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1. INTRODUCTION

The operation of off-shore oil and gas fields in terms of
e.g. controlling and optimizing the flow in the reservoir,
the flow of oil and gas from the well to the well-head, the
flow from the well-head to the riser, and the flow from
the riser to the topside and separation plant all involve
operation of two- or multi-phase systems. Consequently,
reservoir simulation and optimization for digitalization
and automation of off-shore oil and gas operations require
efficient and reliable computation of phase equilibrium
in vapor-liquid systems. Vapor-liquid phase equilibrium
computations are also important for construction of the
digital twin (a simulator) for oil and gas systems.

In this paper, we combine the second law of thermodynam-
ics, optimization theory, and the implicit function theorem
to discuss the computation of phase equilibrium and their
sensitivities in vapor-liquid equilibrium systems relevant
for the oil and gas industry. The sensitivities are needed
when the phase equilibrium computation is embedded as
part of a gradient-based method, i.e. typically a Newton-
based method, for optimization, dynamic simulation, or
steady-state simulation. We present and discuss the UV-
flash, the TV-flash, and the PT-flash problems as well as
numerically efficient ways of computing their solutions.

1.1 Literature

Several authors describe the simulation and optimization
of models, related to the oil and gas industry, that incor-
porate phase equilibrium constraints. Li and Johns (2006)
describe a method for improving the efficiency of flash
calculations in compositional reservoir simulations, and
Zaydullin et al. (2014) describe a fully thermal and com-
positional reservoir flow model. Hammer and Morin (2014)
and Qiu et al. (2014) simulate two-phase pipe flow systems,

� This project is funded by Innovation Fund Denmark in the
OPTION project (63-2013-3) and by EUDP in the IEA project
”Energy Efficient Process Control”.

and Laiglecia et al. (2012) solve a dynamic optimization
problem for a natural gas separation process. It is com-
mon to solve dynamic optimization problems with single-
shooting algorithms. Such algorithms combine numerical
simulation with numerical optimization algorithms. Ef-
ficient optimization algorithms require gradients of the
objective function. Such gradients can be computed with
adjoint methods (Jørgensen, 2007). Kourounis et al. (2014)
use an adjoint method for solving production optimization
problems for compositional reservoir models. Støren and
Hertzberg (1997) describe an alternative method for effi-
cient estimation of gradients based on approximate local
thermodynamic models. Dynamic models that incorporate
phase equilibrium constraints consist of 1) conservation
equations (differential equations) and 2) phase equilibrium
conditions (algebraic equations). Numerical algorithms for
solving such differential-algebraic equations either solve
the algebraic equations simultaneously with the conserva-
tion equations, or in a nested inner loop. Lima et al. (2008)
use a simultaneous approach to simulate a dynamic UV-
flash process, and Ritschel et al. (2017a,c,d) conclude that
a simultaneous approach is faster than a nested approach
for dynamic optimization of a UV-flash process. Wilhelm-
sen et al. (2013) find that a simultaneous approach is faster
for dynamic simulation of a UV-flash process, but not for
a steady-state PH-flash process.

1.2 Mathematics for the nested formulation

In the nested formulation for dynamic simulation, steady-
state simulation, and optimization, the phase equilibrium
is represented and solved as the optimization problem

y = y(x) = argmin
y

{f(y;x) : g(y;x) = 0}. (1)

In this formulation, x denotes the states, while y are
variables related to the solution of the vapor-liquid equi-
librium. It is important to notice that y = y(x) is regarded
as a function of x.

yx = yx(x) =
∂y

∂x
(x) (2)
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In dynamic simulation, the initial value problem (IVP),

x(t0) = x0, (3a)

ẋ(t) = F (y(x(t))), (3b)

may be solved numerically using the implicit Euler
method. In the implicit Euler method, the states, xk+1,
are computed by solving the residual equations

R(xk+1) = xk+1 −∆tF (y(xk+1))− xk = 0, (4)

using a variant of Newton’s method. Newton’s method
requires computation of the derivative

∂

∂xk+1
R(xk+1) = I −∆t

∂F

∂y
(y(xk+1))

∂y

∂x
(xk+1). (5)

Consequently, it is obvious that simulation by the implicit
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y
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is represented by its first order optimality conditions
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Consequently, the simultaneous method requires evalua-
tion of the function, G = G(x, y, λ), in the algebraic equa-
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and ∂G/∂λ.

1.4 Perspective

The formulations that we present in this paper are valid
when all phases are nonempty at the solution. It is not al-
ways possible to determine the exact number of nonempty
phases before solving the flash problem. This is particu-
larly true for complex models that may require the solution
of several flash problems. Consequently, the solutions to
the flash problems that we describe in this paper will be
incorrect if the number of specified phases is incorrect.
It is difficult to incorporate the disappearance of phases
because it makes the problem non-smooth. There are two
approaches which can extend the formulations that we
present in this paper such that the solution is correct
even when some phases are empty. The first approach
recasts the flash problem using non-smooth equations and
solves them with non-smooth methods (Stechlinski and
Barton, 2017; Watson et al., 2017; Sahlodin et al., 2016;
Barton and Lee, 2002). The second approach requires the
solution of a mathematical program with complementarity
constraints (MPCC) (Biegler, 2010; Baumrucker et al.,
2008; Raghunathan et al., 2004). Such a mathematical
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with equilibrium constraints (Outrata et al., 2013; Luo
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1.5 Paper organization

The remaining part of the paper is organized as fol-
lows. Section 2 presents methods for computation of
the minimizer and its sensitivities for the unconstrained
optimization problem, while Section 3 presents similar
methods for the equality-constrained optimization prob-
lem. Section 4 presents the evaluation of the required
thermodynamic functions using an open-source library,
www.psetools.org. We discuss different flash problems,
their use, and their equivalence in Section 5. Section 6
discusses the Rachford-Rice method for solution of the PT-
flash. Section 7 presents numerical examples, and Section
8 contains the conclusions.

2. UNCONSTRAINED OPTIMIZATION

The unconstrained optimization problem

min
y

f(y;x) (15)

has the solution denoted as

y = y(x) = argmin
y

f(y;x). (16)

In this section, we discuss the solution of this problem
when f(y;x) is smooth.

2.1 Optimality conditions

The first-order optimality condition for a minimizer of (15)
are

∇yf(y;x) = 0. (17)
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1. INTRODUCTION

The operation of off-shore oil and gas fields in terms of
e.g. controlling and optimizing the flow in the reservoir,
the flow of oil and gas from the well to the well-head, the
flow from the well-head to the riser, and the flow from
the riser to the topside and separation plant all involve
operation of two- or multi-phase systems. Consequently,
reservoir simulation and optimization for digitalization
and automation of off-shore oil and gas operations require
efficient and reliable computation of phase equilibrium
in vapor-liquid systems. Vapor-liquid phase equilibrium
computations are also important for construction of the
digital twin (a simulator) for oil and gas systems.

