48 research outputs found

    ADVANCED MODELING AND EFFICIENT OPTIMIZATION METHODS FOR REAL-TIME RESPONSE IN WATER NETWORKS

    Get PDF
    In response to a contamination incident in water distribution networks, effective mitigation procedures must be planned. Disinfectant booster stations can be used to neutralize a variety of contaminant and protect the public. In this thesis, two methods are proposed for the optimal placement of booster stations. Since the contaminant species is unknown a priori, these two methods differ in how they model the unknown reaction between the contaminant and the disinfectant. Both methods employ Mixed-Integer Linear Programming to minimize the expected impact over a large set of potential contamination scenarios that consider the uncertainty in the location and time of the incident. To make the optimal booster placement problem tractable for realistic large-scale networks, we exploit the symmetry in the problem structure to drastically reduce the problem size. The results highlight the effectiveness of booster stations in reducing the overall impact on the population, which is measured using two different metrics - mass of contaminant consumed, and population dosed above a cumulative mass threshold. Additionally, we also study the importance of various factors that influence the performance of disinfectant booster stations (e.g., sensor placement, contaminant reactivity and toxicity, etc.)

    Contaminant-Source Detection in a Water Distribution System Using the Ensemble Kalman Filter

    Get PDF
    [EN] Early detection of a contamination leach into a water distribution system, followed by the identification of the source and an evaluation of the total amount of the contaminant that has been injected into the system, is of paramount importance in order to protect a water user's health. The ensemble Kalman filter, which has been recently applied in hydrogeology to detect contaminant sources in aquifers, is extended to the identification of a contaminant source and its intensity in a water distribution system. The driving concept is the assimilation of contaminant observations at the nodes of the pipeline network at specified time intervals until enough information has been collected to allow the positioning of the source and the estimation of its intensity. Several scenarios are analyzed considering sources at different nodes, with different delays between the beginning of the pollution and the start of the measurements, different sampling time intervals, and different observation ending times. The scenarios are carried out in the benchmarking Anytown network, demonstrating the ability of the ensemble Kalman filter for contaminant-source detection in real water distribution systems. The use of the ensemble Kalman filter supposed a major breakthrough in the inverse modeling of subsurface flow and transport, and the successful results of its application to the synthetic Anytown network warrant further exploration of its capabilities in the realm of water distribution systems. (C) 2021 American Society of Civil Engineers.Butera, I.; Gómez-Hernández, JJ.; Nicotra, S. (2021). Contaminant-Source Detection in a Water Distribution System Using the Ensemble Kalman Filter. Journal of Water Resources Planning and Management. 147(7):1-11. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001383S111147

    Australasian Groundwater Conference: Groundwater in a Changing World

    Get PDF
    © Copyright is retained by the author/s of each abstract.The Australasian Groundwater Conference (AGC) was held in Brisbane Queensland, 24-27 November 2019. This conference was an epic event filled with informative presentations, entertaining networking events and stunning field trips exploring the sights and sounds that this subtropical dynamic region has to offer. The AGC 2019 featured a stimulating technical program around the theme of “Groundwater in a Changing World” that covered a broad range of applications to resources, infrastructure and environment. The program included stimulating plenary speakers, engaging panel discussions and enticing social events. Over 600 groundwater researchers, industry professionals and policy development specialists from around the region attended this unique event. There were many opportunities on offer for delegates to share their experiences, inform best practice, and identify the steps they can take to bring about lasting improvements to the management of our vital groundwater resources. Our hard working volunteer organisational team wishes to thank sponsors, speakers, delegates, exhibitors and volunteers for making the conference such a huge success

    Idaho National Laboratory LDRD Annual Report FY 2012

    Get PDF
    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs

    Laboratory Directed Research and Development FY-10 Annual Report

    Full text link
    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development

    Industrial Waste

    Get PDF
    This book is intended to fulfil the need for state-of-the-art development on the industrial wastes from different types of industries. Most of the chapters are based upon the ongoing research, how the different types of wastes are most efficiently treated and minimized, technologies of wastes control and abatement, and how they are released to the environment and their associated impact. A few chapters provide updated review summarizing the status and prospects of industrial waste problems from different perspectives. The book is comprehensive and not limited to a partial discussion of industrial waste, so the readers are acquainted with the latest information and development in the area, where different aspects are considered. The user can find both introductory material and more specific material based on interests and problems. For additional questions or comments, the users are encouraged to contact the authors

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore