
a minimum of 50% reduction in size with certain combinations.

Finally, we present a new algorithm for reducing the size of updates
when multiple devices sharing a common platform need to be updated,
called horizontal patching. Instead of distributing separate updates for
each device type (i.e. distribute all vertical deltas per device type), we
distribute one update for one application type (i.e. one vertical delta
as a basis), and create horizontal deltas for the rest, for rebuilding an
update for a different device type from the initial update. One hopes
that when the common platform is updated, all updates hold the same
information, and there is a large similarity between them. Therefore, the
horizontal deltas should be smaller in size than the sum of all individual
updates.

We verify our approach on two test cases. The first test case consists of
firmware updates for sensor nodes in a LLN, with 7 different applications
for the Contiki operating system [DGV04], when the operating system is
updated. The second test set consists of firmware updates of Android-
based devices. Our results show between 10% and 30% improvement of
horizontal patching over using only vertical deltas, which is significant.

This work addresses requirements R1, R2, R3 and R5, defined in Sec-
tion 2.3.5. Firstly, the horizontal patching approach improves scalability
of broadcast-based software updates in multi-application networks (Re-
quirement R1). Secondly, the reduced energy usage contributes to the
applicability of software updates in constrained networks (Requirement
R2). Thirdly, the reduced dissemination time improves the responsive-
ness of the system, and reduces the maintenance time (Requirement
R3). Finally, the small implementations of the algorithms contribute to
the portability of the approach (Requirement R5).

50 3. Software update

This chapter is structured as follows. In Section 3.2 we give an overview
on related work on software update in resource constrained environ-
ments. Then, in Section 3.3 we describe how data compression and delta
encoding can be included when preparing software updates, and we
describe the horizontal patching approach. We evaluate all approaches
in Section 3.4, and give concluding remarks in Section 3.5.

3.2 Related work

Optimizing software updates has been well studied within the research
community. Many approaches have been developed over time, from
general purpose methods, such as incremental updates, to device specific
optimization routines. In this section, we first cover generic algorithms
for incremental update. Then, we consider their implementation for
updating both consumer electronic devices and resource constrained
devices as part of WSNs. Lastly, we present studies on updating multiple
software versions.

3.2.1 Incremental update

Methods for incremental update use delta encoding, or DIFF algorithms,
for extracting the difference between two consecutive software versions.
A rough classification of these algorithms can be made based on the type
of matching done between software versions. One group of algorithms,
including VCDIFF [RFC3284] and RSYNC [Tri00], finds completely
identical blocks between two consecutive software versions. This makes
them relatively fast during both delta generation and patching. The
second group of algorithms, such as BSDIFF [Per03], find similar but
not completely identical data blocks between two software versions,
and encode the differences. Deltas generated using this approach are
generally smaller, but take more time to be created.

The main drawback of general-purpose DIFF algorithms is that they
are resource intensive. As a result, they have been largely avoided in
resource constrained environments. However, due to the asymmetric
nature of software updates, as we show in section 3.3.2, this is not
always a rightful decision.

3.2. Related work 51

3.2.2 Incremental update in consumer electronic devices

Algorithms for incremental update are general enough to have been
applied in many domain-specific applications. This ranges from soft-
ware updates in mobile phones [KM10], on-vehicle information de-
vices [KTT12], and sensor networks. Domain-specific variations of delta
encoding algorithms [PBM11; SC12; JC04] have been built to enhance
the delta generation process in order to further reduce the update size.
These algorithm adaptations can be seen as best practices, which can be
transferred to other domains to reap similar benefits.

3.2.3 Software update in WSNs

Early software for WSNs was built in a non-modular fashion, where both
the application and the operating system were packed in one firmware
image. In such systems, updates of any of the components requires
a complete change of the firmware image. Modular systems are an
improvement over non-modular systems by supporting dynamic linking
and loading. This way, operating systems such as Contiki [DGV04], allow
partial executables (ELF files) to be deployed and executed at run time,
without flashing the firmware. However, since the partial executables
contain symbol and relocation tables, they can still be large in size for
transfer in lossy wireless networks.

Apart from complete firmware reprogramming [CT03; LPCS04], alterna-
tive methods have been developed for updating non-modular systems.
Virtual machines and middle-ware layers (Maté [LC02], Open Service
Architecture for Sensors (OSAS) [BLV09]) overcome limitations of large
updates for distribution by running interpreted code. Since byte code
is much smaller compared to compiled binary code, updates in these
systems can be easily distributed. The downside of this approach is
that interpreted execution is slower and some resources are always used
by the virtual machine. Moreover, the problem of large updates is still
present if the operating system or the virtual machine engine need to be
updated.

Another approach to reprogramming is to use incremental updates of
firmware images [MP10]. In [JC04], modified versions of the rsync and
XNP protocols are used for generating deltas and their dissemination,
respectively. Zephyr [PBM11] adds application-level modifications to

52 3. Software update

decrease the difference between consecutive application versions, then
produces deltas with rsync. In [RL03], a tool similar to the UNIX diff is
used to create deltas between versions. It extends the delta function-
ality with two new instructions, which enable more efficient coding of
the differences. While these studies emphasise the benefits of using
incremental updates, they use solely one algorithm, without evaluating
whether a better option exists. As we show further on, combining in-
cremental update algorithms with data compression algorithms gives a
broader scope of options for optimizing the size of updates.

Data compression has been previously considered in sensor networks,
mostly for data gathered from sensors [MV09; SM06]. In [DB10], several
algorithms are compared on desktop machines, for compressing data
from two test beds. Similarly, in [TDV08] compression algorithms are
compared on ELF executables for the Contiki operating system. Since
the compressibility of sensed data differs from binary data, the reported
results do not apply to software updates, which we address in this
chapter. Furthermore, during upgrades, only decompression is needed
on resource constrained devices.

3.2.4 Multi-version software update

Related work on updating multiple software versions mainly focuses on
incremental updates of a single application. In [KTT12], the authors
describe a method for merging multiple consecutive VCDIFF deltas for
one application to decrease the cumulative delta size. The result is a
single delta which contains instructions and data to build the latest
software version from any of the previous ones. The work presented in
this chapter is complementary, focusing on situations where multiple
applications need to be updated.

In [BRFB11], an epidemic propagation protocol to handle the distribu-
tion of multiple deltas of applications for mobile operating systems is
described. The protocol assumes that a single application can evolve into
multiple orthogonal versions, hence multiple deltas exist for it. Their
approach optimizes the gathering of deltas in an opportunistic fashion.
Finally, in [SH11], offline planning of updates of multiple applications is
proposed. The planning is done according to the combination of deltas
that has the smallest size. The work presented in this chapter broadens
the scope of the last two studies, by allowing one delta to be the source
of another delta, essentially expanding that search space.

3.3. Optimizing software updates 53

3.3 Optimizing software updates

Consider a network of multiple, heterogeneous nodes sharing a common
software component, such as an operating system, software middleware
or virtual machine engine. The software stack on each device consists of
a set of applications running on top of the shared software component.
In certain systems, e.g. a sensor network, the applications are bundled
and distributed together with the shared software component. In such
systems, an update of the shared software component results in an
update of the entire bundle. The bundle of an application with the
shared software component defines a software entity for update, and we
refer to it as the software bundle for a specific device type.

New version
(binary S’i)

Compressed
binary C(S’i)

New version
(binary S’i)

Update server

Updated node

Compressed
binary C(S’i)

Distribution

Compress

Decompress

Figure 3.3: Overview of the update process when using data compression.

3.3.1 Data compression algorithms

Let S = S0, S1, . . . , Sn−1 be the old version of the software bundle for
device type i, i = 0, 1, . . . , n− 1. The new version of the software bundle
is then S′ = S′0, S

′
1, S
′
2, . . . , S

′
n−1; i = 0, 1, . . . , n− 1. A simple method to

reduce the size of data for transmission for update is to compress the
new software bundle before distribution:

C(S′i) = compress(S′i), i = 0, 1 . . . , n− 1. (3.1)

54 3. Software update

Compression, and accordingly decompression, is added to the update
process as shown in Figure 3.3. It is an intermediate phase with the aim
to encode information with fewer bits than the original representation.
Data compression is done outside of the network, so only decompression
is needed on the updated devices. Furthermore, since in executable data
every bit is equally important, only lossless compression algorithms can
be used. While many data compression algorithms are available, most
of them are inapplicable on resource constrained devices due to high
resource demands.

Based on previous research [TDV08; SCL12b; DB10], we selected five
Lempel-Ziv [ZL77] based compression algorithms for comparison. These
studies concluded that Lempel-Ziv algorithms provide a good trade-off
between compression performance and computational complexity.

Lempel-Ziv algorithms maintain a look-up dictionary of frequently seen
symbol sequences. Whenever a match is found in the uncompressed
data, it is replaced with a reference to the dictionary. Several flavours
of the algorithms are interesting. The initial variant of the algorithm,
Lempel-Ziv 77 (LZ77), uses a sliding window of previously seen data as
a dictionary, and references can point anywhere in it. Fast Lempel-Ziv
(FastLZ) i and Lempel-Ziv-Jeff-Bonwick (LZJB) ii are based on the LZ77
algorithm, with improvements for speed. Run-Length Encoding (RLE)
can be seen as a special variant of LZ77, where the sliding window has a
length of one symbol. Finally, Lempel-Ziv 78 (LZ78) is a variant where an
explicit lookup dictionary is constructed and maintained. We use Sensor
Lempel-Ziv-Welch (S-LZW), a data compression algorithm specifically
designed for sensor data, as a representative of LZ78 algorithms.

3.3.2 Delta encoding algorithms

Additional reductions in the size of the updates can be achieved by ex-
ploiting the similarities between the old and new version of the software
bundle. Since most updates are incremental, the consecutive software
versions share most of the code base, and the difference between them
is significantly smaller than the size of the bundle itself.

Algorithms for delta encoding exploit this behaviour by extracting and
distributing only the differences between both versions in scripts called

ihttp://www.fastlz.org/
iihttp://en.wikipedia.org/wiki/LZJB

3.3. Optimizing software updates 55

Delta (Δi)

Old version
(binary Si)

New version
(binary S’i)

Compressed
delta C(Δi)

Delta (Δi)

Old version
(binary Si)

New version
(binary S’i)

Update server

Updated node

Compressed
delta C(Δi)

Distribution

DIFF Compress

Patch Decompress

Figure 3.4: Overview of the update process when using incremental updates.

deltas (∆). Deltas contain instructions and data for reconstructing
the new version from the old one, through a method called patching.
To further reduce size, the delta is compressed (compress(∆)) before
distribution.

Delta encoding algorithms differ in how the delta is constructed and
how the differences are detected. Similar to data compression, the
delta creation is done outside of the sensor network. Therefore, on the
updated devices, only algorithms for decompression and patching need
to be implemented (Figure 3.4). Since these deltas are used to transform
different versions of the same software set, we refer to them as vertical
deltas, defined as:

∆i = diff(Si, S′i), i = 0, 1, . . . , n− 1. (3.2)

Next, we give a brief overview of the three most popular delta encoding
algorithms. For all examples, we use the strings in Figure 3.5 as the
old/new data.

ABBBBACBBBAABBABBBBCBBBAABABBA

ABBBBCCBBBAABABBBBBCBBBAABACCFA

Old data:

New data:

Figure 3.5: Sample input data for the delta encoding algorithms. The red
letters are the modified information in the new data, while the green letter is
the new information.

56 3. Software update

3.3.2.1 BSDIFF Delta Encoding

BSDIFF [Per03] is a well-established algorithm for delta encoding. BSD-
IFF has a two-pass algorithm to construct optimized deltas. In the first
pass, completely identical blocks are found in the two versions. Next,
these blocks are extended in both directions, such that every prefix/suffix
of the extension matches in at least half of its bytes. These extended
blocks correspond to the modified code.

The BSDIFF delta is built of three parts (Figure 3.6): a control block of
commands; a diff block of bytewise differences between approximate
matches and an extra block of new data. When the old and new versions
are similar, the diff block consists of large series of zeroes, which are
easy to compress.

Control block:

Diff block:

Extra block:

ADD 27, INSERT 4, SEEK 3

0000020000000-1100000000000

CCFA

BSDIFF delta

Figure 3.6: Example of a BSDIFF delta. ADD specifies that the first 27 bytes
from the old data and from the Diff block are summed. Zeroes in the Diff block
mean that the corresponding byte from the old data is unchanged. INSERT
adds four bytes from the Extra block to the output. SEEK moves the pointer in
the old data three places forward, to the end of the stream.

3.3.2.2 VCDIFF Delta Encoding

VCDIFF [RFC3284] is a format for encoding the difference between two
data sets (Figure 3.7). The original idea for VCDIFF comes from data
compression algorithms - the old and new version are concatenated; then
the resulting stream is compressed using a data compression algorithm.
From the output, the first part, which corresponds to the old version, is
omitted, leaving only the instructions for the decoder to decompress the
new version.

VCDIFF features a detailed byte-code instruction set, consisting of a
small number of instructions, which can be used in different addressing

3.3. Optimizing software updates 57

Instruction 1:

Instruction 2:

Instruction 3:

COPY FROM=S0, LEN=5

ADD 10: CCBBBAABAB

COPY FROM=T14, LEN=4

VCDIFF delta

Instruction 4:

Instruction 5:

COPY FROM=T6, LEN=8

ADD 4: CCFA

Figure 3.7: Example of a VCDIFF delta. The first instruction copies the first 5
bytes from the old data (S0). Then, the next 10 bytes are added, after which
two blocks from the newly written data are copied (T14 and T6). The last four
bytes are again added from the delta.

modes, accessing both the old and the new data. Additionally, a cache
of recent addresses is held in memory.

Several tools for generating VCDIFF deltas are available. In this work,
Xdelta iii is used as an encoder for generating VCDIFF deltas. It uses
additional heuristics for optimizing the generated instruction set, such
as removing completely covered instructions and combining small in-
structions into one, reducing the delta size.

3.3.2.3 RDIFF Delta Encoding

Rsync, and the corresponding RDIFF algorithm [Tri00], use non-
overlapping fixed-sized blocks for matching identical data between the
old and new version (Figure 3.8). Both versions are segmented into
blocks, and for each block, a rolling-checksum and a MD5 checksum are
computed. Based on these checksums, the delta is constructed of either
references to blocks that already exist in the old version, or the entire
content of new or changed blocks.

A weakness of the algorithm is that if two blocks differ in even one byte,
the entire block content has to be present in the delta. Finally, while
the rolling checksum is implemented to be as fast as possible, an MD5
checksum is not appropriate for resource constrained devices.

iiihttp://xdelta.org/

58 3. Software update

Instruction 1:

Instruction 2:

Instruction 3:

COPY FROM=0, LEN=5

ADD 2: CC

COPY FROM=20, LEN=5

RDIFF delta

Instruction 4:

Instruction 5:

ADD 1: B

COPY FROM=0, LEN=5

Instruction 6:

Instruction 7:

ADD 2: BC

COPY FROM=20, LEN=5

Instruction 8: ADD 6: BACCFA

Figure 3.8: Example of a RDIFF delta, using blocks of 5 bytes. The RDIFF delta
copies identical blocks of 5 bytes from the old data, and inserts everything in
between with ADD instructions.

3.3.3 Horizontal Patching

Vertical deltas are not universal: a delta created for one application
on a certain platform cannot be applied on a different application or a
different platform. Therefore, updating multiple devices in a network
would require distributing each of the individual deltas, as shown in
Figure 3.2.

Horizontal patching is a way to reduce the size of data that needs to
be distributed in the network. When a shared component is updated,
all vertical deltas essentially hold the same information. Therefore, it is
possible to use one vertical delta as a basis, and generate other deltas
from it (Figure 3.9):

δi,j = diff(∆i,∆j); i, j = 0, 1, . . . , n− 1. (3.3)

Since both deltas hold the same modifications, the horizontal delta be-
tween them should be smaller in size than any of the vertical deltas. The
combined delta then consists of the basis and the horizontal deltas. For

3.3. Optimizing software updates 59

Device type A
Operating system v1

Application A

Device type B
Operating system v1

Application B

Device type A
Operating system v2

Application A

Device type B
Operating system v2

Application B

Δ0 Δ1
δ0,1

δ1,0

Figure 3.9: Possibilities for horizontal patching in a two-application network.
The two devices share the same operating system.

Δ0,δ0,1Node 1
type A

Node 4
type A

Δ0,δ0,1Node 2
type B

Δ0,δ0,1 Node 3
type A

Node 5
type B

Figure 3.10: Horizontal patching in practice. Both the basis vertical delta (∆0)
and the horizontal delta (δ0,1) are broadcasted to all devices in the network.
On devices of type A, only ∆0 is used for patching. On devices of type B, first
∆1 is built by applying patch δ0,1 on ∆0. Then, ∆1 is used to patch the system.

the example in Figure 3.9, two vertical (∆0 and ∆1) and two horizontal
deltas are possible (δ0,1 and δ1,0). Then, the combined delta can consist
of ∆0 + δ0,1 or ∆1 + δ1,0. E.g., when ∆0 and δ0,1 are used, only ∆0

needs to be executed for updating devices of type A. On devices of type
B, first δ0,1 is executed on ∆0, producing ∆1; finally, ∆1 is executed
(Figure 3.10).

All algorithms for incremental update use some form of compression to
reduce the size of the vertical deltas. Unfortunately, due to the relocation
and in some cases, obfuscation, introduced by this compression, it is very
difficult to compute efficient horizontal delta directly on compressed
vertical deltas. Therefore, we compute the horizontal deltas on uncom-
pressed vertical deltas, and afterwards compress the combined vertical
delta with horizontal delta(s) for distribution.

60 3. Software update

∆0 ∆1

∆2

δ0,1 ∆0 ∆1

∆2

δ0,1 ∆0 ∆1

∆2

∆0 ∆1

∆2

δ1,0 ∆0 ∆1

∆2

δ1,0 ∆0 ∆1

∆2

∆0 ∆1

∆2

∆0 ∆1

∆2

δ0,1 ∆0 ∆1

∆2

δ1,0

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 3.11: Nine different options (minimal spanning trees) for horizontal
patching of three heterogeneous devices.

3.3.3.1 Scalability

The number of horizontal deltas rapidly grows as the number of device
types increases. Then, selecting the best option for horizontal delta
can be seen as finding a minimal spanning tree in a labelled di-graph
(Figure 3.11). Each vertex in the di-graph represents a vertical delta,
whereas each edge corresponds to a horizontal delta. The cost of each
edge is equal to the size of the associated horizontal delta. According to
Cayley’s formula [Cay89], the number of spanning trees on n labelled
vertices is nn−2. For the number of possibilities for horizontal patching,
this value needs to be multiplied by n, for each vertical delta as the
base. Therefore, choosing an optimal horizontal delta would result in
searching for the minimal cost spanning tree from nn−1 possible trees.

3.3. Optimizing software updates 61

Algorithm 1 Greedy search of a horizontal delta.

Input: N - number of vertical deltas, ∆ - array of sizes of vertical deltas,
δ - matrix of sizes of horizontal deltas.

Output: greedy horizontal delta combination of the given di-graph.

1: reachable← {};
2: path← {};
3: s← argmax (∆);
4: append(reachable, s));
5: append(path, new edge (s, s,∆s));
6: while len(reachable) < N do
7: min←MAX_INT;
8: for all i ∈ reachable do
9: for j = 0 to N − 1 do

10: if j /∈ reachable and δi,j < min then
11: min← δi,j ;
12: from← i;
13: to← j;
14: end if
15: end for
16: end for
17: append(reachable, to);
18: append(path, new edge (from, to,min));
19: end while

The processing time for finding a minimal spanning tree can quickly
explode as the number of types of devices increases. This is due to the
large number of possible paths which have to be searched, as well as
the processing time required to create the entire di-graph. The time
required for building a delta depends on the size of the old and new
versions. For example, BSDIFF creates a delta in O((x + y)logx) time,
where x is the size of the old version and y is the size of the new version.
Therefore, the processing time can be extremely long for large input,
such as firmware images for smart phones, ranging from a few hours to
several weeks with existing computing resources. Building a complete
di-graph would require computing n(n− 1) horizontal deltas in addition
to the n vertical deltas, which can become excessively long.

In order to reduce processing time, the number of considered deltas
has to be reduced. An easy way to approach this problem is to greedily

62 3. Software update

(3) (4)

Δ0 Δ1

Δ2 Δ3

Δ0 Δ1

Δ2 Δ3

Δ0 Δ1

Δ2

(1) (2)

Δ3

Δ0 Δ1

Δ2 Δ3

δ0,2 δ0,2

δ3,2

δ3,1

δ0,1

δ0,2

δ3,2

δ3,1 δ3,1

Figure 3.12: Greedy search of a horizontal delta. Assuming that ∆0 is the
largest vertical delta, in the first iteration the three horizontal deltas are in-
spected. In (2), after δ0,3 is chosen, the di-graph is expanded with edges from
∆3 which reach new vertices (δ3,1 and δ3,2). The edges towards unreachable
vertices from the previous step are also taken into consideration (δ0,1 and δ0,2).
After δ3,1 is selected (3), one more edge is computed (δ1,2). By adding δ1,2, all
vertices are reachable. The horizontal delta then consists of ∆0, δ0,3, δ3,1, δ1,2.

build the tree, using the minimum number of edges for comparison.
The greedy algorithm, shown in Algorithm 1, expands the tree from
the largest vertical delta. The largest vertical delta is chosen as a root
because in horizontal deltas, it takes less bits to omit data than to add
new data. As a result, horizontal deltas from larger to smaller vertical
deltas are most likely to be smaller in size than the corresponding deltas
in the opposite direction. In each iteration, a new edge is selected
based on two criteria: a) it connects a new vertex; b) no other edge
exists such that it connects a new vertex and it is smaller in size than
the selected edge. An example of the execution of the algorithm is
shown in Figure 3.12. The greedy approach requires n(n+1)

2 deltas for
computation, which hopefully is feasible to compute. The performance
of the greedy algorithm compared to the minimal cost spanning tree is
evaluated in the next section.

3.4. Evaluation 63

3.4 Evaluation

In order to verify the impact of data compression, delta encoding and
horizontal patching, we perform several experiments. We first define
the relevant metrics for comparison. Then, we describe the experiments
for comparing the different algorithms for data compression and delta
encoding. Lastly, we demonstrate how horizontal patching compares to
using only vertical patching.

3.4.1 Metrics

We select four metrics for comparison: code size of the algorithm, mem-
ory used during execution, energy and delay. The size of compressed
data and execution time are two additional factors which directly de-
termine energy usage and delay. In our experiments, we measure the
size of the data produced by the different approaches offline, while the
updates are created. We profile the code size, memory consumption and
execution time directly on hardware. For the energy usage and delay,
we resort to estimation using models presented in this section.

The effectiveness of compression algorithms is usually quantified through
the compression ratio. It is defined as the reduction in size relative to
the uncompressed data:

compr_ratio = (1− compressed_size
uncompressed_size

) · 100 (3.4)

Consequently, higher values mean smaller compressed files, hence better
performance.

Decompressing data requires a certain amount of processor cycles. A
high number of processor cycles would result in larger energy consump-
tion and larger execution time. Therefore, this value should be as low as
possible. The importance of this metric is captured through the energy
and delay models.

Memory is limited in resource constrained devices. This includes both
memory required for holding the code, which is stored in internal flash
memory (ROM), and memory required during execution, in RAM. Algo-
rithms running on sensor nodes must have a small code footprint, up to
a couple of kilobytes, and use little memory during execution.

64 3. Software update

Node 1 Node 2 Node 3 Node 4 Node n...

Figure 3.13: Topology for estimating the update delay and energy consump-
tion.

We estimate energy usage through a model which uses the amount of
time spent during computation and transmission of data [ALV10]. This
is a lower bound of the real energy usage; we assume that forwarding
is done immediately, without additional processing, nodes are synchro-
nized, and transmission and reception occurs simultaneously, and we
ignore MAC protocol behaviour. Adding those variables, will result in
higher energy usage for transmission, penalising communication even
further.

We assume that the topology is fixed, and all nodes are arranged in a
line (Figure 3.13). The update is spread from the left most node, and
every subsequent node first receives the update, then forwards it, and
finally applies it locally. The right-most node does not do any additional
forwarding. We calculate overall energy usage as:

E = kerr · d
data_size

payload_size
e · (h− 1) · (Erx + Etx) + h ·Ecpu, (3.5)

where h is the number of nodes in the network, kerr is the average
number of times each packet is sent due to errors in the radio medium,
data_size is the size of the data for transmission, payload_size is the
maximum packet size, Erx/tx is the energy required to receive/send one
packet and Ecpu is the energy required for post-processing. Commu-
nication energy is expressed as Erx/tx = trx/tx · Irx/tx ·V , where trx/tx
is the amount of time that the wireless radio is in listening/sending
state. We simplify the model by assuming that during reception, the
radio chip is turned on for the same amount of time as during sending,
though it draws more current (ttx = trx) [Jen06]. This corresponds to
factory values of various radio chipsets, such as the CC2420. Similarly,
processing energy is calculated as Ecpu = Icpu ·V · tcpu, where tcpu is the
amount of processing time.

We estimate the time needed to update all nodes in the network, i.e. the
update delay, with a similar model to the one used for energy estimation.
Again we estimate a lower bound of the delay, since we assume that

3.4. Evaluation 65

forwarding is done immediately, the MAC protocol does not introduce
additional overhead:

D = kerr · d
data_size

payload_size
e · (h− 1) · trx + tcpu. (3.6)

We consider three cases of energy usage and delay during reprogram-
ming: 1) neither compression nor incremental updates is used (tcpu = 0);
2) only compression is used (tcpu = tdcmp) and 3) both compression and
incremental update is used (tcpu = tdcmp + tpatch).

Table 3.1: Test cases and data size of firmware images and ELF executables (in
bytes).

Test Description Type Old version New version

1 Operating system update
(Contiki 2.3→ 2.4)

Firmware 22,924 20,624

2 Operating system update
(Contiki 2.4→ 2.5)

Firmware 20,624 22,980

3 New application
(OSAS 2.0)

Firmware 22,980 39,112

4 Application update
(OSAS 1.0→ 2.0)

Firmware 37,796 39,112

5 Application update
(OSAS 1.0→ 2.0)

ELF executable 25.784 26.712

6 Parameter change
(OSAS 2.0→ 2.1)

Firmware 39.112 39.112

7 Parameter change
(OSAS 2.0→ 2.1)

ELF executable 26,712 26,712

3.4.2 Data compression and incremental updates

We consider seven test cases for software update, shown in Table 3.1.
The first two test cases represent firmware updates of the operating
system. The third test case is the replacement of a firmware image with
a larger one, which contains a completely new application. The fourth
and fifth test case are firmware/ELF updates of an application. The last
two test cases are a minor change inside an application (2 bytes), but
which result in a new software version.

For each test case, both the initial version and the new version are
available. First, we compress the new version directly. Then, we produce

66 3. Software update

a delta using each delta encoding algorithm, and compress it. We
measure the compression ratio of the compressed delta with respect
to the size of the uncompressed new version. Finally, we measure the
remaining metrics for decompression and patching.

We use the Contiki operating system, running on Crossbow TelosB nodes
(also known as Tmote Sky) [PSC05], with the OSAS [BLV09] applica-
tion. The node contains an 8 MHz TI MSP430 microcontroller with the
Chipcon CC2420 radio transceiver. It has 48 kB program flash memory,
10 kB of RAM and 1 MB external flash. All algorithms are ported for
TelosB nodes iv. Input and output data is stored on the external serial
flash and is accessed through the Coffee file system [TDHV09]. All tests
are executed 10 times, and timed using the Contiki clock module.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

FastLZ LZ77 LZJB RLE S-LZW

C
om

pr
es

si
on

 r
at

io
 (

%
)

Algorithm

only compression
bsdiff

rdiff
vcdiff

Figure 3.14: Minimum, maximum and average measured compression ratio of
test cases 1-7.

3.4.2.1 Compression ratio

Compression ratio is a factor which gives a strong indication what to
expect from a compression algorithm in terms of energy and delay
savings. However, it is highly dependent on the type of input data. As
illustrated in Figures 3.14 and 3.15, due to the diverse input samples,
the compression ratio varies significantly between different test cases.

ivThe VCDIFF implementation was kindly provided by Nicolas Tsiftes [TDV08]

3.4. Evaluation 67

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7

C
om

pr
es

si
o

ra
tio

 [%
]

Test case

lz77 lzjb fastlz rle s-lzw

(a) BSDIFF

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7

C
om

pr
es

si
o

ra
tio

 [%
]

Test case

lz77
lzjb

fastlz
rle

s-lzw
vcdiff

(b) VCDIFF

Figure 3.15: Compression ratio of different compression algorithms when used
in combination with BSDIFF (a) and VCDIFF (b), per test case.

The first two tests cases, which demonstrate an update of the Contiki
operating system, give an estimate on the amount of change in the
subsequent software releases. While direct compression on the resulting
firmware images shows similar results, incremental updates from version
2.3 to 2.4 are approximately 10% smaller than from version 2.4 to
2.5. This is a clear indication that version 2.5 of the Contiki operating
system is a major update to version 2.4, unlike 2.4 to 2.3. Similarly, the
compression ratio for test case 3 is lower than the first two test cases
because the new firmware image is twice as large as the old one. Most
of the data in the new firmware image is not seen before, and has to be
inserted.

68 3. Software update

The compression ratio of test cases 4 and 5 is noticeably higher than
in the previous scenarios. This is due to the fact that the difference
between the OSAS versions is not as significant as the operating system
updates. Thus, the deltas can be compressed better.

In the last two test cases, since the difference in the data is only in two
bytes, both delta encoding algorithms are then able to pack the entire
update in a single packet, resulting in very high compression ratio.

Figure 3.14 shows aggregate information of the compression ratio of
the different compression algorithms when used individually, or with
the different delta encoding algorithms. The general observation is
that incremental updates make significant difference in the performance
of compression algorithms. Depending on the approach and type of
updates that need to be compressed, we observe between 37% and 99%
compression ratio. Most compression algorithms behave similarly, with
not more than 10% difference between them. The obvious exception is
RLE as the worst compressor.

Using BSDIFF shows higher compression ratio compared to the other
delta encoding algorithms in all except the last two scenarios, in which
VCDIFF produces smaller deltas (Figure 3.15). Since RDIFF is consis-
tently inferior to the other two algorithms, we omit it from the subse-
quent experiments.

3.4.2.2 Memory requirements

Table 3.2 shows code size and memory usage for the decompression and
delta encoding algorithms. The code size corresponds to the size of the
.text segment of the ELF binary. Memory is the sum of static memory
and maximum stack space used during execution.

From the table, it is evident that RLE, LZ77, and LZJB are lightweight in
terms of both code size and memory usage during execution; FastLZ has
a larger code base, but still uses little memory. Finally, S-LZW has the
largest code base and uses the most memory of all algorithms.

The memory footprint of BSDIFF is small, both in code size and memory
usage. On the other hand, VCDIFF has a significantly larger code base,
and large memory footprint, mostly for storing the instruction cache.

3.4. Evaluation 69

Table 3.2: Code and memory footprint of different algorithms.

Algorithm Code (bytes) Memory (bytes)

fastlz 878 145
lz77 376 144
lzjb 424 140
rle 198 131
s-lzw 1.281 2502

bsdiff 560 158
vcdiff 2.261 1714

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 3 4 5 6 7

T
im

e
(s

ec
on

ds
)

Test case

fastlz
lz77

lzjb
rle

s-lzw
bsdiff

(a) BSDIFF

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 3 4 5 6 7

T
im

e
(s

ec
on

ds
)

Test case

fastlz
lz77

lzjb
rle

s-lzw
bsdiff

(b) VCDIFF

Figure 3.16: Time required for decompressing and applying a BSDIFF (a) and
VCDIFF (b) patch.

70 3. Software update

3.4.2.3 Processing requirements

The time required to decompress the BSDIFF/VCDIFF deltas on TelosB
nodes is shown in Figure 3.16. In all cases, S-LZW is the slowest of all
algorithms. LZ77 and LZJB have similar execution times, while RLE has
significantly worse performance while decompressing VCDIFF deltas.
This comes down to the nature of the VCDIFF algorithm - RLE is already
included while the delta is generated. Finally, on average, FastLZ is the
fastest algorithm.

BSDIFF and VCDIFF have comparable execution time. VCDIFF is slightly
faster in the last two test scenarios (parameter change), due to the
smaller delta produced.

3.4.2.4 Energy estimation

For updating two nodes, using only compressed updates (Figure 3.17c)
does not always reduce energy usage when compared with direct trans-
mission of uncompressed binaries. The additional processing pays off in
some cases, but it is not significant enough.

On the other hand, the combination of any compression algorithm
with either BSDIFF (Figure 3.17a) or VCDIFF (Figure 3.17b) results in
significant reductions in energy usage. For test cases 1 to 5, BSDIFF with
LZ77 or FastLZ show highest energy savings, while for test cases 6 and
7, the lowest energy usage is registered using VCDIFF.

VCDIFF has good performance even without using an additional com-
pressor. In fact, only FastLZ reduces the energy usage in all test cases.
In the parameter change test cases, since the VCDIFF delta fits in one
packet, there is no need to additionally compress it.

If we take a closer look at two test cases, and we vary the size of the
network (Figure 3.18), we can see that the improvements in compression
ratio start to overweigh the additional processing time introduced by
decompression and patching. As the network size grows, we observe
largest benefits when BSDIFF in combination with LZ77 is used, very
closely followed by FastLZ. This suggests that the additional processing
starts to pay off very soon, even after only three hops.

3.4. Evaluation 71

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7

E
ne

rg
y

(m
J)

Test case

bsdiff + lz77
bsdiff + lzjb

bsdiff + fastlz
bsdiff + rle

bsdiff + s-lzw
direct

(a) BSDIFF

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7

E
ne

rg
y

(m
J)

Test case

vcdiff + lz77
vcdiff + lzjb

vcdiff + fastlz
vcdiff + s-lzw

vcdiff
direct

(b) VCDIFF

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7

E
ne

rg
y

(m
J)

Test case

lz77
lzjb

fastlz
rle

s-lzw
direct

(c) Only decompression

Figure 3.17: Energy estimation using only decompression (c) and both patch-
ing and decompression (a, b). (Constants: h = 2, kerr = 1, payload_size =
71B, buffer size = 128 B). ”Direct” shows the energy usage of transmitting the
data directly, without processing.

72 3. Software update

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16

E
ne

rg
y

(m
J)

Number of nodes (h)

bsdiff+lz
bsdiff+fastlz

vcdiff
direct

(a) Test case 1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16

E
ne

rg
y

(m
J)

Number of nodes (h)

bsdiff+lz
bsdiff+fastlz

vcdiff
direct

(b) Test case 3

Figure 3.18: Influence of number of nodes (h) on energy consumption.

3.4.2.5 Delay

For updating two nodes, using only compressed updates (Figure 3.19c)
is much slower than sending the uncompressed binaries directly. Slightly
improved results are obtained with incremental updates, as the process-
ing time is still larger than the transmission time. This is evident both
for BSDIFF (Figure 3.19a) and VCDIFF (Figure 3.19b) in test cases 1 to
5. Using only VCDIFF is the best option in these cases.

In test cases 6 and 7, the processing overhead is significantly smaller
compared to the transmission savings. Therefore, using LZ77, FastLZ or
LZJB with BSDIFF, as well as only VCDIFF, is faster than transmitting
the entire binary data.

3.4. Evaluation 73

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7

D
el

ay
 (

se
co

nd
s)

Test case

bsdiff + lz77
bsdiff + lzjb

bsdiff + fastlz
bsdiff + rle

bsdiff + s-lzw
direct

(a) BSDIFF

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7

D
el

ay
 (

se
co

nd
s)

Test case

vcdiff + lz77
vcdiff + lzjb

vcdiff + fastlz
vcdiff + s-lzw

vcdiff
direct

(b) VCDIFF

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7

D
el

ay
 (

se
co

nd
s)

Test case

lz77
lzjb

fastlz
rle

s-lzw
direct

(c) Only decompression

Figure 3.19: Delay estimation using only decompression (c) and both patching
and decompression (a, b). (Constants: h = 2, kerr = 1, payload_size = 71B,
buffer size = 128 B). ”Direct” shows the delay of transmitting the data directly,
without processing.

74 3. Software update

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

128 64 32 16 8

D
el

ay
 (

s)

Radio wake-up frequency (Hz)

bsdiff+lz
bsdiff+fastlz

vcdiff
direct

(a) Test case 1

 0

 50

 100

 150

 200

 250

 300

 350

128 64 32 16 8

D
el

ay
 (

s)

Radio wake-up frequency (Hz)

bsdiff+lz
bsdiff+fastlz

vcdiff
direct

(b) Test case 3

Figure 3.20: Influence of radio duty cycling (ttx/rx) on delay.

If we take a closer look at the two test cases as in the previous section,
and this time we vary the duration of the transmission time, i.e. we as-
sume that some form of Radio Duty Cycling (RDC) is used (Figure 3.20),
we again observe the benefits of smaller updates for transmission. Even
in a network of two nodes, with duty cycles of 32 Hz (31.25ms for each
transmission), BSDIFF with LZ77/FastLZ finishes faster than VCDIFF.
This suggests that factors which influence transmission time, as duty cy-
cling, packet loss, and bandwidth, favor smaller data for transmission.

3.4. Evaluation 75

Start

Scarce
memory?

No

Yes

No

Yes

No

NoYes

No

BSDIFF +
FastLZ

Yes

Yes

Yes

No

Parameter
change?

Delay
priority?

Energy
priority?

High node
degree?

High node
degree?

BSDIFF + LZ77

VCDIFF

Figure 3.21: Guidelines for selecting the best option for incremental update.

3.4.2.6 Summary

The presented results suggest that reprogramming can be improved in
terms of energy efficiency and time required for update by using data
compression and incremental updates. Improvements vary depending
on the selection of algorithms.

Simply adding compression does not lead to lower energy usage or
faster updates. In fact, some compression algorithms can degrade per-
formance.

In contrast, using incremental updates showed solid results in all test
cases. Up to 95% in energy savings were registered, along with 95%
faster updates. Even though highest improvements were found during
parameter reconfiguration, the fact that a 35% reduction in energy
consumption was the minimum measured in specific configurations,
gives strong arguments for using incremental updates in WSNs.

Selecting the best approach for incremental updates depends on the
particular system. The four important factors that influence the selection
are available resources, update type, network size and optimization
goal (energy or delay). The choice is between using BSDIFF with either
LZ77 or FastLZ, or using only VCDIFF. The decision tree, populated by
recursively partitioning the gathered results, is shown in Figure 3.21.

76 3. Software update

3.4.3 Horizontal patching

In this section we evaluate the performance of horizontal patching. First,
we describe the experimental setup and the test sets for the experiments.
Then, we present the comparison between horizontal and vertical patch-
ing, as well as the difference between the greedy approach to horizontal
patching and the optimal horizontal delta.

3.4.3.1 Experimental setup

We analyze the performance of horizontal patching when updating
the firmware of all devices in a network using a broadcast scheme for
distributing updates. We assume that all devices are of different type,
and for each device a separate vertical delta is generated. The number
of devices in the network depends on the test set being used. The first
test set is for updating the firmware of sensor nodes and the second test
set is for updating the operating system of smart phones.

Table 3.3: Size of test data (compressed firmware image consisting of an
application and an operating system) for sensor nodes, in bytes.

Application Contiki 2.3 Contiki 2.4 Contiki 2.5

1 25,403 25,563 25,062
2 22,544 21,594 22,579
3 18,324 17,235 18,282
4 17,739 16,696 17,752
5 14,379 13,305 14,490
6 14,027 12,954 14,112
7 14,026 12,941 14,066

We rely on compression ratio, defined in the previous section, as the
comparison metric. We use the sum of the compressed new software
bundles

∑n−1
i=0 C(S

′
i), as a reference point. For each combination of

two or more different devices, we compute all vertical deltas. Then
between each pair of vertical deltas, we compute all possible horizontal
deltas. From these deltas, we find two options for horizontal patching:
the optimal combination of vertical and horizontal deltas, and a greedy
combination, as explained in the previous section. In the end, we
compute the compression ratio of using only vertical deltas, and using
the optimal/greedy horizontal delta, using the compressed software

3.4. Evaluation 77

Table 3.4: Size of compressed Android firmware images for Google Nexus
devices1, in megabytes. Devices 1, 4 and 7 form subset 1, for updates from
version 4.0.4 to 4.1.1; devices 2, 3, 5 and 6 form subset 2, for updates from
version 4.0.4 to 4.1.2 and devices 2, 3 and 8 form subset 3 for updates
from version 4.1.2 to 4.2.1.

Number Device
Android version

4.0.4 4.1.1 4.1.2 4.2.1

1 Galaxy Nexus Verizon CDMA/LTE 193 239 - -

2
Galaxy Nexus (GSM/HSPA+)
with Google Wallet

191 - 240 256

3 Galaxy Nexus (GSM/HSPA+) 187 - 234 248
4 Nexus S 4G 169 200 - -
5 Neux S (Worldwide) 163 - 195 -
6 Nexus S (850 MHz Worldwide) 163 - 195 -
7 Nexus S (Korea) 148 175 - -
8 Nexus 7 Wi-Fi - - 256 272

1 Available at https://developers.google.com/android/nexus/images

bundles as reference. To prove general applicability, we apply the same
process using both BSDIFF and VCDIFF.

The first test set consists of seven applications for the Contiki operating
system. They are built together with the operating system into one
firmware image for TelosB nodes. We consider three consecutive op-
erating system updates, as shown in Table 3.3. In all test cases, the
applications are ordered by size, from largest to smallest. Based on the
results from the previous section, we use LZ77 for compressing both
vertical and horizontal deltas.

The second test set consists of updates of the Android firmware image
of different Google Nexus devices. The devices have different hardware
components, such as radio chipsets and sensors. Since vendors rarely
maintain the software in such devices for a long time, not all versions of
the operating system are available for all devices. Therefore, we split the
sample set into three subsets, in which an update from the old and new
version exists for each model (Table 3.4). Since Android-based devices
are not as resource constrained as sensor nodes, in this test case we use
BZip2 v as the compression algorithm.

vhttp://www.bzip.org/

78 3. Software update

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 3 4 5 6 7

63 105 105 63 21 3
C

om
pr

es
si

on
 r

at
io

 (
%

)

Number of devices

Number of samples

bsdiff-vertical
bsdiff-horizontal

vcdiff-vertical
vcdiff-horizontal

Figure 3.22: Compression ratio of horizontal patching for sensor nodes using
BSDIFF and VCDIFF, in comparison to compressed firmware images. Since
seven applications in total are available, for three operating system updates,
the number of samples available is 3 · 7!

k!(7−k)! , k = 2, 3..7. BSDIFF has better
compression ratio in all cases, although it is considerably slower compared to
VCDIFF. In both cases, the compression ratio gained using horizontal patching
increases with the number of different devices

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 3 4

12 6 1

C
om

pr
es

si
on

 r
at

io
 (

%
)

Number of devices

Number of samples

bsdiff-vertical
bsdiff-horizontal

vcdiff-vertical
vcdiff-horizontal

Figure 3.23: Compression ratio of horizontal patching for Android-based de-
vices. It is important to note that we were not able to generate five horizontal
patches, therefore the number of samples for BSDIFF for two devices is six,
whereas only one sample with three devices was available.

3.4. Evaluation 79

3.4.3.2 Results

Figure 3.22 shows the performance of horizontal patching using the
sensor node test set. It is clear that horizontal patching provides higher
compression compared to only vertical patching, both for BSDIFF and
VCDIFF. The improvement is drastic with BSDIFF. Furthermore, as the
number of different devices (applications) rises, the performance of
horizontal patching improves, while vertical patching remains stable.
For instance, while the average compression ratio of horizontal patching
with BSDIFF grows from 56% with two different devices to 71% with
seven different devices, the compression ratio of BSDIFF with only
vertical deltas is approximately 42% in all cases.

Horizontal patching has similar performance in the second test case
(Figure 3.23). Compression ratio is higher with BSDIFF, although both
algorithms benefit from horizontal patching compared to only vertical
patching. It is important to note that due to the large size of the uncom-
pressed deltas, BSDIFF was unable to produce five horizontal deltas in
reasonable time. Therefore, the number of available samples for BSDIFF
for this test set is much lower.

Table 3.5: Difference in compression ratio (%) between optimal horizontal
deltas and greedy horizontal deltas.

Sample
set

Number of
devices

BSDIFF VCDIFF
Avgerage
difference

Standard
deviation

Average
difference

Standard
deviation

Sensor
nodes

2 0.008 0.036 0.014 0.036
3 0.095 0.169 0.072 0.111
4 0.137 0.167 0.101 0.112
5 0.162 0.148 0.120 0.107
6 0.191 0.118 0.128 0.101
7 0.232 0.064 0.129 0.087

Smart
phones

2 0.001 0.004 0.154 0.316
3 0.644 - 0.443 0.645
4 - - 0.107

Figures 3.22 and 3.23 show only the best (optimal) horizontal delta. As
previously stated, in order to find the optimal delta, horizontal deltas
between all possible combinations of pairs of verticals deltas have to
be generated, which can consume a lot of time. On the other hand,
the greedy algorithm for building the horizontal delta is not far off the

80 3. Software update

optimal one. As shown in Table 3.5, the difference between the greedy
approach and the optimal one is very small, and can be considered
negligible when compared with the overall savings of the approach.
Therefore, the greedy approach is a sufficient solution to solve the
problem of intractability of horizontal patching for large input data and
high number of different devices for update.

3.5 Conclusion

In this chapter, we focused on software management in the IoT, address-
ing research question RQ3. We identified that remote software update
in LLNs is a slow and tedious task due to the size of data for trans-
mission, imperfect media for transport, and the resource constraints in
devices. As a potential solution, we investigated how reduction in data
for transmission can help with software updates. We investigated three
approaches. Firstly, we evaluated the performance of general purpose
data compression algorithms applied directly on binary data. Secondly,
we compared three algorithms for incremental update and combined
them with the previously analyzed data compression algorithms. Finally,
we presented horizontal patching, a method for optimizing the size
of incremental updates in a multi-application environment where het-
erogeneous devices share a common software component. Horizontal
patching reduces the size of updates by constructing one delta from
another. Therefore, when the common software component needs to
be updated, horizontal patching can be used to create a smaller delta
compared to the collection of deltas for each individual device.

Results show that data compression in combination with incremental
updates can significantly decrease energy usage and delay in reprogram-
ming WSNs, but a bad choice can also increase it. The best option to
perform incremental updates depends on multiple factors, for which we
have provided a decision tree. Best performance was measured when
using either the VCDIFF delta encoding algorithm, or the combination
of BSDIFF for delta encoding and LZ77 or FastLZ for decompression.

Horizontal patching gives better results as the number of heterogeneous
devices for update grows. This comes at the cost of additional processing
time required for computing all horizontal deltas. The scalability anal-
ysis shows that the number of possible options for horizontal patching
quickly grows and it becomes impossible to compute the final outcome.

3.5. Conclusion 81

Therefore, a greedy approach is presented, which only searches through
horizontal deltas which have a root in the largest vertical delta.

The improvement of horizontal patching is confirmed by experimental
validation for updating software in both resource constrained devices
and modern Android-based devices. The impact is evident with two
algorithms for delta encoding – BSDIFF and VCDIFF. For instance, with
BSDIFF, the average compression ratio of vertical patching is around
42% for two to seven different devices in the first test set, while the
compression ratio of horizontal patching grows from 56% with two
different devices to 71% with seven different devices. Similar results are
measured with VCDIFF, with 31% compression ratio of vertical patching
with two to seven different devices, and 39% to 48% compression ratio
with two to seven different devices.

In all test cases, the greedy approach is shown to be very close to the
optimal horizontal delta. The difference between the optimal and greedy
horizontal delta is at most 1.5%, which shows that horizontal patching
can be used even with a large number of different devices.

The method of horizontal patching can be easily adopted for updating
any devices which share software components. This leads to more effi-
cient schemes for telecom operators to upgrade fleets of smart phones,
tablets, television sets, and other consumer devices, using smaller up-
dates.

4
SERVICE DISCOVERY

In this chapter, we investigate how powerful and resource constrained
devices can be integrated in a single logical network (research question
RQ2). As a potential solution, we look at integration at the service
discovery level: the adoption of a common service discovery protocol
used by all devices, which enables them to autonomously, at run-time,
discover each other’s existence, their capabilities and available services.
After an initial survey, we select the standardized Multicast DNS with
DNS-Based Service Discovery (mDNS/DNS-SD) protocol as a viable
candidate, and analyse its applicability in the Internet of Things (IoT)
(research question RQ4).

We show that mDNS/DNS-SD requires devices to be always online,
which is inappropriate for battery powered devices, and its discovery
features are not discriminative enough to be used in large networks.
As a solution, we propose a proxy scheme, where resource constrained
devices delegate their service discovery responsibilities to proxy servers.
Then, we describe a new naming scheme, which enables devices to
be looked up based on their physical properties, such as location and
available sensors. Both extensions are backward-compatible with the
mDNS/DNS-SD standard, making them favourable for use in the IoT.

The chapter is based on the following publications:

• Milosh Stolikj, Johan J. Lukkien, Pieter J. L. Cuijpers, and Nina
Buchina. "Nomadic Service Discovery in Smart Cities". In: Smart
Cities and Homes: Key Enabling Technologies. Ed. by Mohammad S.
Obaidat and Petros Nicopolitidis. Elsevier, 2015.

• Milosh Stolikj, Richard Verhoeven, Pieter J.L. Cuijpers, and Johan J.
Lukkien. "Proxy support for service discovery using mDNS/DNS-SD
in low power networks". In: IEEE Symposium on A World of Wireless,
Mobile and Multimedia Networks. WoWMoM. 2014, pp. 1–6.

84 4. Service Discovery

4.1 Introduction

Service discovery is a key component of distributed systems. It is the
process of finding services offered by service providers within a given
network, that match the requirements of the service seeker (called client
from now on). Protocols for service discovery are of particular impor-
tance for self-organizing systems, such as large Machine to Machine
(M2M) networks in the IoT, with many service clients and potential
service providers. In these networks, service discovery protocols are
the principal component which allows devices to explore their envi-
ronment. These service discovery protocols are expected to operate in
autonomous fashion, without support from an end user. Furthermore,
they should handle changing networking conditions and temporarily
unavailable service providers. Finally, due to the scale of the network,
the communication load should be kept as low as possible.

Figure 4.1 highlights the process and the goal of service discovery: ser-
vice seekers issue queries matched by service providers in a distributed
context where neither one knows the existence of the other. Service
discovery protocols achieve this goal by defining 1) a common language
for describing services and selection criteria; 2) a common protocol
for exchanging service descriptions between service clients and service
providers; and 3) rules for matching service descriptions with the selec-
tion criteria.

Service
advertisement

Advertisement
propagation

Service query
Query

propagation
Matching

Result
collection

Service
selection

IF (no result) adjust query

adjust query

Se
rvice

P

u
b

lish
in

gService
discovery

Figure 4.1: The service discovery process. The service seeker issues a query
that is matched by the service advertisement of the service provider. In a
distributed context, these tasks can be performed by different entities. Figure
taken from [SLCB15].

In this chapter, we aim to identify a suitable protocol for service discovery
in the IoT. This protocol must therefore work for very constrained devices

4.1. Introduction 85

and networks. An important requirement is that it follows the Internet
Engineering Task Force (IETF) standardization procedures, in order
to guarantee wide acceptance. From the plethora of protocols, we
focus on the Multicast Domain Name System (mDNS) [RFC6762] with
DNS-Based Service Discovery (DNS-SD) [RFC6763], a standards-based
protocol that already partially satisfies requirements R1, R3, R4 and R5
from Section 2.3.5. The protocol has good scalability, light footprint,
and wide usage.

DNS-SD is an extension of the Domain Name System (DNS) which uses
DNS Resource Records (RRs) to describe services in a domain-name
like fashion. The service description can further specify the service
protocol and additional context. Similarly, mDNS is an extension of
the DNS protocol for resolution in Local Area Networks (LANs). The
main differences between mDNS and the original DNS protocols are:
1) naming information is stored locally, on each node in the network;
2) resolution queries are sent multicast instead of unicast; and 3) each
node directly responds to queries.

The mDNS/DNS-SD protocol in its current form contains several issues,
which hinder its performance in Low-Power and Lossy Networks (LLNs).
Firstly, mDNS/DNS-SD assumes service providers to be constantly online,
which is impossible for battery operated devices. Even though this issue
can be amended by complementary protocols, such as network-wide
caching, such approaches are not standardized. Secondly, the services
are described using very descriptive, long names. As a result, service
descriptions are relatively large, and require packet fragmentation when
used over LLNs with small payloads, as IEEE 802.15.4. Finally, the
protocol is limited in the query language, and it facilitates only coarse
selection criteria in terms of service type. In networks with many similar
devices, as in the IoT, this increases the traffic load.

In this chapter, we propose solutions for the stated three issues with
mDNS/DNS-SD.

First, we present an extension to the mDNS/DNS-SD protocol which adds
proxy servers. Proxy servers take over service discovery responsibilities
from battery-operated service providers. This reduces traffic load, and
enables battery-operated service providers to be unavailable for longer
periods of time, yet still remain discoverable (Requirement R2).

Second, we extend DNS-SD with a context model for service descrip-
tions. We enable services to be associated with context tags, and service

86 4. Service Discovery

clients can query for services with predicates formed by context tags
and boolean operators. This extension improves the scalability of the
protocol in large networks. (Requirement R1).

Third, we propose a compression method to avoid long descriptive names
inside packets. With the proposed change, service descriptions can be
stored in a more compact form, and can be delivered using smaller
payloads without fragmentation (Requirements R1 and R2).

The chapter is structured as follows. In Section 4.2 we cover related
work on service discovery. In Section 4.3 we describe the mDNS/DNS-SD
protocol and identify its key issues when used in large networks. We
present the protocol extensions for proxy support in Section 4.4, and
the context tag model in Section 4.5. Finally, we present the proposed
compression method in Section 4.6 and give concluding remarks in
Section 4.7.

4.1.1 Background

The main objective of service discovery protocols is to find a service
provider that satisfies some given criteria. However, this is a complex
task, which consists of several subtasks. First, the service discovery
protocol needs to have a language for specifying services and selection
criteria. The language also defines how a given service description
matches a given selection criteria. Then, the service discovery protocol
defines how and where the service descriptions are stored, and how they
are accessed.

The main parties involved in service discovery are the service client and
the service provider. The service client provides the selection criteria
for service discovery, while the service provider hosts a specific service,
called a service instance. Service discovery protocols often use an inter-
mediate party for storing and accessing service descriptions, commonly
referred to as a service repository, directory or broker.

Several studies have focused on identifying the key properties of service
discovery protocols for LLNs [MHS05; ZMN05]. Based on these studies,
we select the following features to characterize service discovery proto-
cols for the IoT: architecture, message scope during service discovery
and/or service advertisement/registration, service description language,
overhead traffic and inter-operability with existing protocols. As addi-
tional features we also consider awareness of mobile service providers,

4.1. Introduction 87

caching support, detailed service descriptions and energy and resource
demands.

Service client
Service

Directory
advertisement

query Service
Provider 2

Service
Provider 1

advertisement

Service
Provider 3

advertisement

service acccess

advertisement

Figure 4.2: Centralized service discovery. The service clients issues a query to
a service directory, which contains a list of all known services.

Service client

advertisement

query
Service

Provider 2

Service
Provider 1

Service
Provider 3

advertisement

service acccess

advertisement

Figure 4.3: Distributed service discovery. The service clients issues a query to
all service providers, and each of them responds directly to the client.

The communication patterns between the three parties defines the archi-
tecture of service discovery protocols. We distinguish three architectures:
centralized, distributed and hierarchical. In a centralized architecture
(Figure 4.2), all service descriptions are stored in one or more service
repositories. Service providers register their services in the service repos-
itory, and service clients look for services in service repositories. In a
distributed architecture (Figure 4.3), service descriptions are stored lo-
cally on each service provider. Therefore, service clients need to inquire
all service providers whether they satisfy the selection criteria. Hierar-
chical architectures are a combination of both previous architectures
(Figure 4.4). They organize service providers in subgroups or clusters,
and elect cluster heads as service repositories for the given group. There-

88 4. Service Discovery

Service client
Service

Directory 2
advertisement

query Service
Provider 2

Service
Provider 1

advertisement

Service
Provider 3

advertisement

service acccess

advertisement

Service
Directory 1

Service
Directory 3

Figure 4.4: Hierarchical service discovery. The service clients issues a query to
a service directory, which either responds with an entry from its own list, or
forwards the query to other directories.

fore, service providers register services with cluster heads, and service
clients contact only cluster heads during service discovery.

Each of the three architectures has benefits and drawbacks. Central-
ized service discovery protocols take most of the workload concerning
service discovery from service providers, as they only need to initially
register services, and service clients need to inspect only a single service
repository. However, centralized service discovery protocols require a
more powerful service repository, which has to be pre-configured in the
entire network, and represents a single point of failure. Distributed
service discovery protocols require more complex actions from all nodes
participating in the service discovery protocol, which can influence their
lifetime. Furthermore, messages exchanged are usually broadcast based,
and may flood the network. Finally, hierarchical architectures depend
on clustering algorithms for creating the initial clusters and selecting ap-
propriate cluster heads. While communication is limited within clusters,
additional overhead is introduced while clusters are being established
and cluster heads are elected.

4.2 Related work

Previous research in service description and service discovery protocols
for LLNs can be roughly categorized into two groups: general service
discovery protocols and their application in LLNs, and custom service
discovery protocols for LLNs. Naturally, service discovery protocols for

4.2. Related work 89

LLNs are considerably different from service discovery protocols for
high capacity networks. Therefore, we will first cover related work on
general-purpose service discovery protocols, before describing custom
service discovery protocols for LLNs. The main characteristics of all
covered protocols are summarized in Tables 4.1 and 4.2. Finally, we will
discuss the applicability of existing protocols in the IoT domain.

4.2.1 General-purpose SD protocols

Many service discovery protocols have been proposed since the adoption
of Service Oriented Architecture (SOA) as a useful paradigm. Among
them, only a few protocols have found wider acceptance, and have
been standardized. Recently, some of them have been considered for
adaptation for LLNs as well. We now given an overview of the most
important ones, with emphasis on portability and scalability.

mDNS/DNS-SD is a widely used standard for service discovery in LANs.
It uses a distributed architecture, with services described as domain
names. mDNS/DNS-SD has been implemented in all major operating
systems for high capacity devices, as well as in resource constrained
devices [KK12b; STS11]. Further optimizations of the protocol have been
described in [KK13], which reduce message sizes in order to support
LLNs better. We describe the protocol in more detail in Section 4.3.

Java Intelligent Network Interface (JINI) [Wal00] is a centralized
service discovery protocol for the Java programming environment. JINI
uses Java interfaces for describing services and Remote Method Invo-
cation for accessing them. Service descriptions are stored in lookup
servers, which are discovered using multicast messages. Due to the
memory requirements of the Java virtual machine, JINI is rarely used in
LLNs.

Simple Service Discovery Protocol (SSDP) [Pre+08] is part of the
Universal Plug and Play (UPnP) specification, a commonly used software
stack for consumer electronics devices. It is a hierarchical protocol,
where participating entities register and resolve services using control
points. The messaging protocol is based on the Hyper Text Transfer
Protocol (HTTP) standard, with multicast messages for advertising and
discovering new services, and unicast responses. Services are described
as Uniform Resource Locators (URLs) for control and eventing. The over-
head brought by the transport protocol used in SSDP is unsuitable for

90 4. Service Discovery

LLNs. Therefore, most efforts for interconnecting consumer electronics
devices using SSDP with LLNs have relied on some form of gateways to
translate messages between the two networks [BLV11; SCNFR11].

Service Location Protocol (SLP) [RFC2608] is another standardized
service discovery protocol for LANs. SLP has been designed to scale from
small, decentralized networks to large corporate networks, by supporting
fully distributed or centralized operation. SLP defines three types of
entities: User Agents (UAs) which request services, Service Agents (SAs)
which provide services and Directory Agents (DAs) which cache service
advertisements. DAs are optional, but if they exist in a network, both
SAs and UAs are obliged to use them. The proposed IPv6 over LoWPAN
(6LoWPAN) adaptation of the protocol called Simple Service Location
Protocol (SSLP) [Kim+10] introduces a new Translation Agent (TA)
which translates messages between a 6LoWPAN and a high capacity
network running SSLP. DAs are used as caching entities, which limit the
scope of advertisements and queries. In both protocols, discovery and
advertisements messages are multicast if DAs are not used, and responses
are always unicast. Unfortunately, the 6LoWPAN adaptation of the SSLP
protocol seems abandoned. Furthermore, SLP has been extended with
proxy agents [CJAK06], for connecting high and low power networks,
and context support such as proximity services [Cha+08].

4.2.2 SD protocols for LLNs

Many service discovery protocols have been designed with resource
constrained devices in mind. These protocols can operate in a single-
hop network [Blu12; Nid01], clusters of nodes [SBR04; MPSHH06],
centralized environments [OLBU10], or 6LoWPAN networks [ARYK10;
RAYK10; BPGO12]. We now give an overview of some of the most
popular service discovery protocols for resource constrained devices.

Service Discovery Protocol (SDP) [Blu12] is part of the Bluetooth
standard for locating available server applications, and learning about
their characteristics in one-hop ad-hoc networks. Services are resolved
through SDP servers, which run on every Bluetooth device offering
services. The protocol itself does not specify how SDP servers are selected
by clients, or how they detect when they become unavailable.

DEAPSpace [Nid01] is a proactive distributed service discovery protocol
for use in single-hop networks. It uses broadcast messages to advertise

4.2. Related work 91

all known services to neighbouring devices at regular intervals. Since
each device advertises services offered by other neighbouring devices,
low powered nodes may choose to have low advertisement intervals.
The algorithm does not scale in large networks, due to 1) broadcast
storms in multi-hop environments with large number of nodes and 2)
large size of advertisements when many service providers coexist.

Konark [HDVL03] is a distributed service discovery and service deliv-
ery protocol for ad-hoc networks. It uses multicast messages for both
periodic service advertisements and service discovery queries. Services
are described in Extensible Markup Language (XML), similar to the Web
Services Description Language (WSDL) and delivered in the form of
URLs. Konark has been designed and tested for ad-hoc networks of high
capacity devices, and the underlying protocols used, such as HTTP, are
not suitable for LLNs.

SANDMAN [SBR04] is an energy-aware hierarchical service discovery
protocol. It assumes that an arbitrary set of mobile devices within a
network have similar mobility patterns, and can therefore be grouped
in a cluster. Then, from the cluster, only one device answers to service
discovery queries, while the others can sleep. SANDMAN does not
include a cluster management protocol, and it is therefore difficult to
estimate its general applicability.

Sleeper [BBCF06] is a distributed service discovery protocol, using
proxies for delegating answers to service discovery queries. This way,
constrained nodes can endure long sleeping times while other nodes can
still discover their services. Sleeper supports various description options
for services, including geographic location, meta data and ontology
information. Service descriptions are enriched with popularity metrics,
which are used by proxy nodes to select which advertisements will be
cached. Services can be discovered proactively or reactively, i.e. using
periodic service advertisements or explicit service discovery queries.
Sleeper does not cover the election process for proxy nodes. The protocol
is evaluated on high capacity devices using IEEE 802.11b, and it is
therefore unknown how it performs in LLNs.

Open Service Architecture for Sensors (OSAS) uses a centralized ap-
proach for service discovery [OLBU10]. It relies on a Resource Manager
(RM) for holding service advertisements, which are populated from
constrained nodes at regular intervals. Since there is one resource man-
ager, unicast messages are used at all times except when discovering

92 4. Service Discovery

new nodes. A centralized solution is useful for small networks, such
as body sensor networks or smart office spaces, but does not scale to
large numbers. Introducing multiple resource managers would make
this protocol similar to the other clustering protocols.

The Electronic Number Mapping (ENUM) service discovery proto-
col [ARYK10] has been proposed as a possible solution for service dis-
covery in 6LoWPAN networks. It uses compressed entries for describing
service endpoints, which are then resolved using standard DNS queries.
The architecture is hierarchical and assumed to be pre-configured, with
sensor nodes connected to master nodes, which are globally addressable
and interconnected with gateway nodes. The protocol uses unicast mes-
sages between sensor nodes and master nodes, but does not specify how
master nodes are detected.

Fast and Energy Efficient Service Provisioning (FESP) [RAYK10]) is
a protocol for managing already discovered, frequently used services in
6LoWPANs. It assumes that initial discovery has already been carried out
by another protocol. Afterwards, it improves service discovery latency
by 1) sending service discovery queries only to immediate, 2-hop neigh-
bours; and 2) as last resort, sending queries to a local gateway. While
such metrics can be seen as optimizations to other service discovery
protocols, relying on every node to cache all popular service descriptions
is inappropriate in constrained nodes.

TRENDY [BPGO12] is a centralized context-aware service discovery
protocol for 6LoWPANs. Similar to SLP, it has one central directory agent,
but other SAs and UAs are organized in clusters, with Group Leaders
(GLs) on top. Unlike cluster heads, GLs are not elected by surrounding
nodes, nor store service advertisements. They are designated by the
DAs, and merely monitor the status of SAs. The entire protocol is
built on top of the Constrained Application Protocol (CoAP) [SHB13]
and services are described as Uniform Resource Identifiers (URIs) with
variable parameters, including location and type. Caching and proxy
support are taken from the CoAP base. Certain information like the
DA address has to be either hardcoded or discovered through another
protocol.

4.2. Related work 93

4.2.3 Summary: Solution for the IoT

Obviously, the service discovery research field is very fragmented, with
various protocols under development or in use. Such heterogeneity is
unsuitable for the IoT, as an intermediate translation agent would be
required between any set of devices which use a different service discov-
ery protocol. Therefore, we believe that accepting a single solution for
an service discovery protocol would be beneficial for easier integration
in the IoT.

Unfortunately, none of the existing protocols are ideal. They either
lack in features, are too specific for certain tasks, or simply have not
been accepted in the community. In [But14], based on the availability,
expressiveness, and resource requirements, three of the described pro-
tocols have been identified as suitable candidates: SSLP, TRENDY and
mDNS/DNS-SD. SSLP was was discarded because it requires application-
level gateways for backward compatibility, lack of support for sleepy
nodes, and large overhead. These issues are amended in TRENDY, which
is proposed as the best protocol.

However, TRENDY acts as an extension of the CoAP protocol, which
imposes requirements at the application layer. Even though CoAP is
used heavily in the IoT at the moment, other application protocols in
use, as Message Queuing Telemetry Transport (MQTT) and Extensible
Messaging and Presence Protocol (XMPP), cannot be discarded. When
a different application protocol is in use, implementing a CoAP-based
service discovery protocol would be an additional burden. Accord-
ing to [But14], TRENDY with a limited CoAP implementation requires
9.34kB of ROM memory and 0.86kB of RAM memory, plus an additional
overhead for any services for advertisement. Finally, since TRENDY is not
standardized yet, there has been no wider acceptance of the protocol.

In the same study, mDNS/DNS-SD was discarded due to lack of context-
awareness and heavy traffic. However, recent activities in the IETF
standardization body are focused towards the development of a new
version of the protocol, viable for IoT usage. The work presented in
this chapter is in line with these efforts, by tackling the aforementioned
weaknesses of mDNS/DNS-SD.

94 4. Service Discovery

Ta
bl

e
4.

1:
C

om
pa

ri
so

n
of

se
rv

ic
e

di
sc

ov
er

y
pr

ot
oc

ol
s

Pr
ot

oc
ol

A
rc

hi
te

ct
ur

e
D

is
co

ve
ry

m
ec

ha
ni

sm
R

eg
is

tr
at

io
n

m
ec

ha
ni

sm
O

ve
rh

ea
d

D
es

cr
ip

ti
on

In
te

ro
pe

ra
bi

lit
y

m
D

N
S/

D
N

S-
SD

[R
FC

67
62

;R
FC

67
63

]
di

st
ri

bu
te

d
m

ul
ti

ca
st

m
ul

ti
ca

st
D

N
S

pa
ck

et
s

D
N

S-
SD

ye
s

Ji
ni

[W
al

00
]

ce
nt

ra
liz

ed
m

ul
ti

ca
st

or
un

ic
as

t
m

ul
ti

ca
st

or
un

ic
as

t
he

av
y

pr
ot

oc
ol

Ja
va

ye
s

U
Pn

P
[P

re
+

08
]

hi
er

ar
ch

ic
al

m
ul

ti
ca

st
or

un
ic

as
t

m
ul

ti
ca

st
he

av
y

tr
an

sp
or

tp
ro

-
to

co
l

U
R

L
ye

s,
ga

te
w

ay
s

SL
P

[R
FC

26
08

]
di

st
ri

bu
te

d
or

ce
tr

al
iz

ed
m

ul
ti

ca
st

or
un

ic
as

t
m

ul
ti

ca
st

or
un

ic
as

t
tr

an
sl

at
io

n
ag

en
ts

st
ri

ng
,X

M
LS

ye
s

SD
P

[B
lu

12
]

di
st

ri
bu

te
d

un
ic

as
t

un
ic

as
t

SD
P

se
rv

er
di

sc
ov

-
er

y
(u

nk
no

w
n)

U
U

ID
no

D
EA

PS
pa

ce
[N

id
01

]
di

st
ri

bu
te

d
br

oa
dc

as
t

pr
oa

ct
iv

e
pe

ri
od

ic
ad

ve
rt

is
e-

m
en

ts
no

ne
no

Ko
na

rk
[H

D
V

L0
3]

di
st

ri
bu

te
d

m
ul

ti
ca

st
m

ul
ti

ca
st

pe
ri

od
ic

ad
ve

rt
is

e-
m

en
ts

X
M

L
no

SA
N

D
M

A
N

[S
B

R
04

]
hi

er
ar

ch
ic

al
un

ic
as

t
un

ic
as

t
cl

us
te

r
m

ai
n-

te
na

nc
e,

sl
ee

p
an

no
un

ce
m

en
ts

no
ne

no

Sl
ee

pe
r

[B
B

C
F0

6]
di

st
ri

bu
te

d
br

oa
dc

as
t

br
oa

dc
as

t
pr

ox
y

el
ec

ti
on

,p
er

i-
od

ic
ad

ve
rt

is
em

en
ts

ta
xo

no
m

y
no

O
SA

S
[O

LB
U

10
]

ce
nt

ra
liz

ed
un

ic
as

t
un

ic
as

t
pe

ri
od

ic
ad

ve
rt

is
e-

m
en

ts
(h

ea
rt

be
at

)
no

ne
no

A
nw

ar
et

al
[A

RY
K

10
]

hi
er

ar
ch

ic
al

un
ic

as
t

un
ic

as
t

cl
us

te
r

m
ai

nt
e-

na
nc

e
EN

U
M

/D
N

S
D

N
S

TR
EN

D
Y

[B
PG

O
12

]
ce

nt
ra

liz
ed

or
hi

er
ar

ch
ic

al
m

ul
ti

ca
st

m
ul

ti
ca

st
pe

ri
od

ic
up

da
te

s,
gr

ou
p

le
ad

er
el

ec
ti

on

C
oR

E,
U

R
I

no

4.2. Related work 95

Ta
bl

e
4.