In this paper, we combine the second law of thermodynam-
ics, optimization theory, and the implicit function theorem
to discuss the computation of phase equilibrium and their
sensitivities in vapor-liquid equilibrium systems relevant
for the oil and gas industry. The sensitivities are needed
when the phase equilibrium computation is embedded as
part of a gradient-based method, i.e. typically a Newton-
based method, for optimization, dynamic simulation, or
steady-state simulation. We present and discuss the UV-
flash, the TV-flash, and the PT-flash problems as well as
numerically efficient ways of computing their solutions.

1.1 Literature

Several authors describe the simulation and optimization
of models, related to the oil and gas industry, that incor-
porate phase equilibrium constraints. Li and Johns (2006)
describe a method for improving the efficiency of flash
calculations in compositional reservoir simulations, and
Zaydullin et al. (2014) describe a fully thermal and com-
positional reservoir flow model. Hammer and Morin (2014)
and Qiu et al. (2014) simulate two-phase pipe flow systems,

� This project is funded by Innovation Fund Denmark in the
OPTION project (63-2013-3) and by EUDP in the IEA project
”Energy Efficient Process Control”.

and Laiglecia et al. (2012) solve a dynamic optimization
problem for a natural gas separation process. It is com-
mon to solve dynamic optimization problems with single-
shooting algorithms. Such algorithms combine numerical
simulation with numerical optimization algorithms. Ef-
ficient optimization algorithms require gradients of the
objective function. Such gradients can be computed with
adjoint methods (Jørgensen, 2007). Kourounis et al. (2014)
use an adjoint method for solving production optimization
problems for compositional reservoir models. Støren and
Hertzberg (1997) describe an alternative method for effi-
cient estimation of gradients based on approximate local
thermodynamic models. Dynamic models that incorporate
phase equilibrium constraints consist of 1) conservation
equations (differential equations) and 2) phase equilibrium
conditions (algebraic equations). Numerical algorithms for
solving such differential-algebraic equations either solve
the algebraic equations simultaneously with the conserva-
tion equations, or in a nested inner loop. Lima et al. (2008)
use a simultaneous approach to simulate a dynamic UV-
flash process, and Ritschel et al. (2017a,c,d) conclude that
a simultaneous approach is faster than a nested approach
for dynamic optimization of a UV-flash process. Wilhelm-
sen et al. (2013) find that a simultaneous approach is faster
for dynamic simulation of a UV-flash process, but not for
a steady-state PH-flash process.

1.2 Mathematics for the nested formulation

In the nested formulation for dynamic simulation, steady-
state simulation, and optimization, the phase equilibrium
is represented and solved as the optimization problem

y = y(x) = argmin
y

{f(y;x) : g(y;x) = 0}. (1)

In this formulation, x denotes the states, while y are
variables related to the solution of the vapor-liquid equi-
librium. It is important to notice that y = y(x) is regarded
as a function of x.

yx = yx(x) =
∂y

∂x
(x) (2)
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Several authors describe the simulation and optimization
of models, related to the oil and gas industry, that incor-
porate phase equilibrium constraints. Li and Johns (2006)
describe a method for improving the efficiency of flash
calculations in compositional reservoir simulations, and
Zaydullin et al. (2014) describe a fully thermal and com-
positional reservoir flow model. Hammer and Morin (2014)
and Qiu et al. (2014) simulate two-phase pipe flow systems,
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OPTION project (63-2013-3) and by EUDP in the IEA project
”Energy Efficient Process Control”.

and Laiglecia et al. (2012) solve a dynamic optimization
problem for a natural gas separation process. It is com-
mon to solve dynamic optimization problems with single-
shooting algorithms. Such algorithms combine numerical
simulation with numerical optimization algorithms. Ef-
ficient optimization algorithms require gradients of the
objective function. Such gradients can be computed with
adjoint methods (Jørgensen, 2007). Kourounis et al. (2014)
use an adjoint method for solving production optimization
problems for compositional reservoir models. Støren and
Hertzberg (1997) describe an alternative method for effi-
cient estimation of gradients based on approximate local
thermodynamic models. Dynamic models that incorporate
phase equilibrium constraints consist of 1) conservation
equations (differential equations) and 2) phase equilibrium
conditions (algebraic equations). Numerical algorithms for
solving such differential-algebraic equations either solve
the algebraic equations simultaneously with the conserva-
tion equations, or in a nested inner loop. Lima et al. (2008)
use a simultaneous approach to simulate a dynamic UV-
flash process, and Ritschel et al. (2017a,c,d) conclude that
a simultaneous approach is faster than a nested approach
for dynamic optimization of a UV-flash process. Wilhelm-
sen et al. (2013) find that a simultaneous approach is faster
for dynamic simulation of a UV-flash process, but not for
a steady-state PH-flash process.

1.2 Mathematics for the nested formulation

In the nested formulation for dynamic simulation, steady-
state simulation, and optimization, the phase equilibrium
is represented and solved as the optimization problem

y = y(x) = argmin
y

{f(y;x) : g(y;x) = 0}. (1)

In this formulation, x denotes the states, while y are
variables related to the solution of the vapor-liquid equi-
librium. It is important to notice that y = y(x) is regarded
as a function of x.

yx = yx(x) =
∂y

∂x
(x) (2)
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In dynamic simulation, the initial value problem (IVP),

x(t0) = x0, (3a)

ẋ(t) = F (y(x(t))), (3b)

may be solved numerically using the implicit Euler
method. In the implicit Euler method, the states, xk+1,
are computed by solving the residual equations

R(xk+1) = xk+1 −∆tF (y(xk+1))− xk = 0, (4)

using a variant of Newton’s method. Newton’s method
requires computation of the derivative

∂

∂xk+1
R(xk+1) = I −∆t

∂F

∂y
(y(xk+1))

∂y

∂x
(xk+1). (5)

Consequently, it is obvious that simulation by the implicit
Euler method requires evaluation of y = y(x) and yx =
yx(x). Similarly, computation of the steady-state, xs, by
solution of

ẋ(t) = F (y(xs)) = 0, (6)
using Newton’s method,

F (y(x[k]
s )) +

[
∂F

∂y
(y(x[k]

s ))
∂y

∂x
(x[k]

s )

]
∆x[k]

s = 0, (7a)

x[k+1]
s = x[k]

s +∆x[k]
s , (7b)

requires evaluation of y = y(x) and yx = yx(x).

1.3 Mathematics for the simultaneous formulation

In the simultaneous formulation, the phase equilibrium
problem,

min
y

f(y;x), (8a)

s.t. g(y;x) = 0, (8b)

is represented by its first order optimality conditions
denoted as the algebraic equations

G(x, y, λ) = 0, (9)

where λ denotes Lagrange multipliers associated with (8).
Dynamic simulation using the simultaneous formulation is
conducted by numerical solution of the initial value index-
1 differential algebraic equation system

x(t0) = x0, (10a)

ẋ(t) = F (y(t)), (10b)

G(x(t), y(t), λ(t)) = 0. (10c)

Solution of this system using the implicit Euler method
involves solution of

Rk+1 =

[
Dk+1

Gk+1

]
=

[
xk+1 −∆tF (yk+1)− xk

G(xk+1, yk+1, λk+1)

]
= 0, (11)

by a Newton method. Let w = [x; y;λ]. The Newton
method requires computation of the derivative

∂Rk+1

∂wk+1
=




I −∆t
∂F

∂y
0

∂G

∂x

∂G

∂y

∂G

∂λ


 . (12)

Similarly, the steady state, (xs, ys, λs), is computed by
solution of

R =

[
ẋ(t)
G

]
=

[
F (ys)

G(xs, ys, λs)

]
= 0, (13)

using a variant of Newton’s method. Newton’s method
requires computation of the derivatives

∂R

∂w
=




0
∂F

∂y
0

∂G

∂x

∂G

∂y

∂G

∂λ


 . (14)

Consequently, the simultaneous method requires evalua-
tion of the function, G = G(x, y, λ), in the algebraic equa-
tions and computation of the derivatives, ∂G/∂x, ∂G/∂y,
and ∂G/∂λ.

