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aInstituto Politécnico Nacional-CITEDI, Tijuana, Baja California 22435, México.
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Abstract

In this document, the development and experimental validation of a nonlin-
ear controller with an adaptive disturbance compensation system applied on a
quadrotor are presented. The introduced scheme relies on a generalized regres-
sion neural network (GRNN). The proposed scheme has a structure consisting of
an inner control loop inaccessible to the user (i.e., an embedded controller) and
an outer control loop which generates commands for the inner control loop. The
adaptive GRNN is applied in the outer control loop. The proposed approach lies
in the aptitude of the GRNN to estimate the disturbances and unmodeled dy-
namic effects without requiring accurate knowledge of the quadrotor parameters.
The adaptation laws are deduced from a rigorous convergence analysis ensuring
asymptotic trajectory tracking. The proposed control scheme is implemented
on the QBall 2 quadrotor. Comparisons with respect to a PD-based control, an
adaptive model regressor-based scheme, and an adaptive neural-network con-
troller are carried out. The experimental results validate the functionality of
the novel control scheme and show a performance improvement since smaller
tracking error values are produced.
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1. Introduction

Since their first appearance in the 1960s, rotary-wing unmanned aerial ve-
hicles have changed considerably, from their geometric configuration, materials,
instrumentation to their applications. They were developed for military pur-
poses at the beginning, and with the pass of time, they became useful tools in
many different fields [1]. An unmanned aerial vehicle (UAV) is an aircraft with
no flight crew, controlled autonomously, or by a pilot from a control station
by using pre-programmed flight plans, which in both cases imply using control
algorithms. The rotary-wing UAVs have significant advantages over other aerial
systems since they allow vertical takeoff and landing, hovering flight, better con-
trol of stability when slow trajectories are commanded, simpler design, and easy
maintenance [2]. Nevertheless, one of the major challenges of aerial vehicles is to
ensure stability and maneuverability under adverse flight conditions [3, 4, 5]. Of
the different kinds of rotary-wing UAVs, the most common are those propelled
by four rotors and so-called quadrotors. Nowadays, quadrotors are so popular
that they appear in many movies and videogames.

In order to maintain accuracy under the desired conditions, the UAV con-
trollers must be robust to the different external disturbances or unmodeled dy-
namics. In the literature review, there is a significant number of techniques for
the suppression of disturbances, among which we can highlight the techniques
based on observers [6, 7], on model-based control [8, 9, 10, 11], on adaptive
schemes [12, 13, 14] and based on artificial intelligence [15, 16, 17, 18].

On the different approaches of control, adaptive schemes represent a feasible
option when dealing with model uncertainties or parameter variations during
the platform operation. Besides, for some controllers, the basis of the approach
lies in the parameterization of the dynamic model, as can be seen in [14]. With
the advance of adaptive control, new approaches raised. For example, [19] in-
troduced an approach based on barrier Lyapunov functions applied to switched
nonlinear systems with constraints. With the rise of intelligent control, adaptive
schemes with the combination of fuzzy control have been proposed. In [20], an
adaptive fuzzy fault-tolerant control based on barrier Lyapunov function was
introduced for a switched system. A singularity-free adaptive fuzzy fixed-time
control algorithm was developed in [21]. Nevertheless, an advantage of our ap-
proach over the mentioned schemes is the capability of the neural network to
handle parameter uncertainties and compensate for external disturbances.

A disturbance rejection controller that reduces disturbances affecting the
trajectory tracking task was described in [8]. In [10], an active disturbance re-
jection controller was proposed by combining the nonlinear feedback control and
an extended state observer. Another work related to disturbance rejection was
presented in [13], where an adaptive sliding mode control for UAVs was devel-
oped. In [12], the robust integral of the signum of the error and the immersion
and invariance techniques were used to control a quadrotor. Another technique
that uses a combination of linear and adaptive control was presented in [17].

Different works aiming to solve the quadrotor control problem by using em-
bedded sensors, vision systems, and on-board cameras have been presented
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[2, 14, 22]. However, depending on the quadrotor equipment, only a limited
number of data acquisition devices are available. Thus, to supply the need for
more sensors or equipment and to provide disturbance rejection control alter-
natives, some estimation methods are implemented, being the neural networks
an alternative to achieve this goal.

