1,034 research outputs found

    Investigations of Model-Free Sliding Mode Control Algorithms including Application to Autonomous Quadrotor Flight

    Get PDF
    Sliding mode control is a robust nonlinear control algorithm that has been used to implement tracking controllers for unmanned aircraft systems that are robust to modeling uncertainty and exogenous disturbances, thereby providing excellent performance for autonomous operation. A significant advance in the application of sliding mode control for unmanned aircraft systems would be adaptation of a model-free sliding mode control algorithm, since the most complex and time-consuming aspect of implementation of sliding mode control is the derivation of the control law with incorporation of the system model, a process required to be performed for each individual application of sliding mode control. The performance of four different model-free sliding mode control algorithms was compared in simulation using a variety of aerial system models and real-world disturbances (e.g. the effects of discretization and state estimation). The two best performing algorithms were shown to exhibit very similar behavior. These two algorithms were implemented on a quadrotor (both in simulation and using real-world hardware) and the performance was compared to a traditional PID-based controller using the same state estimation algorithm and control setup. Simulation results show the model-free sliding mode control algorithms exhibit similar performance to PID controllers without the tedious tuning process. Comparison between the two model-free sliding mode control algorithms showed very similar performance as measured by the quadratic means of tracking errors. Flight testing showed that while a model-free sliding mode control algorithm is capable of controlling realworld hardware, further characterization and significant improvements are required before it is a viable alternative to conventional control algorithms. Large tracking errors were observed for both the model-free sliding mode control and PID based flight controllers and the performance was characterized as unacceptable for most applications. The poor performance of both controllers suggests tracking errors could be attributed to errors in state estimation, which effectively introduce unknown dynamics into the feedback loop. Further testing with improved state estimation would allow for more conclusions to be drawn about the performance characteristics of the model-free sliding mode control algorithms

    Robust Adaptive Stabilization of Linear Time-Invariant Dynamic Systems by Using Fractional-Order Holds and Multirate Sampling Controls

    Get PDF
    This paper presents a strategy for designing a robust discrete-time adaptive controller for stabilizing linear time-invariant (LTI) continuous-time dynamic systems. Such systems may be unstable and noninversely stable in the worst case. A reduced-order model is considered to design the adaptive controller. The control design is based on the discretization of the system with the use of a multirate sampling device with fast-sampled control signal. A suitable on-line adaptation of the multirate gains guarantees the stability of the inverse of the discretized estimated model, which is used to parameterize the adaptive controller. A dead zone is included in the parameters estimation algorithm for robustness purposes under the presence of unmodeled dynamics in the controlled dynamic system. The adaptive controller guarantees the boundedness of the system measured signal for all time. Some examples illustrate the efficacy of this control strategy

    Stability and Performance Metrics for Adaptive Flight Control

    Get PDF
    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers

    Disturbance/uncertainty estimation and attenuation techniques in PMSM drives–a survey

    Get PDF
    This paper gives a comprehensive overview on disturbance/uncertainty estimation and attenuation (DUEA) techniques in permanent magnet synchronous motor (PMSM) drives. Various disturbances and uncertainties in PMSM and also other alternating current (AC) motor drives are first reviewed which shows they have different behaviors and appear in different control loops of the system. The existing DUEA and other relevant control methods in handling disturbances and uncertainties widely used in PMSM drives, and their latest developments are then discussed and summarized. It also provides in-depth analysis of the relationship between these advanced control methods in the context of PMSM systems. When dealing with uncertainties,it is shown that DUEA has a different but complementary mechanism to widely used robust control and adaptive control. The similarities and differences in disturbance attenuation of DUEA and other promising methods such as internal model control and output regulation theory have been analyzed in detail. The wide applications of these methods in different AC motor drives (in particular in PMSM drives) are categorized and summarized. Finally the paper ends with the discussion on future directions in this area

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Process operating mode monitoring : switching online the right controller

    Get PDF
    This paper presents a structure which deals with process operating mode monitoring and allows the control law reconfiguration by switching online the right controller. After a short review of the advances in switching based control systems during the last decade, we introduce our approach based on the definition of operating modes of a plant. The control reconfiguration strategy is achieved by online selection of an adequate controller, in a case of active accommodation. The main contribution lies in settling up the design steps of the multicontroller structure and its accurate integration in the operating mode detection and accommodation loop. Simulation results show the effectiveness of the operating mode detection and accommodation (OMDA) structure for which the design steps propose a method to study the asymptotic stability, switching performances improvement, and the tuning of the multimodel based detector

    Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks

    Get PDF
    In this document, the development and experimental validation of a nonlinear controller with an adaptive disturbance compensation system applied on a quadrotor are presented. The introduced scheme relies on a generalized regression neural network (GRNN). The proposed scheme has a structure consisting of an inner control loop inaccessible to the user (i.e., an embedded controller) and an outer control loop which generates commands for the inner control loop. The adaptive GRNN is applied in the outer control loop. The proposed approach lies in the aptitude of the GRNN to estimate the disturbances and unmodeled dynamic effects without requiring accurate knowledge of the quadrotor parameters. The adaptation laws are deduced from a rigorous convergence analysis ensuring asymptotic trajectory tracking. The proposed control scheme is implemented on the QBall 2 quadrotor. Comparisons with respect to a PD-based control, an adaptive model regressor-based scheme, and an adaptive neural-network controller are carried out. The experimental results validate the functionality of the novel control scheme and show a performance improvement since smaller tracking error values are produced.Fil: Lopez Sanchez, Ivan. INSTITUTO POLITÉCNICO NACIONAL (IPN);Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Pérez Alcocer, Ricardo. INSTITUTO POLITÉCNICO NACIONAL (IPN);Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli, Ricardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Moreno Valenzuela, Javier. INSTITUTO POLITÉCNICO NACIONAL (IPN)
    • …
    corecore