2:
C

om
pa

ri
so

n
of

se
rv

ic
e

di
sc

ov
er

y
pr

ot
oc

ol
s

Pr
ot

oc
ol

Lo
ca

liz
at

io
n

M
ob

ili
ty

Pr
ox

y
En

er
gy

-a
w

ar
e

Lo
w

re
so

ur
ce

m
D

N
S/

D
N

S-
SD

[R
FC

67
62

;R
FC

67
63

]
th

ro
ug

h
do

m
ai

n
na

m
e

ti
m

e-
to

-l
iv

e
ex

pi
ry

,
se

rv
ic

e
in

va
lid

at
io

n
ye

s
no

ye
s

[K
K

12
b;

ST
S1

1]

Ji
ni

[W
al

00
]

no
ti

m
eo

ut
ex

pi
ry

ye
s

no
no

U
Pn

P
[P

re
+

08
]

th
ro

ug
h

do
m

ai
n

na
m

e
ti

m
eo

ut
ex

pi
ry

,
pe

ri
-

od
ic

ad
ve

rt
is

em
en

ts
no

no
ye

s

SL
P

[R
FC

26
08

]
ye

s
[C

ha
+

08
]

ti
m

eo
ut

ex
pi

ry
(c

he
ck

)
ye

s
no

ye
s

[C
JA

K
06

]

SD
P

[B
lu

12
]

ye
s

(o
ne

ho
p)

no
no

ye
s

ye
s

D
EA

PS
pa

ce
[N

id
01

]
ye

s
(o

ne
ho

p)
pe

ri
od

ic
ad

ve
rt

is
e-

m
en

ts
ye

s
ye

s
ye

s

Ko
na

rk
[H

D
V

L0
3]

ye
s,

in
de

sc
ri

pt
io

n
ti

m
eo

ut
ex

pi
ry

,
pe

ri
-

od
ic

ad
ve

rt
is

em
en

ts
no

ye
s

un
kn

ow
n

SA
N

D
M

A
N

[S
B

R
04

]
ye

s,
in

cl
us

te
rs

m
ov

in
g

cl
us

te
rs

cl
us

te
r

he
ad

s
ye

s
un

kn
ow

n
Sl

ee
pe

r
[B

B
C

F0
6]

ye
s,

in
de

sc
ri

pt
io

n
ti

m
eo

ut
ex

pi
ry

,
se

r-
vi

ce
in

va
lid

at
io

n
ye

s
ye

s
no

O
SA

S
[O

LB
U

10
]

no
ti

m
eo

ut
ex

pi
ry

ye
s

ye
s

ye
s

A
nw

ar
et

al
[A

RY
K

10
]

ye
s,

in
id

en
ti

fie
r

ti
m

eo
ut

ex
pi

ry
ye

s
no

un
kn

ow
n

TR
EN

D
Y

[B
PG

O
12

]
ye

s,
de

sc
ri

pt
io

n
pe

ri
od

ic
ad

ve
rt

is
e-

m
en

ts
ye

s
ye

s
ye

s

96 4. Service Discovery

4.3 mDNS/DNS-SD service discovery

mDNS and DNS-SD form the core service discovery protocol in Bonjour,
a Zero-configuration implementation by Apple. The protocol consists of
two components: a communication protocol defined by mDNS, and a
service discovery and service description protocol defined by DNS-SD.

mDNS is an extension over the unicast DNS protocol [RFC1034;
RFC1035] for name resolution. Names can refer to addresses, as in
classic DNS, or to services, using DNS-SD. The primary purpose of mDNS
is to enhance name resolution in a LAN. Therefore, mDNS exclusively
resolves host names ending with the .local top level domain. The packet
structure in mDNS is similar to the one defined in the standard DNS
protocol. The main differences between the two comes in the message
exchange protocols and in the distribution of resolution information:
DNS assumes hierarchically organized servers, which hold all knowledge
about the network, and unicast messaging between clients and servers.
Contrarily, mDNS foresees a fully distributed environment, where each
device directly answers to name resolution queries for its own local en-
tries. In that sense, every participating device acts both as a server and
a client. Furthermore, the resolution information is distributed through-
out the entire network, with each participating device holding a small
subset of it. mDNS uses multicast messaging to efficiently distribute both
queries and responses to all devices within the network. mDNS packets
are sent to/from the reserved multicast addresses 224.0.0.251 (Inter-
net Protocol version 4 (IPv4)) and ff02::fb (Internet Protocol version 6
(IPv6)), using User Datagram Protocol (UDP) port number 5353.

l1._light._sub._coap._udp.local. IN SRV 0 1 1234 sensor1.local.

l1._light._sub._coap._udp.local. IN TXT "PATH=/light/switch1\;if=01"

 _light._sub._coap._udp.local. IN PTR l1._light._sub._coap._udp.local.

sensor1.local. IN AAAA aaaa::1

Service
instance

Service type
(Protocol)

Domain Type Priority Weight Port Endpoint

Address
Metadata

(access information)
Alias

(search criteria)

Figure 4.5: DNS-SD description of a light sensor service. The four resource
records are connected through the name of the service.

DNS-SD is a standardized protocol for describing and resolving services
using DNS RRs. DNS-SD defines how a service client can leverage

4.3. mDNS/DNS-SD service discovery 97

standard DNS queries to discover service instances within a logical do-
main using the service type as selection criteria. DNS-SD describes
service instances using SRV, TXT, PTR and A/AAAA RRs (Figure 4.5).
The SRV and TXT RRs have the same structured name, in the form
"<Name>.<Type>.<Domain>". The first part of the name is a unique
identifier of the service instance. The service type is formed by concate-
nating the application protocol and transport protocol used for accessing
the service instance. Lastly, the domain defines the scope of the service
instance.

SRV RRs, besides the name of the service instance, contain the port
number for accessing the service instance, the priority and weight pa-
rameters to discriminate between service instances of the same type,
and the host name of the service provider where the service instance is
stored. The host name can be resolved to an IPv4/IPv6 address using
A/AAAA RRs.

TXT RRs contain additional service metadata in the form of [key]:[value]
pairs. The exact content depends on the protocol used, and can include
an URI path for a specific resource, invocation parameters, and other
more specific service descriptions. The maximum size of the TXT RR is
1300 bytes.

PTR RRs have a name in the form ’<Type>.<Domain>’. DNS-SD uses
PTR RRs to provide a mapping between a service type and a specific
service instance. As explained in the following section, they are the key
RRs used by clients to discover services.

DNS-SD can be used with the existing DNS infrastructure, or in combi-
nation with mDNS. When used with the existing, unicast DNS infrastruc-
ture, it enables service discovery within existing DNS scopes. However,
in combination with mDNS, it enables plug and play functionality of
services within a local broadcast domain. Since there is no need to con-
figure separate DNS servers, auto-configuration is easier. Furthermore,
adding new devices to the network is trivial, since the new devices can
discover and advertise network services independently.

4.3.1 Operational modes

A client discovers a service instance using mDNS/DNS-SD, by retrieving
the four RRs associated with the given service instance. DNS-SD can be
used in two modes to enable service discovery: proactive and reactive. In

98 4. Service Discovery

proactive mode, service providers periodically advertise hosted services,
by multicasting their descriptions to the network. A service client then
needs to listen for these advertisements, and match them against the
selection criteria. Obviously, in this mode, there is a large trade-off
between overhead traffic and speed of discovery. In large networks, with
many service instances, this approach is inappropriate.

In reactive mode, the service client initiates the discovery process by
multicasting a query with the selection criteria. The query consists of
one or more PTR RRs, with the wanted service types as name. Then,
upon receipt, each service provider checks whether locally it has a PTR
RR with the given name, and if so, sends it back. mDNS specifies that
the response can be either unicast or multicast. Furthermore, the service
provider can also include additional RRs in the response, in case the
service client asks for them later. If only the PTR RRs is returned, then
the service client has to additionally query for SRV, TXT and A/AAAA
RRs. Both options are illustrated in Figure 4.6.

The flexibility of mDNS/DNS-SD imposes some optimization problems:
whether responses to queries should be unicast or multicast, and whether
they should include complete descriptions (i.e. send all RRs associated
with a service instance), or only concrete answers to queries (i.e. send
only the matched RRs). An additional complexity is the maximum
available payload by lower layers. For example, using DNS name com-
pression, four RRs for one service description occupy around 158 bytes.
If IEEE 802.15.4 is used, this DNS packet would be fragmented in at
least two frames. We investigate these trade-offs in the next section.

4.3.2 Strategies for responding to queries

In order to compare the different strategies when responding to queries
in mDNS/DNS-SD, we develop an analytical model. Consider a network
of n nodes, connected in an ad-hoc fashion. In the set of nodes, there
is one service client, which sends a single query, and a set of service
providers P = {pj , 0 ≤ j ≤ k, k ≤ n}, that match the query. A descrip-
tion of a service consists of r ≥ 1 RRs, where each RR fits in one frame.
If all s RRs are bundled in one DNS packet and compressed using DNS
name compression, the resulting packet is fragmented in f ≥ 1 frames.
To abstract from the propagation method and the network topology, we
assume that the number of frames generated in the network for a single
unicast/multicast frame is U/M respectively.

4.3. mDNS/DNS-SD service discovery 99

Service Provider2
server2.local

aaaa::2

Service Client
client.local

aaaa::3

mDNS_response
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local

mDNS_query
PTR _light._sub._coap._udp.local

Service Provider1
server1.local

aaaa::1

mDNS_response
PTR: _light._sub._coap._udp.local
→ l2._light._sub._coap._udp.local

mDNS_query
SRV l1._light._sub._coap._udp.local

mDNS_response
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, server1.local

mDNS_query
TXT l1._light._sub._coap._udp.local

mDNS_response
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01”

mDNS_query
AAAA server1.local

mDNS_response
AAAA: server1.local
→ aaaa::1

(a) Service discovery without packet fragmentation

Service Provider2
server2.local

aaaa::2

Service Client
client.local

aaaa::3

mDNS_response
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, server1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01”
AAAA: server1.local
→ aaaa::1

mDNS_query
ANY _light._sub._coap._udp.local

Service Provider1
server1.local

aaaa::1

mDNS_response
PTR: _light._sub._coap._udp.local
→ l2._light._sub._coap._udp.local
SRV: l2._light._sub._coap._udp.local
→ Weight:1, Priority:1, server2.local
TXT: l2._light._sub._coap._udp.local
→ “PATH=/light/switch2;if=01”
AAAA: server2.local
→ aaaa::2

(b) Service discovery with packet fragmentation

Figure 4.6: Resolving a service using mDNS/DNS-SD. First, the resolver needs
to find service instances of the requested service, provided by PTR RR. Then, the
actual service is resolved, through SRV and TXT RRs. Finally, the host providing
the service is resolved via A/AAAA RRs. Depending on the implementation,
the four RRs can be distributed independently, in separate packets (a), or can
be packed into one larger packet (b). Note: all messages are multicast and all
nodes belong to the same broadcast domain.

100 4. Service Discovery

Therefore, in the first strategy, the service client first sends a multicast
query, for which all service providers in P respond. Then, the service
client selects one of them, and further resolves it, using r − 1 queries.
The total number of frames in the network is

Cs = r ·M + k ·R+ (r − 1) ·R, (4.1)

where the response R can be either M or U .

In the second strategy, upon the transmission of the initial query, all
service providers immediately respond with all RRs for a given service.
Then, the total number of frames in the network is

Cf = M + k · f ·R. (4.2)

If we combine these two formulas, we get:

Cf ≤ Cs ⇐⇒ k ≤ r − 1

f − 1
· (M
R

+ 1) (4.3)

The given equation shows the optimal strategy for responding to queries
depends on the number of responses, the effect of the compression
method, and weight of the different messaging implementations. We
discuss these trade-offs in the following sections.

4.3.2.1 Multicast vs unicast responses

In both strategies, the decision whether to to use multicast or unicast
responses depends on the ratio M/U . However, their relationship is
more delicate than it seems. At first thought, unicast responses should
requires fewer or as many frames for delivery in the network as multi-
cast responses. However, an additional factor to consider is the cost of
discovering a route between the service provider and the service client.
If this route has been established beforehand, then, since multicast trans-
missions have a wider scope, M ≥ U , and sending a unicast response is
preferable. However, if such a route is not known, discovering it is com-
monly done with an additional multicast query, and a unicast response
with the route [RFC6550]. As a result, using multicast responses would
create less traffic in the network than unicast responses (M < U).

4.3. mDNS/DNS-SD service discovery 101

In LLNs, a route is usually established and maintained only towards the
sinks in the network. Therefore, if the service client is a sink, unicast
responses are recommended. However, if other, non-sink nodes in the
network are service clients, then maintaining routes towards all of them
might be unfeasible. As a result, multicast responses are preferable.

4.3.2.2 Short vs complete responses

Let us assume that the optimal response strategy is used, i.e. R =
min(M,U). Since M

U ≥ 1, from equation 4.3 we can conclude that if
f = 1, then sending complete responses is always optimal. However, if
f > 1, the optimal responding strategy depends on the ratio M

U and r
f ,

as in equation 4.3.

Typically, r = 4 and f = 2 (Figure 4.5). Then, with multicast responses,
sending all RRs generates less traffic than single RRs if k ≤ 6, i.e. there
are less than six service providers that match the service client’s query.
Similarly, when unicast responses are used in large networks, where
multicast forwarding generates a lot more traffic than unicast, complete
answers are again preferable.

4.3.3 Problems in mDNS/DNS-SD for IoT

Since mDNS/DNS-SD had been designed for service discovery in LANs of
high capacity devices, it is not directly applicable to networks of resource
constrained devices. We identify the following problems:

1. Code size. Due to memory limitations alone, it is impossible to
reuse existing mDNS/DNS-SD implementations (Requirement R5).
Table 4.3 shows the memory profile of several popular implemen-
tations. From the table, it is clear that the original Bonjour imple-
mentation cannot fit on resource constrained devices. Even the
Arduino port, which is already a feature-limited implementation
of mDNS/DNS-SD, is too large to fit on small factor devices.

2. Energy consumption. As shown in the previous section, the
mDNS/DNS-SD protocol heavily uses multicast messaging. As
a result, almost all messages in the network reach all nodes, which
consumes significant energy (Requirement R1). Furthermore, ser-
vice providers need to be online when service clients try to locate

102 4. Service Discovery

them. This imposes an always-on requirement for service providers,
which is unfeasible for battery-powered devices (Requirement R2).

3. Context-aware queries. In the current standard, the only available
selection criterion is the service type, while additional descriptions
of services can be added as part of TXT records. Therefore, in order
to select a service with a specific context, as location, a service
client must first gather the descriptions of all services of the same
type, and then select the most appropriate one. In large networks,
with many service instances with the same type, this generates a
lot of traffic (Requirement R1).

4. Packet size. Due to the expressive nature of the protocol, RRs
are relatively large, and require packet fragmentation from lower
layers. Such fragmentation is generally unwanted in LLNs, as
end-to-end delivery of fragmented packets is difficult. As shown in
the previous section, fitting all RRs for a single service description
would significantly reduce the overhead traffic associated with
service discovery (Requirement R2).

Table 4.3: Code and memory footprint of different
mDNS/DNS-SD implementations, in bytes.

Implementation Code (ROM) Memory (RAM)

Bonjour by Apple 500KiB 1 /
Ethernet Bonjour for Arduino 14KiB /
uBonjour for Contiki [KK12b] 7.69KiB 0.4KiB
mDNS/DNS-SD for Contiki 2 6.51KiB 0.7KiB

1 Based on the size of mDNSResponser.exe on 64 bit platforms.
Memory information is unavailable.

2 Available at https://github.com/mstolikj/contiki

We have solved the first problem by implementing a subset of the proto-
col for resource constrained devices (Table 4.3). The implementation
contains only the basic features of the protocol - an engine and an API for
publishing and discovering services, without additional features as multi-
interface support and caching. The implementation contains the mini-
mum amount of features required for participation in the mDNS/DNS-SD
protocol, and is interoperable with other existing implementations. The
implementation is open source, and feature-wise, it is comparable to
the proprietary implementation described in [KK12b]. For the second
problem, we propose a proxy architecture, explored in Section 4.4. For
the third problem, we develop an extension of the protocol, which al-

4.4. Proxy support for sleeping nodes 103

lows queries to include context, as described in Section 4.5. Finally, we
present ideas for solving the last problem in Section 4.6.

4.4 Proxy support for sleeping nodes

One of the drawbacks of practical implementations of mDNS/DNS-SD is
that service providers are assumed to be constantly online. This comes
from the distributed nature of the protocol: if a service provider is not
online when a query for one of its services arrives, it will not be able
to respond to it, thus its services will be undetectable. Additionally,
in order to be able to quickly adapt to network changes, such as ser-
vice providers leaving from the network, services are advertised with
relatively short time-to-live intervals (2 minutes on LANs). Frequent
messaging is an unwanted feature for LLNs due to the limited battery
life of the participating devices. As illustrated in [TL09], this behaviour
introduces a trade-off between signalling frequency, i.e. increased traffic
in the network, and the risk of discovering non-existing services.

LLNs often include devices low radio duty cycles, or so called Sleeping
Service Providers (SSPs). SSPs regularly turn off their radios, in order
to reduce energy consumption. Therefore, during these offline periods
their services are undetectable via the current mDNS/DNS-SD protocol.
One approach to facilitate SSPs is to introduce proxy servers on high
capacity (non battery powered) devices. Then, proxy servers can take
over discovery functionality from SSPs. With proxy servers, we create
an overlay network, with service discovery taking place between service
clients and high capacity devices, and SSPs only limited to registering
services with a proxy servers. This enables a more flexible deployment
approach, and the possibility to create a mixed duty cycled/non duty
cycled network.

Of course, proxy servers can be used for more tasks besides service dis-
covery. For instance, CoAP relies on proxy servers to provide translation
of CoAP messages to HTTP messages, along with caching support. How-
ever, due to the separation of layers, in this chapter we only consider
proxy support for service discovery, and leave the option to extend proxy
servers with additional capabilities as future work.

Within mDNS/DNS-SD, a key factor to include support for proxy servers
is to develop a protocol for delegation of service descriptions from SSPs
to proxy servers. We consider two implementations of such a protocol:

104 4. Service Discovery

active and passive proxy delegation protocol. The distinction between
the two protocols is based on the role of the SSP in the proxy selection
phase. Both approaches are explained in the forthcoming sections.

4.4.1 Active proxy delegation protocol

In the active proxy delegation protocol, the SSP is the driving party
during the delegation process. Proxy functionality is another service in
the network, with multiple proxy servers hosting different proxy service
instances. The SSP initiates the protocol by first searching for a proxy
server. After the SSP has selected a suitable proxy server instance, it reg-
isters with it. Depending on the messaging used, the registration can be
preceded by route discovery. Then, upon receiving a response from the
proxy server, the SSP either begins its sleep cycle or tries to register with
a different proxy server. The registration protocol itself is outside of the
mDNS/DNS-SD specification and varies between implementations. In
this work, we use the Bonjour implementation by Apple (Figure 4.7).

The Bonjour active proxy delegation protocol intends proxy servers to be
located on fixed infrastructure devices as wireless routers, TV boxes or
servers. Proxy servers advertise their service using the _sleep-proxy._udp
service type. SSPs register with a proxy server using the Dynamic DNS
Update (DDNS) protocol [RFC6891]. The registration message is a
unicast DDNS packet, which contains all RRs which should be hosted at
the proxy server, and an EDNS0 RR which specifies the lease time of the
delegation [CK06], and ownership information of the SSP [CK09]. The
ownership information is used to transfer the MAC addresses of the SSP
to the proxy server. In the Bonjour implementation, this address is used
to both intercept messages destined for the SSP while it is not available,
as well as for waking up SSPs using the Wireless Multimedia Extension of
802.11e for wireless SSPs, or using wake-on-lan packets for wired SSPs.
Since we focus on LLNs, using different protocol stacks, we have not
implemented these features. The proxy server server always returns a
unicast response, which informs the SSP whether the delegation request
was accepted.

4.4.2 Passive proxy delegation protocol

The active proxy delegation protocol requires several messages to be
exchanged before the delegation takes place. In order to reduce traffic,

4.4. Proxy support for sleeping nodes 105

Proxy Server
aaaa::2

Service Client
aaaa::3

mDNS query
PTR _sleep-proxy._udp.local

mDNS response
PTR: _sleep-proxy._udp.local
→ p1._sleep-proxy._udp.local
SRV: p1._sleep-proxy._udp.local
→ Weight:1, Priority:1, proxy1.local
TXT: p1._sleep-proxy._udp.local
AAAA: proxy1.local
→ aaaa::2

DDNS register
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1,server1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01”
AAAA: server1.local
→ aaaa::1
EDNS0: Lease time, MAC, Password

mDNS_query
PTR _light._sub._coap._udp.local

mDNS_response
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, server1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01”
AAAA: server1.local
→ aaaa::1

IPv6 ND
aaaa::2

IPv6 ND
aaaa::2->[…]

Sleeping Service Provider
aaaa::1

Step1: Proxy discovery

Step 2: Route discovery

Step 3: Proxy registration
DDNS registration acknowledment

PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1,server1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01”
AAAA: server1.local
→ aaaa::1
EDNS0: Lease time, MAC, Password

Figure 4.7: Active proxy delegation protocol in mDNS/DNS-SD. The service
provider selects a proxy service and registers with it. Afterwards, the proxy
server responds on behalf of the service provider. Note: full lines portray
multicast messages; dashed lines portray unicast messages.

we propose a new protocol, called the passive proxy delegation protocol,
where the registration request is embedded in the service advertisement.
As shown in Figure 4.8, the SSP adds a parameter in the TXT RR of

106 4. Service Discovery

mDNS_response, Authorative Answer=1
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, server1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01;Proxied=1”
AAAA: server1.local
→ aaaa::1

mDNS_response, Authorative Answer=0
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, server1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01;Proxied=2”
AAAA: server1.local
→ aaaa::1

mDNS_query
PTR _light._sub._coap._udp.local

mDNS_response, Authorative Answer=0
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, server1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1;if=01;Proxied=2”
AAAA: server1.local
→ aaaa::1

Proxy Server
aaaa::2

Service Client
aaaa::3

Sleeping Service Provider
aaaa::1

Figure 4.8: Passive proxy delegation protocol in mDNS/DNS-SD. The service
provider indicates that it wants to be served by a proxy server in the service
advertisement. This request is processed by the proxy server, and from there
on, it starts responding on behalf of the service provider. The request is
acknowledged by re-sending the advertisement. All messages are multicast.

its service description. This parameter is a signal for proxy servers to
interpret the service advertisement as a registration request. The proxy
server that decides to serve the request acknowledges the delegation by
re-sending the service advertisement. The distinction between adver-
tisements originating from the SSP and cached advertisements from the
proxy server is done using the Authoritative Answer (AA) bit. The pur-
pose of the re-transmission is two fold: 1) the SSP knows that someone
has handled its request and can start its sleep cycle; and 2) other proxy
servers know that they need not process that advertisement. The pro-
tocol can be further optimized by re-transmitting only the first SRV RR
in order avoid unnecessary distribution of large (fragmented) messages.
The SRV RR is unique to the SSP and can be undoubtedly interpreted by
the SSP and by other proxy servers.

4.4. Proxy support for sleeping nodes 107

l1._light._sub._coap._udp.local. IN TXT "Proxied=1;DutyCycle=50ms;PATH=/light/switch1\;if=01"

l1._light._sub._coap._udp.local. IN SRV 0 1 1234 sensor1.local.

 _light._sub._coap._udp.local. IN PTR l1._light._sub._coap._udp.local.

sensor1.local. IN AAAA aaaa::1

Flag for request
for proxy

Sleep time

Figure 4.9: Embedded registration request for the passive proxy delegation
protocol.

Proxy Server2
aaaa::3

Service Client
aaaa::4

mDNS_response, AA=1
SRV lsensor._light._sub._coap._udp.local

TXT Proxied=1

mDNS_query
_light._sub._coap._udp.local

mDNS_response, AA=0
SRV lsensor._light._sub._coap._udp.local

TXT Proxied=2

Service Provider
aaaa::1

Proxy Server1
aaaa::2

mDNS_response, AA=0
SRV lsensor._light._sub._coap._udp.local

TXT Proxied=2

mDNS_response, AA=0
SRV lsensor._light._sub._coap._udp.local

TXT Proxied=2

mDNS_response, AA=0
SRV lsensor._light._sub._coap._udp.local

TXT Proxied=2

mDNS_response, AA=0
SRV lsensor._light._sub._coap._udp.local

TXT Proxied=2

Figure 4.10: Possible double proxy registration using the passive proxy del-
egation protocol. If the re-sent advertisement by the first proxy server does
not reach the other proxy server (marked red), another proxy will register the
same service. As a result, queries for the service will be responded to twice.

For additional functionality, the proxy server needs to know the du-
ration of the sleep cycle of the SSP. With the active proxy delegation
protocol, this information is sent directly to the proxy server within the
registration message, in the form of the lease time. With the passive
proxy delegation protocol, it has to be added within the service adver-
tisement. This information, along with the registration request, can
be added as additional parameters within the TXT description of the
service advertisement (Figure 4.9). Similarly, other required parameters,
such as the MAC address, can be transferred. The compact nature of
these two descriptions is of paramount importance since large service
advertisements can lead to packet fragmentation.

4.4.3 Reliability

The active proxy delegation protocol does not significantly suffer if
advertisement messages are lost. Simply, the proxy registration phase

108 4. Service Discovery

has to be repeated, delaying the start of sleeping time of the SSP. On the
other hand, message loss in the passive proxy delegation protocol can
lead to double registrations, as shown in Figure 4.10. While this state is
not functionally wrong, it leads to distribution of unnecessary messages
in the network. A possible solution to this problem is to use the start up
conflict resolution protocol defined in the mDNS specification, which
would resolve the proxy assignment between two or more competing
proxy servers.

4.4.4 Evaluation

We compare the performance of the active and passive proxy delegation
protocols analytically and in simulation. We are interested in the memory
footprint, the delay and the energy consumption for a service provider to
register a service with a proxy server. For efficient low-power operation,
we assume that ContikiMAC [Dun11b] is used as a Radio Duty Cycling
(RDC) protocol.

4.4.4.1 Memory footprint

We implement the active and passive proxy delegation protocol in the
Contiki operating system [DGV04], on top of our own mDNS/DNS-SD
implementation. The size of the modules, compiled using the msp430-
gcc (GCC) 4.5.3 compiler for the Crossbow TelosB nodes, are shown in
Table 4.4.

Both the client and server components of the passive proxy delegation
protocol are smaller than the corresponding components for the active
proxy delegation protocol. This difference is due to the additional
complexity required for implementing the DDNS protocol for the proxy
registration. Even though the packet format is similar in DDNS and
mDNS, additional resources are used for establishing the connection for
the DDNS update protocol, which increase the footprint of the active
proxy delegation protocol.

4.4.4.2 Analytical evaluation

The active proxy delegation protocol requires 3 multicast frames for dis-
covering the proxy server. After the description of the proxy server has

4.4. Proxy support for sleeping nodes 109

Table 4.4: Code and memory footprint of different
components for proxy registration, in addition to the
mDNS/DNS-SD implementation (bytes)

Component Proxy protocol Code Memory

Service provider active 1.484 66
Proxy server active 1.268 452
Service provider passive 1.136 90
Proxy server passive 902 432

been found, a route between the SSP and the proxy server is required.
In a single hop IPv6 network, the route discovery is realized through the
Neighbor Discovery Protocol [RFC4861] by sending a neighbor solicita-
tion, which fits in one frame. If the neighbor has been previously known
and its reachability has to be verified, a unicast frame is sent. Otherwise,
another multicast frame is used. The response of the solicitation comes
back in the form of a unicast neighbor advertisement. Finally, the regis-
tration protocol requires 3 unicast frames for sending the registration
and 3 unicast frames for the response.

In a single hop network, a multicast transmission is essentially a broad-
cast. ContikiMAC implements broadcast traffic by repeating the message
over the entire wake-up interval. On the other hand, unicast traffic
is implemented by repeating the message until an acknowledgment is
received, or an entire wake-up interval completes. Therefore, the time
for sending one broadcast frame (tb) is equal to the duration of the
wake-up interval (w), plus any additional back-off by the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) protocol (to). The
back-off is a factor of w. The time for sending an unicast frame (tu)
equals the duration of the CSMA/CA back-off plus the transmission time.
In the best case, as when bursts of frames are sent, the sender and the
receiver are in sync. Then, the frame would be transmitted once, and the
receiver would immediately acknowledge it (tmin). In the worst case,
the transmission time is equal to the wake-up interval (w).

Therefore, the delay for completing the active proxy registration protocol
can be estimated as: Dap = tsd + tnd + trg ≈ 3(tb + to) + [to + tb + to +
tu] + 2(to+ tu+ 2tmin), where tsd is the time to discover the proxy server,
tnd is the time to discover a route and trg is the time to perform the
registration.

110 4. Service Discovery

The passive proxy delegation protocol uses only multicast frames. Both
the initial service advertisement and the repeated service advertisement
are sent via 2 multicast frames. The delay can then be estimated as:
Dpp ≈ 4(to + tb).

We can simplify the model by assuming that there is no message loss and
there is no interfering traffic. In this way we prevent any retransmissions
by the CSMA/CA protocol and we limit the duration of the back-off to
at most w. Both of these factors influence the delay, as verified by the
simulations.

The lower bound of both proxy protocols with the simplified model can
then be found by assuming that no back-off takes place (i.e. to ≈ 0) and
that the sender and receiver are in perfect sync (tu ≈ tmin). Similarly,
the worst case would then be if the back-off is maximum (to = w) and
that the sender and receiver are off sync by w during the first unicast
transmission. Therefore, the bounds of the delay of the active and passive
proxy delegation protocol are: Dap ∈ [4w + 7tmin, 14w + 4tmin];Dpp ∈
[3w + tmin, 8w]. The calculated bounds are shown in Table 4.5.

Table 4.5: Upper and lower bound on the proxy registration protocols and the
measured simulated results for an IEEE 802.15.4 channel with no loss and no
background traffic.

Wake-up
frequency

w Proxy
type

Lower
bound

Upper
Bound

Simulation
average

4Hz 250ms
active 1.03s 3.52s 2.13s

passive 0.75s 2.00s 0.98s

8Hz 125ms
active 0.53s 1.77s 1.20s

passive 0.38s 1.00s 0.52s

16Hz 62.5ms
active 0.28s 0.89s 0.67s

passive 0.19s 0.50s 0.29s

As expected, due to the smaller number of messages exchanged, the
passive proxy delegation protocol finishes much faster than the active
proxy delegation protocol. The different wake-up intervals only increase
the gap between the two protocols. Furthermore, due to the predictable
behaviour of the broadcasting protocol in a single hop network, it is
easier to estimate the delay of the passive proxy delegation protocol.

The model becomes more complex in a multi-hop network, due to the
uneven load between multicast and unicast messages. The performance
then depends on the implementation of the underlying multicast protocol

4.4. Proxy support for sleeping nodes 111

and the role of packet fragmentation, which is outside of the scope of
this chapter.

Service
provider

Dummy
node

Proxy
server

Figure 4.11: Test scenario for service discovery. All nodes are within the same
broadcast domain.

4.4.4.3 Simulation

We simulate a single hop scenario in Cooja [Ost+06], a cross-level
simulator for the Contiki operating system. Cooja internally uses the
MSPsim device emulator for cycle accurate Crossbow TelosB emulation,
as well as a symbol accurate emulation of the CC2420 radio chip. The
test network consists of three Crossbow TelosB nodes - an SSP, a proxy
server, and a dummy node, all located in the same single-hop 6LoWPAN
network. The SSP advertises one service, described using four RRs:
PTR, SRV, TXT and AAAA. All four RRs are stored in a single DNS
packet, which is then fragmented into two 802.15.4 frames for transport.
All nodes use the CSMA/CA Medium Access Control (MAC) protocol
together with the ContikiMAC [Dun11b] RDC protocol with wake-up
frequencies of 4, 8 and 16 Hz, which results in wake-up intervals of
250ms, 125ms and 62.5ms, accordingly.

For radio propagation, we use the Unit Disk Graph Radio Medium
(UDGM) model for radio propagation, with constant loss probability.
In separate simulations, we vary the packet delivery ratio between 80
and 100%, at 2% increments. All charts show the mean values of 1.000
runs, and the error bars correspond to the 95% confidence interval of
the mean.

The simulation starts with all nodes being online. At second 5, the SSP
advertises its service. At second 7, the SSP starts delegating the service
description to the proxy server using one of the previously described
protocols. After the delegation finishes, the SSP turns off its radio, and
the simulation is stopped. The dummy node does not participate in the

112 4. Service Discovery

proxy delegation protocol, but it overhears all traffic in the network. We
use it to show the impact of the protocols to nodes in the vicinity.

Due to packet loss, the proxy delegation may not succeed in its first
iteration. Therefore, we implement repetitions of individual stages of the
delegation protocols based on the expiry of fixed timeouts. The timeout
for completion of step 1 from the active proxy delegation protocol and
the entire passive proxy delegation protocol is set at 5 times the RDC
wake-up interval. The repetition of step 2 of the active proxy delegation
protocol is dictated by the neighbour discovery protocol, and the timeout
is fixed at 10 seconds. Finally, the timeout of the entire step 3 is set
at 2 seconds. This should be enough to capture any retransmissions of
unicast frames by the CSMA/CA protocol.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 80 85 90 95 100

D
el

ay
 (

s)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

Figure 4.12: Required time (delay) for completing the active and passive proxy
delegation protocol, as measured by the service provider. ap and pp refer to the
active/passive proxy delegation protocol, with 4, 8 and 16Hz wake-up intervals
for the ContikiMAC RDC protocol. ap-hole refers to the optimized version of
the active proxy delegation protocol.

We compare the performance of the active (ap) and passive proxy (pp)
delegation protocol. To verify the impact of the neighbour discovery
protocol (Step 2 of the active proxy delegation protocol from Figure 4.7),
we also implement an optimized version of the active proxy delegation
protocol (ap-hole), where the neighbour discovery stage is skipped.
In this optimised version, the link layer address of the proxy server is
generated from the last 8 bytes of the IPv6 address, present in the AAAA
RR of the _sleep-proxy service description.

Figure 4.12 shows the delay, i.e. the time elapsed from starting the proxy
delegation protocol until its completion. As expected, increasing the
wake-up interval results in much higher delays. With all three different

4.4. Proxy support for sleeping nodes 113

wake-up parameters, due to the smaller number of messages, the passive
proxy delegation protocol finishes much faster than the active proxy
delegation protocol. The improvements vary depending on the RDC
wake-up interval and the packet loss, from 2 to 6 fold. The optimized
active proxy delegation protocol also converges faster, up to 2 fold. The
difference between the two versions grows as the packet delivery ratio
drops. Still, even the optimized version requires more time to complete
than the passive proxy delegation protocol.

Figure 4.13 shows the energy usage of the SSP and the proxy server
during the proxy delegation. These measurements are profiled using the
software power profiler Powertrace [Dun11a]. Contrarily to expectations,
increasing the wake-up interval actually increases the energy usage
for the proxy server and the SSP. This behaviour is due to the RDC
protocol: ContikiMAC makes senders do more work than receivers
during transmissions.

The energy usage of the passive proxy delegation protocol is lower
compared to the active proxy delegation protocol, though the differences
are not as high as with the delay. We attribute this behaviour to the
efficiency of the ContikiMAC protocol. Furthermore, in the active proxy
delegation protocol, if a message loss occurs during the neighbour
discovery phase, the sender will be silent for the entire timeout period,
which introduces a large delay, but not much energy usage. This is
visible in the energy usage of the active proxy delegation protocol and
the optimized version with a 4Hz wake-up interval. Even though the
difference between the two in terms of delay is large, they consume
similar amounts of energy at the proxy server side.

Finally, Figure 4.13c shows the average energy usage of the dummy
node in the network. The energy usage is measured during the entire
simulation, and includes the mDNS initialization stage, where every
node advertises its host name and address. The passive proxy delegation
protocol requires less energy due to the smaller number of messages
during both the initialization phase and registration phase. The passive
proxy is silent during the initialization phase, while the active proxy
advertises the _sleep-proxy service. Surprisingly, the neighbour discovery
does not significantly impact the active proxy delegation protocol in
this aspect. Namely, the energy footprint of the active proxy delegation
protocol is close to the optimized version.

114 4. Service Discovery

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80 85 90 95 100

E
ne

rg
y

us
ag

e
(m

J)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

(a) Sleeping Service Provider

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80 85 90 95 100

E
ne

rg
y

us
ag

e
(m

J)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

(b) Proxy Server

 0

 10

 20

 30

 40

 50

 60

 70

 80

 80 85 90 95 100

E
ne

rg
y

us
ag

e
(m

J)

Packet delivery ratio (%)

ap-4
ap-hole-4

pp-4

ap-8
ap-hole-8

pp-8

ap-16
ap-hole-16

pp-16

(c) Overhearing Node

Figure 4.13: Energy usage for completing the active and passive proxy delega-
tion protocol. ap and pp refer to the active/passive proxy delegation protocol,
with 4, 8 and 16Hz wake-up intervals for the ContikiMAC RDC protocol. ap-hole
refers to the optimized version of the active proxy delegation protocol. The
energy usage of the overhearing node (c) is measured for the entire simulation
duration.