1.4 Perspective

The formulations that we present in this paper are valid
when all phases are nonempty at the solution. It is not al-
ways possible to determine the exact number of nonempty
phases before solving the flash problem. This is particu-
larly true for complex models that may require the solution
of several flash problems. Consequently, the solutions to
the flash problems that we describe in this paper will be
incorrect if the number of specified phases is incorrect.
It is difficult to incorporate the disappearance of phases
because it makes the problem non-smooth. There are two
approaches which can extend the formulations that we
present in this paper such that the solution is correct
even when some phases are empty. The first approach
recasts the flash problem using non-smooth equations and
solves them with non-smooth methods (Stechlinski and
Barton, 2017; Watson et al., 2017; Sahlodin et al., 2016;
Barton and Lee, 2002). The second approach requires the
solution of a mathematical program with complementarity
constraints (MPCC) (Biegler, 2010; Baumrucker et al.,
2008; Raghunathan et al., 2004). Such a mathematical
program belongs to the class of mathematical programs
with equilibrium constraints (Outrata et al., 2013; Luo
et al., 1996). Both approaches combine equations that are
valid in single-phase regions with the equations that are
valid in the two-phase region. Both approaches therefore
extend the formulations that we present in this paper.

1.5 Paper organization

The remaining part of the paper is organized as fol-
lows. Section 2 presents methods for computation of
the minimizer and its sensitivities for the unconstrained
optimization problem, while Section 3 presents similar
methods for the equality-constrained optimization prob-
lem. Section 4 presents the evaluation of the required
thermodynamic functions using an open-source library,
www.psetools.org. We discuss different flash problems,
their use, and their equivalence in Section 5. Section 6
discusses the Rachford-Rice method for solution of the PT-
flash. Section 7 presents numerical examples, and Section
8 contains the conclusions.

2. UNCONSTRAINED OPTIMIZATION

The unconstrained optimization problem

min
y

f(y;x) (15)

has the solution denoted as

y = y(x) = argmin
y

f(y;x). (16)

In this section, we discuss the solution of this problem
when f(y;x) is smooth.

2.1 Optimality conditions

The first-order optimality condition for a minimizer of (15)
are

∇yf(y;x) = 0. (17)

IFAC OOGP 2018
Esbjerg, Denmark. May 30 - June 1, 2018

95



96 Tobias K.S. Ritschel  et al. / IFAC PapersOnLine 51-8 (2018) 94–101

2.2 Newton’s method and the Hessian matrix

The first-order optimality conditions (17) are solved using
Newton’s method. Each iteration in Newton’s method
involves solution of the linear system of equations

∇2
yyf(y;x)∆y = −∇yf(x; y), (18)

using a Cholesky factorization of the Hessian matrix,
LL′ = H = ∇2

yyf(y;x). This factorization also reveals
if the Hessian matrix is positive definite.

2.3 Sensitivity

Application of the implicit function theorem to (17) pro-
vides the following equation

∇2
yyf(y;x)yx = − [∇yxf(y;x)]

′
, (19)

for computation of the sensitivities

yx = yx(x) =
∂y

∂x
(x) = [∇xy(x)]

′
. (20)

It is important to notice that the existing Cholesky fac-
torization, LL′ = H = ∇2

yyf(y;x), can be re-used in this
computation.

2.4 Summary

The solution

y = y(x) = argmin
y

f(y;x), (21)

to the unconstrained optimization problem is a solution
of the nonlinear first-order optimality conditions (17). Its
sensitivities are

yx = yx(x) = −
[
∇2

yyf(y;x)
]−1

[∇yxf(y;x)]
′
. (22)

3. EQUALITY CONSTRAINED OPTIMIZATION

We denote the solution to the equality constrained opti-
mization problem

min
y

f(y;x), (23a)

s.t. g(y;x) = 0, (23b)

as

y = y(x) = argmin
y

{f(y;x) : g(y;x) = 0} . (24)

3.1 Optimality conditions

The Lagrangian function is

L(y, λ;x) = f(y;x)− λ′g(y;x), (25)

where λ are Lagrange multipliers. The Karush-Kuhn-
Tucker (KKT) conditions (first-order optimality condi-
tions) for a minimizer of (23) require that the gradients
of the Lagrangian with respect to y are zero and that the
equality constraints are satisfied:

∇yL(y, λ;x) = ∇yf(y;x)−∇yg(y;x)λ = 0, (26a)

g(y;x) = 0. (26b)

3.2 Newton’s method and the KKT-matrix

We solve the KKT conditions (26) for both the minimizer,
y, and the Lagrange multipliers, λ. We use Newton’s

method. Each Newton iteration requires the solution of
the linear system of equations[

∇2
yyL(y, λ;x) −∇yg(y;x)

−∇yg(y;x)
′ 0

] [
∆y
∆λ

]
= −

[
∇yL(y, λ;x)

g(y;x)

]
,

(27)
where the Hessian of the Lagrangian is

∇2
yyL(y, λ;x) = ∇2

yyf(y;x)−
∑
i

λi∇2
yygi(y;x). (28)

The Newton update is

ȳ = y +∆y, (29a)

λ̄ = λ+∆λ. (29b)

It is possible to reformulate the linear system (27) such
that its solution contains λ̄ instead of ∆λ:[

∇2
yyL(y, λ;x) −∇yg(y;x)

−∇yg(y;x)
′ 0

] [
∆y
λ̄

]
= −

[
∇yf(y;x)
g(y;x)

]
.

(30)
The system matrix in (27) and (30) is called the KKT
matrix,

K =

[
∇2

yyL(y, λ;x) −∇yg(y;x)
−∇yg(y;x)

′ 0

]
. (31)

The KKT matrix is indefinite. We therefore use an LDL
factorization, LDL′ = K, when solving (30).

3.3 Sensitivity equations

The sensitivity equations result from the application of the
implicit function theorem to (26):
[
∇2

yyL(y, λ;x) −∇yg(y;x)
−∇yg(y;x)

′ 0

] [
yx
λx

]
= −

[[
∇2

yxf(y;x)
]′

[
∇2

yxg(y;x)
]′
]
.

(32)
The solution of (32) gives the sensitivities of both the
minimizer and the Lagrange multipliers,

yx = yx(x) =
∂y

∂x
(x) = [∇xy(x)]

′
, (33a)

λx = λx(x) =
∂λ

∂x
(x) = [∇xλ(x)]

′
. (33b)

We reuse the LDL factorization of the KKT matrix from
the solution of (30).