Neural networks have been successfully applied in control. This approach
is especially useful for nonlinear systems where the advantage of the univer-
sal function approximation property of the neural networks is exploited. In
[23], the switched system control problem was addressed by means of an on-
line learning radial basis neural network (RBFNN), and the simulation results
showed the functionality of the proposed scheme. The fixed-time control prob-
lem of nonstrict-feedback nonlinear system subjected to deadzone and output
constraint was studied in [24] by using a combination of Barrier Lyapunov func-
tion, an online learning RBFNN, and the backstepping scheme. A recurrent
neural network fractional-order sliding mode control was proposed in [25], where
the performance of the proposed approach was validated in simulation by real-
izing the current harmonic compensation control for an active power filter.

Neural networks have been presented in the literature to address the control
of UAVs. An intelligent controller based on a pre-trained neural network was
developed and implemented in [26] to control the Dragon Flyer 2 quadrotor. In
[27], a combination of a state-dependent Riccati equation control scheme and
a pre-trained neural network was introduced to control and stabilize a small
quadrotor. A leader-follower formation control based on spherical coordinates
and neural networks was developed in [28] to control multiple quadrotors. An
optimal controller based on the backstepping technique and a neural network
was proposed to address the trajectory tracking control of a helicopter UAV
in [29]. The results of the numerical simulation were satisfactory. In [30], an
indirect adaptive neural controller was developed for a quadrotor to pursue a
moving object. A PID controller with a sigma-pi neural network was developed
to control a quadrotor in [31]. Simulation and experiments were presented to
show the performance improvement by using the neural network. A controller
based on the backstepping and sliding mode techniques together with a radial
basis function neural network was introduced in [32] to address the position
regulation problem. An adaptive control scheme using a radial basis function
neural network was proposed in [33] to control a quadrotor while is transporting
a payload suspended on a cable. In [34], an online adaptive neural network-based
controller was designed to ensure stability and to provide disturbance rejection
for a quadrotor that tracks an optimized trajectory.

As described in [35, 36, 37, 38, 39], the generalized regression neural network
(GRNN) is a single-pass neural network with a high degree of parallelism struc-
ture. It can be used to solve regression or estimation problems where it cannot
be assumed that the system is linear. A very useful application for this neural
network is to estimate the dynamics of a plant for control purposes [36]. Besides
control, different applications for this neural network have also been found in
image processing, the estimation of energy consumption, or even fault diagno-
sis. In [37], a GRNN was implemented with a genetic optimization algorithm
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to identify tri-dimensional objects from the object bi-dimensional poses and to
recognize handwritten digits. An optimization algorithm based on a fruit fly
swarm and a GRNN was used to model and forecast the annual energy load of
a region in [38]. This neural network has also been successfully implemented
for UAV control. In [39], a pre-trained GRNN was used to control the altitude
of a flapping wing UAV. The GRNN was implemented with a particle swarm
optimization algorithm to diagnose accurately the unbalance fault of the rotor
of a UAV helicopter [40].

Many quadrotors are equipped with an autopilot, which takes care of sta-
bilizing the vehicle dynamics. Thus, the commands that the autopilot receives
may be interpreted as control inputs for the quadrotor. The dynamics resulting
from the quadrotor and the embedded autopilot is a model having four inputs
and four outputs, which may be interpreted as a simplified quadrotor model, see
the manuscripts [41] and [42]. In order to stabilize the quadrotor, an external
control loop should be designed to generate input commands for the autopilot.

This work introduces a robust controller using a GRNN to address the trajec-
tory tracking problem providing effective disturbances rejection. The proposed
scheme has a structure consisting of an embedded autopilot on the quadro-
tor and of an outer control loop that computes commands for the embedded
controller. The resulting system has as inputs the commands of normalized
inclinations and velocities and as outputs the quadrotor position and yaw an-
gle. The practical viability of the proposed scheme is supported experimentally
demonstrating its capabilities and behavior by tracking two different desired
trajectories. Besides, comparisons with other control techniques are given. The
novelty of this work mainly relies on the following two points:

❼ The development of a neural network-based controller by using GRNNs
on which the output weight matrix as well as the center and standard
deviation vectors are online updated.

❼ An exhaustive real-time experimental study, where the proposed scheme
is compared with other controllers.