4.5. Support for context queries 115

4.4.4.4 Summary

From the evaluation, we can conclude that in a single-hop network,
the passive proxy delegation protocol has better performance when
compared to the active proxy delegation protocol. This is evident in both
memory usage, delay and energy consumption. For a multi-hop network,
the choice between the two protocols depends on the network topology,
the implementation of the multicast forwarding algorithm, and whether
a route between the SSP and proxy server is known beforehand. We
leave this as future work.

4.5 Support for context queries

The DNS-SD protocol was designed for discovering all services instances
of a given type within a certain logical domain. The protocol assumes
that within the given logical domain, either all service instances of the
same type provide the same functionality and selecting any of them
is enough, or an end-user can select one. In the former case, when a
single service needs to be selected, the priority/weight fields of the SRV
records play an important role. In the latter case, the end-user can select
a preferred service instance based on the service instance name or based
on the human-readable description, added as payload in the TXT RR.
However, none of these methods can be added within the queries sent
out by service clients, i.e. they cannot be used to reduce the number of
responses. Moreover, the interpretation of the TXT RR is outside of the
DNS-SD specification.

In the IoT, services of the same type will be available in abundance.
As a result, queries for common service types will result in many re-
sponses, which poses a serious burden to the network. Moreover, in
M2M communication, as between sensors and actuators, the selection
of a service has to be done automatically, using information present in
service descriptions. In such scenarios, the logical domain criterion is not
enough to discriminate between services of the same type. Therefore,
the DNS-SD protocol has to be adapted to provide means for stricter
selection of services based on criteria present in queries.

Currently, two approaches have been proposed. The first approach,
described in [SL12], customizes DNS-SD functionality for building con-
trol, where services are selected based on location, general type and

116 4. Service Discovery

subtype. The location information is added in each service description
as part of the domain name, while the protocol is added via the type/
subtype options. For instance, a light switch located in floor 1, office 1
in the TU/e MetaForum building would have a PTR RR with the name
_OnOff_light._sub._bc._udp.o01.f1.mf.tue.nl. In the remainder of the text,
we refer to this method as the building-control approach.

The second approach, described in [Agg14], uses TXT RRs inside queries
as a way to impose constraints for service selection. The TXT record
contains key-value pairs of entries which specify features required by the
services. Then, every SP responds only if the TXT RRs associated with
its service, contain all entries in the query TXT RR. For example, for the
same service as the previous approach, the service client would send a
query with two RRs: one PTR, with _light._sub._bc._udp.tue.nl as name,
and one TXT, with entries: type="OnOff", building="mf", floor="1",
office="01". Of course, all location entries can be collapsed into one, as
in the building-control approach.

Both approaches are an improvement over the current DNS-SD standard.
However, neither is ideal. While the former approach lacks flexibility
and is tightly coupled with location as the primary discriminator, the
latter approach imposes additional overhead in the size of the queries.
Therefore, we propose a mixture of the two approaches: a service
description model based on context tags, added as names in PTR RRs.

4.5.1 Context tag descriptors

We define that any given service instance can be associated with a set
of context tags. A context tag is an atomic descriptor of one context
property. We assume an inclusive model: the association of a context
tag with a service instance represents that the service instance has that
specific context, while the lack of a context tag represents that the
associated service instance does not have that specific context.

Service discovery then consists of sending one or more queries, listing
a combination of wanted/unwanted context tags. As a response, a set
of services is expected, whose set of tags satisfy the queries. We use
boolean logic to express the queries, using conjunction (∧), disjunction
(∨) and negation (¬) operators on context tags. The discovery model
then consists of a:

• Set of service instances S,

4.5. Support for context queries 117

• Set of tags T ,

• Mapping function π : S → P(T), that describes which context tags
are associated with a given service,

• Set of queries, defined by the grammar Q := t|Q ∧Q|Q ∨Q|¬Q,
with atoms t ∈ T ,

• Service discovery function σ : Q → P(S), the mapping between
queries and a set of matching service instances.

The discovery function is then defined as:

σ(t) = {s ∈ S|t ∈ π(s)}
σ(p ∧ q) = σ(p) ∩ σ(q)
σ(p ∨ q) = σ(p) ∪ σ(q)
σ(¬t) = {s ∈ S|t /∈ π(s)}

σ(¬(p ∧ q)) = σ(¬p) ∪ σ(¬q)
σ(¬(p ∨ q)) = σ(¬p) ∩ σ(¬q)

In [Buc14], we explore several options how the context model can
be implemented as service selection criteria using DNS-SD. There, the
emphasis is on the trade-off imposed by the added expressive value (i.e.
more specific queries) and the increased complexity. For brevity, here we
only describe the most promising one: complete predicates as selection
criteria.

4.5.1.1 Predicates as selection criteria

With this approach, we encode the entire predicate (σ) inside the PTR
name, and use it as criteria for service selection. The predicate is parsed
and evaluated at each service instance individually. If the given service
instance satisfies the predicate, a response is sent back to the client.

To preserve compatibility with DNS-SD, all context tags and operators
have to be in human-readable form (i.e. ASCII or UTF characters).
Therefore, we use the asterisk (*), dot (.) and hyphen symbol (-)
for disjunction, conjunction and negation operator, respectively. For
simplification purposes, we store the predicate in Disjunctive Normal
Form (DNF). This enables us to break long formulas in separate DNS
RRs. Finally, after the predicate, we add the service type and the logical
domain, again to preserve backward compatibility.

118 4. Service Discovery

An obvious weakness of this approach is that it requires more complex
behaviour on the service provider side. Namely, the SP has to be able to
parse and evaluate a boolean predicate. Therefore, we advise against
using nested terms, and utilizing only simple predicates.

An additional problem is posed by lengthy predicates. The DNS-SD
specification limits domain names to 253 characters. Therefore, long
predicates with many atoms would have to be broken in multiple RRs,
which results in additional communication overhead and processing.

4.5.1.2 Comparison

To compare the three approaches, we use the following scenario. Assume
a network of one service client and two service providers, with features
as shown in Table 4.6. The service client wants to discover a light switch
for blue lights in office 1.

Table 4.6: Description of test scenario.

Property Light switch 1 Light switch 2

Service type _light._sub._coap._udp.<domain>
Location MetaForum, Floor 3, Office 1
Color Blue Red
Resource path /light/switch1 /light/switch2

For the building-control approach, one additional PTR RR needs to be
created, with the location included in the domain name. The color
description is then part of the TXT RR. The service client first needs
to discover all light switches for office 1, and then from the responses,
check the TXT RRs to find the service instance for blue lights. The
complete message exchange is shown in Figure 4.14.

When TXT RRs are used as part of the query, all context features are
encoded inside the TXT RR. The service client sends the TXT RR with
the wanted features together with the PTR RR as a query. Only one
response is expected, as the query is very specific. The complete message
exchange is shown in Figure 4.15.

Finally, with our approach, only one PTR RR is sent as a query, containing
all requested contexts. As previously, one response is expected. The
complete message exchange is shown in Figure 4.16.

4.5. Support for context queries 119

Light switch 1
aaaa::1

Light switch 2
aaaa::2

mDNS_response
PTR: _light._sub._coap._udp.o1.f3.mf.tue.nl
→ l1._light._sub._coap._udp.o1.f3.mf.tue.nl
SRV: l1._light._sub._coap._udp.o1.f3.mf.tue.nl
→ Weight:1, Priority:1, light1.tue.nl
TXT: l1._light._sub._coap._udp.o1.f3.mf.tue.nl
→ “COLOR=blue;PATH=/light/switch1”
AAAA: light1.tue.nl
→ aaaa::1

mDNS_query
PTR _light._sub._coap._udp.o1.f3.mf.tue.nl

Client
aaaa::10

mDNS_response
PTR: _light._sub._coap._udp.o1.f3.mf.tue.nl
→ l2._light._sub._coap._udp.o1.f3.mf.tue.nl
SRV: l2._light._sub._coap._udp.o1.f3.mf.tue.nl
→ Weight:1, Priority:1, light2.tue.nl
TXT: l2._light._sub._coap._udp.o1.f3.mf.tue.nl
→ “COLOR=red;PATH=/light/switch2”
AAAA: light2.tue.nl
→ aaaa::1

Select service
based on TXT value

Figure 4.14: DNS-SD message exchange during discovery of a particular light
service, using the building control approach.

Light switch 1
aaaa::1

Light switch 2
aaaa::2

mDNS_response
PTR: _light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, light1.local
TXT: l1._light._sub._coap._udp.local
→ “COLOR=blue;PATH=/light/switch1;
 BUILDING=mf;FLOOR=3;ROOM=1”
AAAA: light1.local
→ aaaa::1

mDNS_query
PTR _light._sub._coap._udp.local
TXT “COLOR=blue;BUILDING=mf;

FLOOR=3; ROOM=1”

Client
aaaa::10

Figure 4.15: DNS-SD message exchange during discovery of a particular light
service, using TXT records as part of queries.

This example shows the design trade-offs in the three approaches. On
the one hand, the building-control approach is simple to implement.
However, it does not scale well and it lacks flexibility. As shown, discrim-
inating responses based on a property other than location and service
type has to be done by the service client. Furthermore, the granularity
of the location has to be known in advanced, as separate PTR RRs need

120 4. Service Discovery

Light switch 1
aaaa::1

Light switch 2
aaaa::2

mDNS_response
PTR:blue*mf*f3*o1._light._sub._coap._udp.local
→ l1._light._sub._coap._udp.local
SRV: l1._light._sub._coap._udp.local
→ Weight:1, Priority:1, light1.local
TXT: l1._light._sub._coap._udp.local
→ “PATH=/light/switch1”
AAAA: light1.local
→ aaaa::1

mDNS_query
PTR blue*mf*f3*o1._light._sub._coap._udp.local

Client
aaaa::10

Figure 4.16: DNS-SD message exchange during discovery of a particular light
service, using predicates inside PTR RRs as part of queries.

to be created for any particular location contexts (e.g. finding all light
switches in a building/floor/office require three different PTR RRs).

On the other hand, the latter two approaches enable more flexible
filtering of services during the query phase, at the cost of additional
complexity at the service provider side. In the TXT query approach,
the service provider has to process both PTR host names for matching,
as well as all the entries in the TXT RRs, and match them with any
local services. Similarly, in the predicate PTR approach, the service
provider would have to both parse the predicate, and evaluate it for
every local service. However, we believe than the benefits of using such
approaches, in early reduction in the number of expected responses,
outweigh the implementation issues. A relieving circumstance is that in
a fully distributed environment, the number of local services per provider
would not be large, so the processing required is not significant.

4.6 Future work: Packet size

Table 4.7 shows the minimum size of the DNS-SD RRs associated with a
single service description. It is obvious that even in the best case, with
human unreadable single-letter service/host names, all four RRs are
larger than the maximum available payload size in IEEE 802.15.4 with
6LoWPAN, and require fragmentation.

4.6. Future work: Packet size 121

Table 4.7: Size of DNS Resource Records
RR Type PTR SRV TXT A/AAAA

Name
query name 1(1) service name service name host name

>14B 2B (ptr→(2)) 2B (ptr→(2)) 2B (ptr→(3))

Type 2B
Class 2B
TTL 4B
Length 2B

Priority - 2B - -
Weight - 2B - -
Port - 2B - -

Data field
service name 2(2) host name 3(3) Arbitrary field IPv4/6 Address

>5B 4 >5B 5 0-1300B 4/16B

Total >29B >23B >12B 16/28B
1 <query name>.<tcp/udp>.local
2 <service name>.<tcp/udp>.local
3 <host name>.local
4 <service name>+ ptr→(1)
5 <hname>+ ptr→(1)

In [KK13], a compression scheme called Adjustable DNS Message Com-
pression (ADMC) Enhanced is proposed, which aims to reduce the
combined size of DNS-SD packets using four techniques (Figure 4.17).
In the first step, RRs are combined to use the existing DNS name com-
pression method. Then, the CLASS and TTL fields of all four RRs are
collapsed into one. This is a reasonable assumption, since they usually
hold the same value for all RRs associated with the same service. Next,
the address in the AAAA record is compressed, by linking it to the ad-
dress assumed to be present in the 6LoWPAN packet. Finally, 6LoWPAN
compression (IPHC/NHC) is applied, yielding a DNS packet which is
potentially less than 60 bytes and fits in one 6LoWPAN frame. However,
this approach relies on having a relatively small service description,
which is contradictory to the context-aware query support described in
the previous section.

Therefore, we believe that additional savings can be reached if ser-
vice/host names are encoded in binary format inside of RRs. While
DNS-SD advocates the use of human-readable names, this is not a
necessity in M2M communication, as in the IoT. Furthermore, the encod-
ing/decoding will be hidden by the DNS-SD API, which is responsible
for translating RRs to their full, human-readable form.

122 4. Service Discovery

Figure 4.17: DNS compression as described in [KK13]. The topmost figure
(ADMC) shows packet size when only DNS name compression is used. The
middle figure (ADMC enhanced) shows packet size when the class and TTL
fields are encoded as pointers, and the IP address is reconstructed from the
network layer header. The bottommost figure (Redundant information filtering)
collapses all repetitive fields as one, and is incompatible with the current
DNS-SD standard. Figure reprinted from Ronny Klauck and Michael Kirsche.
“Enhanced DNS Message Compression - Optimizing mDNS/DNS-SD for the
Use in 6LoWPANs”. In: Workshop on Sensor Networks and Systems for Pervasive
Computing. PerSeNS. 2013.

A similar approach was recently taken for reducing the size of pay-
loads for a network management interface for constrained devices
using CoAP [Sto+15]. The authors use Concise Binary Object Repre-
sentation (CBOR) [RFC7049] for encoding JavaScript Object Notation
(JSON) [RFC7159] objects as part of the CoAP payload. In addition,
commonly used strings, as paths as part of URIs, are first hashed to
generate a 32bit identifier, and registered at all parties. Then every refer-
ence to a known string is replaced with the hash. A similar approach is
viable for DNS-SD, where the service types, context tags, host names and
their combination, can be exchanged in hashed form. In the best case,
all names can be replaced with 4 byte hashes or 2 byte DNS compression
lookups, which is enough to avoid packet fragmentation.

4.7 Conclusion

In this chapter we addressed research questions RQ2 and RQ4, by
analyzing the applicability of the mDNS/DNS-SD protocol for service
discovery in the IoT. We identified several key problems in the existing

4.7. Conclusion 123

version of the protocol. Firstly, existing implementations are too large
to implement on resource constrained devices. Secondly, the protocol
requires service providers to be constantly online, which is unsuitable
for battery-powered devices. Thirdly, the service selection capabilities
of the protocol are not rigorous enough to discriminate between many
service providers in large network. Lastly, the expressive nature of the
protocol, with services described with long, human-readable domain
names, results in large packets for discovery. In LLNs, due to the limited
capacity of the media, large packets are usually fragmented into several
smaller ones, and their delivery can be problematic.

To resolve the first problem, we developed a small implementation
of the protocol, with a limited set of features. Then, for the second
protocol, we proposed the introduction of proxy servers, which take over
service discovery functionality from service providers. We presented two
protocols for the delegation mechanism between the service provider and
the proxy server. In the first, active proxy delegation protocol, the service
provider actively searches and selects the proxy server for delegation. In
the second, passive proxy delegation protocol, the service provider only
signals its intention that it requires a proxy service: the proxy server
picks up and processes the intention as a registration request. Both
protocols were implemented in the Contiki operating system.

The simulations show that in a single hop network, the passive proxy
delegation protocol converges faster, requires less energy and is smaller
in code size when compared to the active proxy protocol. The improve-
ments vary depending on the MAC protocol behaviour and the loss in
the wireless medium. With a sender-initiated RDC protocol, the pas-
sive proxy delegation protocol can finish on average up to six times
faster than the active proxy delegation protocol, consuming half of the
energy.

Next, we proposed an extension of the protocol, which enables services
to be described using additional context labels. With the extension,
clients can then search for services which satisfy a predicated which
contains a set of tags, connected with boolean operators. As a result,
clients can discover very specific service instances among a group of
many services of the same type.

As future work, we present ideas for reducing the size of packets associ-
ated with service discovery. This reduction would enable more efficient
operation of the protocol in large LLNs.

5
TRICKLE-BASED PROTOCOLS

The system architecture and the application protocols described in the
previous chapters assume that Low-Power and Lossy Networks (LLNs)
have the capability to deliver unicast and multicast traffic. In the Internet
of Things (IoT) domain, two standardized protocols are forerunners for
those tasks: IPv6 Routing Protocol for LLNs (RPL) and Multicast Protocol
for LLNs (MPL). Both protocols are based on the Trickle algorithm for
efficient data dissemination in LLNs, which is the topic of this chapter.

Trickle aims to propagate information quickly in a network, while adapt-
ing transmission frequency based on the state of the network, and
suppressing redundant transmissions. In this chapter, we analyse how
the Trickle algorithm scales in size in different network topologies, and
what is the impact of low power radios on its performance (Research
questions RQ4 and RQ5). We verify our findings analytically and experi-
mentally, and show how particular fallacies in the design of the Trickle
algorithm, can affect either RPL or MPL.

The research presented in this chapter was done in collaboration with
Thomas M. M. Meyfroyt. While most of the text was written as joint-
effort, Thomas is the principal author of the analytical models presented
in sections 5.4.2 and 5.5.2.

The chapter is based on the following publications:

• Milosh Stolikj, Thomas M.M. Meyfroyt, Pieter J.L. Cuijpers, and
Johan J. Lukkien. "Improving the Performance of Trickle-Based Data
Dissemination in Low-Power Networks". In: European Conference on
Wireless Sensor Networks. EWSN. 2015, pp. 1–16

• Thomas M.M. Meyfroyt, Milosh Stolikj, and Johan J. Lukkien. "Adap-
tive Broadcast Supression for Trickle-Based Protocols". In: IEEE
Symposium on A World of Wireless, Mobile and Multimedia Networks.
WoWMoM. 2015

126 5. Trickle-Based Protocols

5.1 Introduction

Trickle [LPCS04] is a polite-gossip algorithm for propagating data in
LLNs. Gossiping algorithms are used in computer networks to quickly
propagate new information (gossip) by allowing each participant in the
network to take part in spreading the gossip. In this context, politeness
means that a participant will not spread a gossip if someone else already
did. While Trickle was originally designed for propagating and maintain-
ing code updates in Wireless Sensor Networks (WSNs), it has shown to
be a powerful mechanism that can be applied to a wide range of protocol
design problems, and therefore has been documented by the Internet
Engineering Task Force (IETF) in its own Request For Comments (RFC)
[RFC6206]. Furthermore, it has been adopted in two fundamental proto-
cols for the IoT: RPL [RFC6550] and MPL [HK14]. These two protocols
are of particular importance for the system architecture proposed in
Chapter 2, since they enable basic type of communication patterns in
LLNs. Therefore, one might consider Trickle as a new communication
primitive for the IoT [Lev+08].

The Trickle algorithm is based on the premise that nodes independently
decide if and when to transmit data. A node may decide to stay silent
if it hears a few other nodes transmitting data which can deem its
transmission redundant. However, if a node receives data which it
deems to be inconsistent with its own local information, it will start
communicating quickly to resolve the inconsistency. The concept of
consistency is defined on a case by case basis, which allows Trickle to
be implemented in many protocols. For instance, in RPL, Trickle is used
to control the transmission of routing control data. There, a node can
suppress its transmission if it hears a pre-defined number of routing
control data from neighbouring nodes. An inconsistency is defined when
a node changes its local routing information, and needs to quickly inform
its neighbours of the change. Similarly, in MPL, Trickle is used to forward
multicast packets in constrained networks. An MPL transmission of an
already seen data packet is considered a consistency, while a new, unseen
data packet is considered as an inconsistency.

While Trickle has been extensively studied, it still has weaknesses, which
are explored in this chapter. We first analyse how Trickle scales in
networks of varying density. We show that due to the static nature of its
suppression mechanism, Trickle suffers from uneven load distribution.
We demonstrate how this unfairness causes suboptimal RPL performance.

5.2. The Trickle Algorithm 127

To resolve the issue, we propose an extension to Trickle, called adaptive-
k, which adapts the suppression mechanism according to local density
information (Requirement R1).

Second, we focus on the interplay between Trickle and the link layer. The
link layer of low power radios inevitably introduces additional delays
for transmission of data. Typical sources of delay are the Medium Access
Control (MAC) protocols and Radio Duty Cycling (RDC) protocols. We
show that due to the lack of feedback information between Trickle and
the link layer, these interferences can cause inconsistencies within the
Trickle algorithm. In specific topologies, this behaviour can cause starv-
ing, redundant messaging, or message loss. We use a data propagation
method similar to MPL as a case study which demonstrates the negative
effects. Finally, we propose an extension to the MAC protocol, called
Cleansing, to resolve the interference (Requirement R2).

This chapter is organized as follows. We present the Trickle algorithm
and its implementation details in RPL and MPL, in Section 5.2. Then, we
give an overview of related work in Section 5.3. In Section 5.4 we take a
closer look at the Trickle suppression mechanism and discuss why setting
it correctly is difficult. Additionally, we propose the adaptive-k extension
to the Trickle algorithm. We validate the extension using RPL as a case
study. In Section 5.5, we give an overview of the protocols at the link
layer which deliver Trickle messages. We present two scenarios how the
behavior of these lower-layer protocols can disturb Trickle operation,
and propose a solution at the link layer. We evaluate the effect of the
proposed solution using MPL as a case study. Finally, we summarize our
results in Section 5.6.

5.2 The Trickle Algorithm

Trickle has two main goals. Firstly, whenever new information becomes
available in the network, it must be propagated quickly to all nodes.
Secondly, when there is no update, communication overhead has to be
kept to a minimum. The Trickle algorithm achieves this by moderating
the number of packets that nodes generate with a "polite gossip" policy.

We now describe the Trickle algorithm as generalized in [MBBD14]. The
Trickle algorithm is controlled via four configuration parameters:

• Threshold value k, called the redundancy constant.

128 5. Trickle-Based Protocols

• Minimum interval length Imin.
• Maximum interval length Imax.
• Fraction of the interval used only for listening η (default η = 1/2 i)

Locally, each node in the network maintains a timer and three vari-
ables:

• Length of the current interval I.
• Counter c, for the number of received Trickle messages during the

current interval.
• Transmission time t within the current interval.

The behavior of each node is described by the following set of rules:

1. Initially, I = Imin, and a node starts a new interval.
2. At the start of a new interval, a node resets its timer, sets c = 0

and uniformly selects t to a value in [ηI, I).
3. When a node hears a message that it considers to be consistent

with the information it has, it increments c by 1.
4. When a node’s timer reaches time t, the node broadcasts its

message if c < k.
5. When a node’s timer reaches time I, it increases its interval

length to min(2I, Imax) and starts a new interval.
6. When a node hears a message that it considers to be incon-

sistent with the information it has, then if I > Imin it sets
I = Imin and starts a new interval, otherwise it does nothing.

Trickle only determines when nodes should transmit; the nature of the
transmission (broadcast/unicast), the structure of the message, and the
exact definition of what is a consistent transmission is given by the upper
layers, i.e. the protocols where Trickle is used. For instance, in dissemi-
nation protocols, as multicast, transmissions are always broadcasts; a
node receives a consistent transmission when a known data packet is

iThe listen only interval was introduced as a parameter recently in [MBBD15]. The
initial publication of the Trickle algorithm [LPCS04] only explores two options -
having no listen only interval (η = 0) and having an interval of a half (η = 1/2). As
the former option was proven to cause the number of transmissions by the algorithm
to scale as O(

√
n) with network density ("short listen problem"), the initial version

of the algorithm has a hardcoded listen only period of halft the interval. In the
remainder of the text, unless specified, we assume η = 1/2.

5.2. The Trickle Algorithm 129

received from another node, and an inconsistent transmission is received
when a new, unseen data packet is received.

node 1

0 Imin
3Imin

node 2

0 Imin 3Imin

node 3

0 Imin 3Imin

C1=1

C2=1

C1=1

C3=1

Figure 5.1: Example of three consistent nodes using the Trickle algorithm (k =
1, I = Imin). The redundancy constant defines how many transmissions are
expected per interval, while the minimum interval length defines the frequency
of update/synchronization. In the first interval, node 3 is the first node to
transmit. Since it sends consistent information, nodes 1 and 2 update their
respective counters (c) to 1. As k = 1, they will suppress their transmissions.
At the end of the interval, since no inconsistencies were detected, all nodes
double their interval. Similarly, in the second interval, the transmission by node
2 suppresses nodes 1 and 3.

In Figure 5.1 an example is depicted of a network consisting of three
nodes using the Trickle algorithm with k = 1 and I = Imin for all
nodes. In practice, networks will generally not be synchronized, since
synchronization requires additional communication and consequently
imposes energy overhead. Furthermore, as nodes get updated and start
new intervals, they automatically lose synchronicity.

To summarize, Trickle controls data dissemination on a per interval basis.
The interval length provides a controllable parameter for the frequency
of transmissions: lower interval lengths result in more frequent trans-
missions. During each interval, every node individually decides whether
to transmit based on at least two criteria: the consistency state of the
network (i.e. whether all nodes share the same information), and the
number of received consistent messages from its neighbours (c), with
respect to the redundancy constant (k). A new interval is started either
immediately, if an inconsistency is detected and the current interval
length is longer than Imin, or at the end of each interval. If an inconsis-
tency was detected, the length of the new interval is set to a pre-defined
minimum value (Imin). Otherwise, the rate of transmission is slowed
down, by doubling the interval length, upto a pre-defined maximum
value (Imax).

130 5. Trickle-Based Protocols

The four Trickle parameters can be used to tweak the algorithm behavior
according to specific scenarios, giving option for trading between redun-
dancy, speed of propagation and risk of collisions. For instance, Imin

provides a trade-off between speed of propagation and number of pack-
ets: lower values of Imin will make nodes transmit sooner, though with
an increased risk of collisions, and therefore, additional transmissions.
To prevent such scenarios, the Trickle RFC recommends setting Imin to a
multiple of the worst-case link layer latency, defined as the time until
the first link layer transmission of a frame, assuming an idle channel.
Similarly, the redundancy constant k, provides a trade-off between com-
munication overhead and robustness against message loss and networks
with varying density. Typical values of the Trickle parameters for various
protocols are given in Table 5.1.

Table 5.1: Default values of Trickle parameters in different protocols.

Protocol k Imin Imax

MPL (control) 1 10 times worst-case link layer latency 300 s
MPL (data) 1 10 times expected link layer latency Imin

RPL (DIO) 10 8 ms 8.280 s
CTP [Gna+09] ∞(0) 125 ms 500 s

5.2.1 RPL basics

RPL is a distance vector routing protocol for LLNs that uses the Trickle
algorithm to build a Destination Oriented Directed Acyclic Graph
(DODAG). The DODAG is a tree-like network-graph, rooted in a sin-
gle node, in which all nodes learn a route towards the root node. While
RPL supports both upwards and downwards routes, in this work we
only focus on upward routes. The DODAG is shaped according to one or
more Objective Functions (OFs), which can specify metrics for the cost
of routes or give rules/constraints when building links.

The DODAG is built starting from the root as follows (Figure 5.2). The
root advertises information about the graph using DODAG Information
Object (DIO) messages, which are disseminated based on a Trickle timer.
DIO messages contain information about the DODAG, its configuration
parameters and the rank of the sender in the DODAG - a monotonically
decreasing measurement indicating the distance from the sender to the
root according to the objective function(s). Non-root nodes process these

5.2. The Trickle Algorithm 131

1

2 3

5

4

6

Rank=0

Rank=1Rank=1

Rank=3

Rank=2

Rank=3

Figure 5.2: Example of a simple DODAG using hop count as an Objective
Function. Node 4 has two parents, and selects node 2 as the preferred one.

DIOs and based on the objective function and/or some local criteria,
decide whether to join the network. After joining, they establish which
directly reachable nodes can forward data most efficiently towards the
root (i.e. have the lowest rank). The best nodes form the parent set,
while only one parent is actively selected for forwarding, named the
preferred parent. Then, the nodes compute their own rank, and start
transmitting DIO messages.

Once all nodes select a parent and become a part of the DODAG, we say
that the DODAG has been formed. Whenever a node needs to send a
message to the root, it sends it to its parent, which then forwards it to
its own parent until it reaches the root.

The RPL specification defines the minimum set of consistency/inconsis-
tency rules for the Trickle algorithm. A received DIO transmission is
considered consistent if the rank of the sender does not cause a change in
the local state of the receiver, i.e. the receiver keeps the same rank, par-
ent set and preferred parent. An inconsistency must be considered when
a node detects a problem in forwarding, suggesting a problem in the
route; or a node joins a new DODAG version; or a node receives a mul-
ticast DODAG Information Solicitation (DIS) message, suggesting that
a new node wants to join the DODAG. However, the RPL specification
allows implementations to consider other rules as well.

132 5. Trickle-Based Protocols

5.2.2 MPL basics

MPL is a protocol for enabling multicast forwarding in LLNs. At the time
of writing, it is still under development, so we present it as described in
IETF draft version 9.

MPL is built around the premise that maintaining multicast routing
topologies is unfeasible in LLNs. Therefore, it specifies how data should
be disseminated to all designated MPL forwarders within a given MPL
domain using the Trickle algorithm. MPL forwarders are nodes that are
willing to route MPL messages. The MPL domain defines the scope of the
multicast forwarding. Messages are generated by MPL seeders, which
are MPL forwarders with a unique identifier. To distinguish between
MPL messages and the initial messages for dissemination, we refer to
the latter as application payload.

MPL transmits control and data messages. MPL data messages are used
to disseminate the application payload between MPL forwarders. MPL
control messages are used to inform neighbouring MPL forwarders about
recently received MPL data messages.

MPL extends the Trickle algorithm with one more parameter, called the
expiration counter (TIMER_EXPIRATIONS). It is used to stop the Trickle
timer after TIMER_EXPIRATIONS timer events. The default value of
the parameter is 3 and 10, for Trickle timers for MPL data and control
messages, respectively.

MPL defines two forwarding strategies: proactive and reactive. Proactive
forwarding relies only on MPL data messages for dissemination: each
MPL forwarder upon receipt of a new MPL data message, attempts to
transmit the message to its neighbours. The transmission is done based
on a Trickle timer. After a pre-defined number of attempts, the forwarder
will stop the Trickle timer and discard the message. Reactive forwarding
uses MPL control messages to signal when MPL data messages need to
be sent. Each MPL forwarder transmits MPL control messages based on
a Trickle timer. Whenever an MPL forwarder receives an MPL control
message, and from it learns that it has an MPL data message that is new
to its neighbours, the MPL forwarder schedules the transmission of the
given MPL data message based on a Trickle timer.

It is clear that the consistency model varies between the two schemes,
and is significantly different to the RPL one. In the proactive strategy,

5.3. Related Work 133

the reception of an unseen MPL data message is considered an incon-
sistency, while a seen MPL data message is considered as consistent. In
the reactive forwarding strategy, an inconsistency is defined when the
reception of an MPL control message indicates that at least one MPL
data message is new to the sender or the receiver.

Due to the lack of openly available implementations of MPL, we are not
able to evaluate the actual MPL draft. Therefore, we focus on the original
Trickle algorithm as the forwarding strategy, which is very similar to the
proactive forwarding policy in MPL. Therefore, the work presented in
Section 5.5.1 applies to proactive MPL forwarding.

5.3 Related Work

The Trickle algorithm has been initially designed as an efficient method
to disseminate software updates in LLNs [LPCS04]. However, since it
only specifies when messages should be sent, and not how, it has been
accommodated in many other protocols [Lev+08], such as network
reprogramming [LL08], routing [Gna+09; RFC6550] and data dissemi-
nation [JVVG14].

Due to the widespread usage, various aspects of the Trickle algorithm
have been extensively studied so far. Therefore, we categorize related
work on Trickle based on the application area of the protocol where
Trickle is used - data dissemination and routing (RPL).

5.3.1 Trickle as a data dissemination mechanism

The initial publications of Trickle [Lev+08; LPCS04] demonstrate that
the algorithm scales well with network density, and is efficient in limiting
redundant traffic. The first hypotheses was later proved in [MBBD14],
by showing that the number of messages transmitted by the Trickle
algorithm scales linearly in k/Imax.

Several analytical models for various aspects of Trickle dissemination
have been proposed. In [MBBD14], a descriptive model is presented,
which shows how the message count and transmission rate depend
on various Trickle parameters. The study gives approximations on the
number of expected messages in a grid network topology. Another
analytical model, described in [KGA12], focuses on random topologies,

134 5. Trickle-Based Protocols

and estimates the message count using the redundancy constant and
average node degree as parameters.

Models for dissemination time for the Trickle algorithm have been devel-
oped in [BKG11; MBBD15]. Both models focus on line topologies, and
extend the results to grid topologies. The models either do not take the
redundancy constant in consideration, or assume that k = 1, to reduce
the complexity of the analysis.

Early drafts of the MPL protocol have been simulated in [CVY13;
LVHD14; OPT13]. The general conclusion of all three studies is that
the performance of MPL heavily depends on the chosen Trickle parame-
ters. Simply using the default parameters often results in sub-optimal
performance, and other dissemination protocols easily outperform it.
Proper parameters settings, set with the application protocol and the
network topology in mind, give much better results and achieve Trickle’s
initial goals - fast dissemination time and little redundant traffic. How-
ever, even though all three studies explore a fairly broad range of values
for the Trickle parameters, they fail to analyse the causes of poor perfor-
mance in depth.

5.3.2 Trickle as a part of RPL

The RPL protocol uses the Trickle algorithm for transmission of DIO
messages, which are essential in the construction of the routing overlay.
Therefore, many studies on the performance of Trickle when applied to
the RPL protocol haven been conducted.

Simulation results for the early versions of the RPL protocol are pre-
sented in [TOV10; Ko+11]. However, these versions of the RPL protocol
do not use Trickle’s suppression mechanism (k =∞). Both works con-
clude that in some scenarios the performance of RPL is lacking and
additional studies are needed for its usage in large-scale networks.

Later, Trickle’s suppression mechanism was deemed necessary to ensure
scalability of the protocol and has been made part of RPL’s current RFC.
However, there is no clear consensus on the recommended value for the
redundancy constant. The Trickle RFC specifies that in protocols that
want to avoid suppression, a high value of k (5 or 10) should be preferred
to an infinite value. However, it also suggests that experimentally, values
of 1-5 have been shown to provide good performance. Currently, the RPL
RFC recommends using k = 10, which, according to the RFC’s authors,

5.3. Related Work 135

should be a conservative value. Another RFC [LG13] reports that values
between 3 and 5 have shown good experimental results for RPL. To add
to the confusion, as previously stated, the Collection Tree Protocol (CTP)
does not use suppression at all (k =∞), while MPL recommends using
k = 1.

Based on the latest RPL RFC, additional simulation studies have been
performed. Performance analysis using application level metrics is given
in [AGBC11; ITN13]. However, these studies use the default Trickle
parameters for RPL, and do not consider how these parameters can
influence the chosen metrics. An extensive simulation study on the effect
of the redundancy constant k and Imin on RPL’s performance is given
in [KG14]. In their study they consider random spatial networks with
different densities and vary k between 1 and 15 and Imin between 4ms
and 16ms. They observe that both the redundancy constant and Imin

provide a trade-off between network convergence time and overhead
control traffic (DIO’s). However, the impact of Imin is limited during the
convergence phase, while the redundance constant has more significant
influence long-term and when the size of the network increases.

