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Abstract 

 

Faced with the complexity of diseases such as cancer which has 1012 mutations, 

altering gene expression, and disrupting regulatory networks, there has been a paradigm 

shift in the biological sciences and what has emerged is a much more quantitative field of 

biology.  Mathematical modeling can aid in biological discovery with the development of 

predictive models that provide future direction for experimentalist. In this work, I have 

contributed to the development of novel computational approaches which explore 

mechanisms of receptor aggregation and predict the effects of downstream signaling. The 

coupled spatial non-spatial simulation algorithm, CSNSA is a tool that I took part in 

developing, which implements a spatial kinetic Monte Carlo for capturing receptor 

interactions on the cell membrane with Gillespie’s stochastic simulation algorithm, SSA, 

for temporal cytosolic interactions. Using this framework we determine that receptor 

clustering significantly enhances downstream signaling. 
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In the next study the goal was to understand mechanisms of clustering. 

Cytoskeletal interactions with mobile proteins are known to hinder diffusion. Using a 

Monte Carlo approach we simulate these interactions, determining at what cytoskeletal 

distribution and receptor concentration optimal clustering occurs and when it is inhibited. 

We investigate oligomerization induced trapping to determine mechanisms of clustering, 

and our results show that the cytoskeletal interactions lead to receptor clustering. 

After exploring the mechanisms of clustering we determine how receptor aggregation 

effects downstream signaling. We further proceed by implementing the adaptively coarse 

grained Monte Carlo, ACGMC to determine if “receptor-sharing” occurs when receptors 

are clustered. In our proposed “receptor-sharing” mechanism a cytosolic species binds 

with a receptor then disassociates and rebinds a neighboring receptor. We tested our 

hypothesis using a novel computational approach, the ACGMC, an algorithm which 

enables the spatial temporal evolution of the system in three dimensions by using a coarse 

graining approach. In this framework we are modeling EGFR reaction-diffusion events 

on the plasma membrane while capturing the spatial-temporal dynamics of proteins in the 

cytosol. From this framework we observe “receptor-sharing” which may be an important 

mechanism in the regulation and overall efficiency of signal transduction. In summary, I 

have helped to develop predictive computational tools that take systems biology in a new 

direction. 
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Abstract 

The field of membrane biology has undergone a paradigm shift and in the 

process shaken the foundation of mathematical models built under the well mixed 

assumption. Advances in technology have led us to a new frontier in the biological 

sciences with techniques such as SPT, FRET, and EM at our fingertips the 

possibilities are endless.  In order to complement experimental innovation, novel 

computational platforms must be developed which accurately describe discrete, 

stochastic, spatial heterogeneity observed in biological systems.  The traditional 

method for modeling signal transduction pathways is using ordinary differential 

equations (ODEs).  ODEs are deterministic, continuum based models that inherently 

assume spatial homogeneity.  However, it is becoming clear that spatial modeling 

tools will be needed to fully understand the complexities of signaling pathways.  In 

this review we will begin by discussing advancements made in biology through the 

development of mathematical models and the experiments that gave them their birth. 

We will go beyond these initial experiments and discuss the new cutting edge 

experimental techniques which brought about an evolution to the membrane biology 

community. We will then discuss computational methods; their advantageous and 

drawbacks. We then propose novel computational platforms which must evolve in 

order to complement experiments and bring predictability back to systems biology.   

Keywords: Mathematical modeling, signal transduction, plasma membrane, ODE, 

PDE, spatial modeling, Spatial Monte Carlo     
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Introduction 

 The physical sciences have always been interwoven with mathematics, through a 

foundation built equally from theory and experimentation. The life sciences, in 

contrast, have been a much more observatory science, relying more on description 

rather than theory and quantification. However, being confronted with complex 

diseases has altered this approach; cancer, for example, can have as many as 1012 

mutations (Tomlinson, Novelli et al. 1996; Tomlinson, Sasieni et al. 2002; d'Onofrio 

and Tomlinson 2007), altering gene expression, and disrupting regulatory networks. 

This complexity has driven a paradigm shift in biology, complementing the 

traditional reductionist approach with a systems level approach which builds upon 

theory. A novel science, quantitative biology or systems biology, has emerged as a 

result; quantitative biology or systems biology derives principles from fields such as 

mathematics, physics, chemistry and engineering in order to develop predictive 

models of biological systems.  

The need to develop novel mathematics (Faeder, Blinov et al. 2005; 

Mayawala, Vlachos et al. 2005; Chatterjee and Vlachos 2006; Mayawala, Vlachos et 

al. 2006; Borisov, Chistopolsky et al. 2008; Collins, Chatterjee et al. 2008; Hsieh, 

Yang et al. 2008) and acquire quantified experimental data (Janes, Albeck et al. 2003; 

Conzelmann, Saez-Rodriguez et al. 2006; Kumar, Zaman et al. 2006; Aksamitiene, 

Hoek et al. 2007; Wilson, Pfeiffer et al. 2007; Andrews, Lidke et al. 2008) has come 

full circle with experimentation being done to compliment theoretical models (Janes, 

Albeck et al. 2005; Birtwistle, Hatakeyama et al. 2007; Hsieh, Yang et al. 2008; 

Kumar, Afeyan et al. 2008) and models guiding further hypotheseses. Developing a 
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mathematical model of a cell signaling pathway involves detailed experimentation. 

For example, cells are stimulated, lysed at various time points, and target proteins are 

immunoprecipated. This data provides initial protein concentration as well as 

dynamic data which are crucial to building a mathematical model of the system.  The 

model in return, plays a predictive role, guiding experimentation, by testing 

hypothesis which may be infeasible experimentally due to poor cell viability, lack of 

current technologies, cost, and time.  

Over the past decade many mathematical models have been developed, to sort 

out complex cell signaling networks; an example of this is taken from the mitogen 

activated protein kinase, MAPK pathway. Intensively studied, the MAPK pathway 

regulates cellular functions such as proliferation, differentiation, apoptosis, adhesion 

and migration. The first mathematical model describing this pathway (Huang 1996) 

was an ordinary differential equation (ODE) model containing 35 reactions. It 

provided insight into the sensitivity of this system.  In 1999, using an ODE approach, 

Kholodenko et al. published an EGFR signaling model. Although it did not exceed 

the Huang model in number of reactions, it contained signaling events upstream at the 

cell membrane where signaling cascades are initiated. In 2002, Schoeberl et al. 

developed a much more extensive ODE model, containing 125 reactions with 94 

species, which spans receptor activation at the cell membrane to ERK 

phosphorylation and includes receptor degradation and internalization. In 2005, 

Sasagawa et al. published a much more complex ODE model that linked two 

receptors to activation of the MAPK pathway. A year later Kiyatkin et al. published a 

model incorporating additional pathways, such as the GAB1 and Src; it was yet 
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another model exploding in complexity but built on the well-mixed assumption 

inherent to ODEs.  

What has become clear from the work of these original ODE models is that 

cell signaling is very complex. Although mathematical models have grown 

exponentially, ODE have several limitations. Proteins are distinct entities, making 

signal propagation a discrete process, which is not captured by continuum ODE’s.  

Experimental evidence shows that signaling receptors are not well mixed on the 

plasma membrane but rather confined to enrichment and depletion zones. Therefore, 

overall reaction rates for species on the plasma membrane are limited by diffusion 

which is not taken into account with ODEs. The limitations of ODE models are 

calling for a new theoretical framework, a spatial-temporal approach which will more 

accurately describe the biology.  In this review we describe a new generation of 

experimentation and its impact on biology. Then we discuss the evolution of 

mathematical models, from the ODE to spatial Monte Carlo methods, focusing on 

what theoretical frameworks must be developed to complement novel 

experimentation.   
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Quantitative Spatial Experimental Approaches in Biology 

Systems biology relies on the ability to make quantitative measurements.  

Quantitative measurements of biological systems have been a challenge, and in this 

section we will summarize the critical experimental techniques for studying the 

spatial-temporal dynamics of cell membranes: fluorescence recovery after 

photobleaching (FRAP), single particle tracking (SPT), Forster resonance energy 

transfer (FRET), and electron microscopy (EM) focusing on how they facilitate 

systems biology. Then we will talk about the paradigm shift which has occurred in 

membrane biology as a result of these techniques; highlighting the discoveries of 

microdomains such as lipid rafts and picket fences.  

Fluorescence Recovery After Photobleaching (FRAP) 

One of the first methods developed to study the dynamics of proteins in living 

cells, FRAP has resurfaced due to techniques such as confocal-microscope-based 

photo-bleaching, and the discovery of GFP (Patterson and Lippincott-Schwartz 2002; 

Lippincott-Schwartz, Altan-Bonnet et al. 2003). FRAP relies on the fact that extended 

excitation of a fluorescent protein or molecule leads to photobleaching.  Therefore, 

when a laser is directed to a small region of the cell membrane, photobleaching of this 

region occurs. The surrounding molecules, not subjugated to these repetitive cycles, 

will diffuse into the photobleached area.  This recovery of fluorescent signal is 

recorded over time with a low-intensity laser light, making it possible to obtain 

information about the kinetic parameters, such as diffusion coefficient, mobile 

fraction, and binding dissociation rate constants(Lippincott-Schwartz, Altan-Bonnet 

et al. 2003).     
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FRAP is a powerful technique and has provided estimates of protein diffusion 

coefficients. However, one of the drawbacks of FRAP is its poor spatial resolution, 

which makes it difficult to interpret the data. Due to the complexities of the plasma 

membrane, a variety of mechanisms may determine diffusivity such as obstruction, 

transient binding, confinement, and hydrodynamic interactions(Saxton and Jacobson 

1997). A method to overcome these shortcomings is SPT, which will be reviewed in 

the following section.  

Single Particle Tracking (SPT) 

A methodology for deciphering the dynamics of membrane proteins, SPT, 

enables individual trajectories of molecules and multimolecular complexes to be 

resolved (Saxton and Jacobson 1997; Kusumi, Ike et al. 2005; Bates, Wiseman et al. 

2006). SPT involves labeling proteins with a probe (bead, fluorophore, gold particle, 

or q-dot), imaging and then tracking the centroid of the imaged  probe over time 

(Bates, Wiseman et al. 2006).  

Observables, such as molecular trajectories, translational diffusion in different 

cell areas, and access to different modes of motion can be determined using 

SPT(Marguet, Lenne et al. 2006). Given an individual trajectory, it is possible to 

determine the mode of motion which could be immobile, directed, confined, tethered, 

normal diffusion, and anomalous diffusion(Saxton and Jacobson 1997). The mode of 

motion is classified by looking at the time dependence of the mean-square 

displacement (MSD), (Saxton and Jacobson 1997; Kusumi, Nakada et al. 2005; 

Bates, Wiseman et al. 2006). The capability to determine the mode of motion makes 

SPT a very powerful tool, providing insight into the dynamics of signaling receptors.  
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There are various methods for imaging individual proteins, all of which rely on 

attaching a moiety to the protein of interest.  For example, colloidal gold can be used 

as a probe due to its strong light scattering ability. Once contrast enhancement and 

background subtraction are performed, the label is darker than its surroundings 

(Saxton and Jacobson 1997). However, one of the major concerns with gold particles 

(size ~30-40 nm diameter) is that may decrease the diffusion rate of the protein 

(Bates, Wiseman et al. 2006). Multivalency is another issue, which may cause 

clustering and underestimation of the diffusion coefficient (Kusumi, Nakada et al. 

2005).  Additionally, researchers have used Fluorescence (both traditional fluors and 

Q-Dots) SPT. Oraganic fluorophores are another popular probe because they are less 

susceptible to cross-linking. One of their limitations, however, is that they are 

susceptible to photobleaching thus limiting their use to very short observation 

times(Bates, Wiseman et al. 2006). The semiconductor quantum dot has overcome 

these limitations, making it the preferred probe. With its novel properties such as 

improved photostability, optical tenability, and multicolor light emission it has taken 

live cell imaging and in vivo animal models to a new realm of optical resolution 

(Giepmans, Deerinck et al. 2005; Giepmans, Adams et al. 2006; Smith, Ruan et al. 

2006).         
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Forster Resonance Energy Transfer (FRET) 

FRET is an incredibly powerful technology going beyond traditional 

immunoassays to reveal direct protein-protein interactions. FRET works when a 

donor in close proximity (<10nm) and with preferred orientation brings about energy 

transfer which in turn induces emission from the acceptor. FRET donors and 

acceptors are chosen on the premise that there is an (> 30%) overlap(Sekar and 

Periasamy 2003) between the emission spectrum of the donor and excitation spectrum 

of the acceptor. Microscopy techniques capture FRET, when the donor channel signal 

is quenched and the acceptor channel signal is sensitized. The transfer of energy 

between an acceptor and a donor can be measured by microscopy and thus spatial 

organization of two molecules relative to one another can be measured. 

Electron Microscopy (EM) 

Great advances have been made in biology due to imaging; electron 

microscopy stands at the cornerstone of these advancements.  This technique provides 

a much greater magnification (104) than the traditional light microscopes due to the 

electron’s small de Broglie wavelength.  Different types of microscopy have been 

developed we will be discussing those of most biological importance. 
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Transmission Electron Microscopy (TEM) 

TEM utilizes a high voltage electron beam which is focused on an ultra thin 

Specimen. As the beam passes through, an image is created which is then magnified 

and focused(Egerton 2005).  An electron gun cases a tungsten filament cathode, the 

electron source; once a voltage of 40 to 400 keV is applied to the cathode, an electron 

beam propagates towards the sample. This technique applies a magnification between 

1,000X to 1,000,000X, but it is limited by the density of the specimen due to 

scattering.    

Viewing a single atom was beyond the reach of the traditional TEM in the 

1970’s, when Crewe et al. developed the scanning transmission electron microscope 

(STEM) capable of viewing bright spots that were arguably individual atoms(Crewe 

and Wall 1970; Crewe, Wall et al. 1970). STEM builds on the foundation of TEM, by 

focusing the electron beam on a narrow strip which is scanned over the raster. The 

data collected can be analyzed with methods such as energy dispersive X-ray (EDX) 

spectroscopy, electron energy loss spectroscopy (EELS) and annular dark-field 

imaging (ADF) which allow direct correlation of image. STEM allows, a high 

contrast image of biological samples without staining due to its use of dark-field 

microscopy. STEM has been applied to biological problems to resolve and distinguish 

structure on the molecular level. 
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Scanning Electron Microscopy (SEM) 

SEM is another electron microscopy technique that scans a focused electron 

beam across the area of the specimen. Scanning produces a mixed array of signal 

such as cathodoluminescence, back scattered electrons, characteristic x-rays, 

secondary electrons specimen current, and transmitted electrons which once analyzed 

give a large depth of field yielding a characteristic three-dimensional appearance.  

Discoveries from Quantified Experiments 

 The technologies presented in the previous section have moved us into the next 

frontier of biological discoveries. Studying cellular behavior in vivo for example, has 

lead to novel insights; from the cell membrane with diffusivity, stoichiometry, and 

protein translation being deciphered, to the cytosol/nucleus with transcription factor 

binding, to transport through the nuclear pore complex, motor proteins on linear 

tracks, to reveal new spatial-temporal dynamics (Joo, Balci et al. 2008). In this 

section we focus on membrane biology, which has been transformed by the 

previously discussed experimental techniques (Kusumi, Nakada et al. 2005). 

Paradigm Shift in Membrane Biology 

The original fluid mosaic model portrays protein movement as Brownian 

motion in a sea of lipids. Although this model is the foundation of the membrane 

biology literature, it has been plagued by two inconsistencies. The first discrepancy 

being that the diffusion coefficient for both proteins and lipids is a factor of 5 to 50 

times smaller in the plasma membrane than within artificial membranes. The second 

discrepancy was that oligomers or molecular complexes exhibit a much lower 

diffusion coefficient (factor of 40) in the plasma membrane in comparison with 
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artificial membranes. These inadequacies of the original fluid mosaic model were 

indicative of an alternative model and have led researchers on a 30 year journey to 

uncover the true nature of the plasma membrane. 

Lipid Rafts 

The first indication of discrete microdomains within the cell membrane came 

a year after Singer and Nicholson (1972)(Singer and Nicolson 1972) proposed the 

fluid mosaic model, when a study by Yu et al. (Yu, Fischman et al. 1973) 

demonstrated the existence of detergent-resistant sphingolipid-rich domains in 

erythrocyte’s plasma membrane. This was followed up in the 1980’s with studies by 

van Meer et al.(van Meer, Poorthuis et al. 1980; van Meer, Stelzer et al. 1987) in 

erythrocytes; they showed asymmetry in the distribution of phosoholipids throughout 

the plasma membrane. In the early 90’s Lisanti et al. (Lisanti, Caras et al. 1989; 

Lisanti, Caras et al. 1991; Lisanti and Rodriguez-Boulan 1991; Hannan, Lisanti et al. 

1993) used fluorescence microscopy to link sphingolipids and GPI 

(glycosylphosphatidylinositol)-anchored proteins. In addition, an isolation method, 

detergent extraction was developed (Brown and Rose 1992) to separate these 

sphingolipid-rich microdomains. 

First observed in the 70’s, lipid microdomains have been given various names 

such as detergent-resistant membranes (DRMs), and detergent-insoluble glycoplipid-

enriched membrane domains (DIGs) (Jacobson and Dietrich 1999), but the name 

which has stuck with these complex structures is ‘lipid rafts’. The idea of lipid rafts 

has stirred both excitement as well as controversy in the biological community; the 

evidence of their existence is only suggestive and their biological role is divisive.  
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Some researchers speculate that lipid rafts could be ‘vanishingly small’ and may hold 

no biological significance (Edidin 2001; Kovbasnjuk, Edidin et al. 2001), while 

others hypothesize that lipid rafts may be hubs of signal transduction (Kabouridis and 

Jury 2008). While caveats remain in the experimental evidence both in support as 

well as opposition, data suggest a role for lipid rafts in both health: regulation of 

signaling pathways (Maffucci, Brancaccio et al. 2003), transport of substrates(Saltiel 

and Kahn 2001), and uptake of LCFAs (long-chain fatty acids) into adipose 

tissue(Pohl, Ring et al. 2004; Vial and Evans 2005), as well as disease: cardiovascular 

disease (Zuo, Ushio-Fukai et al. 2005; Maguy, Hebert et al. 2006) (angiotensin II 

receptor, activated G-proteins, adrenergic, and, cholinergic collocalization in lipid 

rafts), carcinogenesis(Nagy, Vereb et al. 2002; Mocanu, Fazekas et al. 2005; Yang, 

Raymond-Stintz et al. 2007) (delayed catalyses of ceramide synthesis decrease 

apoptosis), immune response (Oliver, Pfeiffer et al. 2004; Wilson, Steinberg et al. 

2004) (alteration in lipid raft composition affect localization of immunogenic 

receptors), and neurological diseases (Park, Hwang et al. 2003; Abad-Rodriguez, 

Ledesma et al. 2004)(accumulation of Ab (amyloid b-peptide) in lipid rafts); for an 

interesting review see (Michel and Bakovic 2007).      
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Cytoskeletal Interactions: Picket-Fence Model  

Fujiwara et al. developed powerful microscopy techniques and tools with the 

goal of visualizing membrane microdomains or lipid rafts.  However, they made an 

unexpected observation. When a lipid probe, DOPE, was measured at high time 

resolution, it underwent short-term confined diffusion followed by a long-term “hop 

diffusion”(Fujiwara, Ritchie et al. 2002). These results shed light on the thirty-year-

old enigma; decreased diffusion on the plasma membrane is the result of a highly 

compartmentalized plasma membrane in which the diffusivity of proteins is greatly 

hindered.   

 Clues for compartmentalization due to cytoskeletal interactions were evident before 

the single-particle tracking era, when FRAP experiments observed an increase in 

diffusivity for blebbed membranes after partial depolymerization of actin filaments 

(Tank, Wu et al. 1982; Wu, Tank et al. 1982; Paller 1994). Investigating spectrin-

deficient mutant mouse erythrocytes, Sheetz et al. (Sheetz, Schindler et al. 

1980)observed increased diffusivity (10-fold) in comparison to the normal cell type. 

In an effort to explain these findings Sheetz et al.(Sheetz 1983) proposed the 

membrane skeleton “picket fence” model, which describes the cell membrane as a 

landscape of boundaries on the cytoplasmic surface (due to interactions with the 

membrane cytoskeleton) and protrusions (“pickets”) expanding into the extracellular 

surface.   

The picket fence model was expanded by the work of Fujiwara et 

al.(Fujiwara, Ritchie et al. 2002) and Murase et al.(Murase, Fujiwara et al. 2004), by 

examining the involvement of the membrane skeleton, extracellular matrices, 
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extracellular domains of membrane proteins, and cholesterol-rich raft domains on 

phospholipid diffusion. They noted altered diffusion when the membrane skeleton 

was disrupted.  Their results seemed counterintuitive, namely that a phospholipid on 

the extracellular leaflet of the plasma membrane would be affected by the membrane 

skeleton which hinders diffusion on the cytoplasmic leaflet. They reconciled this 

observation by expanding the picket fence model, suggesting that transmembrane 

proteins are confined by the membrane skeleton and thus hinder phospholipid 

diffusion on the extracellular face. These transmembrane proteins were termed 

“pickets” and adding on to the cytoskeletal membrane model now referenced as the 

“picket-fence” model. 

The “picket-fence” model not only resolved the diffusion coefficient 

inconsistency of the fluid mosaic model, but it also explained olgiomerization 

induced trapping, the phenomenon of decreased diffusion in olgiomers observed on 

the membrane.  Many signal transduction pathways are initiated by monomers 

forming dimers or higher order oligomers. When oligomers are formed the diffusivity 

decreases due to the additional hindrance endured by a larger molecular complex 

transversing though the membrane cytoskeleton mesh work. The mechanism of 

oligomerization induced trapping can enhance the local receptor concentration within 

a corral and form a “hub” for signal transduction.  

Moving Ahead in Membrane Biology 

In the midst of a sea of lipids, a landscape of complexity arises, ranging from 

the coalescences of phospholipids into “lipid rafts” to the hindering interactions 

caused by the cytoskeleton. This thirty year journey has enlighten the membrane 
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biology community and provides a new direction for systems biology as a whole. 

What has been established is that the plasma membrane is a highly 

compartmentalized surface, which affects the diffusivity of signaling proteins in 

lipids in the membrane, and hence the initiation and activation of signal transduction 

pathways. These developments highlight a need for computational algorithms that 

take into account the biological complexity occurring at the cell membrane.  

In this next section we will discuss the following mathematical approaches: 

temporal deterministic, temporal stochastic, spatial-temporal deterministic and 

spatial-temporal stochastic and for what systems they are best suited. We will then go 

into greater detail with the spatial stochastic approach given that it most accurately 

describes the unique conditions on the plasma membrane. We will then provide an 

example using the spatial kinetic Monte Carlo to model the initial events of a 

signaling pathway on the plasma membrane.    

Modeling Approaches 

Mathematical modeling in an important tool in systems biology.  When 

developing a mathematical model of a biological system it is extremely important that 

the modeling assumptions are consistent with the system of interest.  For example, an 

inherent assumption in ODE models is that the system is well-mixed, or in other 

words there are no concentration gradients or spatial heterogeneities in the system.  

Additionally, ODE models also assume that the species being modeled have large 

populations acting as a continuum, whereas, small populations require model 

approaches that handle discrete entities and the inherent stochasticity. 
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Limits placed on bimolecular reactions span the scale of diffusional to 

reactional. On the far right are reaction limited conditions inherent for well mixed 

systems where diffusional effects are negligible.  On the far left are diffusion limited 

conditions with the innate assumption that collision equates with reaction.  Such a 

range of limitations has succumbed to theory born in generality but molded by the 

assumptions describing the system. Take for example, Smoluchowski seminal work, 

(Smoluchowski 1917) derived under diffusion limitations; it predicts the evolution of 

a system of clusters which coalesce forming larger clusters. The Smoluchowski 

coagulation equation is shown below 
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where ( , )n k t  is the concentration of clusters of size k at time t and K is the 

coagulation kernel. This equation only takes into account coalescence, and speaking 

in biomolecular reactions terms signifies the far left, collision is reaction. Within the 

gap of diffusion-limited and reaction-limited conditions falls mathematics which 

considers both diffusion and reaction. These modeling techniques will be discussed in 

greater detail in the next section. 

Variation of system dynamics could be described either as continuous and 

predictive, or discrete and random. Mathematics encapsulates variation in dynamics 

ranging from deterministic approaches with exact solutions, to stochastic approaches 

with probabilistic solutions. Take for example the stochastic simulation algorithm 

(SSA), developed by Dan Gillespie in 1977 (Gillespie 1977). The SSA is a 

formulation of the exact numerical simulation for the underlying master equation. 

This stochastic temporal method describes a chemical reaction as the “reaction 
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probability per unit time” (Gillespie 1977) instead of the continuum, deterministic 

definition of “reaction rate”. The unique feature of the SSA is that the reaction 

transition rates are computed in terms of total number of molecules rather than 

numbers of molecules per unit volume as is the standard approach with ODEs. Using 

total number of molecules, reactants are modeled as discrete entities undergoing 

reaction events.  

Each reaction has a propensity such that there exists a constant 1c which is 

related to the deterministic chemical rate constant 1k  by 1
1

k
c

V
= . Multiplying 1c  by 

the number of reactants gives a transition rate for that reaction; summing transition 

rates yields a total  

transition rate. A probability for a event is calculated by taking the transition rate for 

an individual reaction and dividing it by the total transition rate. Generating a pseudo 

random number that falls within this calculated probability enables selection of an 

event and gives the SSA stochasticity.   
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Cornerstones of Modeling Techniques 

Two themes emerge from the previous discussion biomolecular reactions in 

the presence or absence of diffusional limitations and stochasticity vs 

deterministicity. Figure 1. shows mathematical techniques that vary on the y-axis 

from stochastic to deterministic and on the x-axis from methods that take into account 

diffusion and those that neglect diffusion. This graph defines four approaches 

temporal deterministic, temporal stochastic, spatial-temporal deterministic, and 

spatial-temporal stochastic. We have placed mathematical techniques into each 

category; some techniques span the gray area between two approaches. We will 

discuss these mathematic platforms beginning with  ordinary differential equations, 

ODEs categorized as temporal deterministic. 

One of the most popular techniques in systems biology, ordinary differential 

equations (ODEs) are used to model the temporal evolution of protein concentrations. 

ODEs are widely applicable at high population levels in a homogenous system, 

conditions commonly encountered in the cytosol and extracellular space (Figure 2). 

The limitations of ODEs come from their intrinsic assumptions: spatial homogeneity, 

deterministic behavior, and the continuum. An example of the inappropriate use of 

ODEs is on the plasma membrane, where spatial heterogeneity presides, resulting in a 

disconnect between biology and algorithm. In addition to the shortcomings in the 

acquired data, membrane microdomains tend to discretize species populations, hence, 

leading to a breakdown in the continuum and inaccuracies in the deterministic 

solution. The loss of information and inaccuracies within the results jeopardizes the 

algorithm’s ability to be predictive.  
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Figure 1.  Modeling Methods Suited for Different Aspects of Cell Biology. This diagram of the cell 

shows complementary modeling techniques for a given domain of the cell. 
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The SSA is a method suitable for homogenoeus system with low species 

populations that exhibit inherent stochastic noise. It is best suited in the nucleus, 

which exhibits spatial-homogeneity and small numbers of transcription factors 

producing innate stochastic responses.   

The spatial-temporal toolbox of systems biology represents the other half of 

modeling approaches (Figure 1). The spatial-temporal deterministic approaches (e.g., 

partial differential equations, PDEs) are primary used in systems with a single source 

and sink. The applications of PDE based models range from the diffusional aspects of 

synaptic transmission (Tai, Bond et al. 2003; Song, Zhang et al. 2004; Zhang, Suen et 

al. 2005), cytosol nuclear translocation (Haugh and Lauffenburger 1997; Brown and 

Kholodenko 1999; Kholodenko 2003; Kholodenko 2006), and receptor-ligand 

dynamics on the plasma membrane (Goldstein and Dembo 1995; Haugh 2002; 

Monine, Berezhkovskii et al. 2005). The former methods seem to be appropriately 

applied, utilizing the strengths of the method to gain important spatial-temporal 

information. The latter application could be questionable due to the characteristics of 

PDEs, not taking into account a sink-sink overlap. Being that the plasma membrane is 

a kaleidoscope of microdomains(Sheetz, Schindler et al. 1980; Kusumi, Nakada et al. 

2005) this assumption is only valid at low receptor densities; conditions which cause 

the continuum to fail.     

    The remaining niches in the systems biology toolbox, spatial-temporal 

stochastic methods, are best suited for the plasma membrane, organelle sites, and 

biochemical cascades. Spatial-stochastic algorithms are not fruitful at high species 

populations and unnecessary in homogenous solutions. One of the major drawbacks 
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of these spatial stochastic approaches is the required computational rigor. Spatial 

stochastic methods, however, provide a powerful computational platform and are 

ideal for studying the dynamics on the plasma membrane. They will therefore be the 

focus of our discussion. 
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Figure 2. Choosing Appropriate Modeling Technique.   We categorized mathematical techniques on 

the x-axis from spatial-temporal (diffusion limited circumstances) to temporal methods (well mixed 

solutions) as the ratio of the effective reaction rate per diffusion rate increases. Along the y-axis 

stochastic solutions to deterministic solutions are shown as a function of number of molecules. 
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Choosing an Appropriate Method 

 The art of computational biology comes from understanding the system. Figure 2 

shows mathematical models applied to proper biological processes First deciding whether 

to use a temporal vs. spatial-temporal approach requires calculating the effective kinetic 

rate constant for diffusion-reaction problems. The following equation was derived by 

Lauffenburger and  Linderman (Lauffenburger and Linderman 1993):      
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where AB A BD D D= + , AD and BD are the diffusivities of A and B, Aρ is the 

density of molecules of A (number of molecules per unit area), 1
A

b πρ= is one-half of 

the mean displacement between molecules of A distributed in a certain area, Arealk is the 

intrinsic reaction rate constant in units of (receptors /area)-1 s-1, and s is the encounter 

radius. The relationship between Arealk  and k  is given as, 2
Arealk ks= . Using Eq 1. and 

combining it with the expression for resistance in a series model  
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the diffusion-limited reaction rate constant, Diffusionk is determined to be  
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Using ,Diffusion Arealk k  one can determine if in the diffusion limited case Diffusion Arealk k<< , or 

in the reaction limited case Diffusion Arealk k>> . Using the ratio of Areal

Diffusion

k

k
we obtain a 
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dimensionless parameter which provides insight into the correct modeling technique 

(spatial-temporal/temporal). As shown in Figure 1. starting with a small value for 

Areal

Diffusion

k

k
 a spatial temporal model is most desired; however increasing Areal

Diffusion

k

k
validates 

the temporal approach. Within the gray area between spatial-temporal and temporal 

models fall techniques such as compartmentalized ODEs that model neighboring 

organelles as compartments with their own set of initial conditions. 

A similar calculation must be preformed when determining whether to use a 

stochastic or a deterministic approach. This decision must be based on the number of 

molecules; at high concentrations stochastic variations maybe negligible and better 

approximated with a continuum model. At low concentrations discrete behavior becomes 

apparent and undoubtedly leads to intrinsic noisy systems.  Figure 1 depicts this concept 

starting with a stochastic method (SSA/MC) at low molecular numbers and switching to a 

continuum method (ODE/PDE) at high molecular concentrations.  

 

Spatial-Temporal Stochastic Methods 

Since the focus of this review is on mathematical modeling of the plasma 

membrane we will spend some time now discussing the method most appropriate for 

the plasma membrane: spatial-temporal stochastic algorithms. These methods are 

often implemented either off-lattice or on-lattice. The former being difficult to derive 

and computationally intensive, and the latter providing ease of implementation and 

computational efficiency. Two types of off-lattice approaches will be discussed the 

first agent based off-lattice method derives probabilities from a distance factor and 

the second Metropolis Monte Carlo (MC) method calculates transition rates by free 
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energy minimization. The agent based off-lattice approach will be briefly described 

followed by the Metropolis MC which will be summarized in a historical setting 

leading into the on-lattice spatial kinetic MC. 

Agent based off-lattice approaches calculate probabilities for reaction by 

taking into account the distance between two reactants. Calculating reaction 

probabilities based on separation distance is by no means trivial. Rigorous theoretical 

derivations(Sung, Shin et al. 1997; Kim and Shin 1999) have resulted in promising 

numerical algorithms (Popov, Agmon et al. 2004; Park, Shin et al. 2005; Hsieh, Yang 

et al. 2008). However many of these derivations rely on assumptions that are contrary 

to know biological systems of the plasma membrane, such as uniform concentration 

of reactant B , immobile reactant A , as well as collision which equates with reaction. 

 The Metropolis MC algorithm was developed in 1953 (Metropolis, 

Rosenbluth et al. 1953) being the first method to numerically solve the underlying 

master equation. Describing a physical system with a Hamiltonian, Metropolis et al. 

constructed the probability for various states of the system weighted in terms of a 

Markov process by the novelty of a pseudo-random number. A configurational space 

which includes thermal vibrations and microscopic process, termed as “rare events” 

was sampled.  

At the time this method proved “suitable for fast computing machines” 

and appropriate for describing equilibrium conditions. However the receptor 

interactions on the plasma membrane do not occur under equilibrium conditions but 

rather are dynamic involving billions of diffusion and millions of reaction events. The 

time scales between thermal vibrations and diffusion (let alone the diffusion which is 
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necessary for reaction to occur) are large and define the system as “stiff”. This means 

that most computational time will be spent performing fast vibrations instead of slow 

diffusion events, or “rare events” that are necessary for the system to evolve. This 

“stiffness” translates to small time increments making the original off-lattice MC 

impractical for modeling biological events occurring on the plasma membrane.   

With the many drawbacks faced when implementing off-lattice methods, 

spatial stochastic modeling in biological systems would prove infeasible. However 

from the popularity of the Metropolis MC, came the desire to apply the MC to study 

dynamical behavior and thus lead to algorithms such as the dynamic MC (DMC) and 

spatial kinetic MC (SKMC). Dynamic simulations are now possible using the SKMC 

because it integrates out the effects of thermal vibrations on the microscopic rates. In 

these simulations slow events such as reaction and diffusion occur on the spatial 

coordinates of a lattice and are fired, neglecting the vibrational time. Probabilities for 

reaction and diffusion can be easily computed by calculating a transition rate for 

either reaction or diffusion to a neighboring lattice site. 

An example of the “null-event” SKMC algorithm is implemented by 

calculating probabilities for reaction and diffusion events. This is done by 

normalizing transition rates with a microscopic rate maxΓ that makes probabilities less 

than 1 and gives a null bin at the thi site. The normalized rate maxΓ is the maximum 

sum of all microscopic rates at a site, 
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 in which pN is the number of processes, LN is the number of lattice sites, jΓ  is the 

transition rate for that process, and ijε is the participation matrix being 1 if the thi site 

gives rise to the thj process or 0 if it does not. Using the normalization rate maxΓ  

probabilities xp  for successful events (reaction or diffusion) are computed as 

max

x
xp

Γ
=

Γ
 . Since the probabilities do not sum to one for a molecule at the thi site in 

the thj process there is a probability for a null event or a null bin for each process. 

The null bin penalizes sites with lower transition probabilities giving rise to more null 

events while higher transition probabilities result in less null events. Although the 

idea of null events suggest additional computational cost an excellent review by 

Chatterjee et al.(Chatterjee and Vlachos 2007) describes null event algorithms and 

shows how time advancement is independent of  the chosen process. 

 The SKMC is dynamical due to time increments which were not present in the 

original Metropolis MC. The way in which time is updated varies with the MC 

method, although consideration should be given to events which occur most 

frequently in order to have a greater time resolution (Chatterjee and Vlachos 2007).  

Diffusion for example is a frequent process that can be used to update time 
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The term in the denominator describes all available sites a diffusion event can occur 

with a transition rate d

i j→Γ .   

Overcoming the Limitations of SKMC Algorithms 
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Lattice based MCs usually implement periodic boundary conditions, PBCs 

and are computationally feasible at roughly 104-106 lattice sites (from 100x100 to 

1000x1000 nm2 with an inner lattice spacing of 1 nm). Large time scales represent 

another limitation of MC methods. Several novel algorithms have been developed to 

overcome these limitations: coarse graining techniques and τ-leaping methods. 

Coarse-graining MC (CGMC) techniques were developed to address the 

computational limitations occurring in large length scales. Grouping microscopic 

lattice points into coarse cells, low activity regimes are less computationally 

expensive, enabling the availability of more resources for high activity regimes or 

areas of particular interest. Although many of these CGMC techniques have been 

applied, their implementation of a uniform coarse cell size makes them inefficient for 

high activity regimes. A multiresolution framework incorporating a dynamic CGMC 

framework was developed by Chatterjee et al. (Chatterjee, Katsoulakis et al. 2005; 

Chatterjee and Vlachos 2006; Chatterjee and Vlachos 2007)called an adaptively 

coarse-grained Monte Carlo (ACGMC).  The ACGMC enables large scale simulation 

with sharp concentration gradients, proving an adequate method for length disparities. 

τ-leaping methods were developed in an effort to overcome disparity in 

time scales and to increase time increments. The first of these methods was 

introduced by Gillespie and later followed up by others. The τ-leap method computes 

a coarse-time increment, τ, being larger than the microscopic time and ‘fires’ all 

reactions multiple times and updates species populations appropriately within the 

time increment τ. The number of times reactions are ‘fired’ is determined randomly 

from a Poisson distribution. Although errors in the form of negative concentrations 
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are observed with the unbounded Poisson distribution in which the number of firings 

is larger than the populations of species, methods using a binomial distribution have 

proved more accurate for biological systems.  

Although MCs are limited computationally they remain the most accurate 

at capturing biological phenomena, taking into account the inherent stochastic, 

discrete nature of biological systems as well as important spatial implications; 

essential aspects for capturing reaction and diffusion events on the plasma membrane. 

In this next section we will provide an example using an SKMC to gain biological 

insight into receptor dynamics on the plasma membrane. 
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Sorting Out Microdomains:  An example using the SKMC 

 In an earlier section we discussed lipid rafts and picket fences on the plasma 

membrane in this example we illustrate the predicative capabilities of the SKMC at 

dissecting the effects of these microdomains. We define both a lipid raft and a picket 

fence on the lattice, and elucidate the effects of these microdomains in receptor 

aggregation. Lipid rafts range in size from 20 to 350 nm diameter (Jacobson and 

Dietrich 1999; Edidin 2001; Edidin 2001; Jacobson, Mouritsen et al. 2007) and 

proteins exhibit a decreased diffusivity on the order of 5 to 50 times on the plasma 

membrane (Kusumi, Ike et al. 2005; Kusumi, Nakada et al. 2005). We define a lipid 

raft on the lattice by specifying a region of 400 nm2 and decreasing receptor diffusion 

by a factor of 50 in this area, as shown in Figure 3A. Similarly we define a picket 

fence as shown in Figure 3B. at the perimeter of 400 nm2 region and allow breaks in 

the fence to occur every 230 nm at a time of 10 milliseconds.    

 To determine the effects that the picket fence and lipid raft have on receptor 

collocalization the Hopkins statistic test was performed as well as the p-value test 

(indicated as passed by the pink background). Initially 100 receptors were uniformly 

distributed on the lattice this is evident from the Hopkins test which shows our data 

following a normal distribution. As time increases to 0.08 seconds and 0.5 seconds 

we observe a right shift of our data (lipid raft Figure 3A) in the Hopkins test 

indicative of the clustered state. These results were further confirmed by the passing 

of the Chi-squared test. Observing the state of the system at similar time points 

reveals no apparent clustering in the picket fence microdomain.  Additional 

simulations could be performed varying the diffusivity in the lipid raft, the size of the 
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lipid raft, varying the time between breaks and the number of breaks in the picket 

fence, and the area enclosed by the picket fence to further elucidate the effects of 

microdomains on receptor aggregate 
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Figure 3. Microdomains vs. Receptor Clustering. Schematic illustrates the lattice (left) and Hopkins 

test with pink boxes indicating passing of the Chi squared test. Two microdomains were tested lipid 

raft (left) and picket fence (right). The rows represent different time points (top-to-bottom) time is 0s, 

1s, & 2s.  
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A New Direction for Systems Biology 

  This example illustrates how mathematical models can be predictive, guide 

experimentations, and interpret results. Using the SKMC approach we outlined here 

how one could interpret results from SPT experiments, predict the spatial-temporal 

evolution of the system based on conditions of the plasma membrane with results that 

would further guide experimentation.  

In this review we have presented modern experimental techniques along 

with biological discoveries on the plasma membrane which challenge the 

predictability of mathematical models. The motivation for new computational 

approaches is driven by two factors: first the prospects of state of the art experimental 

technologies outdate previous mathematical methods, and two biological discoveries 

demonstrate an inhomogeneous, stochastic nature whose complexities can no longer 

be ignored.   

Experimental technologies have evolved well beyond the standard western 

blot, immunprecipation experiments that were originally used to construct 

mathematical models. At the time, ODEs were complementary to western blot 

techniques by being able to predict the temporal evolution of a system. However the 

capacity of SPT and FRET to provide resolution of single protein diffusion and 

interaction in vivo and in real time can not be complemented with an ODE but rather 

must be complemented with an equally influential theoretical technique. 

     In addition to being outdated with experimental technologies the paradigm shift 

on the plasma membrane exemplifies the true complexity of cell biology which is not 

captured with ODEs. The plasma membrane is a highly compartmentalized structure, 



 
 

36 

a stage for discrete receptor diffusion and reaction events’ resulting in heterogeneity, 

which in order to be accurately modeled needs a spatial-temporal stochastic approach. 

The plasma membrane was our focal point, however as more experimental studies are 

conducted we may discover intricacies in other biological systems as well providing 

additional motivation for these algorithms.  

Although ODEs are not sufficient on the plasma membrane and do not 

complement high-tech experimental technologies, they are a tool of systems biology. 

When used appropriately ODEs are an insightful, predictive method for 

understanding biology. The challenge to systems biology comes not in the 

discontinuity of ODE methods but in terms of developing the future mathematical 

tools to guide and complement experimentation.  
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Abstract 

Background: The ErbB family of receptors activates intracellular signaling pathways that 

control cellular proliferation, growth, differentiation and apoptosis. Given these central 

roles, it is not surprising that overexpression of the ErbB receptors is often associated 

with carcinogenesis.  Therefore, extensive laboratory studies have been devoted to 

understanding the signaling events associated with ErbB activation.  Systems biology 

approaches have contributed significantly to current understanding of ErbB signaling 

networks.   

Methodology/Principal Findings.   Although computational models have grown in 

complexity over the years, little work has been done to consider the spatial-temporal 

dynamics of receptor interactions and to evaluate how spatial organization of membrane 

receptors influences signaling transduction.  Herein, we explore the impact of spatial 

organization of the epidermal growth factor receptor (ErbB1/EGFR) on the initiation of 

downstream signaling.  We describe the development of an algorithm that couples a 

spatial stochastic model of membrane receptors with a nonspatial stochastic model of the 

reactions and interactions in the cytosol.  This novel algorithm provides a 

computationally efficient method to evaluate the effects of spatial heterogeneity on the 

coupling of receptors to cytosolic signaling partners.   

Conclusions/Significance: Mathematical models of signal transduction rarely consider 

the contributions of spatial organization due to high computational costs.  A hybrid 

stochastic approach simplifies analyses of the spatio-temporal aspects of cell signaling 

and, as an example, demonstrates that receptor clustering contributes significantly to the 

efficiency of signal propagation from ligand-engaged growth factor receptors.  
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Introduction 

The ErbB family of receptors, under normal physiological conditions, regulates 

key cellular processes such as growth, proliferation and differentiation (Yarden and 

Sliwkowski 2001; Linggi and Carpenter 2006; Lajoie, Partridge et al. 2007).  

Overexpression of these receptors deregulates normal cellular function and is a 

contributing factor to tumorigenesis (Britten 2004). There are four members of the ErbB 

family (ErbB1, ErbB2, ErbB3 and ErbB4) and each family member has its own unique 

ligand specificity (Hynes and Lane 2005), kinase activity (Linggi and Carpenter 2006) 

and spatial organization on the membrane (Lajoie, Partridge et al. 2007; Yang, Raymond-

Stintz et al. 2007). In our current study, we have focused solely on the epidermal growth 

factor receptor (typically abbreviated ErbB1 or  EGFR) and the ErbB1 activation of ERK, 

which is a mitogen activated protein kinase (Santos, Verveer et al. 2007).  Ligand binding 

to ErbB1 stabilizes a conformation of the extracellular domain that allows receptor 

dimerization (Blinov, Yang et al. 2006).  Dimerized receptors  are active tyrosine kinases, 

capable of transphosphorylation (Blinov, Yang et al. 2006).   Phosphorylation of receptor 

cytoplasmic tails results in recruitment of SH2-containing adaptor and signaling proteins, 

such as Grb2, Sos, and Shc, that form a signaling scaffold to activate ERK (Blinov, 

Faeder et al. 2006).  

Due to the importance of the ErbB1-activated ERK pathway, several ordinary 

differential equation (ODE) models have been developed to gain insight into this pathway 

(Kholodenko, Demin et al. 1999; Schoeberl, Eichler-Jonsson et al. 2002; Hendriks, 

Opresko et al. 2003; Sasagawa, Ozaki et al. 2005). While ODE models have provided 

insight into the dynamics of this pathway, these models assume that the cell is a 
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homogeneous well-mixed system.  In other words, the ODE models neglect spatial 

localization and organization, such as membrane receptor clustering (Yarden and 

Sliwkowski 2001; Orton, Sturm et al. 2005).  Over the past decade, ODE models of 

ErbB1-induced ERK pathway system have evolved in complexity, becoming both larger 

and having more experimentally constrained parameters (Kiyatkin, Aksamitiene et al. 

2006).  The first ErbB1/EGFR model was introduced in 1996 and had 35 reactions 

(Huang and Ferrell 1996), whereas the most complete models available contain hundreds 

of reactions (Sasagawa, Ozaki et al. 2005; Kiyatkin, Aksamitiene et al. 2006).   