The proposed control scheme has a structure consisting of an inner control
loop, which is assumed to be an embedded controller, and an outer loop, which
generates commands for the inner loop. In particular, the outer loop takes
advantage of the adaptive GRNNs. Through this interaction, the trajectory
tracking task is achieved. The implemented algorithms for the experimental
study consist of the embedded controller plus a proportional-derivative (PD)
scheme as an outer loop, an adaptive model regressor controller, and an adaptive
neural network scheme. The experimental results indicate that the proposed
controller presents the best tracking accuracy.

The paper is organized as follows: Section 2 shows the quadrotor dynamics,
the embedded autopilot controller, and the resulting closed-loop model, which
is a novel input-output representation of the quadrotor. An overview of the
GRNN, the proposed adaptive controller, and the adaptation laws are presented
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in Section 3. Finally, experimental results and conclusions are given in Section
4 and 5, respectively.

2. Quadrotor dynamic model

The six degrees-of-freedom quadrotor dynamic model represented in the in-
ertial reference frame as described in [43, 44] is given by

mp̈+mgez +Dp(η)ṗ = R(η)ezF, (1)

M(η)η̈ + C(η, η̇)η̇ +Dη(η)η̇ = W (η)−T τ , (2)

where the equation (1) represents the position dynamics and the equation (2)
represents the attitude dynamics, m ∈ R is the mass of the vehicle, g ∈ R is
the gravitational acceleration constant, p = [x y z]T ∈ R

3 is the quadrotor
position, η = [φ θ ψ]T ∈ R

3 is the quadrotor attitude, both expressed in the
inertial reference frame, ez = [0 0 1]T ∈ R

3 is a unitary vector along the z-axis
in the inertial reference frame, Dp(η) ∈ R

3×3 is the aerodynamic drag matrix,
Dη(η) ∈ R

3×3 is a positive definite matrix that models an aerodynamic damping
effect, R(η) ∈ R

3×3 is a rotation matrix, M(η) ∈ R
3×3 is the inertia matrix,

C(η, η̇) ∈ R
3×3 is the Coriolis matrix,W (η) ∈ R

3×3 is a transformation matrix,
F ∈ R and τ ∈ R

3 are the control inputs.
The quadrotor model in (1) and (2) does not consider the aerodynamic ef-

fects which are present during its operation in outdoor environments. Based
on the previous works [45, 46, 47, 48], many different aerodynamic effects can
be considered, such as the influence of the angle of attack of the blades of the
propellers on the provided thrust of the actuators or the wind-induced drag.
Aerodynamic effects are more significant in high-speed flights and on acrobatic
maneuvering. The aerodynamic effects considered in this work are the force re-
sulting from the wind-induced drag, represented in the left-hand side of equation
(1) by the expressionDp(η)ṗ, and the the aerodynamic drag torque, represented
in the left-hand side of equation (2) by the term Dη(η)η̇.

Taking into account the ideas discussed in [49, 50, 51, 52], let us assume
that there is an inner embedded controller capable of stabilizing the quadrotor
in hover flight. In the works [49, 50, 51, 52], the embedded controller is assumed
to be given by

F =
m

cφcθ
(g + ż∗), (3)

τ = W (η)T [M(η)τ̃ + C(η, η̇)η̇], (4)

where the signals

ż∗ =
1

τż
(żd − ż), (5)





τ̃φ
τ̃θ
τ̃ψ



 =







ω2
φ(φd − φ)− 2ξφωφφ̇

ω2
θ(θd − θ)− 2ξθωθ θ̇

1
τ
ψ̇

(ψ̇d − ψ̇)






, (6)
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are related to first and second order linear systems as will be seen later, where
ωφ and ωθ are the natural frequencies, ξφ and ξθ are the damping constants,
and τż and τψ̇ are time constants for each system.

Notice that the reference signals żd, φd, θd, and ψ̇d are the input commands
for the inner embedded controller. Let us consider that input commands for the
embedded controller satisfy |żd| ≤ żmax, |θd| ≤ θmax, |φd| ≤ φmax, |ψ̇d| ≤ ψ̇max.
Then, the following relationships are established

żd = żmaxuż, (7)

θd = θmaxuθ, (8)

φd = φmaxuφ, (9)

ψ̇d = ψ̇maxuψ̇, (10)

where u = [uθ uφ uż uψ̇]
T ∈ R

4 is the dimensionless and normalized control
input vector, being uθ an angular position control input related to the dis-
placement along the x-axis, uφ an angular position control input related to the
displacement along the y-axis, uż a velocity control input related to the dis-
placement along the z-axis, and uψ̇ an angular velocity control input related to
the rotation around the z-axis, all in the inertial reference frame.

