This paper provides a theoretical foundation for some common formulations of
inverse problems in wave propagation, based on hyperbolic systems of linear
integro-differential equations with bounded and measurable coefficients. The
coefficients of these time-dependent partial differential equations respresent
parametrically the spatially varying mechanical properties of materials. Rocks,
manufactured materials, and other wave propagation environments often exhibit
spatial heterogeneity in mechanical properties at a wide variety of scales, and
coefficient functions representing these properties must mimic this
heterogeneity. We show how to choose domains (classes of nonsmooth coefficient
functions) and data definitions (traces of weak solutions) so that optimization
formulations of inverse wave problems satisfy some of the prerequisites for
application of Newton's method and its relatives. These results follow from the
properties of a class of abstract first-order evolution systems, of which
various physical wave systems appear as concrete instances. Finite speed of
propagation for linear waves with bounded, measurable mechanical parameter
fields is one of the by-products of this theory