The question remains whether these well-mixed deterministic models are capable 

of quantitatively describing the temporal dynamics of signaling , since there is significant 

evidence that cell membrane organization promotes the formation of localized “signaling 

platforms” (Jiang and Sorkin 2002; Borisov, Markevich et al. 2005; Bluthgen, 

Bruggeman et al. 2006; Kholodenko and Sauro 2008).  Major advances in our 

understanding of the membrane have led to a revision of the original Fluid Mosaic model 

(Singer and Nicholson, 1972), to a more ordered structure with distinct membrane 

microdomains of lipids and proteins (Schroeder, Gallegos et al. 2001; Gallegos, Storey et 

al. 2006; Lillemeier, Pfeiffer et al. 2006)  Advanced microscopy techniques have 

demonstrated that membrane properties, such as transient confinement zones and corrals, 

may restrict and govern the spatial-temporal dynamics of lipids and membrane proteins 

(Fujiwara, Ritchie et al. 2002; Ritchie and Kusumi 2003; Murase, Fujiwara et al. 2004; 

Koyama-Honda, Ritchie et al. 2005; Orr, Hu et al. 2005; Andrews, Lidke et al. 2008).   

The challenge is to develop computational approaches that can account for membrane 

spatial heterogeneity and evaluate the impact on signal propagation.  
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Spatial modeling has been implemented in many scientific disciplines, including 

physics, material sciences, chemistry, engineering and biological systems.   Modeling 

approaches vary, including partial differential equations (Mac Gabhann and Popel 2005), 

agent-based modeling (Hsieh, Yang et al. 2008) and spatial Monte Carlo (MC) methods 

(Woolf and Linderman 2004; Chatterjee and Vlachos 2005; Chatterjee and Vlachos 

2007).  Spatial MC platforms are particularly powerful numerical simulation tools for 

studying the dynamics of membrane components (Woolf and Linderman ; Woolf and 

Linderman 2003; Brinkerhoff, Woolf et al. 2004; Mayawala, Vlachos et al. 2005). The 

application of spatial MC methods has been implemented by our group (Mayawala, 

Vlachos et al. 2005) to study ErbB reaction/diffusion and herein to study the effect of 

spatial heterogeneity on signal propagation.  We report the development of a new 

computational framework that merges a spatial kinetic Monte Carlo (SKMC) algorithm 

for modeling reaction and diffusion events on the membrane with a stochastic simulator 

algorithm (SSA) (Gillespie 1977) for modeling cytosolic reactions. This new algorithm, 

the Coupled Spatial, Non-spatial Simulation Algorithm (CSNSA), has enabled us to 

determine the effects that receptor clustering has on the initiation of signaling.  
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Results  

Establishing Parameters for the Spatial Model  

One goal of our study was to evaluate whether simulation results from a spatial stochastic 

model would differ significantly from deterministic solutions that assume all components 

are well-mixed.  As a starting point, we began with the original ODE model developed by 

Kholodenko and colleagues (Kholodenko, Demin et al. 1999).  We noted, however, that 

the ODE model produced results that deviated from the same group’s experimental data 

(Kholodenko, Demin et al. 1999).  We performed a sensitivity analysis using the 

PottersWheel MatLab toolbox (Maiwald and Timmer 2008) to identify the most 

important enzymatic reaction parameters in the system.  Based upon this analysis, we 

determined that incorporation of receptor degradation mechanisms results in a better fit to 

the experimental data (Figure 4A).   Additional reactions added during our model 

development are illustrated in blue within Figure 4B and the entire set of reaction 

parameters are summarized in Table 1.  Our model modifications are consistent with 

other models that include negative feedback reactions (Schoeberl, Eichler-Jonsson et al. 

2002; Hendriks, Opresko et al. 2003; Sasagawa, Ozaki et al. 2005).    In addition, it is 

noteworthy that the new parameters fit using the ODE model were not explicitly 

dependent on receptor diffusion.  Appendix A. describes our analytical approach to 

demonstrate the validity of this fit, based upon very small error introduced by omission of 

diffusive properties of degradative machinery.        
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Table 1 

Initial concentrations in nM units are Ru  (varied), EGF = 20.42VolExtracellular (VolExtracellular 

is the volume of the cell (diameter of 20 µm) multiplied by the ratio of the volume of 

incubation medium per cell over the cytoplasmic water volume ~33.3), PLCγ = 105, 

Grb2 = 85, and Sos = 34. First and second-order rate constants are in units of s-1 and nM-1 

s-1 and the Michaelis-Menten constants Km and Vmax are in units of nM and nM s-1. 

Reactions are categorized as membrane reactions (handled by the SKMC), interfacial 

reactions (cytosolic species associating or dissociating with receptor) handled by the  

SKMC, and cytosolic reactions (handled by the SSA). 
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Figure 4. Parameter optimization and summary of reaction network.   A) Optimization of modeling 

parameters based upon sensitivity analysis and ODE solution.  Green line: Kinetics of Shc 

phosphorylation in EGF-stimulated hepatocytes (20 nM EGF) as determined by Kholodenko et al.  

(Kholodenko, Demin et al. 1999).   Red line: results obtained using the ODE model of  (Kholodenko, 

Demin et al. 1999). Blue line: improved fit of ODE solution to experimental data after incorporation 

of receptor degradation reactions.  B)  Summary of reaction network in the ODE and CSNSA 

models.   Note that, in the spatial CSNSA model, stars mark membrane reactions handled by the 

spatial stochastic Monte Carlo algorithm. All remaining reactions are governed by the Gillespie 

algorithm.  Additional reactions that were added to the original ODE model from Kholodenko et al. 

(Kholodenko, Demin et al. 1999) are shown in blue. Numbering of reactions is arbitrary. 
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Validating the CSNSA hybrid approach 

The novelty of the CSNSA approach lies in its computationally efficient 

framework that considers receptor diffusion and reaction in the 2-dimensional confines of 

the plasma membrane, while cytosolic reactions occur stochastically under well-mixed 

conditions.   The simulated space is illustrated in Figure 5, with a full description of the 

CSNSA algorithm in the Methods section below.    As an initial test, results were 

compared with the ODE solution (as described in Figure 4 and compared to the 

experiment results in (Kholodenko, Demin et al. 1999).  The simulation space was 

populated with a receptor density of 141 receptors per µm2, each diffusing at 1 × 10-14 

m2s-1 (Kusumi, Ike et al. 2005), and a initial random distribution.   In both ODE and 

CSNSA models, reactions were initiated by addition of EGF ligand (20 nM).  Results 

show that, when receptors are randomly distributed, the two approaches give similar 

results for the rate and extent of ErbB1 phosphorylation (Figure 6A) and for the 

recruitment of PLCγ (Figure 6B).   The CSNSA model predicts a slightly lower peak 

value and less sustained recruitment of Shc (Figure 6C), when compared to the ODE 

solution.   These results emphasize that the accuracy of the CSNSA hybrid stochastic 

model is comparable to deterministic solutions in the absence of local concentration 

gradients or membrane inhomogeneities. 
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Figure 5. Illustration of the simulated space of the cell, consisting of two distinct domains: the cell 

membrane and the cytosol.  The CSNSA model incorporates a Monte Carlo approach to simulate 

receptor diffusions and interactions on the cell membrane and couples to a spatial stochastic 

algorithm (Gillespie) for all cytosol interactions.  
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Figure 6.  Comparison of the CSNSA and ODE solutions for receptor phosphorylation, PLCγγγγ and 

SHC recruitment following EGF stimulation.    Simulated kinetics of ErbB1 phosphorylation (A), 

PLCγγγγ recruitment (B) and Shc phosphorylation after EGF (20 nM) using the ODE model (dashed 

lines) or the CSNSA model (solid black line).   Results (A,B) from both simulation methods compare 

well with experimental data (solid circles) reported by Kholodenko et al. (Kholodenko, Demin et al. 

1999) 
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Predicting the Impact of Receptor Density vs. Clustering 

We next used the CSNSA to determine the effects of receptor spatial distribution 

and density on  downstream signaling.  We defined three different conditions, as shown 

in the schematic of Figure 7.  In the first condition (magenta), the simulation space 

contained modest density of dispersed receptors (106 receptors per µm2).  In the second 

condition (dark blue), the simulation space contained a high density of well dispersed 

receptors (705 receptors per µm2).  The final simulation condition (cyan) began with a  

dense cluster of receptors, which was initially confined to a central region of 705 

receptors per µm2 and then permitted to diffuse over time to encompass the entire 

simulation space for a final density of 106 receptors per µm2.   For each regime we 

examined how initial receptor density and clustering conditions influence coupling to 

four of ErbB1’s signaling partners.   The temporal profiles of the cytosolic species Grb2, 

Sos, and pShc and membrane-bound PLCγ are shown in Figure 7B-E.  

All temporal profiles of the CSNSA were compared with their ODE solutions 

(shown in purple and red). The most notable differences came from the clustered regime 

(cyan), which had the same receptor concentration of 106 receptors per µm2 as the non-

clustered regime (magenta) but was initially confined to a smaller region. The clustered 

regime showed a marked increase in the amplitude of signal propagation in comparison 

to the ODE solution.   The data demonstrates that spatial models are needed to accurately 

predict the consequence of membrane heterogeneity on signal propagation and set the 

stage for more refined considerations of signaling platforms.  



 
 

50 

A

B C

D
E

 

 

Figure 7.  The spatial model predicts that receptor clustering enhances signaling efficiency by 

creating locally high receptor densities.   A) Schematic illustration of three simulation cases: 

dispersed (left), high-receptor density (middle), and highly clustered (right).  See legend for key to 

colored lines in each plot.  Results predict the kinetics of Grb2 activation (B), PLCγγγγ phosphorylation 

(C), Shc phosphorylation (D) and  Sos activation (E).  Active Grb2 is equivalent to: RGrb2 + 

RGrb2Sos + RpShcGrb2 + RpShcGrb2Sos + Grb2Sos + pShcGrb2 + pShcGrb2Sos; Total 

phosphorylated PLCγγγγ = RpPLCg + pPLCg + pPLCgI; total phosphorylated Shc = RpShc + 

RpShcGrb2 + RpShcGrb2Sos + pShc + pShcGrb2 + pShcGrb2Sos;  total Sos  RGrb2Sos + 

RpShcGrb2Sos + Grb2Sos + pShcGrb2Sos. 
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Discussion  

In this work, we describe a new, efficient computation framework for evaluating 

the contributions of spatial organization to important cellular processes.  Although 

applied here to study ErbB1 signal initiation at the plasma membrane, the algorithm 

should be readily adaptable to other receptor systems, organelle sites and biochemical 

cascades.    We show that, when considering well-mixed systems, solutions obtained 

using the CSNSA hybrid model and the more traditional ODE solutions are comparable.     

However, given the growing evidence for membrane compartmentalization at both the 

plasma membrane and internal organelles (Smith, Simon et al. 1995; Yang, Simon et al. 

2001; Yang, Raymond-Stintz et al. 2007), we propose that the spatial stochastic model 

will more accurately predict the outcomes of events that take place between membrane 

proteins and lipids and their cytosolic binding partners.     

As an example, we used CSNSA to demonstrate that receptor clustering creates a 

more efficient signaling environment.    The existence of receptor clusters is well 

established (Nagy, Vereb et al. 2002; Lillemeier, Pfeiffer et al. 2006; Wilson, Pfeiffer et 

al. 2007), but the significance of this membrane organization has been approached in 

only a few recent publications (Mayawala, Vlachos et al. 2006; Hsieh, Yang et al. 2008).    

Our previous work concluded that ligand-independent ErbB1 dimerization is likely to be 

dependent on two factors: density and the probability of receptor “fluxing” from a closed 

(dimerization-incompetent) to an open (dimerization-competent) conformation (Ozcan, 

Klein et al. 2006; Hsieh, Yang et al. 2008).  Because clustering creates locally high 

receptor concentrations, it enhances the probability for collision between receptors that 

are transiently in the conformationally ”open” state (Hsieh, Yang et al. 2008).    Here, we 
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show that ErbB1 clustering also enhances the signaling output of receptors, based upon 

the more efficient recruitment of PLCγ, Grb2, Sos and Shc.   

The importance of spatial effects is emerging as an important topic in systems biology, 

with technologies such as single particle tracking and electron microscopy demonstrating 

unique spatial domains (Fujiwara, Ritchie et al. 2002; Hansen, Prior et al. 2003; Ritchie, 

Iino et al. 2003; Ritchie, Shan et al. 2005; Suzuki, Ritchie et al. 2005; Birtwistle, 

Hatakeyama et al. 2007; Andrews, Lidke et al. 2008).     In this work, we apply a novel 

algorithm to  show a direct link between spatial heterogeneity and downstream signaling.   

We propose that future studies of receptor signaling should seek to gain a fundamental 

understanding of the spatial interactions and spatial organization of the receptors  and to 

apply these concepts to predictions of signaling output.  ErbB receptor clustered domains 

have been observed in many cancers using different microscopy techniques (Nagy, Vereb 

et al. 2002; Yang, Raymond-Stintz et al. 2007). Understanding this bigger picture of 

spatial-temporal protein interactions will drive forth knowledge of cell signaling events 

and offer the potential to lead towards better drug treatment options. 
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Methods 

Coupled Spatial, Non-spatial Simulation Algorithm (CSNSA)  

The Coupled Spatial Non-spatial Simulation Algorithm, CSNSA, is a hybrid 

model that considers the diffusive behavior and organization of receptors and other 

membrane components within a 2-D framework, bordered by a well-mixed cytosol.  A 

spatial kinetic Monte Carlo algorithm is employed to capture the spatial-temporal 

dynamics of receptors on the cell membrane (Mayawala, Vlachos et al. 2005);  this is a 

null-event algorithm that allows ease of implementation and variation of the underlying 

model.   For computational simplicity, the cytosol is treated as a well-mixed solution and 

modeled with the stochastic simulation algorithm of Gillespie (Gillespie 1977). This 

assumption is reasonable in the cytosol, given that the diffusivity of proteins in the 

cytosol  (1 × 10-10 m2s-1 m2s-1 ) (Morimatsu, Takagi et al. 2007)is four orders of 

magnitude larger than that in the plasma membrane (1 × 10-14 m2s-1 (Kusumi, Ike et al. 

2005).   

The two algorithms are coupled using the CSNSA, which employs a novel 

algorithm that selects and executes reactions that allow the molecular species to evolve in 

space and time. The coupling method takes into account the stochastic nature of 

biological systems. The first step of the CSNSA is to select a spatial domain (cell 

membrane or cytosol) and thus the corresponding algorithm for the next event.  The 

selection is made by computing the probabilities of a membrane (SKMC) event or a 

cytosolic (SSA) event, which are calculated as:  

,tot SKMC

SKMC

tot

P
Γ

=
Γ

   and 
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,tot SSA

SSA

tot

P
Γ

=
Γ

  

where totΓ  is defined as, 

, ,tot tot SKMC tot SSAΓ = Γ + Γ . 

The total transition rate for the SKMC, ,tot SKMCΓ , is the sum of all transition rates for all 

SKMC events, or more specifically the transition rate for diffusion ( ,DifftotΓ ) and the sum 

of the reaction events ( ,tot kΓ ) for all RxnN  reaction types (Table II), 

, , ,
1

RxnN

tot SKMC tot Diff tot k

k=

Γ = Γ + Γ∑ , where ,tot kΓ is the total transition rate for each reaction type 

defined over all lattice sites LN , , ,
1

LN

tot k i k

i=

Γ = Γ∑ . ,DifftotΓ is defined as the sum of the 

transition diffusion rate DiffΓ over all lattice sites LN , ,Diff ,Diff
1

LN

tot i

i=

Γ = Γ∑ . Thus, ,tot SKMCΓ  is 

defined as: 

    , , ,
1 1 1

RxnL LNN N

tot SKMC i Diff i k

i k i= = =

Γ = Γ + Γ∑ ∑∑ . 

The SSA only accounts for stochastic variations in species populations and does not 

consider the spatial organization in the cytosol, and therefore does not contain a diffusion 

term.  The ,tot SSAΓ is defined as the sum of kΓ  over all reaction types, ,
1

RxnN

tot SSA k

k=

Γ = Γ∑ .  

The combined MC method operates like a single MC method by considering the 

superposition of all processes. Time is updated in a “combined” manner from totΓ  with 

an average time step as, 
1

tot

t∆ =
Γ

.   Given that the two algorithms are different (null-
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event vs. rejection free), the CSNSA is a kind of a hybrid method. In order to properly 

match time scales, upon selection of a spatial event, the SKMC model is continuously 

executed until a successful event is selected, as shown in Figure 10, based on probability 

theory described in (Chatterjee and Vlachos 2007). The complete algorithm, which is 

shown in Figure 8, was implemented in Fortran 90. Due to the stochasticity of the 

algorithm, 10 simulations with different seeds for the random number generator were 

used for statistics. The CSNSA was benchmarked by comparison of an ODE model in a 

reaction-limited system, where the diffusion was made fast compared to the reaction rates 

(Figure 7). The typical CPU time for 50 receptors/lattice is ~15 min, for 125 

receptors/lattice is ~2880 min, and for 500 receptors/lattice is ~14400 min on an Intel® 

Xeon™ CPU 3.2 GHz processor with 8.00 GB of Ram. 
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Table 2.  Membrane Microscopic Events and Transition rates 

Γ is defined on a square lattice with lattice species M, monomers, D, dimers, and pD, 

phosphorylated dimmers. Sx are species either within the cytosol SC or in the 

extracellular space SL. Details are provided in the text. 
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Figure 8. Schematic of CSNSA. Coupled Spatial Nonspatial Simulation Algorithm, CSNSA, combines 

the spatial stochastic algorithm  (Gillespie 1977)depicted in the right branch, with the spatial kinetic 

Monte Carlo algorithm (Mayawala, Vlachos et al. 2005)in the left branch.  Upon selection of a 

branch, a successful event has been executed, species populations are updated, transition rates and 

probabilities are recomputed, and time advances. The CSNSA is described in greater detail within 

the text. 
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Figure 9. Schematic of the SSA algorithm, as coupled to the hybrid algorithm. This algorithm is used 

for all cytosolic interactions. Being a rejection free algorithm, a successful event (reaction) is chosen 

and executed in each iteration. Our algorithm differs from the original Gillespie algorithm (26) in the 

time updating. 
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Spatial Kinetic Monte Carlo (SKMC) 

Once an algorithm is selected and executed, transition probabilities are computed 

again at each time step. Computing ,tot SKMCΓ  involves computing the Γ  values for the 

SKMC over the entire lattice. This computation is the most CPU intensive step in the 

simulation algorithm.  We, therefore, used an optimized computation method.  In order to 

maximize efficiency, a local region that is affected by the previous reaction event is 

defined (Mayawala, Vlachos et al. 2005), and the Γ for each lattice site is computed for 

this region both before and after the event has been executed. This eliminates scanning 

the entire lattice before and after an event is implemented, and the new ,tot SKMCΓ  is 

calculated by: 

, ,
old old new

tot SKMC tot SKMC local localΓ = Γ − Γ + Γ   

where, ,
old

tot SKMCΓ is the total transition probability computed initially or at a previous 

successful MC event, old

localΓ  is the sum of transition probabilities of all sites affected by an 

executed event based on the old configuration, and new

localΓ  is the sum of transition 

probabilities of all sites affected by an executed event based on the new configuration.  

The SKMC algorithm is a modified null-event lattice MC method; for further 

details see Mayawala et al. (Mayawala, Vlachos et al. 2005). All reactions that are on the 

lattice or reacting with a species on the lattice are handled by the SKMC. Hereafter and in 

Figure 5, * denotes membrane reactions and ` denotes interfacial reactions. These 

reactions include ligand association and dissociation, receptor dimerization and 

decomposition, receptor phosphorylation and dephosphorylation, and phosphorylated 

receptor associating with and disassociating from cytosolic species. When an interfacial 
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reaction occurs, a molecule of the cytosolic species is subtracted from the cytosolic 

population and the membrane species is converted to a new species at the same location 

on the lattice. 

The spatial domain is a two-dimensional lattice with periodic boundary 

conditions. The initial condition of the lattice is dependent on user specifications and can 

either be randomly populated or clustered in pre-defined domains. The algorithm is 

implemented by selecting an occupied lattice site, choosing a successful (reaction or 

diffusion) or unsuccessful (null) event based on the probabilities, and if a successful 

event was chosen, executing the event.
 
 

An event is selected by computing the probability distribution for all events, 

defined as
max

X
X i
iP

Γ
=

Γ
, for lattice site i and event x. Table II shows the events executed by 

this algorithm and the equations for computing ΓX for each event. Γmax is defined as  

max
all forward reaction events all backward reaction events

4 max max
4

d
r r Γ    

Γ = + Γ + Γ    
    

∑ ∑  

where the multiple of four accounts for events occurring in each of the four directions on 

the square lattice.  

The spatial algorithm is coupled with the Stochastic Simulation Algorithm (SSA); 

therefore, unlike the original SKMC algorithm (Mayawala, Vlachos et al. 2005),  the 

CSNSA is recursive in that it continuously selects an event until a successful event is 

chosen and executed as shown in Figure 8; therefore time is not updated if an 

unsuccessful event is selected.  
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Stochastic Simulation Algorithm (SSA) 

The non-spatial SSA developed by Gillespie (Gillespie 1977) was used to model 

protein association reactions in the cytosol (Figure 9). The algorithm begins with 

initializing species populations and time; then propensities for all reactions are computed, 

and an event is randomly selected and the time is updated. This is a rejection free 

method; therefore, a reaction event is chosen and time is updated by an increment whose 

average is
1

tot

t∆ =
Γ

.   

Interfacial Reactions 

Interfacial reactions occur when a cytosolic species binds to or detaches from a 

receptor on the square lattice. In the former case, a molecule from the cytosolic species is 

subtracted from the cytosol population and a new product is produced at the site that was 

previously occupied by the reacting receptor. In the latter case, the converse procedure 

occurs. An example is shown in Table I(Interfacial Reaction #1) in which cytosolic 

species Shc binds to receptor R, occupying site k producing product R-Shc at site k.  

The rate constants for cytosolic reactions are calculated by computing the 

cytosolic volume to be Vcyt = 1/3 rL2 (units of µm3), where r is the radius of the cell, and 

L is the lattice dimension. Next we compute the number of molecules per µm3, Nsp. By 

multiplying the product of Vcyt and Nsp with the rate constant (given in terms of 

molecules-1 s-1for bimolecular reactions or s-1 for unimolecular reactions), we obtain a  

transition rate with units of molecules s-1. 
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Figure 10. The spatial kinetic Monte Carlo algorithm, as implemented in the CSNSA.  This algorithm 

differs from the original algorithm of Mayawala et al  (Mayawala, Vlachos et al. 2006) in the time 

update, which occurs recursively until a successful event is selected. Time is not updated when a null 

event occurs. A detailed description is provided in the text. 
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Sensitivity Analysis   

To elucidate a mechanism that agrees with the experimental results (Kholodenko, 

Demin et al. 1999) and explains the biological nature of our system, we modified the 

reaction scheme developed by Kholodenko et al. (Kholodenko, Demin et al. 1999). A 

sensitivity analysis was performed on the reaction mechanism, using the decoupled direct 

method and the backward differentiation formula method, as implemented in the NASA 

Glenn chemical kinetics and sensitivity analysis code LSENS (Radhakrishnan 1991; 

Radhakrishnan 1999). In addition to the species concentrations, these methods 

automatically follow the temporal evolution of the first-order sensitivity coefficients dC 

/dηj. The vector C contains the concentrations of all biochemical species and η j is a 

parameter of interest, such as an initial concentration or a rate constant.  The parameters 

of the new system were refined, and fits were performed for the new reactions shown in 

blue in Figure 4 and for the Michaelis-Menten reactions using PottersWheel, which were 

determined to be sensitive using the LSENS. The time scale of reactions in this model 

neglects the long term receptor production rate. 
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Abstract 

Experimental evidence suggests the cell membrane is a highly order structure of the cell 

which is compatmentalized by the underlying membrane cytoskeleton, MSK. The 

interaction between the cell membrane and the cytoskeleton led to the “picket-fence” 

model which was proposed to understand certain aspects of membrane 

compartmentalization. The picket fence model assumes that the membrane cytoskeleton 

sterically hinders and confines the motion of receptors and lipids in the membrane. 