By replacing the expressions (7)-(10) into the equations (5) and (6), the
following is obtained:

ż∗ =
żmax

τż
uż −

1

τż
ż,





τ̃φ
τ̃θ
τ̃ψ



 =







ω2
φφmaxuφ − 2ξφωφφ̇− ω2

φφ,

ω2
θθmaxuθ − 2ξθωθ θ̇ − ω2

θθ,
ψ̇max

τ
ψ̇

uψ̇ − 1
τ
ψ̇

ψ̇






.

Thus, by replacing the equations (3)–(10) into the equations (1) and (2),
the closed-loop system resulting from the quadrotor dynamics and embedded
controller (also called inner control loop) is

ẍ =
F

m
(sψsφ + cψcφsθ)− dxẋ, (11)

ÿ =
F

m
(−cψsφ + sψcφsθ)− dy ẏ, (12)

z̈ =
żmax

τż
uż −

(

1

τż
+ dz

)

ż,

φ̈ = ω2
φφmaxuφ − (2ξφωφ + dφ)φ̇− ω2

φφ,

θ̈ = ω2
θθmaxuθ − (2ξθωθ + dθ)θ̇ − ω2

θθ,

ψ̈ =
ψ̇max

τψ̇
uψ̇ −

(

1

τψ̇
+ dψ

)

ψ̇,

where the assumptions 1
m
Dp(η) ≈ diag {dx, dy, dz} and M(η)−1Dη(η) ≈
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diag {dφ, dθ, dψ} where used.

Linearizing the equations (11) and (12) around the operation point ψ =
constant, θ = φ = 0 and F = mg corresponding to the hovering flight, leads to

ẍ = g(cψθ + sψφ)− dxẋ, (13)

ÿ = g(sψθ − cψφ)− dy ẏ. (14)

Expressions (13) and (14) denote the relation of the position dynamics in the
horizontal plane with the attitude. Adding and subtracting g(cψθd+ sψφd) and
g(sψθd − cψφd) to the equations (13) and (14), respectively, and defining the
attitude error for the pitch and the roll angles as

θ̃ = θd − θ,

φ̃ = φd − φ,

and realizing some algebraic manipulations, the dynamics of the quadrotor un-
der the embedded controller (3)-(4) and (7)-(10) are expressed as

ẍ = cψgθmaxuθ + sψgφmaxuφ − dxẋ+ g(cψ θ̃ + sψφ̃), (15)

ÿ = sψgθmaxuθ − cψgφmaxuφ − dy ẏ + g(sψ θ̃ − cψφ̃), (16)

z̈ =
żmax

τż
uż −

(

1

τż
+ dz

)

ż, (17)

θ̈ = −(2ξθωθ + dθ)θ̇ + ω2
θ θ̃, (18)

φ̈ = −(2ξφωφ + dφ)φ̇+ ω2
φφ̃, (19)

ψ̈ =
ψ̇max

τψ̇
uψ̇ −

(

1

τψ̇
+ dψ

)

ψ̇. (20)

Under the assumption that the inner embedded controller (4) stabilizes the
quadrotor such that θ̃(t) ≈ 0 and φ̃(t) ≈ 0 for all t ≥ 0, the system in (15)-(17),
(20) can be written in matrix form as in [2, 22, 41, 42, 53, 54, 55, 56, 57]

ẍw = T (ψ)Kuu−Kvẋ
w, (21)

where xw = [x y z ψ]T ∈ R
4 is the vector containing the position (x, y, z)

and the yaw angle ψ with respect the inertial reference frame (the super-index
w indicates the relation with the inertial reference frame), Ku ∈ R

4×4 and
Kv ∈ R

4×4 are positive definite diagonal matrices related to the parameters of
the vehicle and the embedded controller explicitly given as

Ku =











gθmax 0 0 0
0 gφmax 0 0
0 0 żmax

τż
0

0 0 0 ψ̇max

τ
ψ̇
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and

Kv =













dx 0 0 0
0 dy 0 0

0 0
(

1
τż

+ dz

)

0

0 0 0
(

1
τ
ψ̇

+ dψ

)













.