Special case: In the case where f(y;x) = f(y) and
g(y;x) = g(y)− h(x), the sensitivity equations become[

∇2
yyL(y, λ;x) −∇g(y)
−∇g(y)′ 0

] [
yx
λx

]
=

[
0

hx(x)

]
. (34)

3.4 Summary

The solution to the equality constrained optimization
problem,

y = y(x) = argmin
y

{f(y;x) : g(y;x) = 0} , (35)

is a solution to the nonlinear KKT conditions (26). The
sensitivities of the solution, y, and the associated Lagrange
multipliers, λ, are
[
yx
λx

]
=

[
∇2

yyL(y, λ;x) −∇yg(y;x)
−∇yg(y;x)

′ 0

]−1
[[
∇2

yxf(y;x)
]′

[
∇2

yxg(y;x)
]′
]
.

(36)
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4. THERMODYNAMIC FUNCTIONS

The evaluation of thermodynamic functions is central to
phase equilibrium computations. In this section, we discuss
the relations between thermodynamic state functions, and
we describe the relation between the fugacity coefficients
and Gibbs energy. The methods described in Section 2 and
Section 3 require the first and second order derivatives of
thermodynamic functions. For that reason, Ritschel et al.
(2017b, 2016) developed an open-source thermodynamic
library, ThermoLib, which provides routines for evaluating
the enthalpy, entropy, and volume as well as their first
and second order derivatives with respect to temperature,
pressure, and the composition vector. We use ThermoLib
in this work. For more information on thermodynamic
functions, we refer the reader to introductory texts on
chemical engineering thermodynamics by Smith et al.
(2005), Gmehling et al. (2012), Koretsky (2014), and
Walas (1985).

4.1 Gibbs energy and thermodynamic functions

The temperature, T , pressure, P , and phase composition
vector, n, completely specify a phase. The thermodynamic
model in ThermoLib provides expressions for enthalpy,
entropy, and volume:

H = H(T, P, n), (37a)

S = S(T, P, n), (37b)

V = V (T, P, n). (37c)

We compute the remaining thermodynamic functions,
internal energy, Gibbs energy, and Helmholtz energy, from
the fundamental thermodynamic relations,

U = U(T, P, n) = H(T, P, n)− PV (T, P, n), (38a)

G = G(T, P, n) = H(T, P, n)− TS(T, P, n), (38b)

A = A(T, P, n) = U(T, P, n)− TS(T, P, n). (38c)

When Gibbs energy is expressed as a function of its
canonical variables, (T, P, n), it plays the role of a gener-
ating function, i.e. all other thermodynamic functions can
be computed from it by simple mathematical operations
such as differentiation and elementary algebra. Therefore,
Gibbs energy implicitly represents complete property in-
formation:

H = H(T, P, n) = G(T, P, n)− T
∂G

∂T
(T, P, n), (39a)

S = S(T, P, n) = −∂G

∂T
(T, P, n), (39b)

V = V (T, P, n) =
∂G

∂P
(T, P, n). (39c)

4.2 Chemical potential

We introduce the chemical potential in order to define
the fugacity. The chemical potential of component i in a
mixture is the partial derivative of the Gibbs energy of
that mixture with respect to the i’th mole number:

µi(T, P, n) =
∂G

∂ni
(T, P, n). (40)

The definition of the fugacity of component i involves
1) the i’th chemical potential of an ideal gas mixture,

µig
i (T, P, n) = ∂Gig/∂ni(T, P, n), and 2) the chemi-

cal potential of a pure component ideal gas that only

contains ni moles of component i, µpc,ig
i (T, P, ni) =

∂Gpc,ig
i /∂ni(T, P, ni). The latter is independent of the

mole number, i.e. µpc,ig
i (T, P, ni) = µpc,ig

i (T, P ). The i’th
chemical potential of an ideal gas mixture is

µig
i (T, P, n) =

∂Gig

∂ni
(T, P, n) = µpc,ig

i (T, P0) +RT ln
ziP

P0
,

(41)
where P0 is a reference pressure, and zi = ni/

∑
i ni is the

mole fraction of component i.

4.3 Fugacity

The fugacity is implicitly defined such that the chemical
potential of nonideal mixtures, µi(T, P, n), is given by
the right-hand side of (41) where the fugacity, fi(T, P, n),
replaces ziP :

µi(T, P, n) =
∂G

∂ni
(T, P, n)

= µpc,ig
i (T, P0) +RT ln

fi(T, P, n)

P0
. (42)

We subtract (41) from (42):

RT ln
fi(T, P, n)

ziP
=

∂

∂ni

(
G(T, P, n)−Gig(T, P, n)

)
.

(43)
The difference between the actual Gibbs energy of a mix-
ture and the Gibbs energy of that mixture if it was an ideal
gas is defined as the residual Gibbs energy, GR(T, P, n) =
G(T, P, n) − Gig(T, P, n). We also introduce the fugacity
coefficients, φi(T, P, n) = fi(T, P, n)/(ziP ). With these
two definitions, we obtain the following expression for the
logarithm of the fugacity coefficients:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
(T, P, n). (44)

The fugacity coefficients play an important role in isother-
mal and isobaric (constant temperature and pressure)
vapor-liquid equilibrium problems as we discuss in Section
6. The logarithm of the fugacity coefficients of ideal gas
mixtures are by definition zero, i.e. lnφig

i (T, P, nv) = 0.
For ideal liquid mixtures, the logarithm of the fugacity
coefficients are (Ritschel and Jørgensen, 2017)

lnφid
i (T, P, nl) =

P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(45)

vli(T ) is the liquid volume, and P sat
i (T ) is the saturation

pressure. We see that the ideal liquid fugacity coefficients
are independent of composition, i.e. lnφid

i (T, P, nl) =
lnφid

i (T, P ). ThermoLib uses cubic equations of state for
nonideal mixtures. It is outside the scope of this work to
describe the corresponding fugacity coefficients. However,
both Ritschel et al. (2016) and Ritschel and Jørgensen
(2017) provide expressions for them.

5. FLASH PROBLEMS

Table 1 shows the specified variables, the state function
that is minimal at equilibrium, and relevant types of
models for different flash problems (Paterson, 2017). We
demonstrate that the UV-, the TV-, and the PT-flash
problems can be formulated as unconstrained (15) and
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4. THERMODYNAMIC FUNCTIONS

The evaluation of thermodynamic functions is central to
phase equilibrium computations. In this section, we discuss
the relations between thermodynamic state functions, and
we describe the relation between the fugacity coefficients
and Gibbs energy. The methods described in Section 2 and
Section 3 require the first and second order derivatives of
thermodynamic functions. For that reason, Ritschel et al.
(2017b, 2016) developed an open-source thermodynamic
library, ThermoLib, which provides routines for evaluating
the enthalpy, entropy, and volume as well as their first
and second order derivatives with respect to temperature,
pressure, and the composition vector. We use ThermoLib
in this work. For more information on thermodynamic
functions, we refer the reader to introductory texts on
chemical engineering thermodynamics by Smith et al.
(2005), Gmehling et al. (2012), Koretsky (2014), and
Walas (1985).

4.1 Gibbs energy and thermodynamic functions

The temperature, T , pressure, P , and phase composition
vector, n, completely specify a phase. The thermodynamic
model in ThermoLib provides expressions for enthalpy,
entropy, and volume:

H = H(T, P, n), (37a)

S = S(T, P, n), (37b)

V = V (T, P, n). (37c)

We compute the remaining thermodynamic functions,
internal energy, Gibbs energy, and Helmholtz energy, from
the fundamental thermodynamic relations,

U = U(T, P, n) = H(T, P, n)− PV (T, P, n), (38a)

G = G(T, P, n) = H(T, P, n)− TS(T, P, n), (38b)

A = A(T, P, n) = U(T, P, n)− TS(T, P, n). (38c)

When Gibbs energy is expressed as a function of its
canonical variables, (T, P, n), it plays the role of a gener-
ating function, i.e. all other thermodynamic functions can
be computed from it by simple mathematical operations
such as differentiation and elementary algebra. Therefore,
Gibbs energy implicitly represents complete property in-
formation:

H = H(T, P, n) = G(T, P, n)− T
∂G

∂T
(T, P, n), (39a)

S = S(T, P, n) = −∂G

∂T
(T, P, n), (39b)

V = V (T, P, n) =
∂G

∂P
(T, P, n). (39c)

4.2 Chemical potential

We introduce the chemical potential in order to define
the fugacity. The chemical potential of component i in a
mixture is the partial derivative of the Gibbs energy of
that mixture with respect to the i’th mole number:

µi(T, P, n) =
∂G

∂ni
(T, P, n). (40)

The definition of the fugacity of component i involves
1) the i’th chemical potential of an ideal gas mixture,

µig
i (T, P, n) = ∂Gig/∂ni(T, P, n), and 2) the chemi-

cal potential of a pure component ideal gas that only

contains ni moles of component i, µpc,ig
i (T, P, ni) =

∂Gpc,ig
i /∂ni(T, P, ni). The latter is independent of the

mole number, i.e. µpc,ig
i (T, P, ni) = µpc,ig

i (T, P ). The i’th
chemical potential of an ideal gas mixture is

µig
i (T, P, n) =

∂Gig

∂ni
(T, P, n) = µpc,ig

i (T, P0) +RT ln
ziP

P0
,

(41)
where P0 is a reference pressure, and zi = ni/

∑
i ni is the

mole fraction of component i.

4.3 Fugacity

The fugacity is implicitly defined such that the chemical
potential of nonideal mixtures, µi(T, P, n), is given by
the right-hand side of (41) where the fugacity, fi(T, P, n),
replaces ziP :

µi(T, P, n) =
∂G

∂ni
(T, P, n)

= µpc,ig
i (T, P0) +RT ln

fi(T, P, n)

P0
. (42)

We subtract (41) from (42):

RT ln
fi(T, P, n)

ziP
=

∂

∂ni

(
G(T, P, n)−Gig(T, P, n)

)
.

(43)
The difference between the actual Gibbs energy of a mix-
ture and the Gibbs energy of that mixture if it was an ideal
gas is defined as the residual Gibbs energy, GR(T, P, n) =
G(T, P, n) − Gig(T, P, n). We also introduce the fugacity
coefficients, φi(T, P, n) = fi(T, P, n)/(ziP ). With these
two definitions, we obtain the following expression for the
logarithm of the fugacity coefficients:

lnφi(T, P, n) =
1

RT

∂GR

∂ni
(T, P, n). (44)

The fugacity coefficients play an important role in isother-
mal and isobaric (constant temperature and pressure)
vapor-liquid equilibrium problems as we discuss in Section
6. The logarithm of the fugacity coefficients of ideal gas
mixtures are by definition zero, i.e. lnφig

i (T, P, nv) = 0.
For ideal liquid mixtures, the logarithm of the fugacity
coefficients are (Ritschel and Jørgensen, 2017)

lnφid
i (T, P, nl) =

P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(45)

vli(T ) is the liquid volume, and P sat
i (T ) is the saturation

pressure. We see that the ideal liquid fugacity coefficients
are independent of composition, i.e. lnφid

i (T, P, nl) =
lnφid

i (T, P ). ThermoLib uses cubic equations of state for
nonideal mixtures. It is outside the scope of this work to
describe the corresponding fugacity coefficients. However,
both Ritschel et al. (2016) and Ritschel and Jørgensen
(2017) provide expressions for them.

5. FLASH PROBLEMS

Table 1 shows the specified variables, the state function
that is minimal at equilibrium, and relevant types of
models for different flash problems (Paterson, 2017). We
demonstrate that the UV-, the TV-, and the PT-flash
problems can be formulated as unconstrained (15) and
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Table 1. Examples of flash problems

Spec. State function Example of relevant model

(P, T ) G Isothermal-isobaric steady-state flow
(T, V ) A Isothermal unsteady-state flow
(P,H) −S Thermal steady-state flow
(U, V ) −S Thermal unsteady-state flow
(P, S) H Reversible expansion/compression

constrained (23) optimization problems (Michelsen, 1999;
Michelsen and Mollerup, 2007). We use a single-stage
dynamic model to illustrate the use of the flash problems
in dynamic models. Typically, more complex models can
be formulated as interconnected single-stage models. The
PT-flash is of particular interest because 1) it can be
formulated as unconstrained optimization, and 2) other
types of flash problems are equivalent to a combination
of algebraic constraints and the PT-flash. The PT-flash is
therefore often used in unsteady-state computations using
a nested approach. We discuss both of these aspects.

5.1 UV-flash problem

The UV-flash problem is considered difficult to solve (Saha
and Carroll, 1997; Castier, 2009). However, it is a key
component in rigorous models of vapor-liquid equilibrium
processes such as fluid vessels (Castier, 2010), distillation
columns (Flatby et al., 1994), and thermal- and composi-
tional oil recovery. We consider a single-stage model, essen-
tially a fluid vessel, that contains a vapor-liquid mixture.
A feed stream (f) supplies mass, and therefore energy, to
the mixture. A vapor stream (v) and a liquid stream (l)
extract mass and energy from the mixture. Furthermore,
a heat input, Q, supplies energy to the mixture. The mass
and energy conservation equations are

ṅi = fi − li − vi, (46a)

U̇ = Hf −Hl −Hv +Q, (46b)

where ni is the moles of component i, and U is the
internal energy of the mixture. The mixture temperature,
T , pressure, P , and vapor-liquid composition, nv and nl,
completely specify the vapor-liquid streams, i.e.

li = li(T, P, n
l), (47a)

vi = vi(T, P, n
v), (47b)

and

Hl = Hl(T, P, n
l), (48a)

Hv = Hv(T, P, n
v). (48b)

We assume that the vapor phase and the liquid phase are in
equilibrium at all times. The conservation equations (46)
specify the internal energy, U , and the total moles of each
chemical component, n. The volume of the tank, V , is
fixed. U , V , and n completely specify the temperature, T ,
pressure, P , and phase compositions of the vapor-liquid
mixture, nv and nl. That is because the second law of
thermodynamics states that the entropy, S, of a closed
system is maximal at equilibrium, or equivalently that −S
is minimal:

min
T,P,nv,nl

− S = −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
, (49a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (49b)

V v(T, P, nv) + V l(T, P, nl) = V, (49c)

nv
i + nl

i = ni, i = 1, . . . , NC . (49d)

We use the linear mass balance constraint (49d) to elimi-
nate the liquid mole numbers, nl = n− nv:

min
T,P,nv

− S = −
(
Sv(T, P, nv) + Sl(T, P, n− nv)

)
,

(50a)

s.t. Uv(T, P, nv) + U l(T, P, n− nv) = U, (50b)

V v(T, P, nv) + V l(T, P, n− nv) = V. (50c)

5.2 TV-flash problem

We again consider the single-stage model (46). We assume
that the internal energy is constant:

ṅi = fi − li − vi, (51a)

U̇ = Hf −Hl −Hv +Q = 0. (51b)

The dynamic equations therefore only consist of the mass
conservation equations:

ṅi = fi − li − vi. (52)

The condition of constant internal energy requires that
the heat input precisely matches the difference between
the enthalpies of the feed and the vapor-liquid streams:

Q = Hl +Hv −Hf = ∆H. (53)

When the temperature is constant, the condition of max-
imal entropy is equivalent to a condition of minimal
Helmholtz energy, A:

min
P,nv,nl

A = Av(T, P, nv) +Al(T, P, nl), (54a)

s.t. V v(T, P, nv) + V l(T, P, nl) = V, (54b)

nv
i + nl

i = ni, i = 1, . . . , NC . (54c)

T , V , and n therefore completely specify P , nv, and nl.
Again, we eliminate the liquid mole numbers:

min
P,nv

A = Av(T, P, nv) +Al(T, P, n− nv), (55a)

s.t. V v(T, P, nv) + V l(T, P, n− nv) = V. (55b)

5.3 PT-flash problem

We consider the single-stage model (46) again. Isothermal
and isobaric processes (constant temperature and pres-
sure) are relevant to steady state processes:

ṅi = fi − li − vi = 0, (56a)

U̇ = Hf −Hl −Hv +Q = 0. (56b)

The heat input exactly matches the difference in enthalpy
of the feed and the vapor-liquid streams,

Q = Hl +Hv −Hf = ∆H, (57)

and the molar flow rates of the vapor-liquid streams
exactly match those of the feed stream:

li + vi = fi. (58)

The condition of maximal entropy is equivalent to a
condition of minimal Gibbs energy when both temperature
and pressure are constant:

min
nv,nl

G = Gv(T, P, nv) +Gl(T, P, nl), (59a)

s.t. nv
i + nl

i = ni, i = 1, . . . , NC . (59b)

T , P , and n thus completely specify nv and nl. We elimi-
nate the liquid mole numbers and obtain an unconstrained
minimization problem:

min
nv

G = Gv(T, P, nv) +Gl(T, P, n− nv). (60)
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5.4 Equivalence of different flash problems

The UV-flash problem (50) is equivalent to a combination
of the PT-flash (60) and constraints on U and V as in
(50b)-(50c). The UV constraints are thereby effectively
moved outside of the optimization problem at the cost
of changing the objective function. The VT flash problem
(55) is also equivalent to the PT-flash (60) combined with a
constraint on V as in (55b). That means that it is possible
to solve UV- and TV-flash problems with unconstrained
optimization methods. It also means that existing software
for PT-flash problems can be reused when solving the more
complex flash problems.

6. THE RACHFORD-RICE EQUATIONS

The Rachford-Rice equations are often used to solve PT-
flash problems. We outline the associated computation and
the computations of the needed sensitivities.

6.1 Vapor-liquid equilibrium constant

The PT-flash problem can be formulated as the uncon-
strained optimization problem

min
nv

G = Gv(T, P, nv) +Gl(T, P, n− nv), (61)

for which the first-order optimality conditions are

∂G

∂nv
i

=
∂Gv

∂nv
i

(T, P, nv)− ∂Gl

∂nl
i

(T, P, nl) = 0, (62)

for all i and with the liquid phase mole numbers being
nl = n − nv. The chemical potentials of the vapor and
liquid phases are defined as

µv
i (T, P, n

v) =
∂Gv

∂nv
i

(T, P, nv), (63a)

µl
i(T, P, n

l) =
∂Gl

∂nl
i

(T, P, nl). (63b)

The equilibrium conditions (62) are therefore

µv
i (T, P, n

v) = µl
i(T, P, n

l). (64)

Because of the definition of the fugacities (42), the condi-
tion of equal chemical potentials (64) is equivalent to

fv
i (T, P, n

v) = f l
i (T, P, n

l). (65)

Let xi = nl
i/
∑

i n
l
i and yi = nv

i /
∑

i n
v
i be the mole frac-

tions of the liquid and vapor phase, respectively. Because
of the definition of the fugacity coefficients, the equal-
ity of fugacities (65) is equivalent to φv

i (T, P, n
v)yiP =

φl
i(T, P, n

l)xiP or equivalently

φv
i (T, P, n

v)yi = φl
i(T, P, n

l)xi. (66)

The equilibrium constants (sometimes referred to as equi-
librium ratios) are defined as Ki = yi/xi. We use (66) to
derive an expression for the equilibrium constants:

Ki(T, P, n
v, nl) =

yi
xi

=
φl
i(T, P, n

l)

φv
i (T, P, n

v)
. (67)

6.2 The Rachford-Rice method - Ideal vapor-liquid mixture

For mixtures of an ideal gas and an ideal liquid, the vapor
liquid equilibrium constant defined by (67) is

Ki = Ki(T, P ) =
P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(68)

In that case, the vapor-liquid equilibrium constant is inde-
pendent of composition and depends only on temperature,
T , and pressure, P , but not on the compositions of the
liquid and vapor mixture. Define zi = ni/

∑
i ni such that

nl
i + nv

i = ni can be expressed as

(1− β)xi + βyi = zi, (69)

where β is the vapor fraction defined as

β =

∑
i n

v
i∑

i ni
. (70)

The relation (69) and Ki = yi/xi imply that

zi = (1− β)xi + βyi
= (1− β)xi + βKixi = (1 + β(Ki − 1))xi,

(71)

such that

xi =
1

1 + β(Ki − 1)
zi, (72a)

yi = Kixi =
Ki

1 + β(Ki − 1)
zi. (72b)

This implies that

nl
i = xi(1− β)

∑
i

ni =
1− β

1 + β(Ki − 1)
ni, (73a)

nv
i = yiβ

∑
i

ni =
βKi

1 + β(Ki − 1)
ni. (73b)

The relations
∑

i xi =
∑

i yi = 1 imply that
∑

i(yi −
xi) = 0. By combination of this observation and (72), we
obtain the following relation

f(β) =
∑
i

(yi − xi) =
∑
i

(Ki − 1)xi

=
∑
i

Ki − 1

1 + β(Ki − 1)
zi = 0,

(74)

for computation of β. The derivative of this function is

f ′(β) = −
∑
i

[
Ki − 1

1 + β(Ki − 1)

]2
zi ≤ 0. (75)

Newton’s method for determination of β is

βk+1 = βk − f(βk)

f ′(βk)
. (76)

When β has been computed, we compute the vapor com-
position, nv

i , from (73b) and the liquid composition from
nl
i = ni − nv

i .

Sensitivity: The vapor fraction is a function of temper-
ature, pressure, and total composition, i.e. β = β(K,n) =
β(K(T, P ), n) = β(T, P, n). The sensitivities of β are

∂β

∂T
=

∑
i

∂β

∂Ki

∂Ki

∂T
, (77a)

∂β

∂P
=

∑
i

∂β

∂Ki

∂Ki

∂P
, (77b)

∂β

∂nj
=

∑
i

∂β

∂zi

∂zi
∂nj

, (77c)

where

∂β

∂Ki
= −

∂f
∂Ki

f ′(β)
,

∂β

∂zi
= −

∂f
∂zi

f ′(β)
. (78)

Similarly, the vapor-liquid mole numbers, nv
i and nl

i, are
functions of temperature, pressure, and total composition,
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Table 1. Examples of flash problems

Spec. State function Example of relevant model

(P, T ) G Isothermal-isobaric steady-state flow
(T, V ) A Isothermal unsteady-state flow
(P,H) −S Thermal steady-state flow
(U, V ) −S Thermal unsteady-state flow
(P, S) H Reversible expansion/compression

constrained (23) optimization problems (Michelsen, 1999;
Michelsen and Mollerup, 2007). We use a single-stage
dynamic model to illustrate the use of the flash problems
in dynamic models. Typically, more complex models can
be formulated as interconnected single-stage models. The
PT-flash is of particular interest because 1) it can be
formulated as unconstrained optimization, and 2) other
types of flash problems are equivalent to a combination
of algebraic constraints and the PT-flash. The PT-flash is
therefore often used in unsteady-state computations using
a nested approach. We discuss both of these aspects.

5.1 UV-flash problem

The UV-flash problem is considered difficult to solve (Saha
and Carroll, 1997; Castier, 2009). However, it is a key
component in rigorous models of vapor-liquid equilibrium
processes such as fluid vessels (Castier, 2010), distillation
columns (Flatby et al., 1994), and thermal- and composi-
tional oil recovery. We consider a single-stage model, essen-
tially a fluid vessel, that contains a vapor-liquid mixture.
A feed stream (f) supplies mass, and therefore energy, to
the mixture. A vapor stream (v) and a liquid stream (l)
extract mass and energy from the mixture. Furthermore,
a heat input, Q, supplies energy to the mixture. The mass
and energy conservation equations are

ṅi = fi − li − vi, (46a)

U̇ = Hf −Hl −Hv +Q, (46b)

where ni is the moles of component i, and U is the
internal energy of the mixture. The mixture temperature,
T , pressure, P , and vapor-liquid composition, nv and nl,
completely specify the vapor-liquid streams, i.e.

li = li(T, P, n
l), (47a)

vi = vi(T, P, n
v), (47b)

and

Hl = Hl(T, P, n
l), (48a)

Hv = Hv(T, P, n
v). (48b)

We assume that the vapor phase and the liquid phase are in
equilibrium at all times. The conservation equations (46)
specify the internal energy, U , and the total moles of each
chemical component, n. The volume of the tank, V , is
fixed. U , V , and n completely specify the temperature, T ,
pressure, P , and phase compositions of the vapor-liquid
mixture, nv and nl. That is because the second law of
thermodynamics states that the entropy, S, of a closed
system is maximal at equilibrium, or equivalently that −S
is minimal:

min
T,P,nv,nl

− S = −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
, (49a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (49b)

V v(T, P, nv) + V l(T, P, nl) = V, (49c)

nv
i + nl

i = ni, i = 1, . . . , NC . (49d)

We use the linear mass balance constraint (49d) to elimi-
nate the liquid mole numbers, nl = n− nv:

min
T,P,nv

− S = −
(
Sv(T, P, nv) + Sl(T, P, n− nv)

)
,

(50a)

s.t. Uv(T, P, nv) + U l(T, P, n− nv) = U, (50b)

V v(T, P, nv) + V l(T, P, n− nv) = V. (50c)

5.2 TV-flash problem

We again consider the single-stage model (46). We assume
that the internal energy is constant:

ṅi = fi − li − vi, (51a)

U̇ = Hf −Hl −Hv +Q = 0. (51b)

The dynamic equations therefore only consist of the mass
conservation equations:

ṅi = fi − li − vi. (52)

The condition of constant internal energy requires that
the heat input precisely matches the difference between
the enthalpies of the feed and the vapor-liquid streams:

Q = Hl +Hv −Hf = ∆H. (53)

When the temperature is constant, the condition of max-
imal entropy is equivalent to a condition of minimal
Helmholtz energy, A:

min
P,nv,nl

A = Av(T, P, nv) +Al(T, P, nl), (54a)

s.t. V v(T, P, nv) + V l(T, P, nl) = V, (54b)

nv
i + nl

i = ni, i = 1, . . . , NC . (54c)

T , V , and n therefore completely specify P , nv, and nl.
Again, we eliminate the liquid mole numbers:

min
P,nv

A = Av(T, P, nv) +Al(T, P, n− nv), (55a)

s.t. V v(T, P, nv) + V l(T, P, n− nv) = V. (55b)

5.3 PT-flash problem

We consider the single-stage model (46) again. Isothermal
and isobaric processes (constant temperature and pres-
sure) are relevant to steady state processes:

ṅi = fi − li − vi = 0, (56a)

U̇ = Hf −Hl −Hv +Q = 0. (56b)

The heat input exactly matches the difference in enthalpy
of the feed and the vapor-liquid streams,

Q = Hl +Hv −Hf = ∆H, (57)

and the molar flow rates of the vapor-liquid streams
exactly match those of the feed stream:

li + vi = fi. (58)

The condition of maximal entropy is equivalent to a
condition of minimal Gibbs energy when both temperature
and pressure are constant:

min
nv,nl

G = Gv(T, P, nv) +Gl(T, P, nl), (59a)

s.t. nv
i + nl

i = ni, i = 1, . . . , NC . (59b)

T , P , and n thus completely specify nv and nl. We elimi-
nate the liquid mole numbers and obtain an unconstrained
minimization problem:

min
nv

G = Gv(T, P, nv) +Gl(T, P, n− nv). (60)
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5.4 Equivalence of different flash problems

The UV-flash problem (50) is equivalent to a combination
of the PT-flash (60) and constraints on U and V as in
(50b)-(50c). The UV constraints are thereby effectively
moved outside of the optimization problem at the cost
of changing the objective function. The VT flash problem
(55) is also equivalent to the PT-flash (60) combined with a
constraint on V as in (55b). That means that it is possible
to solve UV- and TV-flash problems with unconstrained
optimization methods. It also means that existing software
for PT-flash problems can be reused when solving the more
complex flash problems.

6. THE RACHFORD-RICE EQUATIONS

The Rachford-Rice equations are often used to solve PT-
flash problems. We outline the associated computation and
the computations of the needed sensitivities.