However, the impact of receptor confinement on receptor clustering and aggregation, as 

well as downstream signaling remains controversial. Some evidence suggests that the 

MSK enhances dimerizaton,while other evidence links the MSK to a decrease in 

dimerization or signal activation. Although both scenarios may be in opposition, each 

may hold truth. Our hypothesis is that the rate of receptor dimerization is a function of 

the picket fence density and receptor concentration. Although it has been difficult to 

measure experimentally the relation between “picket-fence” density and receptor 

aggregation has been of great interest in recent years. Herein, we take a computational 

approach which enables us to test our hypothesis. Our results suggests that the peak in 

receptor clustering depends on the picket fence density as well as receptor concentration. 

Keywords: EGFR, spatial modeling, Clustering. MSK, Picket Fences     

 

Introduction 

Membrane biology has gone down many new and exciting avenues since the 

original fluid mosaic model(Singer and Nicolson 1972) was proposed by Singer and 

Nicholson over 30 years ago (Vereb, Szollosi et al. 2003; Wisniewska, Draus et al. 2003; 
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Kusumi, Nakada et al. 2005). Great advances in our understanding of the membrane can 

be primarily attributed to new technology; i.e. high resolution microscopy captures 

structure on the nanometer scale, (Danuser and Waterman-Storer 2003; Morone, Fujiwara 

et al. 2006; Morone, Nakada et al. 2008) while protein tracking experiments (Ritchie, 

Iino et al. 2003; Murase, Fujiwara et al. 2004; Koyama-Honda, Ritchie et al. 2005; 

Suzuki, Ritchie et al. 2005; Andrews, Lidke et al. 2008) have revealed interesting spatial-

temporal dynamics of membrane bound receptors. These new technologies are providing 

insights and pointing to inadequacies in the original fluid mosaic model. 

There are two critical discrepancies between the experimental data and the fluidic 

mosaic model that demand further investigation (Kusumi, Nakada et al. 2005). First, the 

diffusion coefficients for both proteins and lipids in the plasma membrane were found to 

be smaller than those in artificial membranes (Saffman and Delbruck 1975; Cherry, 

Godfrey et al. 1982; Peters and Cherry 1982). Secondly, a dramatic drop of diffusion 

rates was observed for protein oligomers or molecular complexes (Nelson, Horvat et al. 

1999; Roess, Horvat et al. 2000; Hegener, Prenner et al. 2004). These discrepancies 

clearly indicate that our understanding of membrane biology is incomplete and have led 

to a plethora of experimental studies giving a deeper understanding of the plasma 

membrane and the membrane skeleton (MSK) (Dietrich, Bagatolli et al. 2001; Fujiwara, 

Ritchie et al. 2002; Wilson, Pfeiffer et al. 2007; Morone, Nakada et al. 2008).  

It is has been hypothesized in the literature that the cell membrane is 

compartmentalized into microdomains, such as protein islands(Wilson, Pfeiffer et al. 

2007) and lipid rafts(Nagy, Vereb et al. 2002). The “picket-fence” model is an non-

mutually exclusive model that has been proposed as a mechanism for microdomains 
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formation(Ritchie, Iino et al. 2003; Ritchie and Kusumi 2004). In the picket-fence model 

the MSK acts as the fence by corralling transmembrane proteins while intergral proteins 

serve as the “pickets” hindering receptor as well as lipid mobility (Nakada, Ritchie et al. 

2003; Murase, Fujiwara et al. 2004). The “picket-fence” model accurately explains 

changes in diffusion rates; with lipids undergoing short term confined diffusion (with 

diffusion rates consistent with data on artificial membrane) followed by hop diffusion in 

between compartments (Ritchie, Shan et al. 2005; Suzuki, Ritchie et al. 2005). Restricted 

motion by the “picket-fence” also potentially explains differences in receptor diffusion 

between the artificial and the plasma membrane (Woolf and Linderman 2003; 

Brinkerhoff, Woolf et al. 2004; Hegener, Prenner et al. 2004). 

Herein, we have utilized spatial stochastic simulations to test how picket fence 

density affects receptor clustering and hence signaling. While many in silco methods 

have been developed to study signaling which includes receptor interactions (i.e. 

dimerization), spatial information is often and receptors are assumed to be well mixed 

(Kholodenko, Demin et al. 1999; Sasagawa, Ozaki et al. 2005). Here we utilize the 

spatial kinetic Monte Carlo, SKMC to investigate the effect of the MSK on receptor 

clustering. 
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Materials and Methods 

Spatial Kinetic Monte Carlo (SKMC) 

 Simulations were performed using the SKMC algorithm which is a modified 

null-event lattice based MC which was developed by our group (Mayawala, Vlachos et 

al. 2005; Mayawala, Vlachos et al. 2005). The algorithm is implemented by selecting an 

occupied lattice site, choosing a successful (reaction or diffusion) or unsuccessful (null) 

event based on probabilities, and if a successful event is chosen, executing the event. 

Transition rates are computed for both reaction and diffusion; they are presented in Table 

I. The model which was used as well as the reaction parameters is shown in Table II. The 

transition rate for diffusion is defined as,  

1
 (1 ) 

4
d d

i j i j ij Bσ σ→Γ = Γ − ∈    (1) 

where 
2

4d D

a
Γ =  is four times its diffusion coefficient,D , divided by its inner 

lattice distance, a . iB  signifies the set of sites in which diffusion from site iσ  can occur. 

Diffusion takes place in four directions, each direction with its occupancy function jσ  

which is discrete, equaling 1 if the site is filled, or 0, if the site j  is empty. This means 

that Eq. 1 can be either 0 or 
1

4
dΓ depending on the occupancy of the neighboring site. 

The probability distribution for both reaction and diffusion is 
max

X
X i
iP

Γ
=

Γ
 defined 

for lattice site i and event x . Γmax is a normalization constant defined as 

max
all forward reaction events all backward reaction events

4 max max
4

d
r r Γ    

Γ = + Γ + Γ    
    

∑ ∑  
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where the multiple of four accounts for events occurring in four directions on the square 

lattice; for further details see (Mayawala, Vlachos et al. 2005). 

The spatial domain is a two-dimensional lattice with periodic boundary 

conditions. The initial condition of the lattice is dependent on user specifications and can 

either be randomly populated or clustered in pre-defined domains. Simulations were 

preformed 10 times for statistical significance. 
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Table 3 

Γ is defined on a square lattice with lattice species M, monomers, D, dimers, and pD, 

phosphorylated dimmers. Sx are species either within the cytosol SC or in the 

extracellular space SL. Details 

Microscopic Event Transition Rate 

Diffusion 
• ( )1

1
4

D D

i j i j ij Bσ σ→Γ = Γ − ∈  

•  
iσ is the occupancy(discrete) that is 

1, if site i is filled, and 0, if site i is 

empty (a single index indicating the 

site is used to simplify notation). 

• 
2

D D

a
Γ = , where a  is the 

microscopic lattice pixel dimension 

taken equal to the encounter radius, 

and D is the diffusivity of a 

receptor 

• iB denotes the set of sites to which 

diffusion from site  

• i  can occur which includes all 4 

first-nearest neighboring sites 

Reactions  

Ligand Association Reaction 

(SL + M � M*) 

[ ]R

i L ik S σΓ =  

k is the macroscopic reaction rate constant 

with units as [s-1] 

Ligand Disassociation Reaction 

(M* � SL + M) 

R

i ikσΓ =  

k is the macroscopic reaction rate constant 

with units as [s-1] 

Dimerization Reaction 

(M* + M* � D) 2
R

i i j

k
σ σΓ =  

k is the macroscopic reaction rate constant 

with units as [(receptors/sites)-1 s-1] 

Decomposition Reaction 

( D � M* + M* ) 

R

i ikσΓ =  

k is the macroscopic reaction rate constant 

with units as [s-1] 

Phosphorylation/Dephosphorylation 

Reaction 

(D �� pD) 

R

i ikσΓ =  

k is the macroscopic reaction rate constant 

with units as [s-1] 
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Table 4 

Initial concentrations in nM units are Ru  (varied), EGF = 20.42VolExtracellular (VolExtracellular 

is the volume of the cell (diameter of 20 µm) multiplied by the ratio of the volume of 

incubation medium per cell over the cytoplasmic water volume ~33.3). Reaction #5 was 

included in the predimerization simulations 

Reactions Rate Constants 

1.   EGF + Ru �� Rb Kf = 0.003              Kb = 0.06 

2.  Rb + Rb �� RbRb Kf = 0.01                Kb = 0.1 

3.  RbRb  � � R Kf = 1                     Kb = 0.01 

4.  R  � RbRb                Vmax =268             Km = 56.2 

5.  Ru + Ru �� RuRu * Kf = 0.01                 Kb = 0.4  

*Predimerization  



 
 

74 

Picket Fences 

   In order to model cytoskeletal interactions with the cell membrane boundaries, “picket 

fences” were placed on the lattice; previous work has investigated the use of a lattice to 

perform these simulations(Niehaus, Vlachos et al. 2008). Three different picket fence 

densities as shown in Figure 11, 25 corrals/lattice, 100 corrals/lattice, and 400 

corrals/lattice were tested. The “picket-fences” occupy lattice sites and therefore prevent 

reaction and diffusion events in the direction of the boundary. Take for example, a 

receptor neighbored by a “picket fence” on the thj  lattice site, it has an occupancy 

function, 1jσ =  of one, yielding a zero transition probability,  0d

i j→Γ =  in the direction 

of the boundary.  Similarly, a receptor separated from its partner by a “picket fence” can 

not dimerize being that the neighboring lattice site is occupied by the boundary.  

Single particle tracking reveals short term receptor confinement followed by long 

term “hop” diffusion. Cytoskeletal rearrangements and actin depolarization are 

responsible for “hop” diffusion(Murase, Fujiwara et al. 2004; Kusumi, Nakada et al. 

2005). In order to simulate “hop” diffusion breaks were randomly inserted into the 

boundaries an average of time step PFτ  of 10 milliseconds per 0.04 µm2 of picket fences 

as was observed experimentally (Fujiwara, Ritchie et al. 2002). Placing breaks in the 

“picket fence” enables receptors to diffuse out of their corrals. After an iteration of the 

SKMC breaks are closed and PFτ is set to zero.  

This is consistent with the rate kinetics of actin dimerization (Adams, Matov et al. 

2004; Vallotton, Gupton et al. 2004; Danuser and Waterman-Storer 2006; Deshpande, 

McMeeking et al. 2006; Andrews, Lidke et al. 2008) which is on the order of the 

algorithm’s time step, t∆ .  



 
 

75 

 

 

 

Figure 11. Picket Fence Distribution. The picket fence densities of 25 corrals/µµµµm
2
, 100 corrals/µµµµm

2
 

and 400 corrals/µµµµm
2
 were tested. 
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We wanted to confirm that receptors have an equal probability of escape from 

each picket fence density. In order to do this we determined the ratio of the number of 

escapes to the number of collisions. These results are plotted in Figure 12, showing equal 

escape probability. 
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Figure 12 Number of Collisions and Escapes for each Picket Fence Density. The number of collisions 

(dashed line) and number of escapes (solid line) is shown as a function of time (s) for all picket fence 

densities 400 corrals/µµµµm
2
 (red lines), 100 corrals/µµµµm

2
 (green lines), and 25 corrals/µµµµm

2
 (blue lines).  

 



 
 

78 

 

Quantification of Microdomains 

In order to quantify microdomains in each simulation, the Fuzzy c-means (FCM) 

was performed to determine the number of clusters and the size of clusters. The FCM is a 

data clustering technique wherein each data point belongs to a cluster to some degree 

which is specified by its membership grade (Bezdek). An initial cluster number was 

specified in order to determine aggregation due to each corral and was then further 

reduced using the FCM. If the number of corrals was greater than the number of 

molecules Clus N
2

molecules
corrals molecules

x
x x≥ = , the cluster number was defined as the number 

of molecules divided by two; signifying that two or more receptors define a cluster. 

However, if the number of corrals is less than the number of molecules, 

Clus Ncorrals molecules corralsx x x≤ = , the cluster number was defined as the number of corrals, 

specifying clustering due to each corral. The FCM algorithm performs an analysis 

unaware of the “picket fences”, such that different clusters occupy the same corral or a 

single cluster spans multiple corrals. Assuming that the mechanism of clustering is 

“picket fences”, we combined or separated clusters dependent on which corral they 

occupied. For example, clusters occupying the same corral were combined and clusters 

with receptor members occupying more than one corral were separated or eliminated. 

Performing this analysis we determined the number of clusters occupying a corral as well 

as the average cluster size.  
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Results 

Clustering vs. Picket Fence Density 

The first question we wanted to address is how does the density of picket fences 

effect receptor clustering. We tested this by looking at three different densities of picket 

fences: the first was a low picket fence density of 25 corrals/µm2 followed by a density of 

100 corrals/µm2 and a hight density of 400 corrals/µm2. Receptors were randomly placed 

on the lattice as shown in Figure 13(first row) for all picket fence densities. Random 

distributions were confirmed with the Hopkins test (Jain, Hamper et al. 1988), showing 

that the data follows a Gaussian distribution, and the Chi-squared Goodness-of-fit test 

(Snedecor and Cochran 1989) which validates the null hypothesis. Receptors were 

allowed to diffuse and at  1s (second row) there is a slight right-shift of the data in the 

Hopkins test. At 2s receptors cluster, indicated by the dramatic right-shift of the data in 

the Hopkins test. The Chi-squared values indicated a non-random, or clustered state. 
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Figure 13. Picket Fence Density vs. Receptor Clustering. Schematic illustrates the lattice (left) and 

Hopkins test with the chi-square parameters for that lattice. Three different picket fence densities 

representing the columns (left-to-right) 25 corrals/µµµµm
2
, 100 corrals/µµµµm

2
, and  400 corrals/µµµµm

2
. The 

rows represent different time points (top-to-bottom) time is 0s, 1s, & 2s.  
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Comparing the three picket fence densities at 2s (third row) we see that both the Hopkins 

as well as the Goodness-of-fit test confirm the greatest amount of clustering at the picket 

fence density of 100 corrals/µm2.  While the densest picket fence density demonstrated 

the least amount of clustering as indicated by Hopkins and the Goodness-of-fit test; 

followed by least dense density. 

In order to understand this result, we performed the fuzzy c-means clustering 

(FCM) algorithm (Bezdek) on the data. The FCM function computes the membership of 

receptors to a given cluster (Figure 14). The results were then analyzed and clusters were 

rejected if they border corrals, or contained less than two receptors in a corral. 

Performing this analysis we were able to determine the number of clusters and the cluster 

size (receptors per cluster). Ten simulations were performed and results were averaged 

for statistical significance. The results for each picket fence density are shown in (Figure 

13).  In this simulation we obtained an average cluster size of 5 receptors per cluster and 

19 clusters (each occupying a separate corral) per lattice for the 25 corrals/µm2 densities. 

When the corral density was increased to 100 corrals/µm2  the average cluster size 

decreased to 3 receptors per cluster and the number of clusters increase to 28 clusters per 

lattice. The densest distribution of 400 corrals/µm2 showed a decrease in the number of 

clusters 17 clusters per lattice as well as cluster size of 2 receptors per cluster. 
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Figure 14. Cluster Analysis. Each picket fence density at a time of 2s was analyzed using fuzzy c-

means clustering. Green boxes indicate the clusters which were due to a picket fence compartment. 

The diagram illustrates the member of a particular cluster. From this analysis the number of clusters 

as well as the average size of clusters was determined.  
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Clustering vs. Receptor Concentration 

 Hypothesizing that receptor concentration may affect our results we preformed 

simulations for receptor concentrations of 30, 50, 200, and 300 (number of receptors per 

lattice). The results show (Figure 15) that at a low receptor concentration (30-50 

receptors per lattice) the greatest amount of clustering occurs at the least dense picket 

fence density of 25 corrals/µm2 where 8~13 clusters are observed.  At a receptor 

concentration between 50 to 100 (receptors per lattice) we observe a switch within the 

data, with the most clustering at the 100 corrals/µm2 density.  Although for higher 

receptor concentrations the greatest amount of clustering remains at 100 corrals/µm2, 

there is an increase in the slope between 25 corrals/µm2 and 100 corrals/µm2. Simulations 

at greater receptor concentrations were not preformed, due to computational limitations, 

but we predict a switch with the greatest amount of clustering occurring at the densest 

400 corrals/µm2 density in which the cluster size would approximate the number of 

corrals at this density.   
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Figure 15. Number of Clusters and Cluster Size vs. Picket Fence Density. The number of clusters 

(blue line) and size of clusters (green line) or number of receptors per cluster is plotted as a function 

of picket fence density.  
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Picket Fence Densities Rescale MSD 

To test a possible mechanism for clustering, we investigated how dimerization 

may lead to clustering via oligomerization induced trapping (Ritchie, Iino et al. 2003; 

Suzuki, Ritchie et al. 2005). We looked at the mean square displacement, MSD, of both 

monomer and dimer for each of the picket fence densities (rows) as a function of time, 

Figure 16Error! Reference source not found. (left column). In the MSD plots we 

observed hindered diffusion for all picket fence densities Figure 16. At a density of 400 

corrals/µm2 the monomer escapes at ~0.3s (noted by the shift in MSD) and then is 

confined until ~1.25 s; the dimer remains confined to a MSD of ~0.002 µm2 within the 2s 

simulation. Looking at the single particle tracking trajectories (Figure 16 right most 

panels) the monomer travels across a much larger area than when it is bound to a partner. 

The MSD trajectories of the 100 corrals/µm2 density show both monomer and dimer 

escaping at ~1.1s; the dimer is more confined moving in MSD area of ~0.013 µm2 while 

the monomer’s area is ~0.024 µm2. The single particle trajectories showed less difference 

between a monomer and dimer in the area traveled when compared with the trajectories 

of the 400 corrals/µm2. The MSD plots for the 25 corrals/µm2 show escapes for monomer 

and dimer at ~0.5s. The dimer escapes and then seems to be confined from 1.1s till 1.6s 

and then escapes again, while the monomer “hops” to another corral at 1.1s where it is 

confined to 0.024 µm2 area and then escapes again at ~1.5s. The single particle 

trajectories showed the monomer to have traveled a greater area, but compared with the 

400 corrals/µm2 the differences are small. The results indicated that dimerized receptors 
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cover less area, which supports oligomerization induced trapping; these results are more 

pronounced in the densest density of 400 corrals/µm2.  

Next we investigated the MSD trajectories as a function of the number of 

collisions (Figure 17). Rescaling the time in the MSD plots to number of collisions 

showed that escapes were only present in the 25 corrals/µm2 density. Rescaling the 100 

and 400 corrals/µm2 density to 3x106 number of collisions, we see an escape for the 

monomer (400 corrals/µm2) at ~1.3 x106 number of collisions, however, the dimer 

remains confined. At 100 corrals/µm2 density both monomer and dimer escape after 

~1.55 x106 number of collisions. The relation of the different densities shows how time, 

collisions, and escapes are being scaled. The 25 corrals/µm2 density shows a larger area 

traveled and greater number of escapes occurring in a smaller time and number of 

collision frame. These results illustrates time scaling of receptor signaling events based 

on the density of the membrane cytoskeleton. 
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Figure 16. Mean Squared Displacement as a Function of Time for Monomers and Dimers. The mean 

squared displacement is plotted as a function of time for both monomer and dimer for each of the 

picket fence densities. The right image shows single particle tracking on the lattice for both monomer 

and dimer.  

 



 
 

88 

 

 

Figure 17. Mean Squared Displacement as a Function of Number of Collisions for Monomers and 

Dimers. The mean squared displacement is plotted as a function of number of collisions for both 

monomer and dimer for each of the picket fence densities. The densities of 400 corrals/µµµµm
2
, 100 

corrals/µµµµm
2
, 25 corrals/µµµµm

2 
mean square displacements are plotted in lower left column. The right 

column shows 400 corrals/µµµµm
2
, and 100 corrals/µµµµm

2
 rescaled. 
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Oligomerization Induced Trapping 

  We wanted to determine if clustering is a result of oligomerization induced trapping. 

To test this we compare all three picket fence densities (25, 100, and 400 corrals/µm2) in 

the presence (Figure 18 left column) and absence (Figure 18 right column) of ligand 

stimulus. Adding ligand stabilizes EGFR in an open confirmation, enabling receptors to 

form dimers. In these simulations receptors were not allowed to predimerize. When 

performing the analysis a dimer was counted as a single species, as are monomers. 

Performing the Hopkins statistic test and the Chi-squared test showed clustering when 

ligand was added, indicating that clustering occurs as a result of dimerization. 
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P-value 0.05
Χ2 = 10.62>9.49 

P-value 0.05
Χ2 = 3.61<11.07 

P-value 0.05
Χ2 = 11.7>9.49 

P-value 0.05
Χ2 = 12.88>11.07 

P-value 0.05
Χ2 = 3.63<11.07 

P-value 0.05
Χ2 = 5.1<15.5 

 

Figure 18. Oligomerization Induced Trapping. Right column shows system in the absence of ligand. 

Left column shows system with ligand. Rows are for 25, 100, and 400 corrals/µµµµm
2
 densities. All 

lattices are shown at 2s. 
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Predimerization vs. Dimerization  

  We wanted to test the effects of clustering for the case of predimerization vs. 

dimerization. An additional reaction was added to the system to account for dimerization 

in the absence of ligand,      

f

b

k

k
Ru + Ru RuRu→←  

with kf = 0.01 (nM s)-1 and kb = 0.4 s-1 (Shankaran, Wiley et al. 2006). Simulations were 

carried out as before with receptors initially distributed randomly and then being allowed 

to diffuse as time progresses.   The 100 fence/µm2 picket fence density was used for both 

cases and simulations were carried out to 2s which is when dimerization reaches steady 

state. 

The results are shown in Figure 19, where we see the initial effects of clustering 

for the predimerization simulation at a time of 1s (Figure 19, right column middle). This 

was confirmed through the Hopkins statistic which showed a shift in our data, as well as 

the Chi-squared value which was 10.23, greater than Chi-squared value of 9.49, 

disproving the null hypothesis. However as time increased to 2s the amount of clustering 

proved to be statistically similar, leading to the conclusion that pre-dimerization initially 

increase clustering.
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Figure 19. Dimerization vs. Predimerization. The picket fence density of 100 corrals/µµµµm
2
 is shown for 

both dimerization (left column) and predimerization (right column) at times 0s, 1s, and 2s (rows). 

The Hopkins test as well as the Chi-squared values are shown to the left of each lattice.   
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Discussion 

  The role that MSK microdomains, such as picket fences, have on receptor aggregation 

as well as downstream signaling has been controversial(Allen, Halverson-Tamboli et al. 

2007). Some evidence indicates that picket fences may have an inhibitory role in cell 

signaling (Tank, Wu et al. 1982; Berk and Hochmuth 1992; Ganguly, Pucadyil et al. 