The matrix T (ψ) ∈ R
4 is a transformation matrix given by

T (ψ) =









cos(ψ) sin(ψ) 0 0
sin(ψ) − cos(ψ) 0 0

0 0 1 0
0 0 0 1









.

The vector
u = [uθ uφ uż uψ̇]

T (22)

is the control input vector for the inner control loop where:

uθ is the angular position control input related to the displacement along the
x-axis.

uφ is the angular position control input related to the displacement along the
y-axis.

uż is the velocity control input related to the displacement along the z-axis.

uψ̇ is the angular velocity control input related to the rotation around the
z-axis.

As mentioned earlier, the nonlinear equation system expressed in (21) is part
of the closed-loop system resulting from the quadrotor dynamics (1)-(2) and
the inaccessible-to-the-user embedded controller (3)-(4). However, the system
in (21) can be assumed as the quadrotor model since the parameters of the
embedded controller cannot be modified, which motivates the design of an outer
control loop. In some quadrotor applications, the model parameters may change
as a consequence of weather conditions (wind gusts, rain, changes in air density,
etc.), or the task to be performed, such as transporting payload suspended on a
cable. Due to the aforementioned, the system in (21) can be expressed similarly
to [58, 59], resulting in the following input-output representation

ẍw = T (ψ)Ku(x
w, ẋw)u+ δ(t), (23)

where the term −Kvẋ
w of the model in (21) is contained into δ(t) ∈ R

4, which
represents the vector of disturbances bounded as

||δ(t)|| ≤ δ0, ∀

[

xw

ẋw

]

∈ Ω,
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where δ0 is a strictly positive constant and Ω is a compact set.

In order to ensure trajectory tracking control of the system (23), an outer
scheme u to supply commands of position and velocity to the inner controller
should be designed. Hence one of the purposes of this manuscript is to introduce
an adaptive GRNN outer controller u for the system (23). Since the definition
of u in (22), one can think that actually the outer control loop is a real-time
trajectory planning stage.

3. Disturbance rejection controller (outer control loop)

The proposed controller is composed by an adaptive GRNN, a small-gain
discontinuous term used to eliminate the approximation error of the neural
network, and a continuous nonlinear term which may improve the convergence
rate of the tracking error. Considering xwd = [xd yd zd ψd]

T ∈ R
4 as the desired

position and yaw angle vector, the generalized tracking error is defined as

e = xw − xwd . (24)

Similar to [60], a sliding surface for a MIMO system is proposed as follows

r = ė+ αe, (25)

where α ∈ R
4×4 is a diagonal positive definite gain matrix. Differentiating the

equation (25) with respect to time, it leads to

ṙ = ë+ αė. (26)

By replacing the tracking error (24) into (26) we obtain

ẍw − ẍwd = ṙ − αė. (27)

Now, replacing the equation (25) into (27) and rearranging, we get

ẍw = ṙ − α(r − αe) + ẍwd = ṙ − αr + α2e+ ẍwd . (28)

Then, substituting the equation (28) into the quadrotor dynamic model in (23)
and clearing ṙ, we have

ṙ = T (ψ)Kuu+ δ(t) + αr − α2e− ẍwd . (29)

Considering the equation (29), the following controller is proposed

u = (T (ψ)Ku)
−1(ẍwd − b1 tanh(b2r)− δ̂(t)−Krsign(r)), (30)

where sign(r) = [sign(r1) sign(r2) sign(r3) sign(r4)]
T ∈ R

4, being

sign(x) =







−1, x < 0,
0, x = 0,
1, x > 0,

9



Figure 1: Block diagram of the GRNN control scheme in (30).

tanh(b2r) = [tanh(b2r1) tanh(b2r2) tanh(b2r3) tanh(b2r4)]
T ∈ R

4, b1 and b2
are strictly positive constants, Kr ∈ R

4×4 is a diagonal positive definite gain
matrix and δ̂(t) ∈ R

4 is an estimation of the disturbance δ(t) ∈ R
4 produced

by environmental conditions, variation of the payload and the unmodeled dy-
namics acting on the system. The term b1 tanh(b2r) is used as a soft saturation
function to bound the control action avoiding high values that could unstabilize
the quadrotor. This strategy is useful especially for the experimental implemen-
tation and during the tuning process. The term b1 tanh(b2r) was used similarly
in [60]. It is noteworthy that the term b1 tanh(b2r) could be replaced by b1r and
the control goal will be still ensured by using an appropriate positive definite
function V and the corresponding conditions. The block diagram of the closed-
loop system with the proposed control scheme and the embedded controller is
presented in Figure 1.