6.1 Vapor-liquid equilibrium constant

The PT-flash problem can be formulated as the uncon-
strained optimization problem

min
nv

G = Gv(T, P, nv) +Gl(T, P, n− nv), (61)

for which the first-order optimality conditions are

∂G

∂nv
i

=
∂Gv

∂nv
i

(T, P, nv)− ∂Gl

∂nl
i

(T, P, nl) = 0, (62)

for all i and with the liquid phase mole numbers being
nl = n − nv. The chemical potentials of the vapor and
liquid phases are defined as

µv
i (T, P, n

v) =
∂Gv

∂nv
i

(T, P, nv), (63a)

µl
i(T, P, n

l) =
∂Gl

∂nl
i

(T, P, nl). (63b)

The equilibrium conditions (62) are therefore

µv
i (T, P, n

v) = µl
i(T, P, n

l). (64)

Because of the definition of the fugacities (42), the condi-
tion of equal chemical potentials (64) is equivalent to

fv
i (T, P, n

v) = f l
i (T, P, n

l). (65)

Let xi = nl
i/
∑

i n
l
i and yi = nv

i /
∑

i n
v
i be the mole frac-

tions of the liquid and vapor phase, respectively. Because
of the definition of the fugacity coefficients, the equal-
ity of fugacities (65) is equivalent to φv

i (T, P, n
v)yiP =

φl
i(T, P, n

l)xiP or equivalently

φv
i (T, P, n

v)yi = φl
i(T, P, n

l)xi. (66)

The equilibrium constants (sometimes referred to as equi-
librium ratios) are defined as Ki = yi/xi. We use (66) to
derive an expression for the equilibrium constants:

Ki(T, P, n
v, nl) =

yi
xi

=
φl
i(T, P, n

l)

φv
i (T, P, n

v)
. (67)

6.2 The Rachford-Rice method - Ideal vapor-liquid mixture

For mixtures of an ideal gas and an ideal liquid, the vapor
liquid equilibrium constant defined by (67) is

Ki = Ki(T, P ) =
P sat
i (T )

P
exp

(
vli(T )(P − P sat

i (T ))

RT

)
.

(68)

In that case, the vapor-liquid equilibrium constant is inde-
pendent of composition and depends only on temperature,
T , and pressure, P , but not on the compositions of the
liquid and vapor mixture. Define zi = ni/

∑
i ni such that

nl
i + nv

i = ni can be expressed as

(1− β)xi + βyi = zi, (69)

where β is the vapor fraction defined as

β =

∑
i n

v
i∑

i ni
. (70)

The relation (69) and Ki = yi/xi imply that

zi = (1− β)xi + βyi
= (1− β)xi + βKixi = (1 + β(Ki − 1))xi,

(71)

such that

xi =
1

1 + β(Ki − 1)
zi, (72a)

yi = Kixi =
Ki

1 + β(Ki − 1)
zi. (72b)

This implies that

nl
i = xi(1− β)

∑
i

ni =
1− β

1 + β(Ki − 1)
ni, (73a)

nv
i = yiβ

∑
i

ni =
βKi

1 + β(Ki − 1)
ni. (73b)

The relations
∑

i xi =
∑

i yi = 1 imply that
∑

i(yi −
xi) = 0. By combination of this observation and (72), we
obtain the following relation

f(β) =
∑
i

(yi − xi) =
∑
i

(Ki − 1)xi

=
∑
i

Ki − 1

1 + β(Ki − 1)
zi = 0,

(74)

for computation of β. The derivative of this function is

f ′(β) = −
∑
i

[
Ki − 1

1 + β(Ki − 1)

]2
zi ≤ 0. (75)

Newton’s method for determination of β is

βk+1 = βk − f(βk)

f ′(βk)
. (76)

When β has been computed, we compute the vapor com-
position, nv

i , from (73b) and the liquid composition from
nl
i = ni − nv

i .

Sensitivity: The vapor fraction is a function of temper-
ature, pressure, and total composition, i.e. β = β(K,n) =
β(K(T, P ), n) = β(T, P, n). The sensitivities of β are

∂β

∂T
=

∑
i

∂β

∂Ki

∂Ki

∂T
, (77a)

∂β

∂P
=

∑
i

∂β

∂Ki

∂Ki

∂P
, (77b)

∂β

∂nj
=

∑
i

∂β

∂zi

∂zi
∂nj

, (77c)

where

∂β

∂Ki
= −

∂f
∂Ki

f ′(β)
,

∂β

∂zi
= −

∂f
∂zi

f ′(β)
. (78)

Similarly, the vapor-liquid mole numbers, nv
i and nl

i, are
functions of temperature, pressure, and total composition,
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i.e. nv = nv(β,K, n) = nv(β(T, P, n),K(T, P ), n) =
nv(T, P, n) and nl = nl(nv, n) = nl(nv(T, P, n), n) =
nl(T, P, n). In order to describe the sensitivities of nl and
nv, we introduce the auxiliary variables

τi =
1

1 + β(Ki − 1)
, (79a)

γi = Kini − (Ki − 1)nv
i . (79b)

The sensitivities of the vapor mole numbers are

∂nv
i

∂T
= τi

(
∂β

∂T
γi + β

∂Ki

∂T
(ni − nv

i )

)
, (80a)

∂nv
i

∂P
= τi

(
∂β

∂P
γi + β

∂Ki

∂P
(ni − nv

i )

)
, (80b)

∂nv
i

∂nj
= τi

(
∂β

∂nj
γi + βKiδij

)
, (80c)

and the sensitivities of the liquid mole numbers are

∂nl
i

∂T
= −∂nv

i

∂T
, (81a)

∂nl
i

∂P
= −∂nv

i

∂P
(81b)

∂nl
i

∂nj
= δij −

∂nv
i

∂nj
. (81c)

δij is Kronecker’s delta, i.e. δij = 1 if i = j and 0 if i �= j.

7. NUMERICAL EXAMPLE

In this section, we solve the UV-, TV-, and PT-flash
problems for different values of the specified variables. We
consider a mixture of 60% C1, 8% C2, 5% C3, 25% n-C7,
and 2% CO2. Figure 1 shows the solutions to the flash
problems (in blue and red) in a phase diagram and as
functions of the specified variables. The vapor fraction is
constant along the black and gray curves. The curves meet
at the critical point which is located around 425 K and
16.3 MPa. The upper and the lower black curves are the
bubble-point (β = 0) and the dew-point (β = 1) curves,
which together constitute the phase envelope. Ritschel
and Jørgensen (2017) describe the computation of the
isoparametric (constant vapor fraction) curves. The vapor
fraction of the curves increases in steps of 0.1 starting from
the bubble-point curve and ending in the dew-point curve.
The vapor fraction depends nonlinearly on the specified
variables. The pressure exhibits an inverse relationship
with volume. The remaining variables are close to linear
in the specified variables for this example.

8. CONCLUSION

We describe how the solution to the phase equilibrium
problem enters into dynamic and steady-state simulations
for both nested and simultaneous formulations. We for-
mulate the phase equilibrium problems as optimization
problems and present methods for their solution and
computation of the needed sensitivities. In particular, we
describe the UV-, and the TV-flash problems which are
relevant to thermal and isothermal compositional reservoir
flow models, respectively. We also describe the commonly
used PT-flash and its relation to the other types of flash
problems. Finally, using a numerical example, we illustrate
how the solutions to the UV-, TV-, and PT-flash problems
depend on the specified variables.
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