Recently, two studies identified scenarios where the Trickle algorithm
exhibits unfairness in terms of load distribution [EG14; VM13]. The
first study notices that when new nodes join a Trickle network, they
immediately lose synchronicity to the rest of the network, and rarely get
the chance to transmit. As a solution, they propose a re-synchronization
method as part of Trickle. The second study observes that the unfairness
can occur if the redundancy constant k is not configured properly with
respect to the network density. Both studies conclude that the unfairness
can lead to sub-optimal routes in RPL. The second study simulates the
behaviour of RPL in grid and random networks, and shows that due to
the bad routes, the unfairness ultimately leads to increased delays and
increased energy usage. As a solution, they propose a modification of
Trickle, which forces nodes to broadcast if they have been suppressed
for a long period of time.

Finally, link instability was identified as a problem for new nodes in
a network [Anc+14]. Due to the lack of link quality measurements,
new nodes have been observed to blindly connect to the first available
node in an RPL network, even though better alternatives might exist.
They address this issue by adding a probing phase, where nodes first
measure the link quality to their neighbors based on a Trickle timer,

136 5. Trickle-Based Protocols

before selecting a preferred parent. As a result, nodes take more time to
join a network, but benefit from having more stable routes.

5.4 Impact of the redundancy constant

Clearly, the redundancy constant k is one of the most important param-
eters of the Trickle algorithm, but setting it properly is not trivial. As
shown in the related work, optimally setting k depends greatly on the
network topology and the application for which the Trickle algorithm
is used. In this section, we focus only on the network topology and use
RPL as a driver.

Central

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Figure 5.3: Unfair load distribution in a star network. If all nodes have the
same value for the redundancy constant, the central node has smaller chance
of transmitting compared to all other nodes.

As a rule of thumb, in sparse networks, where nodes have few neighbors,
k should be set to a low value. Otherwise, if k is greater than the node
degree, the suppression mechanism is practically disabled. Similarly, in
very dense networks, a low value of k will suppress most nodes in the
network. Such behaviour can lead to slower coverage of the network,
particularly if bottleneck nodes are frequently suppressed. Therefore, a
higher value of k is more reasonable, since it will give chance to more
nodes to fight for the medium.

However, if a network is of mixed density, as is common in practice,
having the same value of the redundancy constant will definitely lead to

5.4. Impact of the redundancy constant 137

sub-optimal performance. For example, in a synchronized star network
of n+1 nodes, the central node has to compete with n nodes to transmit,
while each other node has to compete with just one node (Figure 5.3).
The probability for the central node to transmit is min(k

n+1 , 1), while all

other nodes transmit with probability

{
n
n+1 , k = 1

1, k > 1
, which is unfair.

5.4.1 Adaptive-k: a density-aware redundancy constant

With these considerations in mind, it makes sense to set k for each node
individually. Since this is a task one would like to prevent from having
to do manually, ideally we would want nodes to set their own k in a
distributed fashion. We know nodes keep track of the number of Trickle
messages they receive during an interval with a counter c. This counter
c contains implicit information on the number of neighbors of that node,
i.e. the node’s degree, which is a dimensionless number that gives an
estimate on the local density of the network. Therefore, we propose an
extension to the Trickle algorithm, called adaptive-k, which leverages this
information and allows nodes to set their value of k autonomously. This
extension is done by a slight modification of rule 5 of the algorithm:

5∗. When a node’s timer reaches time I, it sets k equal to f(c),
increases its interval length to min(2I, Imax) and starts a new
interval.

Here f is some predefined function, which is the same for all the nodes
of the network. We argue that a natural candidate is the following
function:

f(c) =


kmin, αc < kmin,

bαcc, kmin ≤ αc ≤ kmax,

kmax, αc > kmax,

(5.1)

with some fixed α ∈ [0, 1] and kmin, kmax ∈ N. The function f should be
bounded by below by some kmin to avoid a deadlock with all nodes hav-
ing k = 0. One should think of kmin being small, i.e. 1 or 2. Throughout
this paper we assume kmin = 1. Furthermore, the function f should be
bounded from above by kmax to ensure scalability of the algorithm. In

138 5. Trickle-Based Protocols

line with the recommendations in the Trickle RFC, kmax · Imin should at
least be two to three times as long as it takes to transmit kmax packets.

Intuitively, this extension does what we would like it to do. Whenever a
node receives many broadcasts during an interval, it knows it has many
neighbors, and hence it should increase k in order to be able to compete
for the medium. When a node receives few transmissions, it either does
not have a lot of neighbors, or its neighbors are having a hard time
broadcasting their own information, and for both cases the node should
lower its redundancy constant k.

Note that our extension is backward compatible with the Trickle RFC: the
RFC itself acknowledges that nodes can be configured with a different
redundancy constant, with the possible drawback of an uneven load
distribution. In the next section we show that Trickle with adaptive-k
actually leads to a more even load distribution.

5.4.2 Evaluation of the adaptive redundancy constant

A more detailed analytical analysis on the performance of Trickle with
adaptive-k is done in [MSL15]. Here, we present the main results from
that study, for three different network topologies. In the analysis we
assume that there is no message loss and there is no delay in transmis-
sion. Furthermore, we assume all nodes to have the same data and that
I = Imax for all nodes.

5.4.2.1 Single-hop network

Consider a single-hop network of n nodes with the original Trickle
algorithm. Then, according to [MBBD14], the maximum number of
transmissions per interval will be either k or 2k, depending on whether
the nodes are synchronized or unsynchronized, respectively (k ≤ n).

However, if Trickle with adaptive-k is used, the number of transmissions
depends on α. If α < 1 and nodes are synchronized, then in the
first interval there will be kmax transmissions. Then, in each following
interval, all nodes will gradually decrease their redundancy constant k
until it finally reaches k = kmin. From then on, maximum number of
transmissions per interval will be kmin.

5.4. Impact of the redundancy constant 139

Similar behaviour is expected if nodes are not synchronized and α ≤
1/2. In the first interval there will be at most 2kmax transmissions.
Then, in each following interval, all nodes will gradually decrease their
redundancy constant k, until it finally reaches k = kmin. From the on,
maximum number of transmissions per interval will be at most 2kmin.

Finally, if α > 1 for synchronized nodes, or α > 1/2 of unsynchro-
nized nodes, then all nodes will gradually increase their redundancy
constant k until it reaches k = kmax. In any subsequent interval, the
maximum number of transmissions per interval will be either kmax or
2kmax, depending on the synchronicity of the nodes.

From this case we can conclude that in the worst case, Trickle with
adaptive-k will have as many transmissions per interval as the unmodified
Trickle algorithm with k = kmax. Furthermore, this shows that adaptive-k
has to be bounded, or the suppression mechanism will stop working
properly if α > 1 and n grows.

5.4.2.2 Star network

We previously showed that in a star network of n + 1 nodes as in
Figure 5.3, the unmodified Trickle algorithm is unfair, starving the
central node from transmissions. If Trickle with adaptive-k is used
in the same topology, then if α ≤ 1, every non-central node will set
k = 1 immediately after the first interval, while the central node will
keep adapting its redundancy constant k according to a Markov chain
(Appendix from [MSL15]). If n → ∞, then the probability that the
central node broadcasts is:

pα = 1−

(∞∑
i=0

αi(i+1)/2

i!

)−1
. (5.2)

On the other hand, the probability that a non-central node broadcasts
is:

p∗α =
1

α
(1− pα). (5.3)

Finally, if α = 1, the Trickle algorithm with adaptive-k is asymptotically
fair, even though the central node has to compete with infinitely many
other nodes:

p∗1 = p1 = 1− 1

e
. (5.4)

140 5. Trickle-Based Protocols

 0

 0.2

 0.4

 0.6

 0.8

 1

S
pa

rs
e

 0

 0.2

 0.4

 0.6

 0.8

 1

B
ro

ad
ca

st
 p

ro
ba

bi
lit

y

M
ed

iu
m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

D
en

se

Node degree

k=1 k=5 k=10

Figure 5.4: Simulated broadcasting probability per node degree for the original
Trickle algorithm. The three figures correspond to the three different network
densities.

Furthermore, since each transmission of the central node will suppress
the transmission of all other nodes in the same interval, Trickle with
adaptive-k will transmit fewer broadcasts per interval than the original
Trickle algorithm.

5.4.2.3 Random spatial network

To verify the performance of Trickle with adaptive-k in a more realistic
setting, in [MSL15] several simulations are performed on different
network topologies. The simulations cover the original Trickle algorithm
with k = 1, 5 and 10, as well as the Trickle algorithm with adaptive-k
for four different functions f(c) of the form as in Equation (5.1), with
several values of α in the range [12 , 1]. The rest of the parameters are set
to kmin = 1 and kmax = 30.

The simulations are done over three classes of random spatial networks
of 200 nodes placed uniformly in a square region. The three types of
topologies have an average node degree of 5, 10 and 15, representing

5.4. Impact of the redundancy constant 141

sparse, medium and dense networks. For each setting and density, 10
networks with different topologies are simulated for 200 time units,
where all nodes start with I = Imax = 1 and uptodate information. The
main calculated metric is the average broadcasting probability of every
node degree, i.e., the fraction of intervals nodes with that number of
neighbors broadcast.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

B
ro

ad
ca

st
 p

ro
ba

bi
lit

y

Node degree

k=1
k=5

k=10

Figure 5.5: Estimate for the broadcasting probabilities for different values of k.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

M
ea

n
re

du
nd

an
cy

 c
on

st
an

t

Node degree

Dense Network

α=1
α=3/4
α=2/3
α=1/2

Figure 5.6: The average redundancy constant per node degree.

Figure 5.4 shows the simulation results for the original Trickle algorithm
with different values of the redundancy constant k. As expected, nodes
with less that k neighbours broadcast in virtually every interval, while
nodes with more neighbours broadcast with a much lower probability.
Roughly, the probability for a node with N neighbours to broadcast in
an interval is min(1, k/(N + 1)), plotted in Figure 5.5. The same trends
can be seen for all network densities, with all values of the redundancy
constant k.

Figure 5.7 shows the simulation results for the Trickle algorithm with
adaptive-k with different values of the parameter α. The average value of
the redundancy constant k per node degree is shown in Figure 5.6. From

142 5. Trickle-Based Protocols

 0

 0.2

 0.4

 0.6

 0.8

 1

S
pa

rs
e

 0

 0.2

 0.4

 0.6

 0.8

 1

B
ro

ad
ca

st
 p

ro
ba

bi
lit

y

M
ed

iu
m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

D
en

se

Node degree

α=1 α=3/4 α=2/3 α=1/2

Figure 5.7: Simulated broadcasting probability per node degree for the
adaptive-k Trickle algorithm. The three figures correspond to the three different
network densities.

these results, it is evident that the algorithm works as intended, linearly
increasing the value of k depending on the number of neighbours a node
has. As a result, we can observe that the transmission load is distributed
more fairly compared to the original Trickle algorithm. However, it still
depends greatly on the choice of α. With α = 1, there is a clear tendency
to favor high degree nodes, while α = 1/2 shows a slight tendency to
favor low degree nodes. From these simulations, the most appropriate
setting for α seems to be between 2/3 and 3/4. These two settings
show the best trade off in terms of communication load and fairness in
transmission load.

5.4.3 RPL Evaluation

To confirm that the adaptive-k extension to the Trickle algorithm can
improve performance, we resort to simulations and experimental evalua-
tion. We use the RPL protocol as a case study, since previous studies have
shown that unfair load distribution can lead to problems in RPL. In order

5.4. Impact of the redundancy constant 143

to be able to forward messages as efficiently as possible, nodes need to
quickly update their rank to the optimal rank. However, as we saw in the
previous section, the original Trickle algorithm tends to favor nodes with
low degree. Therefore, low degree nodes will be able to broadcast DIO’s
more often than high degree nodes. This introduces the problem that
nodes tend to favor low degree nodes as their parents, possibly leading
to sub-optimal routes, since routes through high degree nodes might be
more efficient. One hopes that using Trickle with adaptive-k could solve
this problem, since it distributes the transmission load more evenly.

5.4.3.1 Simulation results

We implement adaptive-k as part of the Contiki 2.7 operating sys-
tem [DGV04]. Contiki includes a full IPv6 over LoWPAN (6LoWPAN)
stack, together with an implementation of the RPL protocol, called Con-
tikiRPL. We simulate different topologies in Cooja, a cross-level simulator
for Contiki [Ost+06]. Cooja internally uses the MSPsim device emulator
for cycle accurate Tmote Sky emulation, as well as a symbol accurate
emulation of the CC2420 radio chip. We use the Unit Disk Graph Radio
Medium (UDGM) model for radio propagation, with no loss. UDGM
penalizes collisions heavily, while end-to-end delivery fails only due to
filled MAC queues. At the link layer, we use the default Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) implementation
in Contiki with no RDC (nullrdc). The RPL DODAG is formed according
to the Objective Function Zero (OF0) [RFC6552]. OF0 in Contiki is
implemented as a hop-count based selection metric, which uses local
Expected Transmission Count (ETX) measurements to select between
parents with the same rank. Unnecessary parent switches are avoided
by adding a simple hysteresis mechanism [RFC6719].

We look at topologies with three different network densities, where one
root and 100 non-root nodes are uniformly placed in a square area of
100×100 meters. For each topology, named sparse, medium and dense,
the transmission range is such that the average node degree is 5, 10
and 15, respectively. We simulate a Constant Bit Rate data gathering
application - every non-root node sends one 80-byte packet (including all
headers) to the root node every minute. For each topology, we consider
the original Trickle algorithm with k = 1, 5 and 10 and adaptive-k Trickle
with α = 2

3 , kmin = 1 and kmax = 10. We simulate each configuration
100 times, where each simulation runs for 2 hours with Imin = 23ms

144 5. Trickle-Based Protocols

 0

 0.2

 0.4

 0.6

 0.8

 1

S
pa

rs
e

 0

 0.2

 0.4

 0.6

 0.8

 1

B
ro

ad
ca

st
 p

ro
ba

bi
lit

y

M
ed

iu
m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

D
en

se

Node degree

k=1 k=5 k=10 α=2/3

Figure 5.8: Average DIO broadcasting probability per node degree for the
Trickle algorithm with different values for k and the adaptive-k Trickle algorithm.
The three figures correspond to the three different network densities.

 0

 0.2

 0.4

 0.6

 0.8

 1

k=
1

k=
5

k=
10

α=2
/3 k=

1
k=

5
k=

10

α=2
/3 k=

1
k=

5
k=

10

α=2
/3

sparse medium dense

D
IO

 b
ro

ad
ca

st
in

g
pr

ob
ab

ili
ty

Redundancy constant

Network topology

Figure 5.9: Cumulative statistics on the average DIO broadcasting probability
per node for different network densities. The whiskers show the minimum/-
maximum value, the start and end of the box show the 25th/75th percentile,
the line in the box is the median, and the cross is the mean.

5.4. Impact of the redundancy constant 145

and Imax = 223ms. We measure the mean time until formation of the
first DODAG, the mean number of DIO transmissions per node and the
mean network stretch after 2 hours. Network stretch is defined as the
fraction of nodes that have a rank higher than the minimal rank, i.e.
take more hops to reach the root node than through the optimal path.

First of all, as expected, we find that with the original Trickle algorithm,
the chance that a node broadcasts a DIO reduces as the network density
increases (Figure 5.8). In a sparse network, a high redundancy constant
disables suppression, while in a dense network nodes have less and less
chance of transmission. On the other hand, Trickle with adaptive-k scales
well with network density, and provides almost equal DIO broadcasting
probability irrespective of the network density. The cumulative statistics
in Figure 5.9 confirm these findings.

Next, we analyse the RPL-level metrics. Firstly, we find that for the
simulated topologies, the DODAG formation time is not greatly affected
by the choice of k; only for sparse networks does the formation time
suffer from low values of k (Figure 5.10a). Secondly, for the original
Trickle algorithm, the average number of DIO’s increases quickly with
k, as expected. However, the DIO count of Trickle with adaptive-k is
comparable to that of the original algorithm with k = 1 (Figure 5.10b).
Lastly, for the original Trickle algorithm with low k, the average network
stretch remains high, probably due to Trickle favoring low degree nodes.
As k increases the network stretch decreases; nodes are able to broadcast
more easily, allowing for discovery of better routes at the cost of high
overhead. However, we find that for adaptive-k, for every scenario
the network stretch after 2 hours is almost zero; only in a few cases
there are 2 or 3 nodes that have not yet discovered the optimal route
(Figure 5.10c), which can be avoided by increasing kmin. In summary,
the network stretch shows that Trickle with adaptive-k allows for good
routes to be discovered, as if k was high, while only broadcasting few
DIO’s, as if k was set low.

5.4.3.2 Experimental results

To confirm the simulation results, we implement the same code as in
the previous section, on a set of 43 WSN430 nodes in the Rennes FIT
IoT-Lab physical test bed ii. WSN430 nodes have the same MSP430 micro-
controller and TI CC2420 radio chip as the Tmote Sky. We configure

iihttp://www.iot-lab.info

146 5. Trickle-Based Protocols

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

sparse medium dense

D
O

D
A

G
 fo

rm
at

io
n

tim
e

(s
)

Network topology

k=1
k=5

k=10
α=2/3

(a) DODAG formation time

 0

 5

 10

 15

 20

 25

sparse medium dense

A
ve

ra
ge

 n
um

be
r

D
IO

 tr

an
sm

is
si

on
s

pe
r

no
de

Network topology

k=1
k=5

k=10
α=2/3

(b) Average number of DIO’s

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

sparse medium dense

N
et

w
or

k
st

re
tc

h

Network topology

k=1
k=5

k=10
α=2/3

(c) Network stretch

Figure 5.10: Influence of the redundancy constant in RPL for different topolo-
gies. All values show the average of 100 runs and the 95% confidence interval.

the nodes to use the minimum available transmission power (-25 dBm),
which is enough to form a network with at most 4-hops to the root.
To improve stability and enable more accurate measurement, we use
larger Trickle intervals, Imin = 24ms and Imax = 224ms. The rest of the
parameter settings are identical as in the simulations. For each value

5.4. Impact of the redundancy constant 147

of the redundancy constant, we perform five experiments, where each
experiment runs for one hour. As nodes are booting up randomly, links
are fairly unstable, and there is no central clock in the system, we only
show the results for the overall number of transmissions as measured at
the link layer, and the end-to-end packet delivery ratio. All charts show
the average measured values and the 95% confidence interval of the
mean.

The experimental results confirm the simulation results; setting a proper
value of the redundancy constant significantly impacts the overall traffic
in the network (Figure 5.11). In this particular network topology, a
high value for the redundancy constant does not improve routing, and
therefore should be set low. The proposed adaptive-k extension handles
the situation well, balancing between the overhead control traffic and
high end-to-end packet delivery ratio.

 0

 1000

 2000

 3000

 4000

 5000

k=1 k=5 k=10 α=2/3

N
um

be
r

of
 tr

an
sm

is
si

on
s

[#
]

Data DIO

 80

 85

 90

 95

 100

P
D

R
 [%

]

Figure 5.11: Total number of DIO transmissions, data transmissions and end-
to-end packet delivery ratio (PDR) during 1h of operation on 43 nodes at the
IoT-Lab test bed.

5.4.4 Summary

The redundancy constant is an important factor for the performance of
the Trickle algorithm. The current Trickle standard proposes a fixed value
of the redundancy constant, which is sub-optimal in networks of varying
density. As we demonstrated, a fixed value for the redundancy constant
makes the Trickle algorithm unfair in terms of load distribution, favoring

148 5. Trickle-Based Protocols

nodes with few neighbors. Moreover, depending on the application
where Trickle is used, this unfairness can lead to various consequences,
such as creation of sub-optimal routes (RPL).

The adaptive-k extension to the Trickle algorithm makes the algorithm
more robust to network topology. As the results show, it is able to scale
well with varying network density. The extension can be further tweaked
to trade-off between redundancy and overhead via the α parameter.

5.5 Lower layer interference on Trickle operation

All of the previously mentioned protocols that use the Trickle algorithm
operate either at the network or the application layer. The Trickle
algorithm essentially controls the generation of packets within these
protocols, while lower layers (i.e. link layer and physical layer) are
responsible for the actual transmission of the data packets (Figure 5.12).
Now, we focus on the interplay between Trickle and the protocols at the
link layer. We first give an overview of the link layer of low power radios,
and then show how its behaviour can influence Trickle operation.

Link layer

CSMA-CA

Radio Duty Cycling

Network/Application layer

Trickle

Physical layer

Figure 5.12: Flow of Trickle packets in the Contiki operating system [DGV04].

5.5.1 Low-power link layer protocols

The link layer of IEEE 802.15.4 [IEEE15.4e] low-power radios is built
of two components - a MAC protocol and a radio handling protocol.
The MAC protocol handles the allocation of the shared medium among
nodes and covers retransmissions in case of collisions or packet loss. The

5.5. Lower layer interference on Trickle operation 149

radio handling protocol determines the efficient use of the radio during
the periods allocated by the MAC protocol. We will now give a detailed
description of both protocols.

5.5.1.1 CSMA/CA protocol

The link layer has the responsibility to deliver messages between devices
in the same Local Area Networks (LANs). It can also include means
to repair imperfections of the physical layer (ex. detect transmission
errors), multiplex access between multiple devices on a shared media,
detect simultaneous access attempts and recover from them. For the last
three tasks, wireless networks often use the CSMA/CA protocol. It is a
probabilistic protocol, where each node first verifies that there are no
ongoing transmissions in the area, and then attempts to transmit.

The IEEE 802.15.4 MAC defines two flavors of the CSMA/CA proto-
col, depending on the operational mode in use: slotted CSMA/CA,
used in beacon-enabled mode, where beacons are sent to synchronize
nodes to a super-frame structure; and unslotted CSMA/CA, used in non
beacon-enabled mode, where no beacons are sent out and there is no
synchronization between nodes. In this work, we focus on unslotted
CSMA/CA, but the same concepts apply to slotted CSMA/CA as well.

In unslotted CSMA/CA, the basic time unit is the back-off period BP ,
which is related to the transmission time of a frame. Every node main-
tains two variables for each frame it wants to send: a back-off exponent
BE , and a counter for the number of back-offs for the current trans-
mission NB . These variables are controlled by three parameters: the
minimum back-off exponent BEmin, the maximum back-off exponent
BEmax and the maximum number of back-offs NBmax.

The flowchart of the algorithm is shown in Figure 5.13. Initially, NB = 0
and BE = BEmin. Before each transmission, each node first waits
for a random number of BP s ranging from 0 to 2BE − 1. After the
initial back-off, the node performs a Clear-Channel Assessment (CCA) to
determine whether the channel is free. If the channel is free, the node
proceeds with the transmission. Otherwise, it increases NB by one, and
sets BE to min(BE + 1,BEmax). If NB ≤ NBmax, the entire procedure
is repeated. After NBmax + 1 failed attempts, the frame is dropped from
the MAC queue.

150 5. Trickle-Based Protocols

Start

NB=0, BE=BEmin

Delay for
random(2BE-1)

Perform CCA

Channel idle?

Transmit

yesNB=NB+1,
BE=min(BE=1,Bemax)

NB>Nbmax

no

Abort

yes

no

Figure 5.13: Flowchart of the CSMA/CA protocol.

5.5.1.2 Radio duty cycling

The MAC layer of low-power radios often includes a second component
next to the CSMA/CA protocol - the radio handling protocol. Radio
transceivers are among the biggest sources of energy consumption in
low-power wireless devices. Therefore, low-power wireless devices must
trade-off between keeping the radio transceiver off, to save energy, and
periodically waking up to be able to receive data from their neighbors.

5.5. Lower layer interference on Trickle operation 151

During the years, many RDC protocols have been proposed. They can be
categorized into synchronous, where nodes are synchronized with their
neighbouring nodes (eg. S-MAC [YHE02], T-MAC [DL03]), and asyn-
chronous, where no pre-synchronization is required. Asynchronous RDCs
can be further categorized into sender initiated (eg. Low Power Listen-
ing [HC02], X-MAC [BYAH06], ContikiMAC [Dun11b]) and receiver ini-
tiated protocols (eg. Low Power Probing [MELT08], A-MAC [Dut+10]).
Sender initiated RDC protocols give the transmission incentive to the
senders: senders wake up receivers to receive a transmission. Receiver
initiated protocols give the incentive to the receivers: receivers inform
senders when they are prepared to receive a transmission. Finally, hybrid
approaches have been developed, which combine features from any of
the given categories (eg. WiseMAC [EHD04]).

sender

Packet received Scheduled broadcast Scheduled radio wake-up

receiver

D D D D D D D D D D D D D D

D

D Data packet Reception window

w

w

Figure 5.14: ContikiMAC broadcast transmission. In ContikiMAC, broadcast
transmissions are sent with repeated frames for the full wake-up interval. This
illustration is reproduced based on [Dun11b].

In this work, we consider ContikiMAC [Dun11b], a sender initiated RDC.
It is similar to the Coordinated Sampled Listening (CSL) protocol, intro-
duced in the IEEE 802.15.4e standard. A brief description of ContikiMAC
follows.

By default, every node has its radio turned off. Periodically, at regular
intervals of w time units, each node turns its radio on to check for
incoming traffic. If a transmission is detected, the radio is kept on until
the frame is received. Transmissions are non-periodic, originating from
the upper layer(s). When they arrive, a CCA is done to see if the medium
is free. If it is free, the node starts transmitting immediately. Broadcast
transmissions should be received by all nodes, irrespective of their wake

152 5. Trickle-Based Protocols

up intervals. Therefore, a broadcast transmission will always be repeated
for w time units (Figure 5.14), so that each node will at least once turn
on its radio during the transmission. Hence, assuming an idle channel,
the worst-case latency as defined in the Trickle RFC, is w. However,
this makes broadcasts expensive both in terms of delay and consumed
energy.

The main configuration parameter for ContikiMAC is the radio wake-up
frequency 1/w, i.e. how often each node samples the radio. This parame-
ter also dictates the maximum duration for each individual transmission
w. Typically, the wake-up frequencies are set to 4Hz, 8Hz or 16Hz, giving
wake up intervals of 250ms, 125ms and 62.5ms, respectively.

5.5.2 Interference scenario

A common feature of almost all link layer protocols is that transmissions
are not instantaneous, and there is a variable delay between the intent
to start a transmission and the actual reception. For instance, CSMA/CA
may add a random delay before each transmission to avoid collisions. In
sender initiated RDC protocols as ContikiMAC, the transmission starts
almost immediately after it is received from the upper layers, but it is not
completed until the receiver performs its periodic wake up to sample the
channel. Similarly, in receiver initiated RDC protocols, the transmission
is delayed until the sender receives a request from the receiver, which is
again periodically scheduled. Finally, in case of collisions, in both cases,
CSMA/CA will re-schedule transmissions after a certain back-off period.
The delayed completion of a transmission creates a window where upper
layer protocols may think that a transmission has been completed, while
in fact, it is not. This causes unintended and inefficient messaging, as the
transmission delay and retransmissions may move from one to another
Trickle interval.

For example, consider a network consisting of two nodes (Figure 5.15).
Both nodes use unslotted CSMA/CA in combination with RDC at the
MAC layer. Packet transmission is regulated by the Trickle algorithm
(k = 1, η = 1/2). Both nodes start a Trickle process at the same time,
with consistent information for dissemination. They choose transmission
times t1 and t2, respectively, such that t1 < t2. Both counters are initially
set to zero (c1 = c2 = 0). At time t1, since c1 < k, node 1 sends a packet
to its MAC layer. Then, it does a successful CCA and starts transmitting
the packet. Node 2 has its next wake-up scheduled at time tr > t2.

5.5. Lower layer interference on Trickle operation 153

Consequently, at time t2 node 2 has not yet received node 1’s broadcast
and will decide to transmit itself, sending a Trickle packet to its MAC
layer. Since at this time the channel is busy, CSMA/CA will delay this
transmission until t2 + bo, where bo is the back-off time. At time tr, node
2 receives the transmission from node 1, setting c2 = 1, making the
queued packet in the MAC layer obsolete. However, since there is no
link between the MAC queue and the application layer, the packet will
be sent at t2 + bo. This effect can be cascaded if multiple nodes exhibit
the same behavior. Moreover, it is possible that node 2’s broadcast is
delayed into its next Trickle interval (Figure 5.15), causing node 1 to
suppress its next broadcast, further disrupting the Trickle process.

node 1

0 Imin

node 2

C1=1

C2=1t2 tr t2+bo

t1

Packet received Scheduled broadcast

Figure 5.15: Link layer interference on Trickle timing. Nodes 1 and 2 get
updated at the same time, and they select transmission times at t1 and t2,
respectively. If the reception for node 2 (tr) is scheduled to be after t2, node 2
will queue a Trickle packet at t2, even though there is a packet in the air from
node 1. Due to CSMA/CA, this packet will be transmitted after the back-off, at
time t2 + bo.

5.5.2.1 Case study: CSMA/CA and ContikiMAC

We will now use the Contiki operating system for a case study on the
impact of MAC interference on Trickle timing. Contiki 2.7 utilizes the
ContikiMAC RDC protocol with a radio wake-up interval length of w,
together with a slightly modified version of the unslotted CSMA/CA
protocol. Firstly, the default parameters BEmin = 0, BEmax = 3 and
NBmax = 3, force CSMA/CA to skip the first back-off. Secondly, the back-
off period is equal to the length of the wake-up interval of ContikiMAC
(BP = w). As w is the worst-case transmission time for ContikiMAC,
this ensures that any retransmissions are attempted after the current

154 5. Trickle-Based Protocols

transmission has finished. Thirdly, the CCA check is delegated to the
RDC layer. Finally, the back-off exponent BE is increased only when
no acknowledgment is received for sent unicast frames. Since Trickle-
based data dissemination uses only broadcast packets, for which no
acknowledgment is needed, a back-off can only occur due to a failed
CCA or a detected collision. In both cases, BE remains one, causing the
back-off for broadcasts to remain BP = w.

5.5.2.2 Scenario 1: Single-hop network

We now analyze the likelihood that the scenario discussed at the be-
ginning of this section occurs under ContikiMAC. Denote by Pbo

2 the
probability that a CSMA/CA back-off takes place in a network of two
nodes. For simplicity, we assume the nodes to be synchronized, which
would be the case if they got updated simultaneously. We assume that
packets are received at radio wake-up and Imin = m ·w, where m ≥ 2 is
a constant and w is the radio wake-up interval. We require m ≥ 2, since
otherwise a node will never be able to finish a transmission within the
same Trickle interval as it was scheduled. Furthermore, assume that the
Trickle process has k = 1 and η = 1/2. A CSMA/CA back-off will take
place if either node 1 or 2 pick their transmission time during a broadcast
of the other node and before their radio wake-up and reception. Hence,
we can write:

Pbo
2 := 2P[t1 ≤ t2 ≤ tr ≤ t1+w] = 2

Imin∫
Imin/2

P [t2 ∈ [t1, tr] | t1 = t] dP[t1 ≤ t].

(5.5)
Since both t1 and t2 are chosen uniformly in [Imin/2, Imin] and a broad-
cast starting at time t is received by the non-transmitting node uniformly
at tr ∈ [t, t+ w], some calculus gives:

Pbo
2 =

2

m
− 4

3m2
. (5.6)

Note that this probability only depends on m, the ratio between the
length of an interval Imin and the length of a broadcast w. For the
MPL standard Imin = 10w, this implies Pbo

2 = 0.1925, which is relatively
large.

5.5. Lower layer interference on Trickle operation 155

Extending these calculations and noting that nodes choose their timers
independently, the probability that b CSMA/CA back-offs occur and b+ 1
transmissions are scheduled during an interval in a single-hop network
consisting of n nodes is given by:

Pbo
n,b := n

(
n− 1

b

)
P [t2 ∈ [t1, tr]]

b P [tr ≤ t2]n−b−1 . (5.7)

Like (5.5), this expression can be evaluated analytically and allows us to
calculate the probability Pbo

n that at least one CSMA/CA back-off (b > 0)
takes place during a single interval in a single-hop network consisting of
n nodes:

Pbo
n := 1− Pbo

n,0 = 1− 1

mn

(
(m− 1)n +

1

2n− 1

)
. (5.8)

Moreover, calculating the expected number of redundant transmissions
per interval due to poor interaction between Trickle and the CSMA/CA
protocol gives:

E[N r
n] :=

n−1∑
i=0

iPbo
n,i =

n

m
− 1

n+ 1

(
2

m

)n
. (5.9)

Hence, the expected number of obsolete broadcasts per interval due to
timing issues grows linearly with the size of the single-hop broadcast
range. This is intuitive, since every node has the same probability of
scheduling a back-off. If Trickle worked as designed, there would be
only one packet per interval iii.

5.5.2.3 Scenario 2: A bottleneck network

Consider now a network of four nodes, with connectivity as in Fig-
ure 5.16. This type of connectivity, where part of the network is reach-
able only through a single bridge node, is common, for example, in
street lighting networks. Again all nodes use CSMA/CA in combination
with ContikiMAC and run a Trickle dissemination process. The Trickle
process has k = 1, η = 1/2 and Imin = m ·w, where m ≥ 2 is a given
constant. Initially, all nodes have consistent information and I = Imax.

Suppose at time 0 nodes 1 and 2 receive an update simultaneously from

iiiFor a complete calculation of Equations (5.5-5.9), see Appendix A of [SMCL15]

156 5. Trickle-Based Protocols

Node 1

Node 2

Node 3 Node 4

Figure 5.16: Example of a bottleneck network consisting of 4 nodes, where
node 3 is the bottleneck.

node 1

t2+wt2

t1

t3

Packet received Scheduled broadcast Suppressed broadcast

node 2

node 3
tr

Imin 3Imin

tr+Imin tr+3Imin

Figure 5.17: Suppression of Trickle updates due to link layer interference.
Nodes 1 and 2 get updated at the same time, and select transmission times at t1
and t2, respectively, with the periodic channel check for node 2 (tr) scheduled
to be after t2. Node 2 queues a Trickle packet at t2. Due to busy media,
CSMA/CA re-schedules the packet for t2 + w. In the mean time, node 3 gets
updated and starts a new Trickle interval. The re-transmission at t2 + w causes
node 3 to suppress its transmission in the first interval (t3). As node 1 and 2
started the second interval earlier than node 3, there is a high probability that
they will suppress any future transmissions from node 3.

a close-by source, set I = Imin and start a new interval (Figure 5.17).
Node 1 is the first node to schedule a broadcast, which it starts to
transmit at time t1. As we have seen in the previous scenario, node
2 will schedule a broadcast before receiving node 1’s broadcast with
probability Pbo

2 . If this happens, the MAC protocol will cause node 2
to delay its transmission until time t2 + w. Before this time, however,
node 3 will have been updated by node 1’s transmission, and will start
a new interval of length Imin and schedule a transmission at time t3.
Now node 2’s transmission follows, suppressing node 3’s transmission
at time t3 > t2 + w and consequently delaying the time that node 4
is updated. In its next interval, node 3 will broadcast only if it starts
transmitting before it receives a broadcast by nodes 1 and 2. However,

5.5. Lower layer interference on Trickle operation 157

due to the synchronization caused by the Trickle protocol, this has a
small probability, as shown in Figure 5.17. The same problem occurs
in the following intervals. Only when node 4 eventually transmits its
old information, which depends on Imax, it will reset node 3’s Trickle
process and an update will follow.

In general, if node 3 is connected with n synchronized nodes trying to
update it, the previously described scenario occurs with probability Pbo

n

(see equation (5.8)). We have plotted this probability and compared it
with simulations for different values of m and n in Figure 5.18. From the
plot it is clear that such an event is not rare. Given that such an event
occurs, the probability that node 3 will ever broadcast in the following
intervals before being suppressed by its neighbors is small, even for
n = 2. Therefore, in such an event, with high probability node 4’s
update is delayed until it advertises its own old information, resetting the
Trickle process of node 3. This gives an expected delay of approximately
1
2Imax + 3

4Imin, which is possibly very large since Imax is generally large.
If node 4 has neighbors suppressing its own transmissions, then the
expected delay will be even larger.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8

P
nbo

n

analytical m=4
analytical m=8

analytical m=10

simulations m=4
simulations m=8
simulations m=10

Figure 5.18: Analytical and simulation results of the probability that node 4
is updated after the second Trickle interval, for different values of m (Imin =
m ·w).