Notice that the selection of the sliding surface involved in the discontinuous
terms of the controller (30) corresponds to a linear combination of the position
and velocity errors, e and ė, respectively, as done in many other designs in the
literature.

Now, the closed-loop system obtained by replacing (30) in (29) is given by

ṙ = −b1 tanh(b2r) + (δ(t)− δ̂(t)) + αr − α2e−Krsign(r). (31)

It should be noticed that the signal δ(t) can be expressed by a GRNN,
which in agreement with the universal approximation theorem [61, 62], is used
to approximate any continuous function as follows

||δ(t)− ΦTH(r̄, c,ρ)|| ≤ ||ǫ|| <∞,

or
δ(t) = ΦTH(r̄, c,ρ) + ǫ, (32)

where r̄ = [1 rT eT ẋwT ]T ∈ R
13 is the extended input vector for the GRNN,

H(r̄, c,ρ) ∈ R
m is a vector of radial basis activation functions defined as

Hi(r̄, ci,ρi) =
e

||r̄−ci||

2ρi

∑m
j=1 e

||r̄−cj ||

2ρj

, (33)

10



Figure 2: Diagram of the generalized regression neural network used to obtain the estimate
δ̂.

where m is the number of neurons, ci ∈ R
13 is the vector of centers for each

element of H(r̄, c,ρ), the vector c ∈ R
13m is a vertical concatenation of the

vectors ci so that c = [cT1 cT2 ... cT13]
T , whereas ρi ∈ R is the standard deviation

for each radial basis function Hi(r̄, ci, ρi) in H(r̄, c,ρ). Thus, ρ ∈ R
m is the

standard deviation vector, Φ ∈ R
m×n is the optimal parameter matrix, which

is constant and unknown, and n = 4 is the number of outputs. The vector
ǫ ∈ R

4 is the approximation error which is bounded as |ǫi| ≤ kri. The matrix
Kr = diag {kri} in the control law (30) helps to compensate the approximation
errors. Based on the discussions in [35, 36, 37, 38, 39, 63], the GRNN is a
variation of the radial basis function neural network with a multilayer structure.
It is mainly composed by four layers: an input layer, a hidden layer, a summation
layer, and an output layer. The radial basis functions are contained in the hidden
layer. Specifically, the GRNN is a variation of the RBFNN because it uses a
Gaussian function as an activation function. But, in contrast with the classical
RBFNN, the activation function of the GRNN is normalized as can be observed
in equation (33).

Then, the estimation δ̂ is given by a generalized regression neural network,
described as

δ̂(t) = Φ̂T Ĥ(r̄, ĉ, ρ̂). (34)

In Figure 2, a diagram of the GRNN structure in (34) is depicted. The parameter
estimation errors are defined as

Φ̃ = Φ− Φ̂, (35)

c̃ = c− ĉ, (36)

ρ̃ = ρ− ρ̂. (37)

11



From equation (32), the vector of external disturbance can be represented
as a function of the parameter estimation errors in (35), (36) and (37) as

δ(t) =
[

Φ̃(t) + Φ̂(t)
]T [

Ĥ(r̄, ĉ, ρ̂) + H̃(r̄, c̃, ρ̃)
]

+ ǫ,

= Φ̃(t)T Ĥ(r̄, ĉ, ρ̂) + Φ̃(t)T H̃(r̄, c̃, ρ̃) + Φ̂(t)T Ĥ(r̄, ĉ, ρ̂)

+Φ̂(t)T H̃(r̄, c̃, ρ̃) + ǫ. (38)

By replacing the estimation function (34) into the equation (38) we obtain

δ(t) = δ̂(t) + Φ̃(t)T Ĥ(r̄, ĉ, ρ̂) + Φ̃(t)T H̃(r̄, c̃, ρ̃) + Φ̂(t)T H̃(r̄, c̃, ρ̃) + ǫ. (39)

Defining the error of the estimation function (34) as δ̃(t) = δ(t) − δ̂(t), the
equation (39) can be written as

δ̃(t) = Φ̃(t)T Ĥ(r̄, ĉ, ρ̂) + Φ̃(t)T H̃(r̄, c̃, ρ̃) + Φ̂(t)T H̃(r̄, c̃, ρ̃) + ǫ. (40)

