22 research outputs found

    Addition and multiplication of beta-expansions in generalized Tribonacci base

    Get PDF
    We study properties of β-numeration systems, where β > 1 is the real root of the polynomial x3 - mx2 - x - 1, m ∈ ℕ, m ≥ 1. We consider arithmetic operations on the set of β-integers, i.e., on the set of numbers whose greedy expansion in base β has no fractional part. We show that the number of fractional digits arising under addition of β-integers is at most 5 for m ≥ 3 and 6 for m = 2, whereas under multiplication it is at most 6 for all m ≥ 2. We thus generalize the results known for Tribonacci numeration system, i.e., for m = 1. We summarize the combinatorial properties of infinite words naturally defined by β-integers. We point out the differences between the structure of β-integers in cases m = 1 and m ≥ 2

    Arithmetics in β-numeration

    Get PDF
    Analysis of AlgorithmsInternational audienceThe β-numeration, born with the works of Rényi and Parry, provides a generalization of the notions of integers, decimal numbers and rational numbers by expanding real numbers in base β, where β>1 is not an integer. One of the main differences with the case of numeration in integral base is that the sets which play the role of integers, decimal numbers and rational numbers in base β are not stable under addition or multiplication. In particular, a fractional part may appear when one adds or multiplies two integers in base β. When β is a Pisot number, which corresponds to the most studied case, the lengths of the finite fractional parts that may appear when one adds or multiplies two integers in base β are bounded by constants which only depend on β. We prove that, for any Perron number β, the set of finite or ultimately periodic fractional parts of the sum, or the product, of two integers in base β is finite. Additionally, we prove that it is possible to compute this set for the case of addition when β is a Parry number. As a consequence, we deduce that, when β is a Perron number, there exist bounds, which only depend on β, for the lengths of the finite fractional parts that may appear when one adds or multiplies two integers in base β. Moreover, when β is a Parry number, the bound associated with the case of addition can be explicitly computed

    Non-Standard Numeration Systems

    Get PDF
    We study some properties of non-standard numeration systems with an irrational base ß >1, based on the so-called beta-expansions of real numbers [1]. We discuss two important properties of these systems, namely the Finiteness property, stating whether the set of finite expansions in a given system forms a ring, and then the problem of fractional digits arising under arithmetic operations with integers in a given system. Then we introduce another way of irrational representation of numbers, slightly different from classical beta-expansions. Here we restrict ourselves to one irrational base – the golden mean ? – and we study the Finiteness property again.

    kk-block parallel addition versus 11-block parallel addition in non-standard numeration systems

    Full text link
    Parallel addition in integer base is used for speeding up multiplication and division algorithms. kk-block parallel addition has been introduced by Kornerup in 1999: instead of manipulating single digits, one works with blocks of fixed length kk. The aim of this paper is to investigate how such notion influences the relationship between the base and the cardinality of the alphabet allowing parallel addition. In this paper, we mainly focus on a certain class of real bases --- the so-called Parry numbers. We give lower bounds on the cardinality of alphabets of non-negative integer digits allowing block parallel addition. By considering quadratic Pisot bases, we are able to show that these bounds cannot be improved in general and we give explicit parallel algorithms for addition in these cases. We also consider the dd-bonacci base, which satisfies the equation Xd=Xd1+Xd2++X+1X^d = X^{d-1} + X^{d-2} + \cdots + X + 1. If in a base being a dd-bonacci number 11-block parallel addition is possible on the alphabet A\mathcal{A}, then #Ad+1\#\mathcal{A} \geq d+1; on the other hand, there exists a kNk\in\mathbb{N} such that kk-block parallel addition in this base is possible on the alphabet {0,1,2}\{0,1,2\}, which cannot be reduced. In particular, addition in the Tribonacci base is 1414-block parallel on alphabet {0,1,2}\{0,1,2\}.Comment: 21 page

    Finite beta-expansions with negative bases

    Full text link
    The finiteness property is an important arithmetical property of beta-expansions. We exhibit classes of Pisot numbers β\beta having the negative finiteness property, that is the set of finite (β)(-\beta)-expansions is equal to Z[β1]\mathbb{Z}[\beta^{-1}]. For a class of numbers including the Tribonacci number, we compute the maximal length of the fractional parts arising in the addition and subtraction of (β)(-\beta)-integers. We also give conditions excluding the negative finiteness property

