358 research outputs found

    Autoconfiguration with Global Addresses Using IEEE 802.15.4 Standard in Multi-hop Networks

    Get PDF
    Wireless sensor networks continue to attract a lot of attention from academia and industry promoting large-scale deployments in applications related to the Internet of Things (IoT). Unfortunately, a network containing a large number of sensor nodes also leads to difficulty in the configuring process and assignment of identifiers to nodes. Various approaches have been proposed to solve problems of auto-configuration in Wireless sensor networks, however, still, there are some issues remaining related to automatic assign identifiers A cluster-based hierarchical global address allocation scheme is proposed for a wireless sensor network. The proposal uses the IEEE 802.15.4 protocol and aims to reduce the latency of the identifier assignments and reduce the network level processes to be performed at the node. The address allocation process assigns each node a unique global address, which allows the node to have end-to-end connectivity without network-level involvement. The scenario of adding new nodes to the network or nodes that leave it is contemplated. Finally, the proposed scheme is evaluated experimentally, verifying the correct operation of the algorithm proposed in the implemented prototype

    A Multi-Hop 6LoWPAN Wireless Sensor Network for Waste Management Optimization

    Get PDF
    In the first part of this Thesis several Wireless Sensor Network technologies, including the ones based on the IEEE 802.15.4 Protocol Standard like ZigBee, 6LoWPAN and Ultra Wide Band, as well as other technologies based on other protocol standards like Z-Wave, Bluetooth and Dash7, are analyzed with respect to relevance and suitability with the Waste Management Outsmart European FP7 Project. A particular attention is given to the parameters which characterize a Large Scale WSN for Smart Cities, due to the amount of sensors involved and to the practical application requested by the project. Secondly, a prototype of sensor network is proposed: an Operative System named Contiki is chosen for its portability on different hardware platforms, its Open Source license, for the use of the 6LoW-PAN protocol and for the implementation of the new RPL routing protocol. The Operative System is described in detail, with a special focus on the uIPv6 TCP/IP stack and RPL implementation. With regard to this innovative routing proto col designed specifically for Low Power Lossy Networks, chapter 4 describes in detail how the network topology is organized as a Directed Acyclic Graph, what is an RPL Instance and how downward and upward routes are constructed and maintained. With the use of several AVR Atmel modules mounting the Contiki OS a real WSN is created and, with an Ultrasonic Sensor, the filling level of a waste basket prototype is periodically detected and transmitted through a multi-hop wireless network to a sink nodeope

    Strategies and challenges for interconnecting wireless mesh and wireless sensor networks

    Get PDF
    Wireless sensor networks and wireless mesh networks are popular research subjects. The interconnection of both network types enables next-generation applications and creates new optimization opportunities. However, current single-gateway solutions are suboptimal, as they do not allow advanced interactions between sensor networks (WSNs) and mesh networks (WMNs). Therefore, in this article, challenges and opportunities for optimizing the WSN-WMN interconnection are determined. In addition, several alternative existing and new interconnection approaches are presented and compared. Furthermore, the interconnection of WSNs and WMNs is used to study challenges and solutions for future heterogeneous network environments. Finally, it is argued that the use of convergence layers and the development of adaptive network protocols is a promising approach to enable low end devices to participate in heterogeneous network architectures

    Efficient and scalable IPv6 communication functions for wireless outdour lighting networks

    Get PDF
    Outdoor lighting today is becoming increasingly network-connected. The rapid development in wireless communication technologies makes this progress faster and competitive. Philips Research and Philips Lighting are part of the leading forces in exploration and development of a wide spectrum of low-maintenance, high-quality outdoor/indoor lighting systems that are state of the art. City Touch is a proprietary outdoor lighting connectivity system of Philips Lighting, which is based on a client-server architecture. In an outdoor lighting context, an embedded computer (Node) is installed on a light pole and is connected to different sensors to provide connectivity for the luminaires. Thus, connectivity of luminaires generally refers to the computer network of Nodes. In this report, I present a survey of mechanisms, protocols and technologies that are needed for bootstrapping of wireless Nodes to an IPv6 based personal area network (PAN). The survey indicates that there is no single off-the-shelf product or standard that meets all the requirements of Philips research for its future solution. Hence, I designed a thorough bootstrapping protocol that is custom tailored to Philips 's POLAR architecture. The design brings a solution from pre-deployment configuration to the point where a new Node successfully becomes a part of a wireless network. The design is partially demonstrated with two software implementations. Finally I provide recommendations for future work based on my research

    Exploiting Addresses Correlation to Maximize Lifetime of IPv6 Cluster-based WSNs

    Get PDF
    International audienceImproving the network lifetime is an important design criterion for wireless sensor networks. To achieve this goal, we propose in this paper a novel approach which applies source-coding on addresses in heterogeneous IPv6 Cluster-based wireless sensor network. We formulate the problem of maximiz- ing the network lifetime when Slepian-wolf coding is applied on addresses in network composed of line-powered and battery- powered sensors. This problem optimizes the placement of line- powered sensors to enable the battery-powered ones to exploit the addresses correlation and reduce the size of their emitted packets and thus improve the network lifetime. The numerical results show that a significant network lifetime improvement can be achieved (about 25% in typical scenario)

    Cloud Computing

    Get PDF
    In the recent years, Cloud Computing has become very popular and an interesting subject in the field of science and technology. The research efforts in the Cloud Computing have led to a number of applications used for the convenience in daily life. Cloud Computing is not only providing solutions at the enterprise level but it is also suitable in organizing a centralized database which is accessible from every corner of the world. It is said that, 10 to 15 years later when all the enterprises have adopted the Cloud Computing, there will be no more perception for the data center in the company. The aim of this Master’s thesis “Cloud Computing: Server Configuration and Software Implementation for the Data Collection with Wireless Sensor Nodes” was to integrate the Wireless Sensor Network with Cloud Computing in a such a way that the data received from the Sensor node can be access able from anywhere in the world. To accomplish this task, a Wireless Sensor Network was deployed to measure the environmental conditions such as Temperature, Light and the Sensor’s battery information and the measured values are sent to a web server from where the data can be accessed. The project also includes the software implementation to collect the sensor’s measurements and a Graphical User Interface (GUI) application which reads the values from the sensor network and stores it to the database.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    An Overview on Wireless Sensor Networks Technology and Evolution

    Get PDF
    Wireless sensor networks (WSNs) enable new applications and require non-conventional paradigms for protocol design due to several constraints. Owing to the requirement for low device complexity together with low energy consumption (i.e., long network lifetime), a proper balance between communication and signal/data processing capabilities must be found. This motivates a huge effort in research activities, standardization process, and industrial investments on this field since the last decade. This survey paper aims at reporting an overview of WSNs technologies, main applications and standards, features in WSNs design, and evolutions. In particular, some peculiar applications, such as those based on environmental monitoring, are discussed and design strategies highlighted; a case study based on a real implementation is also reported. Trends and possible evolutions are traced. Emphasis is given to the IEEE 802.15.4 technology, which enables many applications of WSNs. Some example of performance characteristics of 802.15.4-based networks are shown and discussed as a function of the size of the WSN and the data type to be exchanged among nodes
    corecore