5.5.3 Cleansing MAC

In order to reduce the interference of the link layer on Trickle timing,
we propose adding a Cleansing mechanism to the MAC layer. If Trickle is
treated as a network primitive, as suggested in [Lev+08], known at both
the network and link layer, then some decision making can be done at
the link layer. Assuming that the MAC layer maintains separate queues

158 5. Trickle-Based Protocols

per destination, whenever a new Trickle packet arrives from the network,
the Cleansing MAC will purge any queued outgoing Trickle packets. This
will lead to less redundant packets in the network, and will minimize
the bottleneck problem from the previous section.

In most cases, purging outgoing Trickle packets improves Trickle perfor-
mance in terms of messaging and delay, and does not lead to functional
incorrectness. It remains consistent with the software design of LLNs,
as any purged packet can be seen as a message loss, and applications
are already able to handle that situation. However, we can identify two
scenarios where performance-wise, purging can be considered to be
harmful.

The first scenario is when k > 1, a purged Trickle message might not
be obsolete. However, this should have minimal impact on the network,
since only a small fraction of messages within each single-hop broadcast
domain will be purged. Moreover, other nodes in reach will make up for
the purged transmission.

The second scenario is when a Trickle message with an old value arrives,
and the Cleansing MAC protocol purges an outgoing Trickle message
with a new value, increasing the overall propagation delay. However,
the effect of the purge is limited, as due to the old message, the Trickle
interval of the node with the new value will be set at Imin, which would
give a second opportunity for broadcast relatively soon.

Note that the bottleneck scenario can be resolved within the Trickle
algorithm by setting the redundancy constant on node 3 to a higher
value (k = 3). However, in large networks, it is difficult to identify all
possible bottlenecks and to manually configure them. Another solution
is to use the previously described adaptive-k Trickle extension. However,
even then, α should be carefully selected.

5.5.4 Evaluation

To confirm the analytical results and to evaluate the performance of the
Cleansing MAC modifications, we perform several experiments in simu-
lation and on a physical test bed. We use one application - dissemination
of an update using Trickle, implemented in Contiki 2.7. Each experiment
starts by injecting an update in the network. As the update is propa-
gated, nodes increase their Trickle interval. The experiment ends when
all nodes have reached their maximum Trickle interval Imax = 256s. We

5.5. Lower layer interference on Trickle operation 159

measure the delay, i.e. the time required to update all nodes, the total
number of sent packets, the number of MAC layer retransmissions, and
the mean waiting time in the MAC layer queue.

5.5.4.1 Simulation results

The simulations are carried out in the cross-level simulator Cooja. We
use the UDGM propagation model, with no loss. All nodes use unslot-
ted CSMA/CA with the default parameters (BEmin = 0, BEmax = 3,
NBmax = 3), and the ContikiMAC RDC protocol, with a wake-up fre-
quency of 8Hz (w = 125ms). Imin varies from 250ms to 1.75s, at
250ms steps (m = 2, 4, ..., 14), well beyond MPL’s recommendation
of m = 10.

5.5.4.2 Bottleneck topology

The first scenario follows the bottleneck topology, as shown in Fig-
ure 5.16. An update is inserted at the same time at nodes 1 and 2, and is
propagated to the rest of the network using Trickle. Each configuration
is simulated 1.000 times.

As expected, without Cleansing, due to the large number of collisions,
the update delay of node 4 is highly variable (Figure 5.19a). Both the
mean and the standard deviation peak at Imin = 0.5s, and gradually
decrease as Imin increases. Surprisingly, the update delay at Imin = 0.25s
is stable. This anomaly occurs because at Imin = 0.25s = 2 ·w, the
contention window of nodes 1 and 2 is equal to the broadcast duration
(w). This practically guarantees collisions, and a retransmission from
one of the nodes. However, node 3’s listen-only period will be finished
before the retransmission starts, and there is a chance that node 3 will
schedule its own transmission before it receives the retransmission. Even
if the transmission from node 3 is delayed, it will be sent within one
or two broadcast periods. However, with Imin = 0.5s, node 1’s and 2’s
contention window is still small, giving high probability for collisions.
Then, retransmissions will always fall in node 3’s listen-only period,
forcing it to suppress its own transmission.

Figure 5.19b depicts the average measured delay of the worst 10% of
the observations. This is a clear indication that harmful back-offs due to
CSMA/CA are not uncommon, and that their effects can be detrimental

160 5. Trickle-Based Protocols

1

2

3

4

5

6

7

8

0.25 0.5 0.75 1 1.25 1.5 1.75
[0 , Imin)

[Imin, 3 Imin)

[3 Imin, 7 Imin)

, 15 Imin)

[15 Imin, 31 Imin)

[31 Imin, 63 Imin)

, 127 Imin)

T
ri
c
k
le

 u
p
d
a
te

 i
n
te

rv
a
l

D
e
la

y
 (

s
)

Imin (s)

CSMA/CA Average

CSMA/CA 90th perc

CSMA/CA w Cleansing

[7 Imin

[63 Imin

(a) Trickle update interval and update delay

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.25 0.5 0.75 1 1.25 1.5 1.75

D
el

ay
 (

s)

Imin (s)

CSMA/CA - worst 10% (Average)
1/2Imax+3/4Imin

(b) Average update delay - worst 10%

Figure 5.19: Update delay in the bottleneck scenario (Imax = 256s, k = 1,
η = 1/2). a) shows the Trickle interval in which node 4 gets updated, with
and without Cleansing MAC improvements. The left y axis shows the Trickle
doubling interval, and the right y axis the actual time. b) shows the average
delay of the largest 10% of the measurements, and the analytical expected
delay. The error bars correspond to the standard deviation.

to Trickle’s performance. The update delay then becomes significantly
high, in line with the analytical expected delay of 3

4Imin + 1
2Imax.

Finally, the interference is completely resolved with MAC Cleansing.
In that case, updates are always completed in the second interval, as
expected.

5.5.4.3 Grid topology

The second scenario consists of 100 nodes, arranged in a 10x10 grid,
with 10 meters between two nodes in each axis. A new Trickle event is
generated at the top left node. We simulate 100 executions of Trickle

5.5. Lower layer interference on Trickle operation 161

with different values for Imin. Furthermore, we varied the connectivity
range of each node. Each node has a circular coverage area with radius
2 + 10R meters, with 1 ≤ R ≤ 5.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

D
el

ay
 (

se
c)

R

CSMA/CA, Imin=0.25s
CSMA/CA w Cleans, Imin=0.25s

CSMA/CA, Imin=1.00s
CSMA/CA w Cleans, Imin=1.00s

(a) Update delay

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

N
um

be
r

of
 tr

an
sm

is
si

on
s

R

CSMA/CA, Imin=0.25s
CSMA/CA w Cleans, Imin=0.25s

CSMA/CA, Imin=1.00s
CSMA/CA w Cleans, Imin=1.00s

(b) Number of transmissions

Figure 5.20: Average delay and average number of transmissions in the grid
scenario. Using CSMA/CA with Cleansing with Imin = 0.25s requires a similar
number of transmissions as regular CSMA/CA with Imin = 1.00s, while the
update delay is halved.

Figure 5.20a shows the update delay when using CSMA/CA with and
without Cleansing. Since there are no bottlenecks in this scenario, these
are comparable. However, the reduction in the number of sent packets
is visible in Figure 5.20b. We can see that the number of transmissions
with Cleansing is significantly lower than without Cleansing, while the
average update delays are the same.

Figure 5.21 shows the average number of transmissions and retransmis-
sions during the entire simulation. As the range of each node grows,
fewer messages are required to cover the entire network. Trickle then

162 5. Trickle-Based Protocols

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

N
um

be
r

of
 tr

an
sm

is
si

on
s

R

CSMA/CA

0.25s
0.5s

0.75s
1s

1.25s
1.5s

1.75s

(a) TX - CSMA/CA

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

N
um

be
r

of
 tr

an
sm

is
si

on
s

R

CSMA/CA with Cleansing

0.25s
0.5s

0.75s
1s

1.25s
1.5s

1.75s

(b) TX - CSMA/CA w Cleans.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

N
um

be
r

of
 r

e-
tr

an
sm

is
si

on
s

R

CSMA/CA

0.25s
0.5s

0.75s
1s

1.25s
1.5s

1.75s

(c) RTX - CSMA/CA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5

N
um

be
r

of
 d

ro
pp

ed
 fr

am
es

 (
#)

R

CSMA/CA wtih Cleansing

0.25s
0.5s

0.75s
1s

1.25s
1.5s

1.75s

(d) Dropped frames - CSMA/CA w Cleans.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 3 4 5

A
ve

ra
ge

 p
ac

ke
t q

ue
ue

 ti
m

e
(m

s)

R

CSMA/CA

0.25s
0.5s

0.75s
1s

1.25s
1.5s

1.75s

(e) Frame queue time - CSMA/CA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 3 4 5

A
ve

ra
ge

 p
ac

ke
t q

ue
ue

 ti
m

e
(m

s)

R

CSMA/CA with Cleansing

0.25s
0.5s

0.75s
1s

1.25s
1.5s

1.75s

(f) Frame queue time - CSMA/CA w Cleans.

Figure 5.21: Average number of transmissions, retransmissions and average
frame queue time in the grid scenario, with (d, e, f) and without (a, b, c) MAC
Cleansing, for different values of Imin, k = 1 and η = 1/2.

performs well, suppressing many transmissions (Figure 5.21a). However,
many of the messages are actual retransmissions from the MAC layer
(Figure 5.21c). Since k = 1, these are obsolete messages. Furthermore,
due to the congested media, frames are left in the queue for a longer
time (Figure 5.21e), often leading to chained attempts for retransmission
and further back-offs.

5.5. Lower layer interference on Trickle operation 163

Figures 5.21b, 5.21d and 5.21f show the impact of using Cleansing.
CSMA/CA with Cleansing is aggressive with cleaning the MAC queue, as
is visible in Figure 5.21d. This makes Trickle work as intended even for
small values of Imin. Additionally, the average queue time is considerably
lower compared to the original CSMA/CA.

5.5.4.4 Hardware experiments

To confirm the simulation results, we run the same application on the
Grenoble physical test bed provided by FIT IoT-LAB. The experiment con-
sists of 119 STM32 (ARM Cortex M3) based nodes, with the AT86RF231
IEEE 802.15.4 radio chip, arranged as in Figure 5.22. As before, all
nodes use the ContikiMAC RDC protocol with a wake-up frequency
of 8 Hz. The redundancy constant is fixed to k = 1, with Imin set to
0.25s, 0.5s and 1.0s. For each setting, we run 100 executions of Trickle
dissemination of one update, injected at the bottom-right node.

Figure 5.23c shows that using CSMA/CA, low values of Imin introduce a
lot of collisions, which force retransmissions by the MAC layer. Increasing
Imin helps reduce the number of transmissions (Figure 5.23b), but at the
expense of a higher delay (Figure 5.23a). On the other hand, CSMA/CA
with Cleansing has consistent performance using all three different
values of Imin. Due to the proactive purging policy, the number of
messages remains comparable with different values of Imin. As expected,
the delay increases together with Imin, but it is still in the same range as
with the original CSMA/CA.

Figure 5.22: Topology of the IoT-Lab test bed. Experimental results from
the IoT-Lab test bed. An update is injected at the bottom-right node, and is
propagated using Trickle. The entire network is reachable in 12 hops.

164 5. Trickle-Based Protocols

 0

 5

 10

 15

 20

 25

 30

 35

 0.25 0.5 1

D
el

ay
 (

se
c)

Imin (sec) [Log]

CSMA/CA
CSMA/CA w Cleans

(a) Delay

 160
 165
 170
 175
 180
 185
 190
 195
 200
 205

 0.25 0.5 1

N
um

be
r

of
 tr

an
sm

is
si

on
s

Imin (sec) [Log]

CSMA/CA
CSMA/CA w Cleans

(b) Transmissions

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.25 0.5 1

N
um

be
r

of
 r

e-
tr

an
sm

is
si

on
s

Imin (sec) [Log]

CSMA/CA
CSMA/CA w Cleans

(c) Retransmissions

Figure 5.23: Experimental results from the IoT-Lab test bed. We show the
averages and standard deviations over 100 executions.

5.6. Conclusion 165

5.5.5 Summary

Even though Trickle was designed as a robust protocol, it still prone to
errors in particular environments. As demonstrated, the performance
of the Trickle algorithm for data dissemination can seriously suffer due
to mis-communication with the link layer. The consequences vary, from
increased number of transmissions to large update delays.

The proposed Cleansing modification is a lightweight method for limiting
the influence of the link layer. Cleansing requires cross-layer operation,
which can be feasible in resource constrained devices, where perfor-
mance is critical.

5.6 Conclusion

In this chapter, we addressed research questions RQ4 and RQ5, by
analyzing the performance of the Trickle algorithm when used in routing
(RPL) and multicast forwarding (MPL) protocols. These two protocols
are of particular importance in the IoT and the system architecture
proposed in Chapter 2, since they provide the basic communication
primitives in LLNs. We showed that even though the Trickle algorithm
is well studied, it is frequently observed to perform less than ideally in
practice. We demonstrated two such problems.

The first problem arises from the static nature of the redundancy con-
stant. In networks of varying densities, the Trickle algorithm favours
nodes with fewer neighbours, which can lead to an unbalanced view
of the network. To resolve the issue, we propose an extension to the
algorithm, called adaptive-k, which allows nodes to set their own redun-
dancy constant according to local information on network density. By
simulations and experiments on a physical test bed, we showed that the
adaptive-k extension improves the performance of the RPL routing proto-
col, by keeping the overhead of control traffic low, while still discovering
good routes.

The second problem comes from the behaviour of the link layer. Due
to the lack of communication between Trickle and the lower layers, de-
layed transmissions at the link layer can cause inconsistencies within the
Trickle algorithm. These inconsistencies can result in increased overhead
traffic, message loss, or starvation. RDC protocols further aggravates the

166 5. Trickle-Based Protocols

problem, virtually guaranteeing its occurrence in particular configura-
tions. In order to resolve these issues, we proposed a small modification
to the MAC layer, called Cleansing. The Cleansing MAC modification
purges obsolete Trickle messages that are sent due to the inconsistencies
caused by the MAC layer. Through a simulation study, and then con-
firmed with experiments on a large physical test bed, we showed that the
Cleansing MAC indeed improves performance. We found that the num-
ber of redundant transmissions in dense topologies is decreased greatly
and that the update speed in networks with bottlenecks is improved
drastically.

6
CONCLUSION

This chapter concludes the thesis. We first give a summary of the
problems explored in the thesis. Then, we highlight the research contri-
butions which help solve the stated problems, and analyze their implica-
tions. Finally, we identify open problems for future work.

170 6. Conclusion

6.1 Contributions

The Internet of Things (IoT) changes the way how to think about our
environment and how we perceive it. The IoT is built of physical objects
embedded with electronics, sensors, actuators, software and connectiv-
ity modules. It is able to use such devices for communication among
themselves, with other devices and with end-users, in order to build ad-
vanced applications. Even though these smart objects are of constrained
nature, with limited processing, storage and communication capabilities,
they can be programmed to react to the environment and jointly work
towards reaching a common goal.

At this moment, we are at the beginning of the development of the IoT -
we can see the first IoT implementations appearing: smart thermostats,
connected cars with built-in sensors, smart cities, systems for infrastruc-
ture monitoring, and other similar systems. By 2020, it is expected that
the number of connected devices in the IoT will reach 26 billion [Inc14],
and this number will only continue to grow. Furthermore, the IoT has
many potential applications, which combined with the heterogeneity of
software and hardware components involved, the large number of de-
vices and the amount of available data for processing, pose an immense
problem. Therefore, in this thesis we tried to answer several questions
about the system architecture of IoT systems, as follows.

RQ1 How do we design the software infrastructure for the IoT?

We focused on the design of the system architecture in Chapter 2. We
identified the key constraints which have to be met by potential software
protocols, applications and systems for the IoT, by looking at the various
IoT use cases, application design styles and the heterogeneous devices
which comprise it. The main points from this survey are that potential
solutions have to scale to large networks, be portable to constrained
devices, and be open to various vendors, users and domains. Therefore,
we believe that the definition and adoption of open standards across all
software layers is of paramount importance for the success of the IoT.

RQ2 How do we combine powerful and resource constrained
devices in a single logical network?

We partially addressed this question in chapters 2 and 4. In Chapter
2, based on the given constraints, we proposed adopting a Service Ori-
ented Architecture (SOA) for building IoT systems. In this architecture,

6.1. Contributions 171

applications are built by connecting different services. The fundamental
functionality, as connectivity, data delivery, service discovery and man-
agement, needed to build both applications and services, is provided by
a standardized platform. Both services and applications can be added
and removed in the network at runtime. The benefit of this architecture
is that it is flexible enough to scale with the size and the distinct applica-
tion design styles of the IoT. Furthermore, it can support both resource
constrained and powerful devices in the same network, by distributing
workload based on the resources available at individual devices. To
illustrate its applicability, we described a potential implementation of
the system architecture for a building automation system, built on top of
a low-power wireless network using standards based protocols. From the
implementation, we identified three important issues which are further
analyzed in the following chapters: software updates, service discovery
and data dissemination.

In Chapter 4, we focused on software protocols for service discovery in
the IoT. Service discovery is a crucial feature of the proposed architecture,
since it allows devices to automatically discover available services in a
network, and learn by themselves how to access them. We identified
that service discovery protocols have to balance between complexity
and available features. Even though many such protocols have been
developed so far, we found that none of them are ideal: they are either
too specific for resource constrained devices, they have not been widely
accepted, or they are too resource demanding. To resolve this issue,
we proposed using the Multicast Domain Name System (mDNS) with
DNS-Based Service Discovery (DNS-SD) protocol, with two extensions
for improved operation. The first extension of the protocol enables the
inclusion of low-power devices using proxy servers, which addresses
research question RQ2. The second extension improves the scalability
of the protocol, and addresses research question RQ4.

RQ3 How do we manage large networks of heterogeneous de-
vices?

We tackled this question in Chapter 3, by analyzing the problem of
updating software in large low-power networks. This has long been
seen as a tedious task due to the size of the software updates, the lossy
nature of the links in the network, and the limited energy available
on devices. We showed that by applying different data compression
techniques, notably incremental updates, the reduction in the size of
the software updates for delivery far overweighs the required processing

172 6. Conclusion

effort involved, both in time and in energy usage. We demonstrated
that further reductions in the size of software updates can be achieved
by preparing and distributing updates of similar devices together. The
involved algorithms are simple enough to be implemented even on the
most constrained devices, which supports the decisions made in Chapter
2, and enables the creation of an adaptable system architecture.

RQ4 How do existing IoT specific networking protocols scale in
size and in different topologies?

We addressed this question for two protocols in Chapters 4 and 5. In
Chapter 4, we showed that the mDNS/DNS-SD protocol for service
discovery contains only simple rules for selecting services. As a result,
in large networks with many similar service providers, the protocol
generates a lot of overhead traffic for service discovery. To resolve this
issue, we proposed a second extension of the protocol. This extension
improves the descriptiveness of the protocol, by allowing services to be
discovered based on their context. As a result, this extensions improves
the scalability of the protocol in large networks with many services.

In Chapter 5, we analyzed two existing protocols under standardization
for routing and multicast forwarding in low-power networks: IPv6
Routing Protocol for LLNs (RPL) and Multicast Protocol for LLNs (MPL).
Both protocols are based on the Trickle algorithm for disseminating
traffic in ad-hoc networks with little overhead. We showed that due to
the design of the Trickle algorithm, the protocols can have sub-optimal
performance in various network topologies. In the first case, we showed
that the Trickle algorithm favours nodes with few neighbours to transmit
more frequently. This unfairness can lead to suboptimal routing in dense
networks, by forcing routes over nodes with fewer neighbours. We
resolved this problem by modifying the Trickle algorithm. In the second
case, multicast forwarding can suffer due to the lack of communication
between the network and the link layer. We resolved this interference
by modifying the link layer. The second case answers the last research
question RQ5.

RQ5 What is the impact of low-power wireless radios on different
IoT applications?

All contributions presented in this thesis improve the state-of-the art in
protocol design for the IoT. The described methods and algorithms im-
prove performance of existing algorithms based on the fact that limited

6.2. Limitations and future work 173

computation is preferred to excessive networking traffic in large low-
power networks. This is important design criteria, considering that the
IoT will span to billions of devices, and radio traffic is the main source
of energy drainage. The presented results help with the implementation
of the IoT, by enhancing its scalability to large networks.

6.2 Limitations and future work

The broadness of the IoT gives a lot of questions that should be addressed.
Even though we tackled many of them with this work, we still have many
open problems. Furthermore, our work generated some new interesting
areas for exploration. We now present some of these questions, sorted
by the chapter in which they first appear.

System architecture. The first IoT implementations provide valuable
feedback for the design of future systems. Based on this feedback, we
believe that the next step will be standardization of common features re-
quired by all IoT systems, and using these features as integration points
for heterogeneous systems. We listed several such common features
in the design of the platform in Chapter 2, but this list can be further
extended, with different IoT applications in mind. For example, the
current platform lacks means for validating and enforcing functional
requirements, such as deadlines and resource demands. These require-
ments are of importance for critical applications, including safety and
security systems.

Software update. In Chapter 3, all data compression and incremental
update algorithms were taken as black boxes. Therefore, additional
compression can be achieved if they are customized for the target code
and platform. For instance, the compiler can be adapted to generate
firmware images which are optimized for incremental updates, as de-
scribed in [PBM11].

Similarly, the presented method for horizontal patching was done ag-
nostic to the networking topology, and only the size of the updates was
taken as a metric. However, if the networking topology is known, then
the combined horizontal deltas can be tailored to fit distribution paths.
The main benefit of this approach is that at leaf nodes, only the single
vertical deltas would be distributed, instead of the entire combined
horizontal deltas.

174 6. Conclusion

Service discovery. We believe that the future of the mDNS/DNS-SD
protocol for service discovery in the IoT, lies in a binary transport format,
much like HTTP 2.0. The human-readable nature of the protocol can
be provided by APIs, while the transport itself can be in an optimized
binary format. The compression method presented in Chapter 4 is a
possible way to achieve this goal, but it requires further evaluation.

A limitation of the analysis of the different proxy registration protocols
is that it was done only in a single-hop network. Therefore, it should be
further extended for multi-hop networks, where the multicast forward-
ing protocol, the routing protocol, and the network topology have an
important impact on performance. Such analytical extensions are also
interesting for the design of cross-layer solutions, as the integration of
service discovery and multicast grouping. For instance, in Chapter 2 we
described that the logical grouping between different devices is done
using the service discovery protocol, based on the context of the devices
involved. For better performance, this binding at the service discovery
layer can be translated into implicit grouping at the networking layer,
by generating multicast group addresses based on context. Then, the
scope of service discovery queries would hopefully be confined to a much
smaller region, improving performance.

Trickle-based protocols. In the evaluation of the Trickle algorithm in
Chapter 5, we identified a key problem in the lack of communication
between protocols at different software layers. We presented a specific
solution to the described problem, but we believe that it should be gen-
eralized. In particular, this generalization should be in two directions: a
generalized interference model and a generalized communication model.
The former model should cover interference scenarios between arbitrary
protocols running at different software layers, such as a Medium Access
Control (MAC) protocol on top of a Radio Duty Cycling (RDC) protocol.
As a result, it should provide probabilities for interference scenarios
to occur, and their impact. The latter model concerns the design of
primitives required between different layers. As we showed, the current
set of primitives provided by the link layer are insufficient for proper
operation of the networking layer. Furthermore, various implementa-
tions expose distinct interfaces, hindering interoperability. Therefore,
for improved operation, these primitives should be first extended, and
then standardized.

A limitation of our analysis of multicast forwarding is that we only con-
sidered a single event being propagated, with the redundancy constant

6.2. Limitations and future work 175

fixed to one. In practice, multiple events are expected, which would
generate multiple flows, possibly of different origin. Therefore, another
option for future work is to evaluate the protocol in such scenarios,
taking into consideration the phasing of concurrent forwarding waves,
and the time required for the network to stabilize.

With the introduction of the adaptive redundancy constant, we simplified
the configuration of the Trickle algorithm. The next step is the automatic
adaptation of other Trickle parameters, such as the minimum Trickle
interval. We already have some guidelines for setting it, as it should be
correlated to the actual value of the redundancy constant, for which we
presented analytical results. If successful, this would lead to the creation
of a virtually configure-less algorithm, which is of huge importance for
the IoT, where it is already seen as a new communication primitive.

BIBLIOGRAPHY

[AGBC11] Nicola Accettura, Luigi Alfredo Grieco, Gennaro Boggia, and
Pietro Camarda. “Performance analysis of the RPL Routing Pro-
tocol”. In: IEEE Conference on Mechatronics. ICM. 2011, pp. 767–
772. DOI: 10.1109/ICMECH.2011.5971218.

[Agg14] Ashutosh Aggarwal. Optimizing DNS-SD query using TXT
records. http://tools.ietf.org/html/draft-aggarwal-dnssd-
optimize-query. Internet Engineering Task Force, 2014.

[AH14] Mohammad Aazam and Eui-Nam Huh. “Fog Computing and
Smart Gateway Based Communication for Cloud of Things”. In:
Conference on Future Internet of Things and Cloud. FICLOUD ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 464–
470. ISBN: 978-1-4799-4357-9. DOI: 10.1109/FiCloud.2014.
83.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet
of Things: A survey”. In: Computer Networks 54.15 (2010),
pp. 2787 –2805. ISSN: 1389-1286. DOI: http://dx.doi.org/
10.1016/j.comnet.2010.05.010.

[ALV10] Diana Albu, Johan J. Lukkien, and Richard Verhoeven. “Energy
effect of on-node processing of ECG signals”. In: Conference on
Consumer Electronics. ICCE. 2010, pp. 7–8. DOI: 10.1109/ICCE.
2010.5418748.

[Anc+14] Emilio Ancillotti et al. “Trickle-L2: Lightweight link quality
estimation through Trickle in RPL networks”. In: 15th IEEE
Symposium on A World of Wireless, Mobile and Multimedia Net-
works. WoWMoM. 2014, pp. 1–9. DOI: 10.1109/WoWMoM.2014.
6918951.

[ARYK10] Fatima Muhammad Anwar, Muhammad Taqi Raza, Seung-Wha
Yoo, and Ki-Hyung Kim. “ENUM Based Service Discovery Ar-
chitecture for 6LoWPAN”. In: Wireless Communications and
Networking Conference. WCNC. 2010, pp. 1 –6. DOI: 10.1109/
WCNC.2010.5506568.

[ASGT12] Vlado Altmann, Jan Skodzik, Frank Golatowski, and Dirk Tim-
mermann. “Investigation of the use of embedded Web Services
in smart metering applications”. In: Conference on IEEE Indus-
trial Electronics Society. IECON. Oct. 2012, pp. 6172–6177. DOI:
10.1109/IECON.2012.6389071.

[Ash09] Kevin Ashton. That ’Internet of Things’ Thing. [Online]
http://www.rfidjournal.com/articles/view?4986. June 2009.

http://dx.doi.org/10.1109/ICMECH.2011.5971218
http://dx.doi.org/10.1109/FiCloud.2014.83
http://dx.doi.org/10.1109/FiCloud.2014.83
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/ICCE.2010.5418748
http://dx.doi.org/10.1109/ICCE.2010.5418748
http://dx.doi.org/10.1109/WoWMoM.2014.6918951
http://dx.doi.org/10.1109/WoWMoM.2014.6918951
http://dx.doi.org/10.1109/WCNC.2010.5506568
http://dx.doi.org/10.1109/WCNC.2010.5506568
http://dx.doi.org/10.1109/IECON.2012.6389071

178 Bibliography

[Baz+12] Marco Bazzani et al. “Enabling the IoT Paradigm in E-health
Solutions through the VIRTUS Middleware”. In: Conference on
Trust, Security and Privacy in Computing and Communications.
TrustCom. June 2012, pp. 1954–1959. DOI: 10.1109/TrustCom.
2012.144.

[BBCF06] John Buford, Bernard Burg, Emre Celebi, and Phyllis G. Frankl.
“Sleeper: A Power-Conserving Service Discovery Protocol”. In:
Conference on Mobile and Ubiquitous Systems. 2006, pp. 1–9.
DOI: 10.1109/MOBIQW.2006.361725.

[Ben+13] Sven Bendel et al. “A service infrastructure for the Internet of
Things based on XMPP”. In: Int. Conference on Pervasive Comput-
ing and Communications Workshops. PERCOM Workshops. Mar.
2013, pp. 385–388. DOI: 10.1109/PerComW.2013.6529522.

[BKG11] Markus Becker, Koojana Kuladinithi, and Carmelita Görg. “Mod-
elling and Simulating the Trickle Algorithm”. In: Conference on
Mobile Networks and Management. MONAMI. 2011, pp. 135–
144.

[BL12] Michael Blackstock and Rodger Lea. “IoT mashups with the
WoTKit”. In: Conference on Internet of Things. IOT. Oct. 2012,
pp. 159–166. DOI: 10.1109/IOT.2012.6402318.

[Blu12] Bluetooth special interest group. Core version 4.0. 2012.

[BLV09] Remi Bosman, Johan J. Lukkien, and Richard Verhoeven. “An
Integral Approach to Programming Sensor Networks”. In: Con-
sumer Communications and Networking Conference. CCNC. 2009,
pp. 1–5. DOI: 10.1109/CCNC.2009.4784846.

[BLV11] Remy Bosman, Johan J. Lukkien, and Richard Verhoeven. “Gate-
way architectures for service oriented application-level gate-
ways”. In: IEEE Tran. on Consumer Electronics, 57.2 (2011),
pp. 453–461. DOI: 10.1109/TCE.2011.5955179.

[BMNZ14] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang
Zhu. “Fog Computing: A Platform for Internet of Things and An-
alytics”. English. In: Big Data and Internet of Things: A Roadmap
for Smart Environments. Ed. by Nik Bessis and Ciprian Dobre.
Vol. 546. Studies in Computational Intelligence. Springer In-
ternational Publishing, 2014, pp. 169–186. ISBN: 978-3-319-
05028-7. DOI: 10.1007/978-3-319-05029-4_7.

[BMT03] Paolo Bellavista, Rebecca Montanari, and Daniela Tibaldi. “COS-
MOS: A Context-Centric Access Control Middleware for Mobile
Environments”. English. In: Mobile Agents for Telecommunica-
tion Applications. Ed. by Eric Horlait, Thomas Magedanz, and
RochH. Glitho. Vol. 2881. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2003, pp. 77–88. ISBN: 978-3-540-
20298-1. DOI: 10.1007/978-3-540-39646-8_8.

http://dx.doi.org/10.1109/TrustCom.2012.144
http://dx.doi.org/10.1109/TrustCom.2012.144
http://dx.doi.org/10.1109/MOBIQW.2006.361725
http://dx.doi.org/10.1109/PerComW.2013.6529522
http://dx.doi.org/10.1109/IOT.2012.6402318
http://dx.doi.org/10.1109/CCNC.2009.4784846
http://dx.doi.org/10.1109/TCE.2011.5955179
http://dx.doi.org/10.1007/978-3-319-05029-4_7
http://dx.doi.org/10.1007/978-3-540-39646-8_8

Bibliography 179

[Bot11] Andre Bottaro. “Open The Box! Challenges in the Smart Home
(Keynote speech)”. In: IEEE Emerging Technologies and Factory
Automation. ETFA. 2011.

[BPGO12] Talal Ashraf Butt, Iain Phillips, Lin Guan, and George
Oikonomou. “TRENDY: An Adaptive and Context-Aware Service
Discovery Protocol for 6LoWPANs”. In: Workshop Web of Things.
WoT. 2012.

[Bra+08] Tim Bray et al. W3C Recommendation: Extensible Markup Lan-
guage (XML). http://www.w3.org/TR/xml/. World Wide Web
Consorcium, 208.

[BRFB11] Tegawendé F. Bissyandé, Laurent Réveillère, Jean-Rémy Fall-
eri, and Yérom-David Bromberg. “Typhoon: A Middleware for
Epidemic Propagation of Software Updates”. In: Workshop Mid-
dleware for Pervasive Mobile and Embedded Computing. M-MPAC.
Lisbon, Portugal: ACM, 2011, 1:1–1:7. ISBN: 978-1-4503-1065-
9. DOI: 10.1145/2090316.2090317.

[Bru+11] AJ Brush et al. “Home automation in the wild: challenges and
opportunities”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM. 2011, pp. 2115–
2124.

[Buc14] Nina Buchina. Extending service discovery protocols with support
for context information. Master Thesis, Eindhoven University of
Technology. 2014.

[But14] Talal A. Butt. “Provision of adaptive and context-aware service
discovery for the Internet of Things”. PhD thesis. Loughborough
University, 2014.

[BYAH06] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han.
“X-MAC: A Short Preamble MAC Protocol for Duty-cycled Wire-
less Sensor Networks”. In: Conference on Embedded Networked
Sensor Systems. SenSys. 2006, pp. 307–320. ISBN: 1-59593-343-
3. DOI: 10.1145/1182807.1182838.

[Cay89] Arthur Cayley. “A Theorem on Trees”. In: Quarterly Jounral of
Pure and Applied Mathematics 23 (1889), pp. 376 –378.

[Cha+08] Sajjad Hussain Chauhdary et al. “A Context-Aware Service Dis-
covery Consideration in 6LoWPAN”. In: Conference on Con-
vergence and Hybrid Information Technology. IEEE Computer
Society, 2008, pp. 21–26. ISBN: 978-0-7695-3407-7.

[CJAK06] Shafique Ahmad Chaudhry, Won Do Jung, Ali Hammad Akbar,
and Ki-Hyung Kim. “Proxy-Based Service Discovery and Net-
work Selection in 6LoWPAN”. In: High Performance Computing
and Communications. Vol. 4208. Lecture Notes in Computer
Science. 2006, pp. 525–534. ISBN: 978-3-540-39368-9. DOI:
10.1007/11847366_54.

http://dx.doi.org/10.1145/2090316.2090317
http://dx.doi.org/10.1145/1182807.1182838
http://dx.doi.org/10.1007/11847366_54

180 Bibliography

[CK06] Stuart Cheshire and Marc Krochmal. Dynamic DNS Update
Leases. Internet Engineering Task Force, 2006.

[CK09] Stuart Cheshire and Marc Krochmal. EDNS0 OWNER Option.
Internet Engineering Task Force, 2009.

[Cor13] Echelon Corporation. Industrial Internet of Things.
http://www.digikey.nl/en/pdf/e/echelon/iiot-wp. [Online;
accessed 13-April-2015]. 2013.

[CT03] Inc Crossbow Technology. Mote In-Network Programming User
Reference Version 20030315. 2003.

[CVY13] Thomas Clausen, Axel Colin de Verdiere, and Jiazi Yi. “Per-
formance Analysis of Trickle as a Flooding Mechanism”. In:
Conference on Communication Technology. ICCT. 2013. DOI:
10.1109/ICCT.2013.6820439.

[Dan+15] Conrad Dandelski et al. “Scalability of dense wireless lighting
control networks”. In: IEEE Communications Magazine 53.1
(2015), pp. 157–165. DOI: 10.1109/MCOM.2015.7010529.

[DB10] Kirsten Dolfus and Torsten Braun. “An evaluation of compres-
sion schemes for wireless networks”. In: Congress on Ultra Mod-
ern Telecommunications and Control Systems and Workshops.
ICUMT. 2010, pp. 1183–1188. DOI: 10.1109/ICUMT.2010.
5676532.

[Deu+06] Scott de Deugd et al. “SODA: Service Oriented Device Architec-
ture”. In: IEEE Pervasive Computing 5.3 (July 2006), pp. 94–96.
ISSN: 1536-1268. DOI: 10.1109/MPRV.2006.59.

[DGV04] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. “Contiki - a
Lightweight and Flexible Operating System for Tiny Networked
Sensors”. In: Workshop on Embedded Networked Sensors. Emnets-
I. 2004. DOI: 10.1109/LCN.2004.38.

[DL03] Tijs van Dam and Koen Langendoen. “An Adaptive Energy-
efficient MAC Protocol for Wireless Sensor Networks”. In: Con-
ference on Embedded Networked Sensor Systems. SenSys. 2003,
pp. 171–180. ISBN: 1-58113-707-9. DOI: 10.1145/958491.
958512.