    Dynamical Directions in Numeration

    Get PDF
    International audienceWe survey definitions and properties of numeration from a dynamical point of view. That is we focuse on numeration systems, their associated compactifications, and the dynamical systems that can be naturally defined on them. The exposition is unified by the notion of fibred numeration system. A lot of examples are discussed. Various numerations on natural, integral, real or complex numbers are presented with a special attention payed to beta-numeration and its generalisations, abstract numeration systems and shift radix systems. A section of applications ends the paper

    Arithmetics in β-numeration

    Get PDF
    Analysis of Algorithm

    Fractal tiles associated with shift radix systems

    Get PDF
    Shift radix systems form a collection of dynamical systems depending on a parameter r\mathbf{r} which varies in the dd-dimensional real vector space. They generalize well-known numeration systems such as beta-expansions, expansions with respect to rational bases, and canonical number systems. Beta-numeration and canonical number systems are known to be intimately related to fractal shapes, such as the classical Rauzy fractal and the twin dragon. These fractals turned out to be important for studying properties of expansions in several settings. In the present paper we associate a collection of fractal tiles with shift radix systems. We show that for certain classes of parameters r\mathbf{r} these tiles coincide with affine copies of the well-known tiles associated with beta-expansions and canonical number systems. On the other hand, these tiles provide natural families of tiles for beta-expansions with (non-unit) Pisot numbers as well as canonical number systems with (non-monic) expanding polynomials. We also prove basic properties for tiles associated with shift radix systems. Indeed, we prove that under some algebraic conditions on the parameter r\mathbf{r} of the shift radix system, these tiles provide multiple tilings and even tilings of the dd-dimensional real vector space. These tilings turn out to have a more complicated structure than the tilings arising from the known number systems mentioned above. Such a tiling may consist of tiles having infinitely many different shapes. Moreover, the tiles need not be self-affine (or graph directed self-affine)

    Combinatorial and Arithmetical Properties of Infinite Words Associated with Non-simple Quadratic Parry Numbers

    Get PDF
    We study arithmetical and combinatorial properties of β\beta-integers for β\beta being the root of the equation x2=mxn,m,nN,mn+23x^2=mx-n, m,n \in \mathbb N, m \geq n+2\geq 3. We determine with the accuracy of ±1\pm 1 the maximal number of β\beta-fractional positions, which may arise as a result of addition of two β\beta-integers. For the infinite word uβu_\beta coding distances between consecutive β\beta-integers, we determine precisely also the balance. The word uβu_\beta is the fixed point of the morphism AAm1BA \to A^{m-1}B and BAmn1BB\to A^{m-n-1}B. In the case n=1n=1 the corresponding infinite word uβu_\beta is sturmian and therefore 1-balanced. On the simplest non-sturmian example with n2n\geq 2, we illustrate how closely the balance and arithmetical properties of β\beta-integers are related.Comment: 15 page

    Shift Radix Systems - A Survey

    Full text link
    Let d1d\ge 1 be an integer and r=(r0,,rd1)Rd{\bf r}=(r_0,\dots,r_{d-1}) \in \mathbf{R}^d. The {\em shift radix system} τr:ZdZd\tau_\mathbf{r}: \mathbb{Z}^d \to \mathbb{Z}^d is defined by τr(z)=(z1,,zd1,rz)t(z=(z0,,zd1)t). \tau_{{\bf r}}({\bf z})=(z_1,\dots,z_{d-1},-\lfloor {\bf r} {\bf z}\rfloor)^t \qquad ({\bf z}=(z_0,\dots,z_{d-1})^t). τr\tau_\mathbf{r} has the {\em finiteness property} if each zZd{\bf z} \in \mathbb{Z}^d is eventually mapped to 0{\bf 0} under iterations of τr\tau_\mathbf{r}. In the present survey we summarize results on these nearly linear mappings. We discuss how these mappings are related to well-known numeration systems, to rotations with round-offs, and to a conjecture on periodic expansions w.r.t.\ Salem numbers. Moreover, we review the behavior of the orbits of points under iterations of τr\tau_\mathbf{r} with special emphasis on ultimately periodic orbits and on the finiteness property. We also describe a geometric theory related to shift radix systems.Comment: 45 pages, 16 figure
    corecore