379 research outputs found

    A mathematical framework for inverse wave problems in heterogeneous media

    Full text link
    This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations respresent parametrically the spatially varying mechanical properties of materials. Rocks, manufactured materials, and other wave propagation environments often exhibit spatial heterogeneity in mechanical properties at a wide variety of scales, and coefficient functions representing these properties must mimic this heterogeneity. We show how to choose domains (classes of nonsmooth coefficient functions) and data definitions (traces of weak solutions) so that optimization formulations of inverse wave problems satisfy some of the prerequisites for application of Newton's method and its relatives. These results follow from the properties of a class of abstract first-order evolution systems, of which various physical wave systems appear as concrete instances. Finite speed of propagation for linear waves with bounded, measurable mechanical parameter fields is one of the by-products of this theory

    Qualitative Stability of a Class of Non-Monotone Variational Inclusions. Application in Electronics

    Get PDF
    International audienceThe main concern of this paper is to investigate some stability properties (namely Aubin property and isolated calmness) of a special non-monotone variational inclusion. We provide a characterization of these properties in terms of the problem data and show their importance for the design of electrical circuits involving nonsmooth and non-monotone electronic devices like DIAC (DIode Alternating Current). Circuits with other devices like SCR (Silicon Controlled Rectifiers), Zener diodes, thyristors, varactors and transistors can be analyzed in the same way

    Incorporating unmodeled dynamics into first-principles models through machine learning

    Get PDF
    First-principles modeling of dynamical systems is a cornerstone of science and engineering and has enabled rapid development and improvement of key technologies such as chemical reactors, electrical circuits, and communication networks. In various disciplines, scientists structure the available domain knowledge into a system of differential equations. When designed, calibrated, and validated appropriately, these equations are used to analyze and predict the dynamics of the system. However, perfect knowledge is usually not accessible in real-world problems. The incorporated knowledge thus is a simplification of the real system and is limited by the underlying assumptions. This limits the extent to which the model reflects reality. The resulting lack of predictive power severely hampers the application potential of such models. Here we introduce a framework that incorporates machine learning into existing first-principles modeling. The machine learning model fills in the knowledge gaps of the first-principles model, capturing the unmodeled dynamics and thus improving the representativeness of the model. Moreover, we show that this approach lowers the data requirements, both in quantity and quality, and improves the generalization ability in comparison with a purely data-driven approach. This approach can be applied to any first-principles model with sufficient data available and has tremendous potential in many fields

    A Snapshot Algorithm for Linear Feedback Flow Control Design

    Get PDF
    The control of fluid flows has many applications. For micro air vehicles, integrated flow control designs could enhance flight stability by mitigating the effect of destabilizing air flows in their low Reynolds number regimes. However, computing model based feedback control designs can be challenging due to high dimensional discretized flow models. In this work, we investigate the use of a snapshot algorithm proposed in Ref. 1 to approximate the feedback gain operator for a linear incompressible unsteady flow problem on a bounded domain. The main component of the algorithm is obtaining solution snapshots of certain linear flow problems. Numerical results for the example flow problem show convergence of the feedback gains

    Nonsmooth dynamic optimization of systems with varying structure

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 357-365).In this thesis, an open-loop numerical dynamic optimization method for a class of dynamic systems is developed. The structure of the governing equations of the systems under consideration change depending on the values of the states, parameters and the controls. Therefore, these systems are called systems with varying structure. Such systems occur frequently in the models of electric and hydraulic circuits, chemical processes, biological networks and machinery. As a result, the determination of parameters and controls resulting in the optimal performance of these systems has been an important research topic. Unlike dynamic optimization problems where the structure of the underlying system is constant, the dynamic optimization of systems with varying structure requires the determination of the optimal evolution of the system structure in time in addition to optimal parameters and controls. The underlying varying structure results in nonsmooth and discontinuous optimization problems. The nonsmooth single shooting method introduced in this thesis uses concepts from nonsmooth analysis and nonsmooth optimization to solve dynamic optimization problems involving systems with varying structure whose dynamics can be described by locally Lipschitz continuous ordinary or differential-algebraic equations. The method converts the infinitedimensional dynamic optimization problem into an nonlinear program by parameterizing the controls. Unlike the state of the art, the method does not enumerate possible structures explicitly in the optimization and it does not depend on the discretization of the dynamics. Instead, it uses a special integration algorithm to compute state trajectories and derivative information. As a result, the method produces more accurate solutions to problems where the underlying dynamics is highly nonlinear and/or stiff for less effort than the state of the art. The thesis develops substitutes for the gradient and the Jacobian of a function in case these quantities do not exist. These substitutes are set-valued maps and an elements of these maps need to be computed for optimization purposes. Differential equations are derived whose solutions furnish the necessary elements. These differential equations have discontinuities in time. A numerical method for their solution is proposed based on state event location algorithms that detects these discontinuities. Necessary conditions of optimality for nonlinear programs are derived using these substitutes and it is shown that nonsmooth optimization methods called bundle methods can be used to obtain solutions satisfying these necessary conditions. Case studies compare the method to the state of the art and investigate its complexity empirically.by Mehmet Yunt.Ph.D
    • …
    corecore