76 research outputs found

    Medical vision: web and mobile medical image retrieval system based on google cloud vision

    Get PDF
    The application of information technology is rapidly utilized in the medical system. There is also a massive development in the automatic method for recognizing and detecting objects in the real world. In this study, we present a system called Medical Vision which is designed for people who has no expertise in medical. Medical Vision is a web and mobile-based application to give an initial knowledge in a medical image. This system has 5 features; object detection, web detection, object labeling, safe search, and image properties. These features are run by embedding Google Vision API in the system. We evaluate this system by observing the result of some medical images which inputted into the system. The results showed that our system presents a promising performance and able to give relevant information related to the given image

    In Vivo Vascular Imaging with Photoacoustic Microscopy

    Get PDF
    Photoacoustic (PA) tomography (PAT) has received extensive attention in the last decade for its capability to provide label-free structural and functional imaging in biological tissue with highly scalable spatial resolution and penetration depth. Compared to modern optical modalities, PAT offers speckle-free images and is more sensitive to optical absorption contrast (with 100% relative sensitivity). By implementing different regimes of optical wavelength, PAT can be used to image diverse light-absorbing biomolecules. For example, hemoglobin is of particular interest in the visible wavelength regime owing to its dominant absorption, and lipids and water are more commonly studied in the near-infrared regime. In this dissertation, one challenge was to quantitatively investigate red-blood-cell dynamics in nailfold capillaries with single-cell resolution PA microscopy (PAM). We recruited healthy volunteers and measured multiple hemodynamic parameters based on individual red blood cells (RBCs). Statistical analysis revealed the process of oxygen release and changes in flow speed for RBCs in a capillary. For the first time on record, oxygen release from individual RBCs in human capillaries was imaged with nearly real-time speed, and the work paved the way for our following study of a specific blood disorder. We next conducted a pilot study on sickle cell disease (SCD), measuring and comparing the parameters related to RBC dynamics between healthy subjects and patients with SCD. In the patient group, we found that capillaries tended to be more tortuous, dilated, and had higher number density. In addition, abnormal RBCs tended to have lower oxygenation in the inlet of a capillary, from where they flowed slower and released a larger fraction of oxygen than normal RBCs. As the only imaging modality able to observe the real-time dynamics of the oxygen release of individual RBCs, PAM provides medically valuable information for diagnostic purposes. As the last focus of this dissertation, we tackled the limited view problem in PAM by introducing an off-axis illumination technique for complementing the original detection view. We demonstrated this technique numerically and then experimentally on phantoms and animals. This simple but very effective method revealed abundant vertical vasculature in a mouse brain that had long been missed by conventional top-illumination PAM. This technique greatly advances future studies on neurovascular responses in mouse brains

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject

    Unraveling the intricacies of spatial organization of the ErbB receptors and downstream signaling pathways

    Get PDF
    Faced with the complexity of diseases such as cancer which has 1012 mutations, altering gene expression, and disrupting regulatory networks, there has been a paradigm shift in the biological sciences and what has emerged is a much more quantitative field of biology. Mathematical modeling can aid in biological discovery with the development of predictive models that provide future direction for experimentalist. In this work, I have contributed to the development of novel computational approaches which explore mechanisms of receptor aggregation and predict the effects of downstream signaling. The coupled spatial non-spatial simulation algorithm, CSNSA is a tool that I took part in developing, which implements a spatial kinetic Monte Carlo for capturing receptor interactions on the cell membrane with Gillespies stochastic simulation algorithm, SSA, for temporal cytosolic interactions. Using this framework we determine that receptor clustering significantly enhances downstream signaling. In the next study the goal was to understand mechanisms of clustering. Cytoskeletal interactions with mobile proteins are known to hinder diffusion. Using a Monte Carlo approach we simulate these interactions, determining at what cytoskeletal distribution and receptor concentration optimal clustering occurs and when it is inhibited. We investigate oligomerization induced trapping to determine mechanisms of clustering, and our results show that the cytoskeletal interactions lead to receptor clustering. After exploring the mechanisms of clustering we determine how receptor aggregation effects downstream signaling. We further proceed by implementing the adaptively coarse grained Monte Carlo, ACGMC to determine if \u27receptor-sharing\u27 occurs when receptors are clustered. In our proposed \u27receptor-sharing\u27 mechanism a cytosolic species binds with a receptor then disassociates and rebinds a neighboring receptor. We tested our hypothesis using a novel computational approach, the ACGMC, an algorithm which enables the spatial temporal evolution of the system in three dimensions by using a coarse graining approach. In this framework we are modeling EGFR reaction-diffusion events on the plasma membrane while capturing the spatial-temporal dynamics of proteins in the cytosol. From this framework we observe \u27receptor-sharing\u27 which may be an important mechanism in the regulation and overall efficiency of signal transduction. In summary, I have helped to develop predictive computational tools that take systems biology in a new direction.\u2

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 407)

    Get PDF
    This bibliography lists 289 reports, articles and other documents announced in the NASA Scientific and Technical Information System during Nov. 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Life Sciences Program Tasks and Bibliography for FY 1996

    Get PDF
    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

    Applications and Experiences of Quality Control

    Get PDF
    The rich palette of topics set out in this book provides a sufficiently broad overview of the developments in the field of quality control. By providing detailed information on various aspects of quality control, this book can serve as a basis for starting interdisciplinary cooperation, which has increasingly become an integral part of scientific and applied research
    corecore