[Dun11a] Adam Dunkels. Powertrace: Network-level Power Profiling for
Low-power Wireless Networks. Tech. rep. SICS T2011:15, 2011.

[Dun11b] Adam Dunkels. The ContikiMAC Radio Duty Cycling Protocol.
Tech. rep. SICS T2011:13, 2011.

[Dut+10] Prabal Dutta et al. “Design and Evaluation of a Versatile and
Efficient Receiver-initiated Link Layer for Low-power Wireless”.
In: Conference on Embedded Networked Sensor Systems. SenSys.
Zurich, Switzerland, 2010, pp. 1–14. ISBN: 978-1-4503-0344-6.
DOI: 10.1145/1869983.1869985.

http://dx.doi.org/10.1109/ICCT.2013.6820439
http://dx.doi.org/10.1109/MCOM.2015.7010529
http://dx.doi.org/10.1109/ICUMT.2010.5676532
http://dx.doi.org/10.1109/ICUMT.2010.5676532
http://dx.doi.org/10.1109/MPRV.2006.59
http://dx.doi.org/10.1109/LCN.2004.38
http://dx.doi.org/10.1145/958491.958512
http://dx.doi.org/10.1145/958491.958512
http://dx.doi.org/10.1145/1869983.1869985

Bibliography 181

[EG14] Joakim Eriksson and Omprakash Gnawali. “Poster Abstract:
Synchronizing Trickle Intervals”. In: European Conference on
Wireless Sensor Networks. EWSN. 2014.

[EHD04] Amre El-Hoiydi and Jean-Dominique Decotignie. “WiseMAC: an
ultra low power MAC protocol for the downlink of infrastruc-
ture wireless sensor networks”. In: Symposium on Computers
and Communications. Vol. 1. ISCC. 2004, 244–251 Vol.1. DOI:
10.1109/ISCC.2004.1358412.

[EJS13] Atis Elsts, Janis Judvaitis, and Leo Selavo. “SEAL: A Domain-
Specific Language for Novice Wireless Sensor Network Program-
mers”. In: EUROMICRO Conference on Software Engineering and
Advanced Applications. SEAA. Sept. 2013, pp. 220–227. DOI:
10.1109/SEAA.2013.16.

[Eur11] European Telecommunications Standards Institute. ETSI TS
102 690 V1.1.1 Machine-to-Machine communications (M2M):
Functional architecture. [Online] http://www.etsi.org/. 2011.

[Eur14] European Telecommunications Standards Institute. ETSI TS 102
921 V1.3.1 Machine-to-Machine communications (M2M); mIa,
dIa and mId interfaces. [Online] http://www.etsi.org/. 2014.

[FGHHV01] Hendrik C. Ferreira, Henricus M. Grové, Olaf Hooijen, and A.
J. Han Vinck. Power Line Communication. John Wiley & Sons,
Inc., 2001. ISBN: 9780471346081. DOI: 10.1002/047134608X.
W2004.

[Fin03] Klaus Finkenzeller. RFID Handbook: Fundamentals and Appli-
cations in Contactless Smart Cards and Identification. 2nd ed.
New York, NY, USA: John Wiley & Sons, Inc., 2003. ISBN:
0470844027.

[FKOJ14] Stefan Forsstrom, Victor Kardeby, Patrik Osterberg, and Ulf Jen-
nehag. “Challenges when Realizing a Fully Distributed Internet-
of-Things - How we Created the SensibleThings Platform”. In:
Conference on Digital Telecommunications. ICDT. IARIA, 2014,
pp. 13–18. ISBN: 978-1-61208-316-2.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. “Internet of Things (IoT): A Vision,
Architectural Elements, and Future Directions”. In: Future Gen-
eration Computer Systems 29.7 (Sept. 2013), pp. 1645–1660.
ISSN: 0167-739X. DOI: 10.1016/j.future.2013.01.010.

[Ger14] Jack Germain. The Importance of Openness to the Internet of
Things. Ed. by Linuxinsider.com. [Online; posted 09-November-
2014] http://www.linuxinsider.com/story/81024.html.
Nov. 2014.

http://dx.doi.org/10.1109/ISCC.2004.1358412
http://dx.doi.org/10.1109/SEAA.2013.16
http://dx.doi.org/10.1002/047134608X.W2004
http://dx.doi.org/10.1002/047134608X.W2004
http://dx.doi.org/10.1016/j.future.2013.01.010
http://www.linuxinsider.com/story/81024.html

182 Bibliography

[GGBECF14] Cristian Gonzalez Garcia, B. Cristina Pelayo G-Bustelo, Jordán
Pascual Espada, and Guillermo Cueva-Fernandez. “Midgar: Gen-
eration of heterogeneous objects interconnecting applications.
A Domain Specific Language proposal for Internet of Things
scenarios ”. In: Computer Networks 64.0 (2014), pp. 143 –
158. ISSN: 1389-1286. DOI: http://dx.doi.org/10.1016/j.
comnet.2014.02.010.

[Gna+09] Omprakash Gnawali et al. “Collection Tree Protocol”. In: Confer-
ence on Embedded Networked Sensor Systems. SenSys. Berkeley,
CA, USA, 2009.

[Gre14] John Greenough. The Enterprise Internet of Things Re-
port: Forecasts, Industry Trends, Advantages, and Bar-
riers for the Top IoT Sector. Business Insider. [Online]
https://intelligence.businessinsider.com/the-enterprise-
internet-of-things-report-forecasts-industrytrends-advantages-
and-barriers-for-the-top-iot-sector-2014-11. 2014.

[GT09] Dominique Guinard and Vlad Trifa. “Towards the Web of Things:
Web Mashups for Embedded Devices”. In: Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web
(MEM 2009), in proceedings of WWW (International World Wide
Web Conferences). Madrid, Spain, Apr. 2009.

[HC02] Jason L. Hill and David E. Culler. “Mica: A Wireless Platform for
Deeply Embedded Networks”. In: IEEE Micro 22.6 (Nov. 2002),
pp. 12–24. ISSN: 0272-1732. DOI: 10.1109/MM.2002.1134340.

[HC08] Jonathan W. Hui and David E. Culler. “IP is Dead, Long Live
IP for Wireless Sensor Networks”. In: Conference on Embedded
Network Sensor Systems. SenSys. Raleigh, NC, USA: ACM, 2008,
pp. 15–28. ISBN: 978-1-59593-990-6. DOI: 10.1145/1460412.
1460415.

[HDVL03] Sumi Helal, Nitin Desai, Varun Verma, and Choonhwa Lee.
“Konark - a service discovery and delivery protocol for ad-hoc
networks”. In: Wireless Communications and Networking. Vol. 3.
WCNC. 2003, pp. 2107–2113. DOI: 10.1109/WCNC.2003.1200
712.

[HK14] Jonathan Hui and Richard Kelsey. Multicast Pro-
tocol for Low power and Lossy Networks (MPL).
http://tools.ietf.org/html/draft-ietf-roll-trickle-mcast-09.
Internet Engineering Task Force, 2014.

[Hon+13] Kirak Hong et al. “Mobile Fog: A Programming Model for Large-
scale Applications on the Internet of Things”. In: ACM SIG-
COMM Workshop on Mobile Cloud Computing. MCC. Hong Kong,
China: ACM, 2013, pp. 15–20. ISBN: 978-1-4503-2180-8. DOI:
10.1145/2491266.2491270.

http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.02.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2014.02.010
http://dx.doi.org/10.1109/MM.2002.1134340
http://dx.doi.org/10.1145/1460412.1460415
http://dx.doi.org/10.1145/1460412.1460415
http://dx.doi.org/10.1109/WCNC.2003.1200712
http://dx.doi.org/10.1109/WCNC.2003.1200712
http://dx.doi.org/10.1145/2491266.2491270

Bibliography 183

[IEEE1471] IEEE. IEEE Recommended Practice for Architectural Description
for Software-Intensive Systems. 2000.

[IEEE15.4e] IEEE. Standard for Local and metropolitan area networks — Part
15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),
Amendment 1: MAC sublayer. 2012.

[IEEE3bt] IEEE. Standard for Ethernet Amendment: Physical Layer and
Management Parameters for DTE Power via MDI over 4-Pair.
2013.

[Inc14] Gartner Inc. Gartner Says a Thirty-Fold Increase in Internet-
Connected Physical Devices by 2020 Will Significantly Alter How
the Supply Chain Operates. Ed. by Gartner.com. [Online; posted
24-March-2014] http://www.gartner.com/newsroom/id/
2688717. Mar. 2014.

[Inc15] LogMeIn Inc. Xively. http://www.xively.com. [Online; accessed
01-June-2015]. 2015.

[ITN13] Oana Iova, Fabrice Theoleyre, and Thomas Noel. “Stability and
Efficiency of RPL under Realistic Conditions in Wireless Sensor
Networks”. In: 24th IEEE Symposium on Personal Indoor and
Mobile Radio Communications. PIMRC. 2013, pp. 2098–2102.

[JC04] Jaein Jeong and David Culler. “Incremental network program-
ming for wireless sensors”. In: Conference on Sensor and Ad Hoc
Communications and Networks. SECON. 2004, pp. 2–33. DOI:
10.1109/SAHCN.2004.1381899.

[Jen06] Jennic. Application note JN-AN-1035: Calculating 802.15.4 Data
Rates. http://www.jennic.com/files/support_files/JN-
AN-1035%20Calculating%20802-15-4%20Data%20Rates-1v0
.pdf. 2006.

[JRK12] Markus Jung, Christian Reinisch, and Wolfgang Kastner. “Inte-
grating Building Automation Systems and IPv6 in the Internet
of Things”. In: Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing. IMIS. July 2012, pp. 683–688.
DOI: 10.1109/IMIS.2012.134.

[JVVG14] Nildo Ribeiro Junior, Marcos A. M. Vieira, Luiz F. M. Vieira,
and Omprakash Gnawali. “CodeDrip: Data Dissemination Pro-
tocol with Network Coding for Wireless Sensor Networks”. In:
European Conference on Wireless Sensor Networks. EWSN. 2014.

[KBBG11] Koojana Kuladinithi, Olaf Bergmann, Thomas Pötsch Markus
Becker, and Carmelita Görg. “Implementation of CoAP and its
Application in Transport Logistics”. In: Workshop on Extending
the Internet to Low power and Lossy Networks. IP+SN ’11. Apr.
2011.

http://www.gartner.com/newsroom/id/2688717
http://www.gartner.com/newsroom/id/2688717
http://dx.doi.org/10.1109/SAHCN.2004.1381899
http://www.jennic.com/files/support_files/JN-AN-1035%20Calculating%20802-15-4%20Data%20Rates-1v0.pdf
http://www.jennic.com/files/support_files/JN-AN-1035%20Calculating%20802-15-4%20Data%20Rates-1v0.pdf
http://www.jennic.com/files/support_files/JN-AN-1035%20Calculating%20802-15-4%20Data%20Rates-1v0.pdf
http://dx.doi.org/10.1109/IMIS.2012.134

184 Bibliography

[KDD11] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. “A
Low-Power CoAP for Contiki”. In: IEEE International Conference
on Mobile Adhoc and Sensor Systems, MASS 2011, Valencia,
Spain, October 17-22, 2011. 2011, pp. 855–860. DOI: 10.1109/
MASS.2011.100.

[KG14] Hamidreza Kermajani and Carles Gomez. “On the Network
Convergence Process in RPL over IEEE 802.15.4 Multihop
Networks: Improvement and Trade-Offs”. In: Sensors 14.7
(2014), pp. 11993–12022. ISSN: 1424-8220. DOI: 10.3390/
s140711993.

[KGA12] Hamidreza R. Kermajani, Carles Gomez, and Mostafa Hesami
Arshad. “Modeling the Message Count of the Trickle Algorithm
in a Steady-State, Static Wireless Sensor Network”. In: Commu-
nications Letters, IEEE 16.12 (2012), pp. 1960–1963.

[KGKS11] Ronny Klauck, Jan Gaebler, Michael Kirsche, and Sebastian
Schoepke. “Mobile XMPP and cloud service collaboration: An
alliance for flexible disaster management”. In: Conference on
Collaborative Computing: Networking, Applications and Work-
sharing. CollaborateCom. Oct. 2011, pp. 201–210.

[Kim+10] Ki Hyung Kim et al. Simple Service Location Protocol (SSLP)
for 6LoWPAN. https://tools.ietf.org/html/draft-daniel-6lowpan-
sslp. Internet Engineering Task Force, 2010.

[KK12a] Michael Kirsche and Ronny Klauck. “Unify to bridge gaps: Bring-
ing XMPP into the Internet of Things”. In: Conference on Per-
vasive Computing and Communications Workshops. PERCOM
Workshops. Mar. 2012, pp. 455–458. DOI: 10.1109/PerComW.
2012.6197534.

[KK12b] Ronny Klauck and Michael Kirsche. “Bonjour Contiki: A Case
Study of a DNS-based Discovery Service for the Internet of
Things”. In: Conference on Ad-hoc, Mobile, and Wireless Networks.
ADHOC-NOW. 2012, pp. 316–329. ISBN: 978-3-642-31637-1.
DOI: 10.1007/978-3-642-31638-8_24.

[KK13] Ronny Klauck and Michael Kirsche. “Enhanced DNS Message
Compression - Optimizing mDNS/DNS-SD for the Use in 6LoW-
PANs”. In: Workshop on Sensor Networks and Systems for Perva-
sive Computing. PerSeNS. 2013.

[KLD12] Matthias Kovatsch, Martin Lanter, and Simon Duquennoy. “Ac-
tinium: A restful runtime container for scriptable internet of
things applications”. In: Conference on the Internet of Things.
IOT. IEEE. 2012, pp. 135–142.

http://dx.doi.org/10.1109/MASS.2011.100
http://dx.doi.org/10.1109/MASS.2011.100
http://dx.doi.org/10.3390/s140711993
http://dx.doi.org/10.3390/s140711993
http://dx.doi.org/10.1109/PerComW.2012.6197534
http://dx.doi.org/10.1109/PerComW.2012.6197534
http://dx.doi.org/10.1007/978-3-642-31638-8_24

Bibliography 185

[KLKG15] Evgeny Khorov, Andrey Lyakhov, Alexander Krotov, and Andrey
Guschin. “A survey on IEEE 802.11ah: An enabling networking
technology for smart cities”. In: Computer Communications 58.0
(2015). Special Issue on Networking and Communications for
Smart Cities, pp. 53 –69. ISSN: 0140-3664. DOI: http://dx.
doi.org/10.1016/j.comcom.2014.08.008.

[KM10] Ryozo Kiyohara and Satoshi Mii. “BPE Acceleration Technique
for S/W Update for Mobile Phones”. In: Conference on Advanced
Information Networking and Applications. AINA. 2010, pp. 592–
599. DOI: 10.1109/AINA.2010.65.

[Ko+11] Jeonggil Ko et al. “Evaluating the Performance of RPL and
6LoWPAN in TinyOS”. In: Extending the Internet to Low power
and Lossy Networks. IPSN. 2011.

[KTT12] Ryozo Kiyohara, Koichi Tanaka, and Yoshiaki Terashima. “S/W
upgrade for on-vehicle information devices”. In: Conference on
Consumer Electronics. ICCE. 2012, pp. 19–20. DOI: 10.1109/
ICCE.2012.6161718.

[L+12] Valerie Lampkin et al. Building Smarter Planet Solutions with
MQTT and IBM WebSphere MQ Telemetry. IBM Redbooks, 2012.

[LC02] Philip Levis and David Culler. “Maté: a tiny virtual machine
for sensor networks”. In: Conference on Architectural support
for programming languages and operating systems. ASPLOS-X.
2002, pp. 85–95. ISBN: 1-58113-574-2. DOI: http://doi.acm.
org/10.1145/605397.605407.

[Lev+05] Philip Levis et al. “TinyOS: An operating system for sensor
networks”. In: Ambient Intelligence. Springer, 2005, pp. 115–
148.

[Lev+08] Philip Levis et al. “The Emergence of a Networking Primitive
in Wireless Sensor Networks”. In: Communications of the ACM
51.7 (2008), pp. 99–106. ISSN: 0001-0782.

[LG13] Philip Levis and Omprakash Gnawali. Recommendations for Effi-
cient Implementation of RPL. https://tools.ietf.org/html/draft-
gnawali-roll-rpl-recommendations. 2013.

[LL08] Kaisen Lin and Philip Levis. “Data Discovery and Dissemination
with DIP”. In: Conference on Information Processing in Sensor
Networks. IPSN. 2008, pp. 433–444. DOI: 10.1109/IPSN.2008.
17.

[LPCS04] Philip Levis, Neil Patel, David Culler, and Scott Shenker.
“Trickle: A Self-Regulating Algorithm for Code Propagation
and Maintenance in Wireless Sensor Networks”. In: Symposium
on Networked Systems Design and Implementation. NSDI. 2004,
pp. 15–28.

http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2014.08.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2014.08.008
http://dx.doi.org/10.1109/AINA.2010.65
http://dx.doi.org/10.1109/ICCE.2012.6161718
http://dx.doi.org/10.1109/ICCE.2012.6161718
http://dx.doi.org/http://doi.acm.org/10.1145/605397.605407
http://dx.doi.org/http://doi.acm.org/10.1145/605397.605407
http://dx.doi.org/10.1109/IPSN.2008.17
http://dx.doi.org/10.1109/IPSN.2008.17

186 Bibliography

[LVHD14] Chi-Anh La, Liviu-Octavian Varga, Martin Heusse, and Andrzej
Duda. “Energy-efficient Multi-hop Broadcasting in Low Power
and Lossy Networks”. In: ACM Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems. MSWiM. Mon-
treal, QC, Canada, 2014, pp. 41–50. ISBN: 978-1-4503-3030-5.

[Mac+06] C. Matthew MacKenzie et al. Reference Model for Service Oriented
Architecture 1.0. OASIS. [Online] https://www.oasis-open.org/.
2006.

[MBBD14] Thomas M. M. Meyfroyt, Sem C. Borst, Onno J. Boxma, and
Dee Denteneer. “Data Dissemination Performance in Large-scale
Sensor Networks”. In: SIGMETRICS Performance Evaluation Re-
view 42.1 (2014), pp. 395–406.

[MBBD15] Thomas M. M. Meyfroyt, Sem C. Borst, Onno J. Boxma, and Dee
Denteneer. “A data propagation model for wireless gossiping”.
In: Performance Evaluation 85–86.0 (2015), pp. 19 –32. ISSN:
0166-5316. DOI: http://dx.doi.org/10.1016/j.peva.2015.
01.001.

[McN+14] Liam McNamara et al. “Demo Abstract: SicsthSense - Dispersing
the Cloud”. In: European Conference on Wireless Sensor Networks.
EWSN. 2014.

[MELT08] Razvan Musaloiu-Elefteri, Chieh-Jan Mike Liang, and Andreas
Terzis. “Koala: Ultra-Low Power Data Retrieval in Wireless Sen-
sor Networks”. In: Symposium on Information Processing in
Sensor Networks. IPSN. 2008, pp. 421–432. DOI: 10.1109/IPSN.
2008.10.

[MHS05] Raluca Marin Perianu, Pieter Hartel, and Hans Scholten. A
classification of service discovery protocols. Tech. rep. TR-CTIT-
05-25. Enschede, The Netherlands: University of Twente, 2005.

[MM12] Sebastian Marineau-Mes. Why the internet of things needs ‘cu-
rated openness’. Ed. by Mobilize Conference. [Online] https:
//gigaom.com/2012/09/21/rim- internet- of- things-
mobilize-2012/. Sept. 2012.

[MP10] Chris Miller and Christian Poellabauer. “Reliable and efficient
reprogramming in sensor networks”. In: ACM Transactions on
Sensor Networks 7 (1 2010), 6:1–6:32. ISSN: 1550-4859. DOI:
http://doi.acm.org/10.1145/1806895.1806901.

[MPSHH06] Raluca Marin-Perianu, Hans Scholten, Paul Havinga, and Pieter
Hartel. “Energy-Efficient Cluster-Based Service Discovery in
Wireless Sensor Networks”. In: Conference on Local Computer
Networks. LCN. 2006, pp. 931 –938. DOI: 10.1109/LCN.2006.
322202.

http://dx.doi.org/http://dx.doi.org/10.1016/j.peva.2015.01.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.peva.2015.01.001
http://dx.doi.org/10.1109/IPSN.2008.10
http://dx.doi.org/10.1109/IPSN.2008.10
https://gigaom.com/2012/09/21/rim-internet-of-things-mobilize-2012/
https://gigaom.com/2012/09/21/rim-internet-of-things-mobilize-2012/
https://gigaom.com/2012/09/21/rim-internet-of-things-mobilize-2012/
http://dx.doi.org/http://doi.acm.org/10.1145/1806895.1806901
http://dx.doi.org/10.1109/LCN.2006.322202
http://dx.doi.org/10.1109/LCN.2006.322202

Bibliography 187

[MSL15] Thomas M.M. Meyfroyt, Milosh Stolikj, and Johan J. Lukkien.
“Adaptive Broadcast Supression for Trickle-Based Protocols”. In:
IEEE Symposium on A World of Wireless, Mobile and Multime-
dia Networks. WoWMoM. June 2015, pp. 1–9. DOI: 10.1109/
WoWMoM.2015.7158134.

[MTVDG13] Enzo Mingozzi, Giacomo Tanganelli, Carlo Vallati, and V. Di Gre-
gorio. “An open framework for accessing Things as a service”.
In: Symposium on Wireless Personal Multimedia Communications.
WPMC. June 2013, pp. 1–5.

[MV09] Francesco Marcelloni and Massimo Vecchio. “An Efficient Loss-
less Compression Algorithm for Tiny Nodes of Monitoring Wire-
less Sensor Networks”. In: The Computer Journal 52.8 (2009),
pp. 969–987.

[Nid01] Michael Nidd. “Service discovery in DEAPspace”. In: Personal
Communications 8.4 (2001), pp. 39–45. ISSN: 1070-9916. DOI:
10.1109/98.944002.

[OLBU10] Tanir Ozcelebi, Johan J. Lukkien, Remy Bosman, and Onder
Uzun. “Discovery, monitoring and management in smart spaces
composed of low capacity nodes”. In: IEEE Transactions on
Consumer Electronics 56.2 (2010), pp. 570–578. ISSN: 0098-
3063.

[OPT13] George Oikonomou, Iain Phillips, and Theo Tryfonas. “IPv6
Multicast Forwarding in RPL-Based Wireless Sensor Networks”.
English. In: Wireless Personal Communications 73.3 (2013),
pp. 1089–1116. ISSN: 0929-6212. DOI: 10.1007/s11277-013-
1250-5.

[Ost+06] Frederik Osterlind et al. “Cross-Level Sensor Network Simula-
tion with COOJA”. In: Conference on Local Computer Networks.
LCN. 2006, pp. 641–648. DOI: 10.1109/LCN.2006.322172.

[Pal+13] Maria Rita Palattella et al. “Standardized Protocol Stack for
the Internet of (Important) Things”. In: IEEE Communications
Surveys and Tutorials 15.3 (2013), pp. 1389–1406. DOI: 10.
1109/SURV.2012.111412.00158.

[PBM11] Rajesh Krishna Panta, Saurabh Bagchi, and Samuel P. Midkiff.
“Efficient incremental code update for sensor networks”. In:
ACM Transactions on Sensor Networks 7 (4 2011), 30:1–30:32.
ISSN: 1550-4859. DOI: 10.1145/1921621.1921624.

[Per03] Colin Percival. Naive differences of executable code.
http://www.daemonology.net/bsdiff/. 2003.

[Pis97] Kristofer Pister. Smart Dust. Tech. rep. BAA97-43. University of
Berkley, 1997.

http://dx.doi.org/10.1109/WoWMoM.2015.7158134
http://dx.doi.org/10.1109/WoWMoM.2015.7158134
http://dx.doi.org/10.1109/98.944002
http://dx.doi.org/10.1007/s11277-013-1250-5
http://dx.doi.org/10.1007/s11277-013-1250-5
http://dx.doi.org/10.1109/LCN.2006.322172
http://dx.doi.org/10.1109/SURV.2012.111412.00158
http://dx.doi.org/10.1109/SURV.2012.111412.00158
http://dx.doi.org/10.1145/1921621.1921624

188 Bibliography

[Pre+08] Alan Presser et al. UPnP Device Architecture 1.1.
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.1.pdf. 2008.

[PSC05] Joseph Polastre, Robert Szewczyk, and David Culler. “Telos:
Enabling Ultra-Low Power Wireless Research”. In: Symposium
on Information Processing in Sensor Networks. IPSN. 2005. ISBN:
0-7803-9202-7. DOI: 10.1109/IPSN.2005.1440950.

[RAYK10] Muhammad Taqi Raza, Fatima Muhammad Anwar, Seung-Wha
Yoo, and Ki-Hyung Kim. “FESP: Fast and Energy Efficient Service
Provisioning in 6LoWPAN”. In: Symposium on Personal Indoor
and Mobile Radio Communications. PIMRC. 2010, pp. 2575–
2580. DOI: 10.1109/PIMRC.2010.5671763.

[RFC1034] Paul Mockapetris. RFC 1034: Domain names - concepts and facil-
ities. http://www.ietf.org/rfc/rfc1034.txt. Internet Engineering
Task Force, Nov. 1987.

[RFC1035] Paul Mockapetris. RFC 1035: Domain names - implementation
and specification. http://www.ietf.org/rfc/rfc1035.txt. Internet
Engineering Task Force, Nov. 1987.

[RFC1122] Robert Braden. RFC 1122: Requirements for Internet Hosts -
Communication Layers. http://www.ietf.org/rfc/rfc1122.txt. In-
ternet Engineering Task Force, Oct. 1989.

[RFC2460] Stephen Deering and Robert Hinden. RFC 2460:
Internet Protocol, Version 6 (IPv6) Specification.
http://www.ietf.org/rfc/rfc2460.txt. Internet Engineer-
ing Task Force, Dec. 1998.

[RFC2608] Erik Guttman, Charles Perkins, John Veizades, and Michael
Day. RFC 2608: Service Location Protocol, Version 2.
http://www.ietf.org/rfc/rfc2608.txt. Updated by RFC 3224. In-
ternet Engineering Task Force, June 1999.

[RFC2608] Erik Guttman, Charles Perkins, John Veizades, and
Michael Day. Service Location Protocol, Version 2.
http://tools.ietf.org/rfc/rfc2608.txt. The Internet Society,
1999.

[RFC3284] David Korn, Joshua MacDonald, Jeffrey Mogul, and Kiem-Phong
Vo. RFC 3284: The VCDIFF Generic Differencing and Compres-
sion Data Format. http://www.ietf.org/rfc/rfc3284.txt. Internet
Engineering Task Force, June 2002.

[RFC4861] Thomas Narten, Erik Nordmark, William Allen Simpson, and
Hesham Soliman. RFC 4861: Neighbor Discovery for IP version 6
(IPv6). http://www.ietf.org/rfc/rfc4861.txt. Internet Engineer-
ing Task Force, Sept. 2007.

http://dx.doi.org/10.1109/IPSN.2005.1440950
http://dx.doi.org/10.1109/PIMRC.2010.5671763

Bibliography 189

[RFC4919] Nandakishore Kushalnagar, Gabriel Montenegro, and Christian
Schumacher. RFC 4919: IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals. http://www.ietf.org/rfc/rfc4919.txt. In-
ternet Engineering Task Force, Aug. 2007.

[RFC4944] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui,
and Davidb Culler. RFC 4944: Transmission of IPv6 Packets over
IEEE 802.15.4 Networks. http://www.ietf.org/rfc/rfc4944.txt.
Updated by RFCs 6282, 6775. Internet Engineering Task Force,
Sept. 2007.

[RFC6120] Peter Saint-Andre. RFC 6120: Extensible Messaging and Presence
Protocol (XMPP): Core. http://www.ietf.org/rfc/rfc6120.txt. In-
ternet Engineering Task Force, Mar. 2011.

[RFC6206] Philip Levis et al. RFC 6206: The Trickle Algorithm.
http://www.ietf.org/rfc/rfc6206.txt. Internet Engineering Task
Force, Mar. 2011.

[RFC6282] Jonathan Hui and Pascal Thubert. RFC 6282: Compression For-
mat for IPv6 Datagrams over IEEE 802.15.4-Based Networks.
http://www.ietf.org/rfc/rfc6282.txt. Internet Engineering Task
Force, Sept. 2011.

[RFC6550] Tim Winter et al. RFC 6550: RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks. http://www.ietf.org/rfc/rfc6550.txt.
Internet Engineering Task Force, 2012.

[RFC6552] Pascal Thubert. RFC 6552: Objective Function Zero for the
Routing Protocol for Low-Power and Lossy Networks (RPL).
http://www.ietf.org/rfc/rfc6552.txt. Internet Engineering Task
Force, Mar. 2012.

[RFC6719] Omprakash Gnawali and Philip Levis. RFC 6719: The
Minimum Rank with Hysteresis Objective Function.
http://www.ietf.org/rfc/rfc6719.txt. Internet Engineer-
ing Task Force, Sept. 2012.

[RFC6762] Stuart Cheshire and Marc Krochmal. RFC 6762: Multicast DNS.
http://www.ietf.org/rfc/rfc6762.txt. IETF, 2013.

[RFC6763] Stuart Cheshire and Marc Krochmal. RFC 6763: DNS-Based Ser-
vice Discovery. http://www.ietf.org/rfc/rfc6763.txt. IETF, 2013.

[RFC6891] Joao Damas, Michael Graff, and Paul Vixie. RFC
6891: Extension Mechanisms for DNS (EDNS(0)).
http://www.ietf.org/rfc/rfc6891.txt. Internet Engineer-
ing Task Force, Apr. 2013.

190 Bibliography

[RFC7049] Carsten Bormann and Paul Hoffman. RFC 7049:
Concise Binary Object Representation (CBOR).
http://www.ietf.org/rfc/rfc7049.txt. Internet Engineer-
ing Task Force, Oct. 2012.

[RFC7159] Tim Bray. RFC 7159: The JavaScript Object Notation (JSON)
Data Interchange Format. http://www.ietf.org/rfc/rfc7159.txt.
Internet Engineering Task Force, Mar. 2014.

[RFC7228] Carsten Bormann, Mehmet Ersue, and Ari Keranen.
RFC 7228: Terminology for Constrained-Node Networks.
http://www.ietf.org/rfc/rfc7228.txt. Internet Engineering Task
Force, May 2014.

[RL03] Niels Reijers and Koen Langendoen. “Efficient code distribution
in wireless sensor networks”. In: Conference on Wireless sensor
networks and applications. WSNA. 2003, pp. 60–67. ISBN: 1-
58113-764-8. DOI: http://doi.acm.org/10.1145/941350.
941359.

[RW11] Nick Rozanski and Eóin Woods. Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives
(2nd Edition). Addison-Wesley Professional, 2011. ISBN: 978-
0321718334.

[SBR04] Gregor Schiele, Christian Becker, and Kurt Rothermel. “Energy-
efficient cluster-based service discovery for Ubiquitous Comput-
ing”. In: Workshop on ACM SIGOPS. EW 11. ACM, 2004.

[SC12] Nikolai Samteladze and Ken Christensen. “DELTA: Delta En-
coding for Less Traffic for Apps”. In: Conference on Local Com-
puter Networks. LCN. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 212–215. ISBN: 978-1-4673-1565-4. DOI:
10.1109/LCN.2012.6423611.

[SCL12b] Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien.
“Energy-aware Reprogramming of Sensor Networks Using In-
cremental Update and Compression”. In: Procedia Computer
Science 10 (2012), pp. 179–187. ISSN: 1877-0509. DOI: 10.
1016/j.procs.2012.06.026.

[SCNFR11] Bruno da Silva Campos, Eduardo Freire Nakamura, Carlos
Mauricio S. Figueiredo, and Joel J.P.C. Rodrigues. “On the de-
sign of UPnP gateways for service discovery in wireless sensor
networks”. In: IEEE Symposium on Computers and Communica-
tions. ISCC. 2011, pp. 719–722. ISBN: 978-1-4577-0680-6.

[SCT09] Andy Stanford-Clark and Hong Linh Truong. MQTT
For Sensor Networks (MQTT-SN). http://mqtt.org/new/wp-
content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf. IBM Cor-
poration, 2009.

http://dx.doi.org/http://doi.acm.org/10.1145/941350.941359
http://dx.doi.org/http://doi.acm.org/10.1145/941350.941359
http://dx.doi.org/10.1109/LCN.2012.6423611
http://dx.doi.org/10.1016/j.procs.2012.06.026
http://dx.doi.org/10.1016/j.procs.2012.06.026

Bibliography 191

[SH11] Abolhassan Shamsaie and Jafar Habibi. “Planning updates in
multi-application wireless sensor networks”. In: Symposium on
Computers and Communications. ISCC. June 2011, pp. 802–808.
DOI: 10.1109/ISCC.2011.5983940.

[SHB13] Zach Shelby, Klaus Hartke, and Carsten Bormann. Constrained
Application Protocol (CoAP). http://tools.ietf.org/html/draft-
ietf-core-coap. Internet Engineering Task Force, 2013.

[SHE03] Thanos Stathopoulos, John Heidemann, and Deborah Estrin.
A remote code update mechanism for wireless sensor networks.
Tech. rep. DTIC Document, 2003.

[She11] Mark Shepard. Sentient City: Ubiquitous Computing, Architecture,
and the Future of Urban Space. The MIT Press, 2011. ISBN:
0262515865, 9780262515863.

[SKPK14] John Schneider, Takuki Kamiya, Daniel Peintner, and Rumen
Kyusakov. W3C Recommendation: Efficient XML Interchange
(EXI) Format. http://www.w3.org/TR/exi/. World Wide Web
Consorcium, 2014.

[SL12] Peter van der Stok and Kerry Lynn. CoAP Utilization for Build-
ing Control. http://tools.ietf.org/html/draft-vanderstok-core-bc.
Internet Engineering Task Force, 2012.

[SLCB15] Milosh Stolikj, Johan J. Lukkien, Pieter J. L. Cuijpers, and Nina
Buchina. “Nomadic Service Discovery in Smart Cities”. In: Smart
Cities and Homes: Key Enabling Technologies. Ed. by Mohammad
S. Obaidat and Petros Nicopolitidis. Elsevier, 2015.

[SM06] Christopher M. Sadler and Margaret Martonosi. “Data compres-
sion algorithms for energy-constrained devices in delay tolerant
networks”. In: Conference on Embedded networked sensor sys-
tems. SenSys. Boulder, Colorado, USA, 2006, pp. 265–278. ISBN:
1-59593-343-3. DOI: 10.1145/1182807.1182834.

[SMCL15] Milosh Stolikj, Thomas M.M. Meyfroyt, Pieter J.L. Cuijpers, and
Johan J. Lukkien. “Improving the Performance of Trickle-Based
Data Dissemination in Low-Power Networks”. In: European
Conference on Wireless Sensor Networks. EWSN. Feb. 2015, pp. 1–
16. DOI: 10.1007/978-3-319-15582-1_12.

[Spi+09] Patrik Spiess et al. “SOA-Based Integration of the Internet of
Things in Enterprise Services”. In: IEEE International Conference
on Web Services. ICWS. July 2009, pp. 968–975. DOI: 10.1109/
ICWS.2009.98.

[Sto+15] Peter van der Stok et al. CoAP Management Interface.
http://tools.ietf.org/html/draft-vanderstok-core-comi. Internet
Engineering Task Force, 2015.

http://dx.doi.org/10.1109/ISCC.2011.5983940
http://dx.doi.org/10.1145/1182807.1182834
http://dx.doi.org/10.1007/978-3-319-15582-1_12
http://dx.doi.org/10.1109/ICWS.2009.98
http://dx.doi.org/10.1109/ICWS.2009.98

192 Bibliography

[STS11] Jurgen Schoonwalder, Tina Tsou, and Behcet Sarikaya. “Proto-
col Profiles for Constrained Devices”. In: Workshop on Intercon-
necting Smart Objects with the Internet. 2011.

[Sub14] John Sublett. Open to New Things. Ed. by Oracle.com. [On-
line] http://www.oracle.com/us/corporate/profit/big-
ideas/070914-jsublett-2244448.html. Aug. 2014.