2008), while other evidence points to an increase in receptor clustering which enhances 

downstream signaling (Douglass and Vale 2005; Heneberg, Lebduska et al. 2006; 

Chichili and Rodgers 2007). Through this work, we have shown that both are valid and 

dependent on the density of picket fences as well as receptor concentration. At low 

receptor concentrations (30 to 50 receptors per lattice) increasing picket fence density has 

an inhibitory effect on clustering; whereas at normal to high receptor concentrations, the 

greatest amount of clustering was observed at a picket fence density of 100 corrals/µm2.  

Increasing from 200 to 300 (receptors per lattice), an increase in number of clusters 

occurs at the picket fence density of 400 corrals/µm2. We hypothesize that at greater 

receptor concentrations there would be a shift in the number of clustering towards 

increasing picket fence densities.  

  The ability of the cell to synchronize cytoskeletal interactions in conjunction with 

signaling events has been shown experimentally (Nakada, Ritchie et al. 2003; Sheetz, 

Sable et al. 2006). Coordinating microdomain densities to regulate cell signaling could 

prove to be an important mechanism exploited during oncogenesis.  Our data (Figure 13, 

Figure 16, & Figure 17) shows a time delay in clustering, which could activate some 

signaling pathways while suppressing other pathways.  This time delay is dependent of 

picket fence density, at 400 corrals/µm2, we see a shift in the data (Figure 13, left column 
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center) which indicates a more clustered state. This concept may be of importance to the 

activation of ERK, which can lead to either differentiation or proliferation dependent on 

its transient vs. sustained signal (Thrane, Schwarze et al. 2001; Sasagawa, Ozaki et al. 

2005). Our results (Figure 19) showed clustering at 1s in the case of predimerization, 

whereas clustering was not observed until 2s for dimerization. These results support 

oligomerization induced trapping as a mechanism for clustering. Such a mechanism is 

further supported by looking at the MSD plots and the SPT simulations for dimers in 

comparison to their monomer components. 

In summary our results show how microdomains on the plasma membrane can 

both inhibit and enhance clustering. When receptor aggregation is enhanced, oncogenic 

phenotypes, such as self-sufficiency of growth factors and an amplification of 

proliferative pathways, contribute to the diseased state.  Often times oncogenic events are 

well coordinated and a mechanism of turning on and off signaling pathways via 

rearrangement of MSK could facilitate the cancer cell.    
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Abstract 

The concept of the cell being nothing more than a bag of enzymes has come to pass, in its 

place the understanding that spatial organization dictates the efficiency of signal 

transduction pathways. It has been understood for sometime that receptor collocalization 

is an important part of signal transduction. When receptors form aggregates signal is 

processed in an effective way, reducing the limitations imposed by diffusion. In this work 

we investigated the extent to which receptor collocaliztion enhances downstream 

signaling. We observed a significant increase in association rates in comparison to 

dimerization rates when receptors a clustered. This result leads to our hypothesis that a 

“receptor-sharing” mechanism exists and contributes to the overall efficiency of signal 

transduction. The “receptor-sharing” mechanism occurs when cytosolic species binds 

with a receptor then disassociates and rebinds a neighboring receptor. We tested our 

hypothesis using a novel computational approach, the ACGMC, an algorithm which 

enables the spatial temporal evolution of the system in three dimensions by using a coarse 

graining approach. In this framework we are modeling EGFR reaction-diffusion events 

on the plasma membrane while capturing the spatial-temporal dynamics of proteins in the 

cytosol. From this framework we observe “receptor-sharing” which may be an important 

mechanism in the regulation and overall efficiency of signal transduction. 

Keywords: receptor-sharing, adaptively coarse grained Monte Carlo, ErbB Signaling, 

EGFR, spatial modeling,  
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Introduction 

 To respond to the complexities of their external environment and internal queues, living 

cells have evolved complex signal transduction pathways, which even surpass the 

complexity of modern processing units (1-3). Most signal transduction pathways 

originate at the plasma membrane with receptor-receptor ligand interactions, followed by 

receptor-receptor interactions establishing signaling scaffolds and platforms (4-7). The 

rate limiting step in a signal transduction pathway is often receptor-receptor interaction 

(8-12), i.e. dimerization which is diffusion limited and essential to the propagation of 

signal. The highly controlled process of dimerization is often disrupted in tumor cells 

which, overexpress receptors (13, 14).  

The prototypical signal transduction pathway (i.e. the ErbB network) begins with 

a receptor, (i.e. tyrosine kinase receptor) binding to its ligand when present (15). A ligand 

bound receptor has a greater affinity (eg. conformational orientation) to then form a 

dimer with neighboring receptors (8, 16, 17). Upon dimerization, receptor activation is an 

autocatalytic process occurring on the time scale of 1 nM s-1 (18), for example, the C-

terminal transphosphorylates very rapidly due to the close proximity of the tyrosine 

kinase tails.  The phosphorylated receptor leads to the recruitment of cytosolic species: 

adaptor proteins (Grb2, Sos, Shc)(19-22), cytosolic membrane tethered species (PLC`, 

Ras, Rap)(20, 23-26), signaling scaffolds (KSR)(27-29), scaffold binding proteins (Raf, 

MEK) (30-33)and transcription factors (ERK)(29, 33-36). The signaling cascade 

establishes itself at the plasma membrane, making it the “hub” of signal transduction (6, 

25, 29, 37-39). 
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Spatial organization (i.e. receptor clustering) is an important part of signal 

transduction, which is often neglected in systems biology when modeling with ODEs (9, 

18, 35). Exemplifying the essentiality of clustering, are INFγ receptors which are 

expressed at low levels (40) ranging from (102 to 103 receptors per cell) on T-cells and 

macrophages that have a diameter ~20µm (41). The INFγ receptors are experimentally 

found, using techniques such as electron microscopy and immunoprecipitation, 

aggregated in caveolar domains; explaining how receptors expressed at low levels 

propagate signal (40, 42, 43). Another example illustrative of the need for receptors to 

colocalize, comes from the ErbB family of receptors which are observed in electron-

microscopy images co-clustering (13, 44). It is known the formation of homo and 

heterodimers in the ErbB family leads to the activation of different signaling cascades(33, 

45). The formation of ErbB1-ErbB1 homo, ErbB1-ErbB2 hetro dimer leads to PLC` 

Grb2, and Shc activation while ErbB1-ErbB3 and ErbB1-ErbB2 initiates binding of 

multiple PI3K (45). Clustering facilitates dimerization and thus the activation of signal 

transduction pathways (10, 46-48).  

A quantitative understanding of the receptor spatial organization and the 

downstream signaling proteins is still lacking. We previously showed though a novel 

algorithm, the CSNSA, how receptor clustering enhances downstream signaling. In a 

study investigating aspects of clustering (49-51) synthetic bivalent ligands for FcεRI 

were constructed from DNA fragments, and it was determined that the effective initiation 

of  FcεRI  requires receptor aggregation (51). However there has not been a mechanism 

to describe the effects of receptor aggregation on downstream signaling. Herein, we 

provide simulation results in support of the hypothesis that a “receptor-sharing” 
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mechanism exists such that a cytosolic species disassociating from its receptor 

can “hop on” or “share” a neighboring receptor when receptors are in the clustered state.  

Although such a mechanism is difficult to test experimentally, we have implemented a 

novel computational approach, the adaptively coarse-grained Monte Carlo, (ACGMC) 

(52-54) to test our hypothesis. In our mathematical model we are simulating the spatial-

temporal interactions of EGFR on the plasma membrane while simultaneously capturing 

the spatial-temporal dynamics within the cytosol using a coarse-graining technique. To 

our knowledge this is the first coupled spatial-temporal membrane cytosol MC 

simulation.                                                
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Results 

Cell Signaling Events are Dependent on Spatial Localization 

Two spatial distributions of receptors were tested, a uniform distribution and a 

clustered distribution in which receptors cluster in a “lipid raft” with a size of 200 nm. 

Plotting dimerization vs. time (Figure 20A) we observe an increase in dimerization 

events for the clustered distribution when compared with the uniform distribution. 

Dimerization was enhanced when receptors were in the clustered distribution, to further 

investigate downstream signaling events we plot cytosolic binding events over time. and 

observe a transient increase in binding events. Figure 20B shows a much more dramatic 

difference between the clustered and uniformly distributed receptor conditions in terms of 

the number of binding events when compared with the number of dimerization events 

(Figure 20AB). This observation was suggestive of a mechanism that would enhance 

signal in the clustered state. 
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Figure 20. Reaction events for clustered vs. uniformly distributed receptor state. A) EGFR 

Dimerization (events) as a function of time. B) EGFR Association (events) for receptor binding 

cytosolic species as a function of time. Teal line:  receptors clustered in a lipid raft of 200 nm. 

Magenta Line: receptors uniformly distributed.   
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Evidence of a Concentration Gradient   

Observing an enhancement of cytosolic association events we hypothesized that a 

concentration gradient exists under the plasma membrane. To test this we looked at the 

total concentration of cytosolic species within the cytosol over time, where the total 

cytosolic species, CS  is defined as    

CS =Grb2 +Grb2Sos + Shc + pShc + pShcGrb2 + pShcGrb2Sos . As cytosolic species 

bind with phosphorylated receptors on the plasma membrane the concentration of these 

species in the cytosol decreases, as is observed in Figure 21. Comparing receptors which 

are in a clustered state with those that are uniformly distributed we observe additional 

concavity (Figure 21) in the cytosolic profile of the clustered state. The solutions deviate 

significantly between ~3s and ~16s but as time progress the solutions appear to reach a 

steady state, with small differences in the solutions. 
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Figure 21. Concentration of cytosolic species over time. The temporal profile of the concentration of 

cytosolic species in units of nM. Green line:  receptors clustered in a lipid raft of 200 nm. Magenta 

Line: receptors uniformly distributed.   
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The “Receptor-Sharing” Mechanism   

In previous work we showed how receptor aggregation enhances downstream 

signaling (ref), however our results assume the cytosolic species are well-mixed.  We 

now know that cytosolic species are not well-mixed and their spatial organization also 

plays a role in cell signaling. We hypothesize that receptor aggregation increases 

downstream signaling via a “receptor-sharing” mechanism.  Figure 22 demonstrates the 

“receptor-sharing” mechanism; a cytosolic species (CS1) bound with a receptor (R1-CS1) 

in the clustered state disassociates and “hops” on a neighboring receptor (R2-CS1). In 

order to observe this mechanism we identified single particle tracking trajectories shown 

in Figure 23. Cytosolic trajectories are shown in green while cytosolic bound receptor #1 

(R1-CS1) trajectories are in red and cytosolic bound receptor #2 (R2-CS1) trajectories are 

in blue. Figure 23A&B shows a cytosolic species bind to receptor, the receptor-bound 

species diffuses then disassociating rebinds a neighboring receptor a distance of 20 nm 

from the original receptor. The “receptor-sharing” event occurred within 80ms, the 

cytosolic species traveled 10 nm in the z-direction rebinding a receptor 20nm away from 

the original receptor that it had previously bound. An example of a rebinding event that is 

clearly not via the receptor sharing mechanism is shown in Figure 23C&D. In this 

trajectory the cytosolic species binds receptor, diffuses with receptor, disassociates, and 

enters the cytosol where it diffuses in the z-direction essentially entering a well mixed 

pool. After 30s the cytosolic species diffuses to the plasma membrane and rebinds 

receptor, a random event not captured by the “receptor-sharing” mechanism. 
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Figure 22. Schematic of "receptor-sharing". The cytosolic species (CS1) binds with receptor #1(R1) 

then undergoes a “receptor-sharing” event by disassociating with R1 and binding the neighboring 

receptor #2 (R2). 



 
 

107 

 

 

Figure 23. Single particle tracking of receptor-sharing and non receptor-sharing events. Three-

dimensional SPT of cytosolic species (CS1), diffusing in the cytosol (green), diffusing on the plasma 

membrane while bound to receptor 1, R1-CS1 (red) or bound to receptor 2, R2-CS1 (blue). A) 

“Receptor-sharing” event circled in yellow as viewed in x-z plane B) as viewed in x-y-z plane. C) Non 

“receptor-sharing” event as viewed in x-z plane D) as viewed in x-y-z plane. 
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Quantifying the “Receptor-Sharing” Mechanism 

 In order to quantify the receptor sharing mechanism we calculated the time of receptor 

sharing, RSt , being defined as 

2

6RS

C

r
t

D

〈 〉
=  

 in which 2r〈 〉  is the mean square displacement  in a microdomain of size 0.3 µm (55) 

and CD is the cytosolic diffusivity coefficient of 1 µm2/s (56, 57) . Calculating the time of 

receptor sharing we are able to quantify a receptor sharing event defined as a receptor 

binding event occurring within 0.05, seconds 0.05RSt s≤ after it has disassociated from a 

neighboring receptor.  

Turning up cytosolic diffusion in essence eliminates “receptor-sharing”.  We 

preformed simulations by increasing cytosolic diffusion two orders of magnitude, 

100µm2/s. Figure 24 shows plots of the number of binding events as a function of time 

between binding events for normal cytosolic diffusion and high cytosolic diffusion. We 

observe a statistical difference in the data at 0.05s, with the number of receptor-sharing 

events being approximately ~5 for normal cytosolic diffusion and ~1 for high cytosolic 

diffusion. Performing a two-tailed t-test at 0.05s gives 10.25>6.5 with a 0.005 P-value, 

indicating the significance between the two distributions. 
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Figure 24. Number of binding events vs. time between binding events. Blue line: Cytosolic species 

with normal diffusion at 1µµµµm
2
/s. Cyan line: with high cytosolic at 100µµµµm

2
/s. 
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Inhibiting the “Receptor-Sharing” Mechanism 

The mechanism of “receptor-sharing” may have important therapeutic applications. We 

added tyrosine kinase inhibitors, Iressa (Getfitinib) and Tarceva (Erlotinib) to our system.  

These inhibitors block signal transduction by competitively binding with the receptor’s 

phosphorylation sites on the tyrosine kinase tail (concentration and binding kinetics are 

provided in the legend of Figure 25). We wanted to determine the effectiveness of TKI’s at 

reducing the “receptor-sharing” mechanism. In Figure 25, we looked at the number of 

association events as a function of time for Iressa and Tarceva. The effects of Iressa 

appear to be more potent at reducing both association events and “receptor-sharing” 

events. 
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A B

 
Figure 25. Inhibition of the "receptor-sharing" mechanism. A) Association (events) vs. time (s) B) 

Number of binding events vs. time between binding events for green line: EGFR clustered in a lipid 

raft of 200 nm without drug, red line: treated with Iressa (Getfitinib), and blue line: treated with 

Tarceva (Erlotinib). An inhibitor concentration of 33 nM was used. Tarceva binding kinetics fk = 3 

nM
-1

 s
-1

 (74) and bk = 1 s
-1

, Iressa binding kinetics fk = 0.7 nM
-1

 s
-1

 and bk = 1 s
-1

 (75) 
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Discussion  

 It has been established that receptor aggregation enhances the efficiency of signal 

transduction(58-60). With the underlying mechanism being that a local concentration 

gradient reduces diffusional limitations, thus increasing the number of dimers. Our results 

(Figure 20A) confirmed this statement, showing a slight increase in dimerization for 

receptors in the clustered state. However, when we looked at the number of association 

events the results were much more dramatic (Figure 20B), showing a significant increase 

in the number of association events for clustered receptors. These results were suggestive 

of an additional mechanism.  

We hypothesized that a “receptor-sharing” mechanism exists and contributes to 

the overall efficiency of signal transduction. In our proposed “receptor-sharing” 

mechanism (Figure 22), a cytosolic species binds to a receptor, and then undergoes a 

“receptor-sharing” event by disassociating from the previously bound receptor and 

rebinding a neighboring receptor in close proximity. To confirm that the “receptor-

sharing” mechanism exists we performed single particle tracking of cytosolic species. We 

observed a rebinding event which occurred via the “receptor-sharing” mechanism, 

disassociating and rebinding within 0.05s. In support of this mechanism, one would 

expect a concentration gradient to be established under the plasma membrane. This was 

confirmed by our results Figure 21, which showed additional concavity in the cytosolic 

concentration profile when receptor aggregation was present.  

In order to quantify the “receptor-sharing” mechanism we established a time limit 

between disassociating and rebinding which would serve as a cut-off for classifying 

receptor binding events. The time limit was defined as: 
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2

6RS
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r
t

D

〈 〉
=  

in which 2r〈 〉  is the mean square displacement, CD is the cytosolic diffusivity 

coefficient, and 6 represents diffusion in three dimensions. The cytosolic diffusivity 

coefficient is two orders of magnitude higher in the cytosol than on the plasma membrane 

(56, 57). With measured receptor diffusivity coefficient being of the order 10-2 µm2/s (56) 

we used a cytosolic diffusivity coefficient of 1µm2/s. We then defined an area, 0.03 µm2, 

where “receptor-sharing” occurs. This area was based on the size of receptor aggregates 

(0.1-0.3µm) (13, 44) , microdomains (e.g. lipid rafts 0.02 0.5 µm) (55), and membrane 

cytoskeletal corrals (0.03-0.3µm) (61, 62).  The “receptor-sharing” event is thus 

quantified as disassociation event-rebinding event occurring within 0.05s. 

In this work we tested TKIs to determine their effects on “receptor-sharing”. Our 

results showed a decrease in association events and in “receptor-sharing” events when 

TKIs were added to the system. Given that “receptor-sharing” involves promiscuous 

signaling proteins interacting with receptors, and propagating signal more efficiently, this 

mechanism may be an important consideration for drug developers. Drug therapeutics 

which decrease “receptor-sharing” may be more effective at inhibiting signal 

propagation. The efficiency of “receptor-sharing” (unpublished data) is dependent on the 

binding kinetics, and thus therapeutics could potentially be tailored to reduce this 

mechanism. The “receptor-sharing” mechanism also hints at the selection of drug targets 

which may instead include promiscuous adaptor proteins. 

 It has long been established that signal transduction involves the coordination of 

proteins in time and space (47, 63-67). Experimental studies have shown disruption of 
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membrane recruitment reduces the amount of signal transduction (66, 68, 69). The 

plasma membrane, the nucleus of signal transduction, connects the extracellular with the 

intracellular via spatial organization of tethered membrane bound proteins, adaptor 

proteins, and signaling scaffolds (15, 70-72). The “receptor-sharing” mechanism may 

contribute significantly to this establishment. It may also prove to be a key regulator of 

signal transduction.  

The predictive abilities of mathematical models enable us to test hypotheses 

which would be unattainable experimentally. In this work using a novel algorithm 

ACGMC, we tested our hypothesis that a “receptor-sharing” mechanism exists and 

contributes to the efficiency of signal transduction. Testing such a mechanism 

experimentally is not feasible using today’s technology. With limitations such as 

cytotoxicity to probes, poor conjugation, endosomal uptake, and resolution limitations, 

the importance of mathematical approaches becomes evident. This work demonstrates the 

predictive capacity of mathematical modeling to go beyond the present technology and 

address important biological questions. 
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Materials and Methods 

Adaptively Coarse-Grained Monte Carlo (ACGMC)  

The Adaptively Coarse-Grained Monte Carlo (ACGMC) algorithm extends for 

three-dimensional spatial modeling building on our previous algorithm, the SKMC, by 

including nine additional lattices eight of which extend into the cytosol and a lattice at the 

cytosol nucleus boundary. This framework allows us to study the formation of signaling 

scaffolds and to observe concentration gradients which result from these scaffolds.  

The ACGMC, like the SKMC, begins by selecting a spatial location which could 

be either the cell membrane (1st lattice) or cytosol (2nd-9th lattices) or the nucleus (10th 

lattice). The selection is made by computing the probabilities for a spatial event (lattices 

1-10).  
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where totΓ  is defined as, 

10

, #
1

 (2)tot tot Lat i

i=

Γ = Γ∑ . 

The probability distribution for the lattices, , #tot Lat iΓ , is defined as the sum of all 

transition rates for all SKMC events; however, the events differ in dimensionality and 
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type as shown in Table I. For example, on the cell membrane (1st lattice) receptors diffuse 

in 2D but react with cytolic species (2nd lattice) on the lattice below such that reaction 

occurs in 2.5D. In the cytosol (3rd-9th lattice) species are able to diffuse and react in 3D. 

Cytosolic species in the boundary lattice which borders the cell membrane (2nd lattice) 

are able to react with neighboring receptors on the cell membrane but are not allowed to 

diffuse onto the membrane. At the boundary nucleus (10th lattice) species diffuse and 

react in 2.5D.   

In the cytosol the following reaction occurs: 1 2 12

kf

kb
M M M+ ���⇀

↽��� , such that the 

product 12M occupies the single site k. This reaction is valid due to the large site 

separation distance of 10 nm in comparison to the small molecular masses of cytosolic 

species Shc, Grb2, and Sos  62 kDa 25 kDa, 11 kDa (20, 22, 73). 

Once a lattice is chosen an event is selected, either reaction or diffusion for the 

SKMC algorithm as shown in Figure 26. Events are chosen, as in our previous 

algorithm(48), with the exception of dimensionality which changes the way maxΓ and 

X

iΓ are computed. The transition probabilities for cytosolic reactions in 3D are  

    1 2 12  ,    (3)
6

kf r

i i jkb

k
M M M σ σ+ Γ =���⇀

↽���   

in which reacting species (M1 and M2) occupy adjacent sites i and j and k has 

units of (molecules/site)-1sec-1. Diffusion in 3D is taken into account similarly  

1
 (1 )   (4)

6
d d

i j i j ij Bσ σ→Γ = Γ − ∈  

where iB  denotes the set of sites to which diffusion from site i can occur.  
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Table I lists all events, both reaction and diffusion, which make up maxΓ . maxΓ  is defined 

as before but multiplying by a factor of 6 for all 3D event, by a factor of 4 for all 2D 

events, and a factor of 5 for all 2.5D events such that 

max
all forward reaction events all forward reaction events2  Events 2.5  Events

all forward reaction events all backw3  Events

4 max 5 max
4 5

6 max max
6

d d
r r

D D

d
r r

D

   Γ Γ   
Γ = + Γ + + Γ      

      

 Γ  
+ Γ + Γ  

  

∑ ∑

∑
ard reaction events

   (5)
 
 
 

∑
 

 

The ACGMC operates like a single MC in which time is updated in a “combined” 

manner from totΓ  with an average time step as, 
1

tot

t∆ =
Γ

.  Execution times vary 

depending on a chosen algorithm.  The complete algorithm, which is shown in Figure 26, 

was implemented in Fortran 90. Due to the stochasticity of the algorithm, 10 simulations 

with different seeds for the random number generator were used for statistics.  
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Figure 26.  Adaptively Coarse Grained Monte Carlo (ACGMC). Schematic of algorithmic details. 
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Adaptively Coarse-Graining & Diffusion Transition Rates 

In ACGMC, we introduce coarse-graining by grouping microscopic sites into 

coarse cells, as shown in Figure 27. In our modeling schematic lattices one thru seven 

have microscopic spacing while lattices eight thru ten are coarse grained in the z-axis. 

Each coarse lattice CL  has xm , ym , and zm coarse cells along x, y, z, such that the total 

number of cells is x y zm m m m= . Each coarse cell ( )1jC j m≤ ≤  has jq  microscopic 

sites, in which x y z

j j j jq q q q=  is the number of microscopic sites in jC  along x, y and z 

axis. Diffusion between coarse-grained cells was rigorously derived by Chatterjee et al. 

(52),  

( )
( ) (1 )  (6)d

m j iz z z

j j i

C j i
q q q

η η
Γ

→ = −
+

 

in which, DΓ  is the diffusion transition rate, jη , is the coarse-grained occupancy function 

at jC is defined as 

 (7)
j

j p

p C

η σ
∈

= ∑ . 

While the occupancy of a coarse cell is in terms of the coarse cell coverage,  

1
  (8)

j

j p

p Cjq
η σ

∈

= ∑  

which for the microscopic case reduces down to either zero for unoccupied or one for 

occupied. 
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Figure 27.  Modeling Schematic. 1
st
 lattice is the plasma membrane, lattices 2-10 are within the 

cytosol, lattice 10 is the cytosol-nucleus boundary. Lattices 1-7 have microscopic spacing of 10 nm, 

while lattices 8-10 are coarse grained with spacing of 0.5m, and 1 m.  
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Validation of Approach   

In order to validate our approach we initially placed all molecules within lattices 

one thru nine and allowed them to diffuse a distance of 1`m into lattice ten over time. 

Turning off reaction we have reflective boundary conditions at the cytosol membrane 

boundary (lattice two) and at the cytosol nucleus boundary (lattice 10) and periodic 

boundary conditions in the plane parallel to the plasma membrane. Using a diffusivity 

coefficient of 10µm2 s-1 and a distance 1µm and implementing reflective boundary 

conditions we compared the ACGMC with the PDE solution. Starting with a cytosolic 

species concentration 105 nM we observe similar predications between the ACGMC and 

PDE profiles (Figure 28). 
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Figure 28. Validation of ACGMC. Concentration profile of cytosolic species (nM) at diffusivity of 

10µµµµm
2
/s and a distance of 1µµµµm. magenta line: ACGMC  blue line: PDE. 
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Table 5. Membrane & Cytocolic Microscopic Events and 
Transition
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Chapter 5.  Future Work 

Introduction 

The Human Genome Project was one of the first modern biological endeavors 

which altered the way in which biology was practiced. Producing vast amounts of data 

the necessity became analysis and the need to develop computational tools. Data analysis 

of the human genome revealed higher order complexity and connectivity providing a new 

systematic prospective to biology. Unlike the reductionistic approach in which 

components are studied in isolation, the systematic approach investigates the role of a 

component within the system in order to understand the dynamics and stability of that 

system. Mathematical modeling has become essential to the systematic approach, with 

the ability to make predictions of the evolving system in time and space.  

In this work I have showed mathematical models complementing experimentation 

with the ability to make novel predictions which may be unattainable experimentally. I 

envision this work proceeding in two directions: the first to make algorithmic 

improvements and increase computational efficiency, and the second to make future 

biological predictions of cell signaling processes. I will discuss each of these directions 

along with current work. 

Computational Improvements 

The algorithms which were developed implement a hybrid null-event spatial 

kinetic Monte Carlo, SKMC method. The algorithm calculates probabilities for every 

event, by calculating the maximum transition rate,  maxΓ   which is defined as 

max
all forward reaction events all backward reaction events

4 max max
4

d
r r Γ    

Γ = + Γ + Γ    
    

∑ ∑
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where four takes into diffusion in two-dimensions on the plasma membrane. The 

probability for a given event is then defined as 
max

X
X i
iP

Γ
=

Γ
the transition rate X

iΓ for the 

given event divided by the the maximum transition rate. The algorithm will then select an 

occupied lattice site and update diffusion and reaction probabilities based on the state of 

the system. The maximum transition rate is greater than reaction and diffusion transition 

rates which gives rise to a null event probability null

iP . Using this method events with low 

probabilities are penalized with additional null events. Incorporating null events means 

loss of computational time in selecting an occupied lattice site, determinging probabilites 

based on neighboring species, and selecting an event.  

Although the null-event algorithm has been used throughout this work 

computational efficiency could be improved by making this a rejection free algorithm. 

The stochastic simulation algorithm, SSA is an example of a rejection free method in 

which probabilities are determined by computing a total transition rate,
 1 1

j L
N N

X

total i

X i= =

Γ = Γ∑∑  

for all lattice sites, LN and all events,
 

JN  . Probabilities are then defined as  
X

X i
i

total

P
Γ

=
Γ

 . 

In order to eliminate the null bin, the total transition rate would be dependent on the state 

of the system.   

Parralliziation would be the next step to improving the overall algorithm efficiecy. 

The CSNSA code could be parrallized in such a way that the lattice would be broken up 

into quadrants. Information would be passed between the quadrants using MPI. The most 

logical way to parrallize the ACGMC algorithm would be to break up the lattices and 

submit them to different processors. The current ACGMC algorithm operates in a similar 
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fashion by sending information about the current lattices as well as the surrounding 

lattices to the MC subroutine.  Modifications would be made by implementing MPI to 

pass information between lattices. Parraliziation I would expect to result in the greatest 

computational speedup.  

Computational Predictions 

Understanding the impact of IFNγγγγR clustering on immune response pathways 

Introduction 

Within a sea of lipids, a highly compartmentalized landscape exists, limiting the 

diffusion of signaling receptors and altering the spatial-temporal activation of signaling 

pathways. In this work we have unraveled the intricacies of spatial organization of the 

ErbB receptors and downstream signaling pathways, showing that clustering enhances 

signal transduction via “receptor-sharing” mechanism andthat the MSK is a mechanism 

of receptor clustering. However, in order to come full circle, an understanding of how 

signal transduction regulates protein expression levels that as a result, restructures the 

plasma membrane, needs to be further elucidated.  
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Background 

Caveolin-1, a 22-24 kDa integral protein, is the backbone to caveolar 

microdomains, and its expression level determines the number, size, and flexibility of 

caveolar domains. Caveolin-1 is regulated by many signal transduction pathways; PKCε 

and androgen receptor signaling pathways lead to its upregulation  whereas MAPK-Ras, 

c-Myc, INFγR leads to its down regulation. A431cells with decreased caveolin-1 

expression have diverse membrane morphologies that alter the spatial organization of 

signaling receptors. 

Electron microscopy images show interferon-γ receptor, INF`R, collocalized 

within caveola microdomains. INFγR, being responsible for the activation of 

macrophages during the early steps of innate immunity, induces direct antimicrobial 

mechanisms and up-regulates antigen processing and presentation pathways.  Interferon-γ 

activates these immune responses via the Janus kinase (JAK) and signal transducer and 

activator of transcription (STAT) pathway. The initial signaling events of IFNγR are 

often the rate-limiting step and dependent on the spatial distribution of the IFNγR. 

Experimental evidence shows that the relationship between IFNγ and caveolar 

domains goes beyond spatial organization on the plasma membrane, gene networks of 

caveolin-1, and IFNγ seem to be entwined. Stimulating macrophages with IFNγ had an 

inhibitory effect on caveolin-1, the marker protein of caveola. In addition, when 

transfecting cell lines HT20 and DLD1with caveolin-1 cDNA, there is downregulation in 

iNos, a metabolic product of INFγ immune response.  
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Motivation 

A complex regulatory network exists between caveolin-1, INFγ and iNos. This is a 

model system to explore two relationships: colocalization of IFNγR on downstream 

signaling pathways, and protein expression levels on the structure of caveolar 

microdomains. In order to elucidate these relationships, a novel computational approach 

must be developed which would combine a spatial stochastic algorithm (CSNSA) with a 

deterministic circuit-based platform (BioXyce). This would enable spatial-temporal 

receptor dynamics to be coupled with regulatory and metabolic networks.    



 
 

129 

Approach   

The computational challenges of this work are coupling deterministic and 

stochastic approaches which require the appropriate closure. A stochastic closure similar 

to that used in Katsoulakis et al. would be implemented. The hybrid algorithm would use 

the CSNSA to capture receptor diffusion reaction events on the plasma membrane, and 

the BioXyce circuit simulator would be implemented in the cytosol, nucleus, and 

mitochondria to simulate regulatory, metabolic, and signal transduction processes.   

The coupled system would operate like a single MC with a stochastic variable 

time step st∆ . Probabilities would be computed for the MC, based on transition rates for 

reaction diffusion events (MC). The MC algorithm would be iterated until a successful 

event is executed and time is updated 
1

s

tot

t∆ =
Γ

 in which totΓ  is the total of the transition 

rates. The MC would pause and the ODE would be executed for the time step, st∆ . The 

procedure would be iterated until the final time is reached.  Simulations would compare 

the hybrid algorithm with the CSNSA to verify appropriate levels of noise and temporal 

profiles of species.  
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Simulations 

To elucidate the relationship between caveolin-1 and INFγR, we will perform 

simulations at different concentrations of caveolin-1 and test the downstream signal 

propagation. We will then look at the upregulation and downregulation of gene networks 

based on different levels of signal. Gene networks will determine the protein expression 

levels of caveolin-1 and thus alter the size, density, and number of caveolar 

microdomains. Simulations will be preformed, looking at different combinations of 

regulatory networks and observing the diffusivity of INFγR through the caveolar 

microdomains. This work will be presented at the Q-bio conference, Santa Fe, for further 

details refer to Appendix B. It will be written up in a manuscript. 
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A Monte Carlo Based Approach for Determining Optimal Drug Efficacy in Different 

Cytoskeletal Distributions 

Introduction 

In the previous work we investigated various cytoskeletal densities in order to 

determine the effects on receptor clustering. Our results showed different receptor 

dynamics being dependent on cytoskeletal density. Experimental techniques show the 

MSK to vary in general morphology and distribution in different cell types. Based upon 

these fundamental differences in the cytoskeletal distributions, drug therapies can be 

tailored to specific tissue types. Although drugs have been designed for maximum 

potency in the past, emerging evidence suggests that the drug’s disassociation rate may 

be altered to maximize signal as well as reduce densensitization. We hypothesized that 

optimal drug parameters are dependent on MSK density. Using a computational 

approach, we have tested different dissociation constants in various MSK densities, with 

the goal of finding an optimal drug design criteria that is specific for different cell types.    

Background 

Recent work using single particle tracking has revealed that the density of the 

MSK varies with cell type. Measurements of time proteins spent in confinement yield 

compartment sizes ranging from 32 nm for CHO-B1 cells to 230 nm for normal rat 

kidney fibroblast (NRK) cells. Similarly, three-dimensional reconstructed images of the 

plasma membrane in NRK cells and FRSK cells revealed differences in MSK density. 

The variation in MSK density appears to be of physiological significance, as observed in 

hippocampal neurons.   These specialized cells contain a diffusional barrier highly 

concentrated with the MSK and transmembrane proteins located between the 
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somatodendritic and axonal domains, limiting the diffusion of even phospholipids. Such 

diffusive barriers have been observed in tight junctions, the neck of the bud in budding 

yeast, and between compartments in sperm. Although few studies have investigated the 

variation in MSK density and its role in cellular function, one could hypothesize that the 

diversity of MSK densities facilitates cell type specific physiology.  
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Motivation 

With such variation in the MSK, we propose the concept of tailoring therapeutics 

with cell specificity in mind, an idea which to our knowledge has not been suggested 

before. Our hypothesis is that the membrane cytoskeletal distributions have diverse drug-

binding parameters, offk which correspond to optimal inhibition. The motivation for our 

hypothesis comes from previous work done by Woolf et al., performing Monte Carlo 

(MC) simulations a minimum rate of G-protein-coupled receptor (GPCR) 

phosphorylation was observed at an intermediate koff value. Their results were explained 

in terms of the spatial-temporal dynamics of receptors at different offk  parameters.  

Approach & Results 

 In this work we have implemented a lattice-based spatial kinetic Monte Carlo (SKMC) 

algorithm which incorporates “picket-fence” boundaries enabling us to test different 

membrane cytoskeletal densities. Adding a drug to our system that inhibits epidermal 

growth factor receptor (ErbB or EGFR) homo and hetero dimerization, we are able to 

determine the optimal binding parameter  offk  at a given cytoskeletal density. Our results 

show optimal inhibition at koff values of 100 s-1, 8500 s-1 in the case without picket 

fences and at 100 s-1, and 6000 s-1at a picket fence distribution of 25 corrals/µm2. 

Future work 

 Future work will explain our results by computing the mean square displacement, MSD 

for all receptors bound to drug for a given offk  value. The results will show the MSD 

traveled by receptors bound to drug for a specific koff parameter, enabling us to compare 
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and contrast MSD as a function of time for different offk  parameters. This work is being 

prepared in a manuscript (see Appendix C.).  

Microdomains and the Underlying Cytoskeleton Alter the Efficiency of “Receptor-

Sharing”  

Introduction 

In our previous work we quantified the “receptor-sharing” mechanism;however, 

understanding the “receptor-sharing” mechanism in terms of microdomains and that the 

underlying cytoskeleton is of biological importance. In this work we implemented the 

ACGMC algorithm with microdomains and at different picket fence densities. 

Background 

Signal transduction, the cell’s communication network, comes to a crossroads on 

the highly compartmentalized plasma membrane. Often oversimplified in mathematical 

models, the plasma membrane is a facet of heterogeneity that alters receptor organization 

from transient confinement zones  or signal transduction “hot spots” to depletion zones. 

The spatial heterogeneity of receptors comes as a result of sphingolipid-rich 

microdomains ‘lipid rafts’, caveolar formation, clathrin cages, and the hindering 

interactions with the membrane cytoskeleton.  Diffusional limitations are the result, 

herein altering the initiation and activation of signal transduction pathways. Localized 

concentration gradients become a consequence of the membrane architecture and enhance 

the efficiency of signal propagation. 
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Motivation 

Signal transduction and plasma membrane microdomains have typically been 

studied in isolation. Although growing evidence shows their intimate nature, with 

coalescing lipids and transient meshes altering signal transduction  which come full 

circle, activating transcription factors that regulate protein expression levels on the cell 

membrane. The motivation for this work is to understand signal transduction in the 

contest of membrane microdomains. Using the adaptively coarse-grained Monte Carlo 

(ACGMC), we observe signal transduction in terms of our previously proposed 

“receptor-sharing” mechanism under various microdomain conditions. 

Future Work 

 We preformed simulations which compare receptor sharing in different plasma 

membrane conditions such as lipid rafts, and with the underlying membrane cytoskeleton. 

Simulations have been run to test receptor sharing within lipid rafts at different 

parameters such as lipid raft size and receptor diffusivity through a lipid raft. Similarly, 

we have tested receptor sharing at three different MSK densities at varying receptor 

concentrations. Future work will include running additional simulations at biologically 

relevant diffusivities in lipid raft domains. The data will be further interrupted by 

quantification of the “receptor-sharing” mechanism and be presented in the most 

appropriate figures. This work will be written up in a manuscript; preliminary results are 

presented in Appendix D. 
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Monte Carlo Simulations Reveal Formation and Activation of the MAPK Pathway 

Introduction  

In our previous work we have looked at several mechanisms that are applicable 

for other signal transduction networks. In this work we investigate the mitogen-activated 

protein kinase, MAPK pathway to determine mechanisms of efficiency and adaptability. 

We utilize the adaptively coarse- grained Monte Carl (ACGMC) algorithm to observe the 

spatial temporal dynamics of scaffold formation.  
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Background 

Signal transduction pathways process internal queues, relaying information that 

brings about a physiological response. Within this finely tuned system are mechanisms 

for efficiency and adaptability; to illustrate this are signaling scaffolds.  The function of 

signaling scaffolds is similar to a circuit board in that both upstream and downstream 

signaling proteins can be spatially arranged and compartmentalized signaling nodes. 

Scaffolds are often necessary to catalyze enzymatic reactions, phosphorylate or 

dephosphorylate kinases, and to facilitate both positive and negative feedback loops.  

Among the most extensively studied signaling scaffold systems is the mitogen-

activated protein kinase, MAPK pathway which in mammalian cells regulates many key 

cellular processes such as proliferation, survival, motility, and differentiation. The initial 

signaling events in the MAPK pathway involve receptor ligation, dimerization, and 

phosphorylation which initiate the recruitment of adaptor signaling proteins such as Grb2 

(growth factor receptor-binding protein 2), Shc (Src homology 2 and collagen domain 

protein), and SOS (son of the sevenless). The interactions of these adaptor proteins mimic 

the functionality of signaling scaffolds. Grb2 through its SH2 domain binds 

phosphorylated tyrosine residues of either EGFR or Shc and also has the capability of 

binding the guanine nucleotide exchange factor (GEF) SOS through its N-terminal SH3 

domain. SOS exchanging a guanine transforms membrane bound (Ras–GDP) to its active 

form (Ras-GTP), thus inducing the MAPK pathway.   

The aggregation of EGFR trickles down to the signaling cascade, effecting the 

spatial distribution of signaling scaffolds. A receptor bound scaffold in close proximity 

with another receptor can disassociate and then reattach to the proximal receptor, 
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enabling “receptor sharing” to occur between proteins in the signaling cascade. The effect 

of spatial distribution on signaling scaffolds has not been well elucidated. In this study 

we aim to uncover the downstream effects of receptor aggregation on the formation of 

signaling scaffolds. 
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Future Work 

 Implementing the Sasagawa et al. model of the MAPK pathway in the ACGMC, we 

will ask what cytosolic species are better at “receptor-sharing.” We will test binding rate 

affinities to observe optimal “receptor-sharing.” We will look at phosphotases and their 

receptor-sharing abilities and how they can dramatically alter signal transduction.  We 

will cluster receptors to see if this leads to a colocalization of the Ras membrane-tethered 

protein. We will observe the formation of signaling scaffolds to observe its spatial 

temporal dynamics. 

Conclusions 

In the post Human Genome era, a new vision of personalized medicine is 

emerging which will be obtained through decades of multidisciplinary research that 

undoubtly will build its foundation from predictions of mathematical models.  

Personalized medicine could entail going to a doctor having your human genome 

sequenced, analyzed, and a mathematical model generated which would describe cell 

signaling processes, gene and metabolic networks. The mathematical model would be 

personalized built from a patient’s genome and updated overtime. The personalized 

model could determine optimal drug treatment, and therefore provide patient specific 

care. 

Although such a vision is beyond the horizon it will be achieved by 

multidisciplinary approaches relying on both experimentation and theory. It will 

incorporate the understanding of spatial-temporal dynamics of signaling proteins and its 

connection will the compartmentalized plasma membrane. This work will serve as a 

minute stepping stone in the direction of personalized medicine. 
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Appendix A.  The effective kinetic rate constant for diffusion-reaction problems derived 

by Lauffenburger and Linderman is            

( )
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where AB A BD D D= + , AD and BD are the diffusivities of A and B, Aρ is the density of 

molecules of A (number of molecules per unit area), 1
A

b πρ= is one-half of the mean 

displacement between molecules of A distributed in a certain area, Arealk is the intrinsic 

reaction rate constant in units of (receptors /area)-1 s-1, and s is the encounter radius. The 

relationship between Arealk  and k  is given as, 2
Arealk ks= . 

Using Eq 1. and combining it with the expression for resistance in a series model  
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the diffusion-limited reaction rate constant, Diffusionk is determined to be  
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 (3).  

for diffusion limited cases, Diffusion Arealk k<< , PDE Arealk k≈ as was the case for the fitted 

parameters in this work. In diffusion limited cases, PDEk is the fitted parameter and can be 

related back to the ODE parameter using Eq. 1. Using this approach, small differences 

were found in enzymatic reactions leading to the conclusion that omission of diffusion-

limited contributions contributed negligible effects on the model. 
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Appendix B.  Understanding the impact of IFNγR clustering on immune response 
pathways  

 
Michelle N. Costa1, Elebeoba E. May2 

Short Abstract — Interferon-γγγγ plays an important role in macrophage activation during the early 

steps of innate immunity. Propagation of immune response via INFγγγγ is dependent on the spatial 

localization of the INFγγγγR. EM images have found INFγγγγR to be colocalized in caveolar membrane 

domains; whether this enhances or restricts signal remains to be elucidated, However, in an 

interesting twist, experimental evidence points to INFγγγγ as a negative regulator of caveolin-1. In order 

to understand the spatial-temporal dynamics of INFγγγγR membrane localization and further 

investigate the impact of IFNγγγγR activation on gene and metabolic pathways that regulate caveolin-1 

production we developed a simulation-based model using a coupled CSNSA-BioXyce platform that 

combines a spatial Monte Carlo method (CSNSA) with a circuit-based intracellular network 

simulator (BioXyce).  In this work we explore the impact of receptor spatial organization on immune 

effector mechanisms and to complete the circle, the impact  of IFNγγγγ mediated effectors on spatial 

organization.  

Keywords — Spatial organization, gene networks, INFγγγγR, caveolin-1, spatial modeling 

Purpose 

Interferon-γ induces direct antimicrobial mechanisms and up-regulates antigen processing and 
presentation pathways (9). Interferon-γ activates these immune responses via the Janus kinase (JAK) and 
signal transducer and activator of transcription (STAT) pathway. The initial signaling events of IFNγ 
receptor (IFNγR) are often the rate limiting step and dependent on the spatial distribution of the IFNγ 
receptors (3).   

Electron microscopy using immunogold labeled particles has revealed aggregation of IFNγR in 
membrane domains (1). With low numbers of receptors (102 to 103 receptors per cell (1)) spanning large 
distances (20um T cell and macrophage (3)) aggregation and colocalization are necessary mechanisms in 
the signal transduction pathway. Although the cell membrane is a vastly complex structure filled with 
heterogeneous microdomains IFNγR has been observed to colocalize in caveolar membrane domains (1, 2, 
4, 5). 

Experimental evidence shows the link between IFNγ and caveolar domains goes beyond spatial 
organization on the plasma membrane, gene networks of caveolin-1 and IFNγseem to be entwined. 
Stimulating macrophages with IFNγ had an inhibitory effect on caveolin-1, the marker protein of caveola 
(7). In addition when transfecting cell lines HT20 and DLD1with caveolin-1 cDNA there is downregulation 
in iNos(6), a metabolic product of INFγimmune response. A complex regulatory network exists between 
caveolin-1, INFγand iNos.     

  This distinct network has yet to be fully elucidated. Starting with a model of the INFγimmune 
response (8) we have added gene networks of caveolin-1 as well as gene and metabolic networks of iNOS. 
In this study our aim is to understand the effects that spatial clustering has on IFNγR downstream signaling 
using the coupled spatial non-spatial simulation algorithm (CSNSA) to simulate the IFNγ/IFNγR mediated 
activation of the JAK-STAT signal transduction cascade. We then investigate the relationship between 
iNOS and caveolin-1 using a modeling framework which combines the CSNSA with BioXyce, where 
BioXyce is used to simulate the STAT mediated intracellular reactions that lead to the production of IFNγ 
activated genes and the metabolic reactions that lead to the production of  immune effector molecules.  We 
discuss the challenges and benefits of the coupled platform in providing a multiscale understanding of host 
immune response mechanisms. 
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Abstract 

The membrane skeleton (MSK) is the portion of the cytoskeleton that is closely 

associated with the cytoplasmic surface of the plasma membrane, varying in general 

morphology and distribution in different cell types.  The MSK is composed of actin 

filaments and various integral proteins, which provides the cell with structure. It has been 

hypothesized that MSK rearrangements are associated with an upregulation in 

proliferative pathways, which is a hallmark of cancer. Based upon these fundamental 

differences in the cytoskeletal distributions, drug therapies can be tailored to specific 

tissue types. Although drugs have been designed for maximum potency in the past, 

emerging evidence suggests that the drug’s disassociation rate may be altered to 

maximize signal as well as reduce desensitization. We hypothesized that optimal drug 

parameters are dependent on MSK distribution. Using a computational approach, we 

have tested different dissociation constants in various MSK distributions, with the goal of 

finding an optimal drug design criteria that is specific for different cell types.  Our results 

suggest that therapeutic techniques should be tailored with tissue specificity in mind. 

 
 

Keywords: cytoskeleton, picket-fence, drug efficacy, Spatial Monte Carlo  
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Introduction 

 The cytoskeleton is the sole structure spanning from the plasma membrane to the 

nucleus, coordinating all cellular processes in between (Janmey 1998; Janmey, Kas et al. 

1998; Kusumi, Nakada et al. 2005).  The membrane cytoskeleton (MSK), an interfacial 

structure of the bulk cytoskeleton located at the plasma membrane, plays an essential role 

in membrane function as well as cytoskeletal regulation (Fujiwara, Ritchie et al. 2002). 

Controlling processes such as endocytosis and exocytosis, the MSK provides the plasma 

membrane with structure yet adaptability (Dai and Sheetz 1999; Gaidarov and Keen 

1999; Gaidarov, Santini et al. 1999; Valentijn, Valentijn et al. 2000; Gauthier, Rossier et 

al. 2009). Experimental evidence has shown that the MSK regulates site specific 

localization of transmembrane proteins (Bennett 1990; Saxton and Jacobson 1997; 

Bennett and Baines 2001; Pan, Kao et al. 2006), membrane tension (Togo, Alderton et al. 

2000; Doherty and McMahon 2008; Lundmark, Doherty et al. 2008), global cell 

shape/volume (Linshaw, Fogel et al. 1992; Pedersen, Hoffmann et al. 2001; Sheetz, Sable 

et al. 2006), and membrane deformation at the leading edge(Svitkina and Borisy 1999; 

Svitkina and Borisy 1999). Arguably, the most important function of the MSK is the 

regulation of protein and lipid mobility on the plasma membrane (Fujiwara, Ritchie et al. 

2002; Ike, Kosugi et al. 2003; Forgacs, Yook et al. 2004; Kusumi, Nakada et al. 2005). 

This particular function, an enigma that plagued the fluid mosaic model, is of great 

consequence for signal transduction.   

Fujiwara et al. performed single particle tracking on the 1,2-dioleoylsn-glycero-3-

phosphoethanolamine (DOPE), a non-raft lipid, and observed interesting diffusive 

behavior when the DOPE lipid underwent short-term confinement, followed by long term 
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“hop” diffusion (Fujiwara, Ritchie et al. 2002). Hypothesizing an explanation to this 

curious diffusive behavior, cells were treated with latrunculin-A, an actin binding toxin 

which partially depolarizes filamentous actin, and showed an increase (factor of ~1.5) in 

diffusive compartment sizes. This evidence was indicative of the diffusional restrictions 

imposed by the MSK and supported the “picket-fence” model, also known as the 

anchored-protein picket model. The “picket-fence” model (Edidin, Kuo et al. 1991; 

Kusumi, Nakada et al. 2005) describes the plasma membrane as a landscape of 

boundaries: the fences are composed of the mesh-work of the MSK, while the pickets are 

integral proteins that are themselves tethered or confined by the MSK, inhibiting 

diffusion on the extracellular face.    

 Recent work using single particle tracking has revealed that the density of the MSK 

varies with cell type (Murase, Fujiwara et al. 2004). Measurements of time intervals that 

proteins have spent in confinement yield compartment sizes ranging from 32 nm for 

CHO-B1 cells to 230 nm for normal rat kidney fibroblast (NRK) cells (Murase, Fujiwara 

et al. 2004). Similarly, three-dimensional reconstructed images of the plasma membrane 

in NRK cells and FRSK cells revealed differences in MSK distribution (Morone, 

Fujiwara et al. 2006). The variation in MSK density appears to be of physiological 

significance, observed in hippocampal neurons.   These specialized cells contain a 

diffusional barrier highly concentrated with the MSK and transmembrane proteins 

located between the somatodendritic and axonal domains, limiting the diffusion of even 

phospholipids (Nakada, Ritchie et al. 2003). Such diffusive barriers have been observed 

in tight junctions(Dragsten, Blumenthal et al. 1981; Dragsten, Handler et al. 1982; van 

Meer, Gumbiner et al. 1986; van Meer and Simons 1986), the neck of the bud in budding 



 
 

149 

yeast (Takizawa, Sil et al. 1997; Takizawa, DeRisi et al. 2000), and between 

compartments in sperm (Ladha, James et al. 1997). Although few studies have 

investigated the variation in MSK distribution and its role in cellular function, one could 

hypothesize that the diversity of MSK densities facilitates cell type specific physiology 

(Murase, Fujiwara et al. 2004; Morone, Fujiwara et al. 2006).  

Variation in the MSK is not only a striking feature observed between cell types, but it is 

also seen in disease. Morphological changes occur in the MSK during cancer, specifically 

during metastasis in which cell-cell interactions are often disrupted (Chopra, Fligiel et al. 

1990). Studies investigating metastatic characteristics exhibit a decreased interaction of 

tumor cells with platelets, a trait that is inherently dependent on the lateral mobility of 

specific receptors (Chopra, Hatfield et al. 1988; Chopra, Timar et al. 1992; Olorundare, 

Simmons et al. 1992). Antitumerigenic effects were observed when actin-binding 

proteins were overexpessed, leading to a stabilization of focal adhesion (Nebl, Oh et al. 

2000). In addition, oncogenes that alter the actin binding protein expression have been 

identified (Vandekerckhove, Bauw et al. 1990; Janmey 1998). Another MSK function 

exploited in cancer, which has not been extensively studied, is the ability to enhance 

proliferative signal transduction pathways (e.g. clustering) and inhibit regulatory 

apoptotic pathways (Forgacs, Yook et al. 2004; Doherty and McMahon 2008). 

With such variation in the MSK, we propose the concept of tailoring therapeutics with 

cell specificity in mind, an idea which to our knowledge has not been suggested before. 

Our hypothesis is that the membrane cytoskeletal distributions have diverse drug binding 

parameters, offk which correspond to optimal drug inhibition. The motivation for our 

hypothesis comes from previous work (Woolf and Linderman 2003) done by Woolf et al. 
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in which performing Monte Carlo (MC) simulations, a minimum rate of G-protein-

coupled receptor (GPCR) phosphorylation at an intermediate koff value. Their results 

were explained in terms of the spatial-temporal dynamics of receptors at different offk  

parameters.  

 In this work we have implemented a lattice based spatial kinetic Monte Carlo (SKMC) 

algorithm which incorporates “picket-fence” boundaries enabling us to test different 

membrane cytoskeletal distributions. Adding a drug to our system that inhibits epidermal 

growth factor receptor (ErbB or EGFR) homo and hetero dimerization, we are able to 

determine the optimal binding parameter  offk  at a given cytoskeletal distribution. Our 

results show optimal inhibition at koff values of 100 s-1, 8500 s-1 in the case without 

picket fences and at 100 s-1, and 6000 s-1at a picket fence distribution of 25 corrals/`m2. 

Materials and Methods 

Spatial Kinetic Monte Carlo (SKMC) 

Simulations were performed using a spatial kinetic Monte Carlo (SKMC) algorithm 

which is a modified null-event lattice based MC, developed by our group (Mayawala, 

Vlachos et al. 2005; Mayawala, Vlachos et al. 2005). The spatial domain is a two-

dimensional square lattice which is implemented with periodic boundary conditions.  The 

algorithm begins by populating receptors onto the lattice.  It then computes transition 

rates for reaction and diffusion rates as shown in Table II.  Probabilities are determined 

based on the normalization transition rate maxΓ  for further details see (put Ref). The 

algorithm proceeds iteratively by selecting an occupied lattice site, choosing a successful 

(reaction or diffusion) or unsuccessful (null) event based on the probabilities. If a 

successful event was chosen, the event is executed and species populations as well as 



 
 

151 

time are updated, if the selected event is a “null-event” the algorithm proceeds until a 

successful event is chosen. A schematic of our algorithm is shown in Fig 2.  

Picket Fences 

Spatial boundaries were placed on the lattice to simulate the cytoskeletal distributions 

interacting with the plasma membrane. Using the term “picket-fences” to describe the 

cytoskeletal interactions, we quantified the density of boundaries in units of corrals/area, 

establishing three distributions of 25 corrals/µm2, 100 corrals/µm2, and 400 corrals/µm2 

as shown in Fig 1. The “picket-fences” reduce the diffusional transition rates of the 

receptors, as shown from the definition of this rate: 

1
 (1 ) 

4
d d

i j i j ij Bσ σ→Γ = Γ − ∈  

where 
2

4d D

a
Γ =  is four times its diffusion coefficient,D , divide by its inner lattice 

distance, a  squared. iB  signifies the set of sites in which diffusion from site iσ  can 

occur. Diffusion takes place in four directions, each direction with its occupancy 

function jσ  which is discrete. jσ  equals one if the site is filled, or zero if the site j  is 

empty. This means that Eq. 1 can be either 0 or 
1

4
dΓ , depending on the occupancy of the 

neighboring site. Effective confinement of the receptor occurs when a receptor is 

neighbored by a “picket-fence”.  In this instance, the jσ  term will be equal to one, 

yielding a diffusion transition rate of zero in that direction.  

The membrane cytoskeleton is a very dynamical structure, undergoing rearrangements 

which enable receptors to escape the confinement of a corral. Single particle tracking 

shows that receptors hop to a new compartment every 10ms per 230-nm-diameter of 
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membrane cytoskeletal obstruction (Fujiwara, Ritchie et al. 2002). We simulate the 

picket-fence dynamics by placing breaks at a time step, PFt∆ of 10 ms per 0.04 `m2 of 

picket fences, therefore allowing receptors to diffuse through compartments. After an 

iteration of the SKMC, breaks are closed and PFt∆ is set to zero. This is consistent with 

the rate kinetics of actin dimerization (Adams, Matov et al. 2004; Vallotton, Gupton et al. 

2004; Danuser and Waterman-Storer 2006; Deshpande, McMeeking et al. 2006; 

Andrews, Lidke et al. 2008) which is on the order of the algorithm’s time step of 10 µs.  

Drug Binding Kinetics & Parameters  

A drug was added to the SKMC model to determine the most effective binding parameter 

within each picket fence density.  This drug was modeled as a monoclonal antibody, 

inhibiting the formation of homo or heterodimers of the EGFR receptor, also known as 

ErbB1.  A schematic of the primary and secondary inhibition due to the monoclonal 

antibody are presented in fig. 3.  Three receptors belonging to the ErbB family are 

illustrated in the schematic in fig. 3, however our focus will be on ErbB1 represented as 

R1u, (receptor 1 unbound) and R1b (receptor 1 bound to ligand).  The monoclonal 

antibody prevents EGF from binding to R1u, ultimately decreasing the probability of 

dimerization.  Arrows highlighted as red indicate direct inhibition and arrows highlighted 

as blue indicate indirect inhibition.     

In every simulation, the drug concentration was varied to maintain an average value of 

receptor bound drug occupancy of 2.5%, independent of the drug’s binding constants 

(41).  The concentration of the drug was determined according to the relationship    
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(1 )

kon f
D

koff f
=

−
                                                                                                                           

where f is the fraction of receptors bound to ligand at equilibrium ( f = 0.025).  Defining 

drug occupancy in this way allows the instantaneous drug occupancy to change over the 

course of the simulation, while maintaining average receptor occupancy constant. This 

allows us to determine the spatial implications of a particular drug binding parameter.  

Each MSK distribution contained the offk  values and drug concentrations indicated in 

Table III.  For statistical purposes, ten simulations were performed for each of the ten offk  

values.  

Results 

Determining Optimal Drug Parameters  

To determine if membrane cytoskeletal distributions have diverse binding 

parameters, we tested different offk parameters in each MSK density (Fig. 2).  The 

simulations were performed without picket fences, and with picket fence densities of 25 

corrals/µm2, 100 corrals/µm2, and 400 corrals/µm2.  At a time of two seconds, the total 

rate of dimerization of EGFR as a function of offk value (Fig. 4) was observed.  The most 

dramatic differences in the rate of dimerization were observed without picket fences (blue 

line) and at a picket fence distribution of 25 corrals/µm2 (pink line). Without picket 

fences, the optimal drug inhibition values (minimum points, blue line Fig 4) were 

observed at 100 s-1 and 8500 s-1, while the least effective koff parameters were 6000 s-1 

and 10000s-1 (maximum points, blue line Fig 4). However, the optimal drug binding 

parameters, offk , occurred at 100 s-1 and 6000 s-1 (minimum points, pink line Fig_4) for 
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the 25 corrals/µm2 distribution, and the least effective parameter was 4000 s-1 and 10000 

s-1. 

Temporal profiles of optimal and least effective offk Parameters 

Next we wanted to determine the effectiveness of both the optimized parameters 

(minimums) and the least inhibitive parameters (maximums) over time. Fig. 5a shows the 

temporal profiles of the rate of EGFR dimerization for simulations preformed at the 

selected offk value, without fences. The offk  parameters demonstrated in Fig. 5a are the 

two least effective offk values of 6000 s-1, 10000 s-1 and the optimal offk parameters of 100 

s-1, and 8500 s-1. Differences are seen in the rate of EGFR dimerization between optimal 

and least effective parameters, however differences between the optimal values of 100 s-1, 

and 8500 s-1 was marginal. Differences between least effective parameters of 6000 s-1, 

10000 s-1 were marginal.  Similar results were observed in the temporal profiles of 

simulations with optimized and non-optimized parameters seen in the 25 corrals/µm2 

distribution.  However, the most effective parameters for the 25 corrals/µm2 distribution 

were 6000 s-1, 100 s-1 and the least effective offk values were 4000 s-1, 10000 s-1.  

Different Predictions between SKMC vs ODE with Drug 

We graphed the dimerization profiles using an ODE code without drug (blue line 

Fig.6A) and with optimal drug (red dots).  Results from the SKMC (green line) without 

drug and SKMC with optimized drug (magenta line) are represented in Fig.6A.  

Differences in the rate of dimerization between the ODE without drug and ODE with 

optimized drug were unable to be determined, however, the results from the SKMC 

showed a decrease in dimerization rate with optimized drug when compared to the same 
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picket fence density without drug. In Fig.6B, the picket fence density of 100 corrals/µm2 

yielded a similar result.  A clear distinction can be seen between the SKMC with optimal 

drug (green line Fig 6B) when compared to the instance where there is not drug present 

(magenta line).  In addition, looking at the SKMC model without drug (green line), 

Fig.6B also reveals a decrease in dimerization rate which is not depicted in the standard 

ODE model.  The difference in dimerization rate can be attributed to the spatial 

parameters of the SKMC, which is not integrated into the ODE model.  The ODE also 

neglects the heterogeneity of receptors on the membrane, suggesting that the SKMC is a 

more accurate model for simulating this biological system.     

Spatially tracking ErbB1 receptors 

Using the SKMC, we wanted to investigate the movement of a ErbB1 receptor in 

order to determine how different MSK distributions inhibit diffusion rates.  In order to do 

so, we tracked each position on the lattice where the receptor traveled.  From this data we 

determined a MSD plot for each MSK distribution, illustrated in Fig.8.  The MSD plot in 

Fig. 8A shows a movement of the receptor within a domain with out picket fences (Fig. 

8Ablue line).  The displacement of the receptor was dramatically greater than the other 

three picket fence densities, since the movement of the receptor was not confined by the 

MSK.  Figure 8B shows the MSD plot of the picket fence density of 25 corrals/µm2, 

which had a displacement that was greater than the picket fence densities of 100 

corrals/µm2 and 400 corrals/µm2, but still significantly less than the domain with out 

picket fences (Fig. 8B green line).  Due to the confinement of the receptor within a dense 

MSK distribution, the movement of the receptor simulated in the MSK distributions of 

100 corrals/µm2 (Fig. 8C red line) and 400 corrals/µm2 (Fig. 8D purple line) was limited. 
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Next we wanted to determine the relationship between the lifetime of the drug 

bound receptor and the corresponding offk value.  By tracking the location of all 40 ErbB1 

receptors bound to drug, we were able to determine the life time of the drug as a function 

of time (Fig.7).  As shown in Fig. 8, the relationship between the lifetime of a drug bound 

receptor and the offk value is exponentially negative.  This result indicates that the 

offk value greatly influences the life time of drug, ultimately influencing the effective area 

of the drug.   

Discussions 

Experiments using single particle tracking have shown that different cell types 

express variations in corral sizes.  CHO-B1 cells have corral sizes ranging from 3-4 nm, 

whereas NSK cells have corral sizes of 320 nm.  Based upon the differences in MSK 

distributions, one would observe variations in the lateral diffusion of membrane bound 

receptors.  Since receptor interactions depend on lateral diffusion, cell types expressing 

different MSK distributions will have distinct receptor dynamics.  These results suggest 

that drug therapies should be tailored for cytoskeleton distributions.  

After simulating various offk values of a drug in different cytoskeleton 

distributions, the offk  parameters that were most effective depended upon the picket fence 

density. As shown in Fig. 4, the optimal and least effective offk values occurring within 

the picket fence density of 25 corrals/µm2 (pink line) dramatically shifted from the offk  

parameters that are present in the domain without picket fences.    This result implies that 

the mechanism of the drug may vary depending on the type of cytoskeleton distribution.  

Different distributions of the picket fences alter the diffusivity of a drug bound receptor, 
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ultimately affecting the rate of dimerization.   Within the picket fence density of 25 

corrals/µm2, the diffusion rates of a drug bound receptors are hindered by the MSK 

meshwork, reducing the dimerization rate and shifting the optimal and least 

optimal offk values.  Since different cell types express a variation in MSK densities, it is 

important to acknowledge the difference in diffusion rates that occur in different cell 

types.   

However, the domains containing 100 corrals/µm2 and 400 corrals/µm2 displayed 

little variation in the rate of dimerization at different offk values. As seen in Fig. 8C and 

Fig. 8D, the diffusivity of drug bound receptor may be inhibited at these dense picket 

fence distributions, causing the variations in the offk parameter to have little effect.  

Previous work has suggested that the receptor concentrations alter the effects of 

dimerization within a confined corral.   We speculate that more variation between 

offk values would be observed at higher receptor concentration in these picket fence 

densities. 

 In addition to addressing tissue specific parameters, drug resistance and 

desensitization are also important factors that influence the development of a useful drug. 

Receptor desensitization can be defined as either a loss or reduction in receptor 

responsiveness after agonist exposure.  In the past, drug development has searched for 

drugs that are potent and have a high affinity for their receptor, viewing desensitization 

simply as a side effect.  However, investigating receptor activation and desensitization as 

events that can be altered independently can provide better insight into developing new 

drugs with less side affects and greater applications (Woolf and Linderman 2003).   
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Experiments performed by Lewis et. al applied a range of full and partial agonists 

to C-6 glioma cells in order to investigate the role of drug efficacy in agonist-induced 

desensitization.  They observed desensitization in C-6 glioma cells that contained 

A77636, a compound shown to have a low offk value.  Compounds that contain a low 

offk value result in a long residence time on the receptor, which holds the receptor in an 

active conformation (Lewis et. al 1998).  In the case of a G-protein-coupled receptor 

(GPCR), holding the receptor in the active state allows phosphorylation to occur, which 

is known to be the first step in desensitization.   

Our results direct the focus of finding a new offk  parameter that would reduce the 

effect of desensitization.  Temporal profiles of the simulations without picket fences and 

the simulations with a picket fence density of 25 corrals/µm2 (Fig. 5a and Fig. 5b) 

demonstrate similar inhibitive behavior between a high offk  value and a low offk  value. 

Our data indicates that a compound containing a high offk  value may be just as effective 

as a compound with a low offk  value, but reduces the effects of desensitization. The shift 

in our data between the two picket fence densities also suggests that the efficiency of 

high offk  value may also depend on cell-specific parameters.    

Performing simulations using a SKMC model has allowed us to determine the 

spatial and heterogeneity effects of a biological system that are not addressed in ODE 

models.  As shown in Fig.6, a discrepancy occurred between a comparison between the 

SKMC and ODE simulations.  After adding the optimal drug to the ODE model, the ODE 

failed to determine a difference in dimerization rate. Although, as shown in the SKMC 
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model in Fig. 6, there seems to de a discrete difference in dimerization rate that are 

effected by spatial factors that the SKMC is able to detect.  

The work performed in this study would be difficult to test experimentally, due to 

the viability of cells, cost of supplies and the many variables that would be difficult to 

control.  However, computational biology is a useful tool that can provide predictive 

results that can be used to guide experimental work. In this work, taking a computational 

approach has allowed us to explore the complex interactions between membrane 

receptors and the space around them.  We have determined that different MSK 

distributions contain different offk  parameters, as well as identify similar efficiencies 

between high and low offk  values, suggesting new ways of addressing drug 

desensitization.  Our findings suggest that determining specific parameters that are 

optimal for different cell types and tailoring drugs to meet that criterion may be the latest 

direction of effective drug design.   

Future Work 

Our results (Fig. 4) show marginal effects between offk values at distributions of 

100 corrals/µm2 and 400 corrals/mm2. As shown in preliminary work, increased 

dimerization in each picket fence density depends on the receptor concentration.  A low 

receptor concentration within a highly dense MSK distribution decreases the rate of 

dimerization.  Alternatively, a high receptor concentration within a highly dense MSK 

distribution increases dimerization due to the clustering of receptors within a corral.  We 

hypothesize that limited differences in offk values is due to the effects of hindered 

diffusion; preventing EGFR receptors from interacting with homo and hetero partners. To 
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test this hypothesis, we will perform the same simulation at a higher receptor 

concentration of 80 receptors/lattice for both picket fence densities  

To understand why some offk  parameters demonstrated greater inhibition than 

others, we will investigate the area covered by a receptor as a function of time.  In order 

to do so, the position on the lattice where ErbB1 receptors are bound to drug will be 

tracked.   In each MSK distribution, we will then determine the MSD for each drug 

bound receptor.  Comparing the MSD of the most effective drug parameters with the least 

effective drug parameters may explain the mechanism for optimal inhibition.  As 

determined from Fig. 7, the offk  value has an impact on the life time of the drug bound 

receptor, affecting the area traveled by the receptor.  We hypothesize that the  offk  

parameters that show the greatest inhibition will transverse a greater portion of the 

plasma membrane.  

 

Figure Legends 

Figure 29 Three picket fence densities  

A) 25 corrals/µm2 B) 100 corrals/µm2, and C) 400 corrals/µm2 

 

Error! Reference source not found. 

Demonstrates a sequence of events that can occur within SKMC algorithm  
 

 Figure 30 Schematic of Drug Inhibition 

 Illustrates inhibition mechanism used by a monoclonal antibody.  Primary inhibition is 

highlighted in pink, while secondary inhibition is indicated by blue.            
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Figure 31 Rate of EGFR Dimerization as a function of offk  for each MSK density 

 MSK distribution without picket fences (blue line) contain optimal offk parameters of 100 

s-1, and 8500 s-1 and the least optimal offk values of 6000 s-1and 10000 s-1.  Optimal drug 

binding parameters, offk , occurred at 100 s-1 and 6000 s-1 (minimum points, pink line) for 

the  25 corrals/µm2 distribution, and the least effective parameters were 4000 s-1 and 

10000 s-1.  Total rate of dimerization was defined by the total amount of dimerization 

events that occurred at two seconds. 

 

Figure 5 Temporal profile of maximum and minimum offk values in MSK 

distribution with out picket fences and with a picket fence density of 25 corrals/µµµµm
2  

Without picket fences the offk vales of 6000 s-1  (orange line), and 10000 s-1 (pink line) 

represent the least   optimal offk parameters. offk
  parameters of 100 s-1 (blue line), and 8500 

s-1 (green line) represent optimal offk  parameters. B) With a picket fence density of 25 

corrals/µm2, the most effective parameters for the 25 corrals/µm2 distribution were 6000 

s-1, 100 s-1 and the least effective offk values were 4000 s-1, 10000 s-1. 

Figure 6 Comparison between SKMC and ODE simulations  

Figure 6A shows the dimerization profile within the 25 corrals/µm2 picket fence density.  

The SKMC illustrates a clear difference between the system without drug(teal line) and 

with optimized drug(purple line), whereas in the ODE simulation, there is no 

difference(red doted line).  Similar results are presented in Fig. 6B where the SKMC was 
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simulated in the 100 corrals/µm2 picket fence density.  However, in the case without 

drug, (Fig. 6B teal line) the increased picket fence density revealed a decrease in the rate 

of dimerization when compared to the picket fence density of 25 corrals/µm2 without 

drug (Fig 6A teal line).                  

Figure 7 Average time vs. koff value 

The average life time of a drug bound receptor as a function of time is demonstrated in 

this figure. 

Figure 8 MSD plots 

Fig. 8A shows a MSD plot containing all four picket fence densities.  The displacement 

of the receptor in the domain without picket fences is dramatically greater than all other 

domains.  Fig. 8B demonstrates a scaled down view of the picket fence densities of 25 

corrals/µm2, 100 corrals/µm2 and 400corrals/µm2
.  Fig. 8C shows the MSD plot of 100 

corrals/µm2 and 400corrals/µm2, which are scaled down further.  Fig.8D shows the MSD 

plot for the picket fence density of 400corrals/µm2 exclusively. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 

 

A Picket Fence Density of 25 corrals/µm2              
B

 Picket Fence Density of 100 corrals/µm2     
 



 
 

169 

 

Figure 7 
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Figure 8 

 

Table I. ErbB Reactions and Reaction Rates 

Reactions Rate Constants (1/s) 

1.   R1u + EGF  �� R1b Kf = 0.003              Kb = 0.004 

2.   R3u + NRG �� R3b Kf = 0.003              Kb = 0.004 

3.  R1uR1u + EGF �� R1bR1u Kf = 0.003              Kb = 0.004 

4.  R1bR1u + EGF  � � R1bR1b Kf = 0.003              Kb = 0.004 

5.  R1uR2 + EGF � R1bR2                Kf = 0.003              Kb = 0.004 

6.  R3uR2 + NRG� � R3bR2 Kf = 0.003              Kb = 0.00004 

7.  R3uR3u + NRG � � R3bR3u Kf = 0.003              Kb = 0.004 

A C 

B D 
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8.  R3bR3u + NRG � � R3bR3b Kf = 0.003              Kb = 0.004 

9.  R1uR3u + EGF � � R1bR3u    Kf = 0.0015            Kb = 0.006 

10.  R1uR3u + NRG � � R1uR3b                        Kf = 0.003              Kb = 0.004 

11.  R1uR3b + EGF � � R1bR3b Kf = 0.0015             Kb = 0.006 

12.  R1bR3u + NRG � � R1bR3b                  Kf = 0.003              Kb = 0.004 

13.  R1u + R1u � � R1uR1u Kf = 0.01                Kb = 0.04                 

14.  R1b + R1u � � R1uR1b Kf = 0.01                Kb = 0.2                 

15.  R1b + R1b � � R1bR1b           Kf = 0.01                Kb = 0.04                 

16.  R2 + R2 � � R2R2                               Kf = 0.01                Kb = 1 

17.  R3u  + 3Ru � � R3uR3u                       Kf = 0.01                Kb = 0.4                 

18. R3b + R3u � � R3bR3u                          Kf = 0.01                Kb = 0.2                

19. R3b + R3b� � R3bR3b  Kf = 0.01                Kb = 0.04                 

20.  R1u + R3u � � R1uR3u              Kf = 0.01                Kb = 0.04                 

21. R1b + R3u � � R1bR3u Kf = 0.01                Kb = 0.02                 

22. R1u + R3b� �R1uR3b Kf = 0.01                Kb = 0.02                

23.  R1b + R3b � � R1bR3b Kf = 0.01                Kb = 0.04                

24. R1u + R2� � R1uR2 Kf = 0.01                Kb = 0.8 

25.  R1b+ R2 � � R1bR2  Kf = 0.01                Kb = 0.4 

26.  R3u + R2 � � R3uR2 Kf = 0.01                Kb = 0.8 

27.  R3b + R2 � � R3bR2                     Kf = 0.01                Kb = 0.4 

28.  R1uR1u � � p R1uR1u                                 Kf = 0.01                Kb = 0.16 

29.  R1uR1u � �  pR1uR1u Kf = 0.03            Kb = 0.08 

30.  R1uR1b � � pR1uR1b            Kf = 0.02           Kb = 0.08 



 
 

172 

31.  R1bR1b � � pR1bR1b                Kf = 0.04            Kb = 0.02 

32.  pR1bR1b � � pR1bpR1b        Kf = 0.12          Kb = 0.01 

33.  R1uR2 � �  pR1uR2                     Kf = 0.008              Kb = 0.16 

34.  pR1uR2  � � pR1upR2 Kf = 0.024         Kb = 0.08 

35.  R1bR2 � � pR1bR2 Kf = 0.024         Kb = 0.08 

36.  pR1bR2 � � pR1bpR2 Kf = 0.016          Kb = 0.08 

37.  pR2R1b  �� pR2pR1b Kf = 0.048          Kb = 0.04 

38.   R3uR2 �� pR2R3u Kf = 0.008                Kb = 0.16 

39.  R3bR2 �� pR2R3b Kf = 0.016            Kb = 0.08 

40.  R1uR3b  � � pR1uR3u Kf = 0.008                Kb = 0.16 

41.  R1bR3u � � pR1bR3u                                 Kf = 0.016            Kb = 0.08 

42.  R3bR1u � � pR1uR3b Kf = 0.016            Kb = 0.08 

43.  R1bR3b � � pR1bR3b          Kf = 0.032            Kb = 0.02 

44.  R1u + D � R1b  Kf = 2.6*10^3          koff = 100 

                                 koff = 500 

                                 koff = 1000 

                                 koff = 1500 

                                 koff = 2500 

                                 koff = 3500 

                                 koff = 4000 

                                 koff = 6000 

                                 koff = 8500 

                                 koff = 10000      
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Table II. Membrane Microscopic Events and Transition rates 

Microscopic Event Transition Rate 

Diffusion ( )1
1

4
D D

i j i j ij Bσ σ→Γ = Γ − ∈  

 iσ is the occupancy(discrete) that is 1, if 

site i is filled, and 0, if site i is empty (a 

single index indicating the site is used to 

simplify notation). 

2
D D

a
Γ = , where a  is the microscopic 

lattice pixel dimension taken equal to the 

encounter radius, and D is the diffusivity 

of a receptor 

iB denotes the set of sites to which 

diffusion from site  

i  can occur which includes all 4 first-

nearest neighboring sites 

Reactions  

Ligand Association Reaction 

(SL + M � M*) 

[ ]R

i L ik S σΓ =  

k is the macroscopic reaction rate constant 
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with units as [s-1] 

Ligand Disassociation Reaction 

(M* � SL + M) 

R

i ikσΓ =  

k is the macroscopic reaction rate constant 

with units as [s-1] 

Dimerization Reaction 

(M* + M* � D) 2
R

i i j

k
σ σΓ =  

k is the macroscopic reaction rate constant 

with units as [(receptors/sites)-1 s-1] 

Decomposition Reaction 

( D � M* + M* ) 

R

i ikσΓ =  

k is the macroscopic reaction rate constant 

with units as [s-1] 

Phosphorylation/Dephosphorylation 

Reaction 

(D �� pD) 

R

i ikσΓ =  

k is the macroscopic reaction rate constant 

with units as [s-1] 
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Introduction 

Signal transduction, the cell’s communication network, comes to a crossroads on the highly 

compartmentalized plasma membrane. Often oversimplified in mathematical models (1-3), the 

plasma membrane is a facet of heterogeneity that alters receptor organization from transient 

confinement zones (4, 5) or signal transduction “hot spots” to depletion zones. The spatial 

heterogeneity of receptors comes as a result of sphingolipid-rich microdomains ‘lipid rafts’(6-8), 

caveolar formation (9, 10), clathrin cages (11-13), and the hindering interactions with the 

membrane cytoskeleton (14-16).  Diffusional limitations are the result herein altering the 

initiation, and activation of signal transduction pathways (17). Localized concentration gradients 

become a consequence of the membrane architecture and enhance the efficiency of signal 

propagation (15, 18). 

The notion that the plasma membrane is a highly compartmentalized surface with intrinsic 

microdomains, came a few years after the fluid mosaic model was proposed by Singer and 

Nicholson in 1972 (19). Two major hypotheses, the lipid raft (20-22) and the membrane skeleton 

“picket fence” model (23, 24) were proposed to describe the structure of the plasma membrane. 

The lipid raft hypothesis was postulated to explain the aggregation of glycosphinoglipids in the 

Golgi apparatus before being sorted to the apical surface of polarized epithelial cells(20). Using 

cold non-ionic extraction techniques on specialized lipid fractions taken from Golgi membranes, 

Simons et al. found that the lipid domains were detergent-resistant(21). These domains became 

known as lipid rafts.   

The composition of lipid rafts consists of a highly saturated assembly of cholesterol and 

sphingolipids which form a lipid order structure ranging from 10-300 nm in size (25, 26). 

Perhaps one of the more interesting phenomenas of lipid rafts is their ability to include or 



 
 

181 

exclude proteins. The amino acid structure often dictates favorability with hydrophobic 

modifications increasing affinity for lipid raft domains(18).  Signaling complexes formed within 

the lipid raft microenviroments are therefore, protected by a buffer zone which excludes non-raft 

enzymes such as membrane phosphatases.  

Diffusion within lipid rafts decreases by a factor of three to five as observed on artificial 

membranes (27-29) and by a factor of two in SPT experiments(5). Crowding effects are thought 

to be responsible for the decreased diffusivity, which is a mechanism of clustering and a 

precursor to signaling scaffold formation (10, 30). Experimental techniques have shown lipid 

rafts intimately involved in signal transduction pathways (18, 31-33). Take for example the 

inhibition of H-Ras mediated Raf activation, occurring when cells are treated with methyl-β-

cyclodextrin, an agent that depletes cholesterol (34). The evidence is suggestive that H-Ras 

signals only in the presence of lipid rafts (35, 36). 

 Another insightful theory, describing the structure of the plasma membrane, the membrane 

skeleton “picket fence” model was proposed in an attempt to explain anomalous diffusion (23, 

24). Using FRAP techniques to measure diffusion rates in spectrin-deficient mutant mouse 

erythrocytes, Sheetz et al found that the transmembrane protein band 3 diffuses 10 times faster 

than in wild type erythrocytes (24). Knowing that the spectrin meshwork, makes up the 

membrane skeleton, a model describing the hinderance on protein diffusion, the picket fence 

model was hypothesized (23). The model describes the plasma membrane as a meshwork of 

“fences”, interactions from the underlying membrane cytoskeleton (MSK),  and “pickets” or  

protruding transmembrane proteins inhibited by the MSK on the cytoplasmic face. This model 

was further supported by single particle tracking of the DOPE lipid which underwent short term 

confinement followed by long term “hop” diffusion (14, 37-39).    
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The MSK is known to vary in structure and density between cell types, with corral sizes ranging 

from 30 to 230 nm (40, 41). Along with cell specific variation, morphological changes occur in 

the MSK during disease (42, 43). The density of the MSK has the capacity to inhibit as well as 

enhance signal transduction pathways (44). Receptor signaling events: oligomerization, 

crosslinking, and scaffold formation occurring within the constraints of the MSK lead to 

concentration gradients which facilitate downstream signaling (45, 46). At the same time the 

MSK can be restrictive hindering diffusion and isolating receptors. Take for example; 

hippocampal neurons with a diffusional barrier highly concentrated in MSK, phospholipid 

movement is restricted (37).  

Signal transduction and plasma membrane microdomains have typically been studied in 

isolation. Although growing evidence shows their intimate nature, with coalescing lipids and 

transient meshes altering signal transduction (47, 48) which comes full circle activating 

transcription factors that regulate protein expression levels on the cell membrane (34). The 

motivation for this work is to understand signal transduction in the contest of membrane 

microdomains. Using the adaptively coarse-grained Monte Carlo (ACGMC) we observe signal 

transduction in terms of our previously proposed “receptor-sharing” mechanism under various 

microdomain conditions. 
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Results/Future Work 

Effects of Microdomains and MSK on Association Events 

To determine the effects of microdomains and the underlying MSK on association events 

and receptor sharing events, simulations were performed for a lipid raft of size 200nm 

with  diffusivity decreased by 100, for picket fences with densities of 16 corrals/µm2, 100 

corrals/µm2, 400 corrals/µm2, and a control (without lipid rafts or an MSK density). Fig 

1. shows our results we observe a significant increase between the control and 

simulations performed with either picket fences or lipid rafts. The most significant 

increase occurred between the lipid raft and the control. Further investigating these 

results it was determined that decreasing the diffusivity by a factor 100 is not 

representative of diffusivity of a receptor through a lipid raft which decreases by a factor 

of 5. Fig 2. shows the distributions of receptor binding events, from these results we 

observe an increase in “receptor-sharing” for the lipid raft condition. The picket fence 

densities seem to inhibit “receptor-sharing”. Simulations with an experimentally 

determined diffusivity in the lipid raft will be run. This will reduce the number of 

association events and thus “receptor-sharing”, however I hypothesis that the number of 

“receptor-sharing” events will increase from the control.   
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 Simulations will also be preformed to further elucidate the results shown in Fig 1&2. 

Performing simulations in which the diffusivity and the size will be varied in lipid rafts 

will allow us to determine the effects of lipid rafts. Similarly we will perform simulations 

at different receptor concentrations to determine which picket fence density will increase 

“receptor-sharing”. 

 

 

 

  

Materials and Methods 

Adaptively Coarse-Grained Monte Carlo (ACGMC)  

The Adaptively Coarse-Grained Monte Carlo (ACGMC) algorithm extends for three-

dimensional spatial modeling building on our previous algorithm, the SKMC, by 

including nine additional lattices eight of which extend into the cytosol and the ninth on 

the nucleus. This framework allows us to study the formation of signaling scaffolds and 

to observe concentration gradients which result from these scaffolds.  

The ACGMC, like the SKMC, begins by selecting a spatial location which could be 

either the cell membrane (1st lattice) or cytosol (2nd-9th lattices) or the nucleus (10th 

lattice). The selection is made by computing the probabilities for a spatial event (lattices 

1-10).  
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=
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where totΓ  is defined as, 

10

, #
1

 (2)tot tot Lat i

i=

Γ = Γ∑ . 

The probability distribution for the lattices, , #tot Lat iΓ , is defined as the sum of all transition 

rates for all SKMC events; however, the events differ in dimensionality and type as 

shown in Table ?. For example, on the cell membrane (1st lattice) receptors diffuse in 2D 

but react with cytolic species (2nd lattice) on the lattice below such that reaction occurs in 

2.5D. In the cytosol (3rd-9th lattice) species are able to diffuse and react in 3D. Cytosolic 

species in the boundary lattice which borders the cell membrane (2nd lattice) are able to 

react with neighboring receptors on the cell membrane but are not allowed to diffuse onto 

the membrane. At the boundary nucleus (10th lattice) species diffuse and react in 2.5D.   

In the cytosol the following reaction occurs: 1 2 12

kf

kb
M M M+ ���⇀

↽��� , such that the 

product 12M occupies the single site k. This reaction is valid due to the large site 

separation distance of 10 nm in comparison to the small molecular masses of cytosolic 

species Shc, Grb2, and Sos  62 kDa 25 kDa, 11 kDa (49-51). 

Once a lattice is chosen an event is selected, either reaction or diffusion for the SKMC 

algorithm as shown in Fig 3. Events are chosen, as in our previous algorithm(52), with 
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the exception of dimensionality which changes the way maxΓ and X

iΓ are computed. The 

transition probabilities for cytosolic reactions in 3D are  

     1 2 12 ,    (3)
6

kf r

i i j
kb

k
M M M σ σ+ Γ =������⇀

↽������
  

in which reacting species (M1 and M2) occupy adjacent sites i and j and k has units of 

(molecules/site)-1sec-1. Diffusion in 3D is taken into account similarly  

1
 (1 )   (4)

6
d d

i j i j ij Bσ σ→Γ = Γ − ∈  

where iB  denotes the set of sites to which diffusion from site i can occur. Table I lists all 

events, both reaction and diffusion, which make up maxΓ . maxΓ  is defined as before but 

multiplying by a factor of 6 for all 3D event, by a factor of 4 for all 2D events, and a 

factor of 5 for all 2.5D events such that 

max
all forward reaction events all forward reaction events2  Events 2.5  Events

all forward reaction events all backw3  Events

4 max 5 max
4 5

6 max max
6

d d
r r

D D

d
r r

D

   Γ Γ   
Γ = + Γ + + Γ      

      

 Γ  
+ Γ + Γ  

  

∑ ∑

∑
ard reaction events

   (5)
 
 
 

∑
 

 

The ACGMC operates like a single MC in which time is updated in a “combined” 

manner from totΓ  with an average time step as, 
1

tot

t∆ =
Γ

.  Execution times vary 

depending on a chosen algorithm.  The complete algorithm, which is shown in Fig. 3, 

was implemented in Fortran 90. Due to the stochasticity of the algorithm, 10 simulations 

with different seeds for the random number generator were used for statistics.  
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Adaptively Coarse-Graining & Diffusion Transition Rates 

In ACGMC, we introduce coarse-graining by grouping microscopic sites into coarse 

cells, as shown in Fig 4 in which coarse lattice CL  has xm , ym , and zm coarse cells along 

x, y, z, such that the total number of cells is x y zm m m m= . Each coarse 

cell ( )1jC j m≤ ≤  has jq  microscopic sites, in which 
x y z

j j j jq q q q=  is the number of 

microscopic sites in jC  along x, y and z axis. Diffusion between coarse-grained cells was 

rigorously derived by (Chatterjee),  

( )
( ) (1 )  (6)d

m j iz z z

j j i

C j i
q q q

η η
Γ

→ = −
+

 

in which, DΓ  is the diffusion transition rate, jη , is the coarse-grained occupancy function 

at jC is defined as 

 

 

 (7)
j

j p

p C

η σ
∈

= ∑  

While the occupancy of a coarse cell is in terms of the coarse cell coverage,  

1
  (8)

j

j p

p Cjq
η σ

∈

= ∑  

which for the microscopic case reduces down to either zero for unoccupied or one for 

occupied.  

Validation of Approach   

In order to validate our approach we initially placed all molecules within lattices one thru 

nine and allowed them to diffuse a distance of 1µm into lattice ten over time (Fig 5). 
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Turning off reaction we have reflective boundary conditions at the cytosol membrane 

boundary (lattice two) and at the cytosol nucleus boundary (lattice 10) and periodic 

boundary conditions in the plane parallel to the plasma membrane. Using a diffusivity 

coefficient of 10µm2 s-1 and a distance 1µm and implementing reflective boundary 

conditions we compared the ACGMC with the PDE solution. Starting with a cytosolic 

species concentration 105 nM we observe similar predications between the ACGMC and 

PDE profiles. 

Lipid Rafts & Picket Fences.  

 Lipid rafts are modeled as a square on the lattice with a predefined size. The diffusivity 

of a receptor through a lipid raft is decreased by an experimentally determined factor. In 

order to model cytoskeletal interactions with the cell membrane boundaries, “picket 

fences” were placed on the lattices. The “picket-fences” occupy lattice sites and therefore 

prevent reaction and diffusion events in the direction of the boundary. Take for example, 

a receptor neighbored by a “picket fence” on the thj  lattice site, it has an occupancy 

function, 1jσ =  of one, yielding a zero transition probability,  0d

i j→Γ =  in the direction 

of the boundary.  Similarly, a receptor separated from its partner by a “picket fence” can 

not dimerize being that the neighboring lattice site is occupied by the boundary.  

Single particle tracking reveals short term receptor confinement followed by long term 

“hop” diffusion. Cytoskeletal rearrangements and actin depolarization are responsible for 

“hop” diffusion(15, 40). In order to simulate “hop” diffusion breaks were randomly 

inserted into the boundaries an average of time step PFτ  of 10 milliseconds per 0.04 µm2 

of picket fences as was observed experimentally (14). Placing breaks in the “picket 

fence” enables receptors to diffuse out of their corrals. After an iteration of the SKMC 
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breaks are closed and PFτ is set to zero. This is consistent with the rate kinetics of actin 

dimerization (16, 53-56) which is on the order of the algorithm’s time step, t∆ .  

 

 

 

 

 

Figure 1. 
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Figure 2. 
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Figure 3. 

 

 

 

 

 

 



 
 

192 

 

Figure 4. 

 

 

 

Figure 5. 
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Appendix E.  Abbreviations Used 

ErbB1  Epidermal growth factor receptor 

ErbB2  Human epidermal growth factor receptor 2 

ErbB3  V-erb-b2 erythroblastic leukemia viral oncogene homolog 3 

ErbB4  V-erb-a erythroblastic leukemia viral oncogene homolog 4 

EGFR  Epidermal growth factor receptor 

ERK  Extracellular regulated kinase  

SH2  Src homology 2 

Grb2  Growth factor receptor-bound protein 2 

SOS  on of the sevenless 

Shc  Transforming protein 1 and collagen domain protein 

ODE  Ordinary differential equation 

MC  Monte Carlo 

SKMC  Spatial kinetic Monte Carlo 

SSA  Stochastic simulator algorithm 

CSNSA Coupled spatial non-spatial simulation algorithm 

PLCγl  Phospholipase Cγ1 

CPU  Central processing unit 

LSENS Lewis General Chemical Kinetics and Sensitivity Analysis Code 

MSK  Membrane skeleton 

FCM  Fuzzy c-means 

MSD  Mean squared displacement 

SPT  Single particle tracking 

FRET  Fluorescence resonance energy transfer  
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EM  Electron microscopy 

MAPK Mitogen-activated protein kinase 

GAB1  GRB2-associated binding protein 1 

Src  Tyrosine kinase 

FRAP  Fluorescence recovery after photobleaching 

FRET  Forster resonance energy transfer  

TEM  Transmission electron microscope 

STEM  Scanning transmission electron microscope 

EDX  Energy dispersive X-ray 

EELS  Electron energy loss spectroscopy 

ADF  Annular dark-field imaging 

SEM  Scanning electron microscope 

GPI  Glycosylphosphatidylinositol 

DRM  Detergent-resistant membrane  

DIG  Detergent-insoluble glycoplipid 

LCFAs Long-chain fatty acids 

DOPE  1,2-dioleoylsn-glycero-3-phosphoethanolamine 

SDE  Stochastic differential equations 

SPDE  stochastic partial differential equations  

DMC  Dynamic Monte Carlo 

PBCs  Periodic boundary conditions 

CGMC Coarse-graining Monte Carlo 

ACGMC Adaptively coarse-grained Monte Carlo  
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PDE  Partial differential equations 

GFP  green fluorescent protein 

PKCε  Protein kinase c 

INFγR Interferon-γ receptor 

JAK  Janus kinase 

STAT  Signal transducer and activator of transcription pathway 

BioXyce  Deterministic circuit-based platform 

NRK  Normal rat kidney fibroblast  

GPCR   G-protein-coupled receptor  
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