[TA13] Internet of Things – Architecture. Deliverable D1.5 – Fi-
nal architectural reference model for the IoT v3.0. [Online]
http://www.iot-a.eu. 2013.

[TDHV09] Nicolas Tsiftes, Adam Dunkels, Zhitao He, and Thiemo Voigt.
“Enabling Large-Scale Storage in Sensor Networks with the
Coffee File System”. In: Conference on Information Processing in
Sensor Networks. IPSN. 2009, pp. 349–360.

[TDV08] Nicola Tsiftes, Adam Dunkels, and Thiemo Voigt. “Efficient
Sensor Network Reprogramming through Compression of Exe-
cutable Modules”. In: Conference on Sensor, Mesh and Ad Hoc
Communications and Networks. SECON. 2008, pp. 359–367.
DOI: 10.1109/SAHCN.2008.51.

[TL09] Melissa Tjiong and Johan J. Lukkien. “On the False-Positive and
False-Negative Behavior of a Soft-State Signaling Protocol”. In:
Conference on Advanced Information Networking and Applica-
tions. AINA. 2009, pp. 971–979. DOI: 10.1109/AINA.2009.130.

[TOV10] Joydeep Tripathi, Jaudelice Cavalcante de Oliveira, and Jean-
Philippe Vasseur. “A Performance Evaluation Study of RPL:
Routing Protocol for Low power and Lossy Networks”. In: Con-
ference on Information Sciences and Systems. CISS. 2010, pp. 1–
6. DOI: 10.1109/CISS.2010.5464820.

[TPSBO09] Alessandra Toninelli, Susanna Pantsar-Syväniemi, Paolo Bellav-
ista, and Eila Ovaska. “Supporting Context Awareness in Smart
Environments: A Scalable Approach to Information Interoper-
ability”. In: Workhop on Middleware for Pervasive Mobile and
Embedded Computing. M-PAC. ACM, 2009, 5:1–5:4. ISBN: 978-
1-60558-849-0. DOI: 10.1145/1657127.1657134.

[Tri00] Andrew Tridgell. Efficient Algorithms for Sorting and Synchro-
nization. 2000.

[VD10] Jean-Philippe Vasseur and Adam Dunkels. “Chapter 1 - What
Are Smart Objects?” In: Interconnecting Smart Objects with IP.
Boston: Morgan Kaufmann, 2010, pp. 3 –20. ISBN: 978-0-12-
375165-2. DOI: http://dx.doi.org/10.1016/B978-0-12-
375165-2.00001-6.

http://www.oracle.com/us/corporate/profit/big-ideas/070914-jsublett-2244448.html
http://www.oracle.com/us/corporate/profit/big-ideas/070914-jsublett-2244448.html
http://dx.doi.org/10.1109/SAHCN.2008.51
http://dx.doi.org/10.1109/AINA.2009.130
http://dx.doi.org/10.1109/CISS.2010.5464820
http://dx.doi.org/10.1145/1657127.1657134
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-375165-2.00001-6
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-375165-2.00001-6

Bibliography 193

[VM13] Carlo Vallati and Enzo Mingozzi. “Trickle-F: Fair Broadcast
Suppression to Improve Energy-Efficient Route Formation with
the RPL Routing Protocol”. In: Sustainable Internet and ICT
for Sustainability. SustainIT. 2013, pp. 1–9. DOI: 10.1109/
SustainIT.2013.6685187.

[Wah14a] Peter Waher. XEP-0322: Efficient XML Interchange (EXI) Format.
http://xmpp.org/extensions/xep-0322.html. XMPP Standards
Foundation, 2014.

[Wah14b] Peter Waher. XEP-0326: Internet of Things - Concentrators.
http://xmpp.org/extensions/xep-0326.html. XMPP Standards
Foundation, 2014.

[Wah15a] Peter Waher. XEP-0323: Internet of Things - Sensor Data.
http://xmpp.org/extensions/xep-0323.html. XMPP Standards
Foundation, 2015.

[Wah15b] Peter Waher. XEP-0324: Internet of Things - Provisioning.
http://xmpp.org/extensions/xep-0324.html. XMPP Standards
Foundation, 2015.

[Wah15c] Peter Waher. XEP-0325: Internet of Things - Control.
http://xmpp.org/extensions/xep-0325.html. XMPP Standards
Foundation, 2015.

[Wal00] Jim Waldo. The JINI Specifications. 2nd. Addison-Wesley Long-
man Publishing, 2000. ISBN: 0201726173.

[Wan11] Roy Want. “Near Field Communication”. In: IEEE Pervasive Com-
puting 10.3 (2011), pp. 4–7. ISSN: 1536-1268. DOI: http://
doi.ieeecomputersociety.org/10.1109/MPRV.2011.55.

[Wei14] Joseph Wei. “How Wearables Intersect with the Cloud and
the Internet of Things : Considerations for the developers of
wearables”. In: IEEE Consumer Electronics Magazine 3.3 (July
2014), pp. 53–56. DOI: 10.1109/MCE.2014.2317895.

[WGB99] Mark Weiser, Rich Gold, and John Seely Brown. “The Origins
of Ubiquitous Computing Research at PARC in the Late 1980s”.
In: IBM Systems Journal 38.4 (Dec. 1999), pp. 693–696. ISSN:
0018-8670. DOI: 10.1147/sj.384.0693.

[WK14] Peter Waher and Ronny Klauck. XEP-0327: Internet of Things -
Discovery. http://xmpp.org/extensions/xep-0327.html. XMPP
Standards Foundation, 2014.

[WKKK13] Honguk Woo, Hongsoo Kim, Kyusik Kim, and Dongkyoung Kim.
“A large scale presence network for pervasive social computing”.
In: Conference on Pervasive Computing and Communications
Workshops. PERCOM Workshops. Mar. 2013, pp. 145–150. DOI:
10.1109/PerComW.2013.6529472.

http://dx.doi.org/10.1109/SustainIT.2013.6685187
http://dx.doi.org/10.1109/SustainIT.2013.6685187
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MPRV.2011.55
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MPRV.2011.55
http://dx.doi.org/10.1109/MCE.2014.2317895
http://dx.doi.org/10.1147/sj.384.0693
http://dx.doi.org/10.1109/PerComW.2013.6529472

194 Bibliography

[YHE02] Wei Ye, J. Heidemann, and D. Estrin. “An energy-efficient MAC
protocol for wireless sensor networks”. In: Conference of the
IEEE Computer and Communications Societies. Vol. 3. INFOCOM.
2002, 1567–1576 vol.3. DOI: 10.1109/INFCOM.2002.1019408.

[YN13] Rayoung Yang and Mark W. Newman. “Learning from a Learn-
ing Thermostat: Lessons for Intelligent Systems for the Home”.
In: 2013 ACM Joint Conference on Pervasive and Ubiquitous Com-
puting. UbiComp. Zurich, Switzerland: ACM, 2013, pp. 93–102.
ISBN: 978-1-4503-1770-2. DOI: 10.1145/2493432.2493489.

[Yoo15] BK Yoon. The Internet of Things needs openness and industry
collaboration to succeed. Ed. by Samsung.com. [Online] http://
www.samsung.com/us/news/newsRead.do?news_seq=24395.
Jan. 2015.

[ZL77] Jacob Ziv and Abraham Lempel. “A universal algorithm for
sequential data compression”. In: IEEE Transactions on Informa-
tion Theory 23.3 (1977), pp. 337–343. ISSN: 0018-9448. DOI:
10.1109/TIT.1977.1055714.

[ZMN05] Feng Zhu, M.W. Mutka, and L.M. Ni. “Service discovery in
pervasive computing environments”. In: Pervasive Computing,
IEEE 4.4 (Oct. 2005), pp. 81–90. ISSN: 1536-1268. DOI: 10.
1109/MPRV.2005.87.

[ZR13] Liang Zhou and Joel J. P. C. Rodrigues. “Service-oriented mid-
dleware for smart grid: Principle, infrastructure, and applica-
tion”. In: IEEE Communications Magazine 51.1 (2013), pp. 84–
89. DOI: 10.1109/MCOM.2013.6400443.

[ZSLM04] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and Mar-
garet Martonosi. “Hardware Design Experiences in ZebraNet”.
In: Conference on Embedded Networked Sensor Systems. SenSys.
2004, pp. 227–238.

http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1145/2493432.2493489
http://www.samsung.com/us/news/newsRead.do?news_seq=24395
http://www.samsung.com/us/news/newsRead.do?news_seq=24395
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/MPRV.2005.87
http://dx.doi.org/10.1109/MPRV.2005.87
http://dx.doi.org/10.1109/MCOM.2013.6400443

ACRONYMS

6LoWPAN IPv6 over LoWPAN.

AA Authoritative Answer.

ADMC Adjustable DNS Message Compression.

ARM Architectural Reference Model.

CBOR Concise Binary Object Representation.

CCA Clear-Channel Assessment.

CoAP Constrained Application Protocol.

CoMI CoAP Management Interface.

CSL Coordinated Sampled Listening.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

CTP Collection Tree Protocol.

DA Directory Agent.

DDNS Dynamic DNS Update.

DIO DODAG Information Object.

DIS DODAG Information Solicitation.

DNF Disjunctive Normal Form.

DNS Domain Name System.

DNS-SD DNS-Based Service Discovery.

DODAG Destination Oriented Directed Acyclic Graph.

DSL domain-specific language.

DTLS Datagram Transport Layer Security.

ENUM Electronic Number Mapping.

ETSI European Telecommunications Standards Institute.

ETX Expected Transmission Count.

EXI Efficient XML Interchange.

FastLZ Fast Lempel-Ziv.

196 Acronyms

FESP Fast and Energy Efficient Service Provisioning.

GL Group Leader.

HTTP Hyper Text Transfer Protocol.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IOT-A Internet of Things - Architecture.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

JINI Java Intelligent Network Interface.

JSON JavaScript Object Notation.

LAN Local Area Network.

LLN Low-Power and Lossy Network.

LoWPAN Low-power Wireless Personal Area Network.

LZ77 Lempel-Ziv 77.

LZ78 Lempel-Ziv 78.

LZJB Lempel-Ziv-Jeff-Bonwick.

M2M Machine to Machine.

MAC Medium Access Control.

mDNS Multicast Domain Name System.

MPL Multicast Protocol for Low power and Lossy Networks.

MQTT Message Queuing Telemetry Transport.

MQTT-SN Message Queuing Telemetry Transport for Sensor Networks.

NFC Near-field Communication.

OASIS Organization for the Advancement of Structured Information Standards.

OF Objective Function.

OF0 Objective Function Zero.

Acronyms 197

OSAS Open Service Architecture for Sensors.

PLC Power Line Communication.

PS Proxy Server.

RAR Reference Architecture.

RDC Radio Duty Cycling.

REST Representational State Transfer.

RFC Request For Comments.

RFID Radio-Frequency Identification.

RLE Run-Length Encoding.

RM Resource Manager.

RMI Remote Method Invocation.

RMO Reference Model.

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks.

RR Resource Record.

SA Service Agent.

SC Service Client.

SD Service Discovery.

SDP Service Discovery Protocol.

Sensor-LZW Sensor Lempel-Ziv-Welch.

SLP Service Location Protocol.

SOA Service Oriented Architecture.

SP Service Provider.

SR Service Repository.

SSDP Simple Service Discovery Protocol.

SSLP Simple Service Location Protocol.

SSP Sleeping Service Provider.

TA Translation Agent.

TCP Transmission Control Protocol.

198 Acronyms

UA User Agent.

UDGM Unit Disk Graph Radio Medium.

UDP User Datagram Protocol.

UPnP Universal Plug and Play.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

WSDL Web Services Description Language.

WSN Wireless Sensor Network.

XML Extensible Markup Language.

XMPP Extensible Messaging and Presence Protocol.

LIST OF FIGURES

1.1 The Internet of Things, by Esther Gons 3
1.2 SenSafety overview. 6
1.3 Thesis outline. 9

2.1 List of IoT use cases. 15
2.2 Distributed IoT infrastructure . 22
2.3 Cloud-based IoT infrastructure . 23
2.4 Fog-based IoT infrastructure . 23
2.5 List of various IoT protocols in the 4-layer Internet model. 24
2.6 The Internet/Transport layer is point of convergence in the current Inter-

net architecture . 26
2.7 Lifecycle of a service. 32
2.8 Lifecycle of an application. 33
2.9 Context view of the architecture. 35
2.10 Layered model which shows the functional elements of the architecture

and their relationships. 36
2.11 Development view of the architecture. 37
2.12 Deployment view of the architecture. 38
2.13 Physical view of a smart building. 39
2.14 Software stack for low-power networks, according to the 4-layer Internet

model. 40
2.15 Information flow between sensors, actuators and controllers within a

smart building. 41

3.1 Software update in a low-power network 47
3.2 Updating two different devices in a network using broadcast 48
3.3 Overview of the update process when using data compression. 53
3.4 Overview of the update process when using incremental updates. 55
3.5 Sample input data for the delta encoding algorithms 55
3.6 Example of a BSDIFF delta . 56
3.7 Example of a VCDIFF delta . 57
3.8 Example of a RDIFF delta . 58
3.9 Possibilities for horizontal patching in a two-application network 59
3.10 Horizontal patching in practice . 59
3.11 Nine different options (minimal spanning trees) for horizontal patching

of three heterogeneous devices. 60
3.12 Greedy search of a horizontal delta . 62
3.13 Topology for estimating the update delay and energy consumption. . . . 64
3.14 Minimum, maximum and average measured compression ratio of test

cases 1-7. 66
3.15 Compression ratio of different compression algorithms when used in

combination with BSDIFF (a) and VCDIFF (b), per test case. 67
3.16 Time required for decompressing and applying a BSDIFF (a) and VCDIFF

(b) patch. 69
3.17 Energy estimation using only decompression (c) and both patching and

decompression (a, b) . 71

200 List of Figures

3.18 Influence of number of nodes (h) on energy consumption. 72
3.19 Delay estimation using only decompression (c) and both patching and

decompression (a, b). 73
3.20 Influence of radio duty cycling (ttx/rx) on delay. 74
3.21 Guidelines for selecting the best option for incremental update. 75
3.22 Compression ratio of horizontal patching for sensor nodes using BSDIFF

and VCDIFF, in comparison to compressed firmware images 78
3.23 Compression ratio of horizontal patching for Android-based devices . . 78

4.1 The service discovery process . 84
4.2 Centralized service discovery . 87
4.3 Distributed service discovery . 87
4.4 Hierarchical service discovery . 88
4.5 DNS-SD description of a light sensor service 96
4.6 Resolving a service using mDNS/DNS-SD 99
4.7 Active proxy delegation protocol in mDNS/DNS-SD 105
4.8 Passive proxy delegation protocol in mDNS/DNS-SD 106
4.9 Embedded registration request for the passive proxy delegation protocol. 107
4.10 Possible double proxy registration using the passive proxy delegation

protocol in mDNS/DNS-SD . 107
4.11 Test scenario for service discovery . 111
4.12 Required time (delay) for completing the active and passive proxy dele-

gation protocol, as measured by the service provider 112
4.13 Energy usage for completing the active and passive proxy delegation

protocol . 114
4.14 DNS-SD message exchange during discovery of a particular light service,

using the building control approach. 119
4.15 DNS-SD message exchange during discovery of a particular light service,

using TXT records as part of queries. 119
4.16 DNS-SD message exchange during discovery of a particular light service,

using predicates inside PTR RRs as part of queries. 120
4.17 DNS compression . 122

5.1 Example of three consistent nodes using the Trickle algorithm 129
5.2 Example of a simple DODAG using hop count as an Objective Function . 131
5.3 Unfair load distribution in a star network 136
5.4 Simulated broadcasting probability per node degree for the original

Trickle algorithm . 140
5.5 Estimate for the broadcasting probabilities for different values of k. . . . 141
5.6 The average redundancy constant per node degree. 141
5.7 Simulated broadcasting probability per node degree for the adaptive-k

Trickle algorithm . 142
5.8 Average DIO broadcasting probability per node degree for the Trickle

algorithm with different values for k and the adaptive-k Trickle algorithm 144
5.9 Cumulative statistics on the average DIO broadcasting probability per

node for different network densities . 144
5.10 Influence of the redundancy constant in RPL for different topologies . . 146
5.11 Total number of DIO transmissions, data transmissions and end-to-end

packet delivery ratio (PDR) during 1h of operation on 43 nodes at the
IoT-Lab test bed. 147

List of Figures 201

5.12 Flow of Trickle packets in the Contiki operating system [DGV04]. 148
5.13 Flowchart of the CSMA/CA protocol. 150
5.14 ContikiMAC broadcast transmission . 151
5.15 Link layer interference on Trickle timing 153
5.16 Example of a bottleneck network consisting of 4 nodes, where node 3 is

the bottleneck. 156
5.17 Suppression of Trickle updates due to link layer interference 156
5.18 Analytical and simulation results of the probability that node 4 is updated

after the second Trickle interval, for different values of m (Imin = m ·w). 157
5.19 Update delay in the bottleneck scenario 160
5.20 Average delay and average number of transmissions in the grid scenario 161
5.21 Average number of transmissions, retransmissions and average frame

queue time in the grid scenario . 162
5.22 Topology of the IoT-Lab test bed . 163
5.23 Experimental results from the IoT-Lab test bed 164

LIST OF TABLES

2.1 Processing class: constrained classes of nodes, based on available com-
puting resources. 18

2.2 Power profile: constrained classes of nodes, based on power requirements. 19
2.3 Comparison of application protocols for the IoT. 27

3.1 Test cases and data size of firmware images and ELF executables (in bytes). 65
3.2 Code and memory footprint of different algorithms. 69
3.3 Size of test data (compressed firmware image consisting of an application

and an operating system) for sensor nodes, in bytes. 76
3.4 Size of compressed Android firmware images for Google Nexus devices . 77
3.5 Difference in compression ratio (%) between optimal horizontal deltas

and greedy horizontal deltas. 79

4.1 Comparison of service discovery protocols 94
4.2 Comparison of service discovery protocols 95
4.3 Code and memory footprint of different mDNS/DNS-SD implementations,

in bytes. 102
4.4 Code and memory footprint of different components for proxy registra-

tion, in addition to the mDNS/DNS-SD implementation (bytes) 109
4.5 Upper and lower bound on the proxy registration protocols and the

measured simulated results for an IEEE 802.15.4 channel with no loss
and no background traffic. 110

4.6 Description of test scenario. 118
4.7 Size of DNS Resource Records . 121

5.1 Default values of Trickle parameters in different protocols. 130

ACCOMPLISHMENTS

This list contains the publications which Milosh Stolikj co-authored
during the writing of this thesis, Master theses he supervised and courses
he was involved in.

Publications

Journals and book chapters

1. Milosh Stolikj, Johan J. Lukkien, Pieter J. L. Cuijpers, and Nina Buchina. “No-
madic Service Discovery in Smart Cities”. In: Smart Cities and Homes: Key Enabling
Technologies. Ed. by Mohammad S. Obaidat and Petros Nicopolitidis. Elsevier,
2015

2. Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. “Patching a patch -
software updates using horizontal patching”. In: IEEE Transactions on Consumer
Electronics 59.2 (May 2013), pp. 435–441. ISSN: 0098-3063. DOI: 10.1109/TCE.
2013.6531128

Conferences and workshops

1. Milosh Stolikj, Pieter J.L. Cuijpers, Johan J. Lukkien, and Nina Buchina. “Context
Based Service Discovery in Unmanaged Networks Using mDNS/DNS-SD (Under
review)”. In: IEEE Conference on Consumer Electronics. ICCE. 2016

2. Milosh Stolikj, Thomas M.M. Meyfroyt, Pieter J.L. Cuijpers, and Johan J. Lukkien.
“Improving the Performance of Trickle-Based Data Dissemination in Low-Power
Networks”. In: European Conference on Wireless Sensor Networks. EWSN. Feb.
2015, pp. 1–16. DOI: 10.1007/978-3-319-15582-1_12

3. Thomas M.M. Meyfroyt, Milosh Stolikj, and Johan J. Lukkien. “Adaptive Broad-
cast Supression for Trickle-Based Protocols”. In: IEEE Symposium on A World of
Wireless, Mobile and Multimedia Networks. WoWMoM. June 2015, pp. 1–9. DOI:
10.1109/WoWMoM.2015.7158134

4. Milosh Stolikj, Richard Verhoeven, Pieter J.L. Cuijpers, and Johan J. Lukkien.
“Proxy support for service discovery using mDNS/DNS-SD in low power net-
works”. In: IEEE Symposium on A World of Wireless, Mobile and Multimedia
Networks. WoWMoM. June 2014, pp. 1–6. DOI: 10.1109/WoWMoM.2014.6918925

5. Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. “Efficient reprogram-
ming of wireless sensor networks using incremental updates”. In: IEEE Conference
on Pervasive Computing and Communications Workshops. PERCOM Workshops.
Mar. 2013, pp. 584–589. DOI: 10.1109/PerComW.2013.6529563

http://dx.doi.org/10.1109/TCE.2013.6531128
http://dx.doi.org/10.1109/TCE.2013.6531128
http://dx.doi.org/10.1007/978-3-319-15582-1_12
http://dx.doi.org/10.1109/WoWMoM.2015.7158134
http://dx.doi.org/10.1109/WoWMoM.2014.6918925
http://dx.doi.org/10.1109/PerComW.2013.6529563

206 Accomplishments

6. Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. “Patching a patch -
software updates using horizontal patching”. In: IEEE Transactions on Consumer
Electronics 59.2 (May 2013), pp. 435–441. ISSN: 0098-3063. DOI: 10.1109/TCE.
2013.6531128

7. Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. “Patching a patch -
software updates using horizontal patching”. In: IEEE Conference on Consumer
Electronics. ICCE. 2013, pp. 647–648. DOI: 10.1109/ICCE.2013.6487054

8. Milosh Stolikj, Pieter J.L. Cuijpers, and Johan J. Lukkien. “Energy-aware Repro-
gramming of Sensor Networks Using Incremental Update and Compression”.
In: Procedia Computer Science 10 (2012), pp. 179–187. ISSN: 1877-0509. DOI:
10.1016/j.procs.2012.06.026

Technical reports and project deliverables (non-refereed)
1. Milosh Stolikj, Pieter J. L. Cuijpers, and Johan J. Lukkien. Deliverable 4.8: Design

and Implementation of the Programming Framework. COMMIT/ SenSafety, 2015

2. Julio Oliveira, Milosh Stolikj, Francesco Comaschi, and Maurits de Graaf.
Emergency communication technology for crowd safety. [Online] http://www.
commit-nl.nl/sites/default/files/23.%20Emergency%20communication%
20technology%20for%20crowd%20safety.pdf. SenSafety, 2014

3. Milosh Stolikj, Thomas M.M. Meyfroyt, Pieter J.L. Cuijpers, and Johan J. Lukkien.
Improving the Performance of Trickle-Based Data Dissemination in Low-Power
Networks. Tech. rep. CS-14-10. Eindhoven University of Technology, 2014

4. Maurits de Graaf et al. Deliverable 1.2: SenSafety Architecture Description. COM-
MIT/ SenSafety, 2013

5. Milosh Stolikj, Pieter J. L. Cuijpers, and Johan J. Lukkien. Efficient reprogramming
of sensor networks using incremental updates and data compression. Tech. rep.
CS-12-10. Eindhoven University of Technology, 2012

6. Milosh Stolikj, Pieter J. L. Cuijpers, and Johan J. Lukkien. Deliverable 4.6: Survey
of Programming Frameworks. COMMIT/ SenSafety, 2012

Education

Supervision
1. Nina Buchina. Extending service discovery protocols with support for context infor-

mation. Master Thesis, Eindhoven University of Technology. 2014

Courses
1. Internet of Things for Professional Doctorate in Software Engineering (PDeng)

trainees, year 2015/2016, Eindhoven University of Technology. Lectured by prof.
dr. Johan J. Lukkien.

http://dx.doi.org/10.1109/TCE.2013.6531128
http://dx.doi.org/10.1109/TCE.2013.6531128
http://dx.doi.org/10.1109/ICCE.2013.6487054
http://dx.doi.org/10.1016/j.procs.2012.06.026
http://www.commit-nl.nl/sites/default/files/23.%20Emergency%20communication%20technology%20for%20crowd%20safety.pdf
http://www.commit-nl.nl/sites/default/files/23.%20Emergency%20communication%20technology%20for%20crowd%20safety.pdf
http://www.commit-nl.nl/sites/default/files/23.%20Emergency%20communication%20technology%20for%20crowd%20safety.pdf

Accomplishments 207

2. Distributed Systems for Bachelor students of Computer Science, year
2014/2015, Eindhoven University of Technology. Lectured by dr. Rudolf H.
Mak.

3. Operating systems for Bachelor students of Computer Science, years 2010/2011
and 2012/2013, Eindhoven University of Technology. Lectured by dr. Tanir
Ozcelebi.

IPA DISSERTATION SERIES

Titles in the IPA Dissertation Series since 2009

M.H.G. Verhoef. Modeling and Validating
Distributed Embedded Real-Time Control
Systems. Faculty of Science, Mathematics
and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-
ware Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-
ing Techniques. Faculty of Mathematics
and Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Ap-
plications in Automata Theory and Modal
Logic. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Get-
ting Generic Programming Ready for Prime
Time. Faculty of Science, UU. 2009-9

K.R. Olmos Joffré. Strategies for Context
Sensitive Program Transformation. Faculty
of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about
Java programs in PVS using JML. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic
Analysis Techniques for Program Compre-
hension. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Net-
work Intrusion Detection Systems. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy
in Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-17

210 IPA Dissertation Series

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Com-
pleteness: Formalizing Logic and Anal-
ysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis
of Probabilistic Models. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac-
ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control for
Dynamic Collaborative Environments. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2010-07 A. Silva. Kleene Coalgebra.

Faculty of Science, Mathematics and Com-
puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-
ery of Knowledge - Foundations, Imple-
mentations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

IPA Dissertation Series 211

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathemat-
ics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Sci-
ence, VUA. 2011-01

B.J. Arnoldus. An Illumination of the Tem-
plate Enigma: Software Code Generation
with Templates. Faculty of Mathematics
and Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Availabil-
ity Planning: Methods and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Confiden-
tiality Risk Assessment in Networks of Orga-
nizations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Verification
of Distributed Failure Detectors. Faculty
of Mathematics and Computer Science,
TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty
of Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management for
models: Generic methods for model com-
parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell Libraries and Verifi-
cation. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Faculty
of Mathematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality
of Service of Component Connectors. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-17

R. Middelkoop. Capturing and Exploiting
Abstract Views of States in OO Verification.

212 IPA Dissertation Series

Faculty of Mathematics and Computer Sci-
ence, TU/e. 2011-18

M.F. van Amstel. Assessing and Improv-
ing the Quality of Model Transformations.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac-
ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Language
Workbenches. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2011-23 S. Kemper. Mod-

elling and Analysis of Real-Time Coordi-
nation Patterns. Faculty of Mathematics
and Natural Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Revis-
ited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for
the Design and Implementation of Domain-
Specific Languages. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2012-03

T. Dimkov. Alignment of Organizational
Security Policies: Theory and Practice. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Veri-
fication of Wireless Sensor Networks and
Abstraction Learning for System Inference.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic
Visualization. Faculty of Mathematics and
Computer Science, TU/e. 2012-07

D.E. Nadales Agut. A Compositional In-
terchange Format for Hybrid Systems: De-
sign and Implementation. Faculty of Me-
chanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein
Interaction Networks by Means of Anno-
tated Graph Mining Algorithms. Faculty
of Mathematics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software Language Evo-
lution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches to
Reliable Software. Faculty of Mathematics
and Computer Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Faculty
of Mathematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Architecture Design
in Global and Model-Centric Software De-
velopment. Faculty of Mathematics and
Natural Sciences, UL. 2012-13 C. Kop.

IPA Dissertation Series 213

Higher Order Termination. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and Com-
puter Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communication
and States in Models of Embedded Systems.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Automata.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2013-02

E. Zambon. Abstract Graph Transforma-
tion – Theory and Practice. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmarting Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2013-05

M.S. Greiler. Test Suite Comprehension
for Modular and Dynamic Systems. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2013-06

L.E. Mamane. Interactive mathematical
documents: creation and presentation. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2013-07

M.M.H.P. van den Heuvel. Composi-
tion and synchronization of real-time com-
ponents upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2013-10

J.J.A. Keiren. Advanced Reduction Tech-
niques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling: Com-
puting push plans for disk-shaped robots,
and dynamic labelings for moving points.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-16

214 IPA Dissertation Series

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in Au-
tomated Digital Forensics. Faculty of Sci-
ence, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Optimization
of Multi-Tenant Software Systems. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quantitative In-
formation Flow Analysis for Multi-threaded
Programs. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-05

A.W. Laarman. Scalable Multi-Core Model
Checking. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-06

J. Winter. Coalgebraic Characterizations
of Automata-Theoretic Classes. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2014-07

W. Meulemans. Similarity Measures and
Algorithms for Cartographic Schematiza-
tion. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-09

A.P. van der Meer. Domain Specific Lan-
guages and their Type Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collab-
oration in Online Software Communities.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap be-
tween Active Learning and Real-World Sys-
tems. Faculty of Science, Mathematics and
Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13 M. Helvensteijn. Abstract

Delta Modeling: Software Product Lines
and Beyond. Faculty of Mathematics and
Natural Sciences, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Link-
age. Faculty of Mathematics and Natural
Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity Manage-
ment: Bridging the Cryptographic Design
of ABCs with the Real World. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-01

IPA Dissertation Series 215

A.J. van der Ploeg. Efficient Abstractions
for Visualization and Interaction. Faculty
of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Control
in Health Care Systems. Faculty of Me-
chanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibility and
Trustworthiness. Faculty of Mathematics
and Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the Data
Cycle. Faculty of Mathematics and Com-
puter Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model
checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security proto-
cols. Faculty of Science, Mathematics and
Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Archi-
tecture Framework and Quality Evaluation
for Automotive Software Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2015-12

J. Bransen. On the Incremental Evalua-
tion of Higher-Order Attribute Grammars.
Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-14

C. Chen. Automated Fault Localization for
Service-Oriented Software Systems. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis Meth-
ods for Resource-Sensitive Systems. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2015-18

M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics and
Computer Science, TU/e. 2015-19

SUMMARY

The Internet of Things (IoT) is a vision where every physical object is
connected to the Internet, and is able to uniquely identify itself to other
devices. The interconnection of these so-called smart objects enables
a plethora of new use cases, such as Smart Grids, Smart Cities, Indus-
trial Automation, Home Automation, Building Automation etc. Several
sources estimate that, by 2020, the IoT will bring together between 20
and 30 billion devices, with varying degrees of complexity. The sheer
size of the IoT, and the expected heterogeneity, pose a challenge to the
current state of the art software protocols.

The research community has been actively working on finding appro-
priate solutions for the IoT. The communities’ stance is to build the
network around standards, which would enable easier integration of
heterogeneous devices. However, many of the protocols involved are
under development, or difficult to implement in the low end part of the
IoT, where devices are often battery powered, communication links are
lossy, and there is not enough processing capacity.

The aim of this dissertation is to improve the state of the art in protocol
design for the IoT. The scientific contributions of the dissertation apply
to the application, network and link layers in low power, lossy networks
of resource constrained devices (LLNs).

The thesis starts with an overview of the current landscape of IoT issues
and solutions. We define a service oriented architecture on top of open
standards, which incorporates resource constrained devices. From the
proposed architecture and the existing IoT solutions, we identify three
research areas, which are treated in the subsequent chapters.

Firstly, we focus on improving software updates in large LLNs. Delivering
such updates is slow and energy draining, due to the low link capacity
and the size of the software updates themselves. To resolve this issue, we
investigate how data compression and incremental updates algorithms
can be exploited in LLNs. We provide further improvements for reducing
the size of updates when multiple similar, but not identical devices in the
same network need to updated. Our results show up to 70% reduction
in the size of the updates, compared to traditional data compression
algorithms.

218 Summary

Secondly, we investigate service discovery protocols for LLNs. Existing
protocols, such as Multicast DNS with DNS-Based Service Discovery
(DNS-SD), are inapplicable to LLNs due to their always-on requirements
and heavy traffic load. To address these issues, we propose two exten-
sions of the protocol. The first extension introduces proxy servers, which
take over service discovery responsibilities from resource constrained
devices. The second extension enhances service selection criteria, by
enabling devices to be looked up based on their physical properties, such
as location, available sensors etc.

Thirdly, we analyze the network layer of low power devices, and its
interplay with the link layer. Two fundamental IoT protocols, for routing
(RPL) and multicast forwarding (MPL), rely on the Trickle protocol
for fast data dissemination with little redundant traffic. However, we
show that Trickle is not resilient to varying network topology, and due
to the lack of feedback from the link layer, can suffer from starvation,
sub-optimal routing and excessive overhead traffic. To resolve these
issues, we propose extensions to both the Trickle protocol, which makes
it scalable in networks with varying density, as well the link layer, which
prevents starvation to occur.

In summary, the contributions presented in this thesis are a step towards
the implementation of a fully connected world, where each device is
directly accessible, and open for interaction.

CURRICULUM VITAE

Milosh Stolikj was born on 28-02-1984 in Skopje, Macedonia. He fin-
ished Bachelor and Master studies at the Institute of Informatics, Ss.
Cyril and Methodius University in Skopje, Macedonia, in 2006 and 2010,
respectively.

He started working as a part time teaching assistant at the Ss. Cyril
and Methodius University, Skopje, Macedonia, from 2005 to 2009. At
the same period, he worked as a visiting teaching assistant at New York
University, Skopje, Macedonia. Between 2006 and 2007, he worked as
a software engineer in Maksat, Skopje, Macedonia. Next, from 2007
to 2009, he worked as a senior software engineer at Cabletel, Skopje,
Macedonia. Then, from 2009 to 2011, he worked as a research assistant
at the Ss. Cyril and Methodius University, Skopje, Macedonia.

In June 2011 he joined the System Architecture and Networking group
at the Mathematics and Computer Science Department, Eindhoven Uni-
versity of Technology, as a PhD candidate. The results from this work
are presented in this thesis.

	Preface
	Introduction
	Introduction
	IoT challenges
	Context and motivation
	Questions and contributions
	Outline

	System architecture
	Introduction
	IoT use cases
	Requirements
	Domain constraints
	Hardware constraints
	Power constraints
	Network constraints
	Summary: Issues and Requirements

	IoT application design
	Software protocols for IoT
	Physical and link layer
	Network and transport layer
	Application layer

	IoT system architecture
	Concepts
	Viewpoints
	Example implementation over IEEE 802.15.4
	Open problems

	Conclusion

	Software update
	Introduction
	Related work
	Incremental update
	Incremental update in consumer electronic devices
	Software update in WSNs
	Multi-version software update

	Optimizing software updates
	Data compression algorithms
	Delta encoding algorithms
	Horizontal Patching

	Evaluation
	Metrics
	Data compression and incremental updates
	Horizontal patching

	Conclusion

	Service Discovery
	Introduction
	Background

	Related work
	General-purpose SD protocols
	SD protocols for LLNs
	Summary: Solution for the IoT

	mDNS/DNS-SD service discovery
	Operational modes
	Strategies for responding to queries
	Problems in mDNS/DNS-SD for IoT

	Proxy support for sleeping nodes
	Active proxy delegation protocol
	Passive proxy delegation protocol
	Reliability
	Evaluation

	Support for context queries
	Context tag descriptors

	Future work: Packet size
	Conclusion

	Trickle-Based Protocols
	Introduction
	The Trickle Algorithm
	RPL basics
	MPL basics

	Related Work
	Trickle as a data dissemination mechanism
	Trickle as a part of RPL

	Impact of the redundancy constant
	Adaptive-k: a density-aware redundancy constant
	Evaluation of the adaptive redundancy constant
	RPL Evaluation
	Summary

	Lower layer interference on Trickle operation
	Low-power link layer protocols
	Interference scenario
	Cleansing MAC
	Evaluation
	Summary

	Conclusion

	Conclusion
	Contributions
	Limitations and future work

	Bibliography
	Acronyms
	List of Figures
	List of Tables
	Accomplishments
	IPA Dissertation Series
	Summary
	Curriculum Vitae