Now, linearizing the function ΦTH(r̄, c,ρ) around the operation point c = ĉ

and ρ = ρ̂ as

ΦTH(r̄, c,ρ) = ΦT Ĥ(r̄, ĉ, ρ̂) +
∂[ΦTH(r̄, c,ρ)]

∂c

∣

∣

∣

∣

ρ = ρ̂

c = ĉ

(c− ĉ)

+
∂[ΦTH(r̄, c,ρ)]

∂ρ

∣

∣

∣

∣

ρ = ρ̂

c = ĉ

(ρ− ρ̂)

= ΦT Ĥ(r̄, ĉ, ρ̂) + ΦT
∂H(r̄, c,ρ)

∂c

∣

∣

∣

∣

ρ = ρ̂

c = ĉ

(c− ĉ)

+ΦT
∂H(r̄, c,ρ)

∂ρ

∣

∣

∣

∣

ρ = ρ̂

c = ĉ

(ρ− ρ̂), (41)

which will be useful. The partial derivatives of the activation function in (33)
with respect to the center and standard deviation vectors in the equation (41)
are redefined for simple notation as

∆Ĥc =
∂H(r̄, c,ρ)

∂c

∣

∣

∣

∣

ρ = ρ̂

c = ĉ

, (42)

∆Ĥρ =
∂H(r̄, c,ρ)

∂ρ

∣

∣

∣

∣

ρ = ρ̂

c = ĉ

, (43)

where ∆Ĥc ∈ R
m×[mdim(r̄)] and ∆Ĥρ ∈ R

m×m are the Jacobians of the
activation function (33) with respect the center vector c and the standard devi-
ation vector ρ, respectively, with mdim(r̄) meaning m times by the dimension
of the vector r̄. Then, rewriting and rearranging the equation (41) with the
expressions (42) and (43) we obtain

ΦTH(r̄, c,ρ)− ΦT Ĥ(r̄, ĉ, ρ̂) = ΦT∆Ĥc(c− ĉ) + ΦT∆Ĥρ(ρ− ρ̂). (44)
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Thus, the estimation error of the activation function (44) is given by

H̃(r̄, c̃, ρ̃) = ∆Ĥcc̃+∆Ĥρρ̃. (45)

Replacing the equation (45) into (40), and defining ǭ = Φ̃T H̃(r̄, c̃, ρ̃) + ǫ,
the disturbance estimation error can be written as

δ̃(t) = Φ̃T Ĥ(r̄, ĉ, ρ̂) + Φ̂T (∆Ĥcc̃+∆Ĥρρ̃) + ǭ. (46)

By replacing (46) into the equation (31), the closed-loop system is rewritten as

ṙ = −b1 tanh(b2r)+Φ̃T Ĥ(r̄, ĉ, ρ̂)+Φ̂T (∆Ĥcc̃+∆Ĥρρ̃)+ǭ+αr−α2e−Krsign(r).
(47)

Besides, the adaptation laws are defined as follows:

d

dt
Φ̃i = −

d

dt
Φ̂i = −b3Ĥ(r̄, ĉ, ρ̂) tanh(b2ri), (48)

d

dt
c̃ = −

d

dt
ĉ = −b4

n
∑

i=1

[tanh(b2ri)(∆Ĥ
T
c Φ̂i(t))], (49)

d

dt
ρ̃ = −

d

dt
ρ̂ = −b5

n
∑

i=1

[tanh(b2ri)(∆Ĥ
T
ρ Φ̂i(t))], (50)

where Φ̃i ∈ R
m denotes the ith column of matrix Φ̃ ∈ R

m×n. Finally, the overall
closed-loop system is expressed by the equations (26), (47), (48), (49), and (50).

It is worthwhile to notice that the estimated parameters of the neural net-
work Φ̂i, ĉ and ρ̂ are obtained by the adaptation laws (48), (49) and (50),
respectively, and they are designed to match the convergence analysis shown in
the coming analysis. There is no optimization algorithm nor optimal criterion
to compute the mentioned parameters.

Proposition 1. Assume gain matrices α and Kr to be positive definite

matrices. In addition, consider that b1, b2, b3, b4, b5 > 0 and the condition

αi(2b1 − α3
i )−

1

b22
> 0 (51)

is satisfied. Then, for all initial conditions starting at some compact set, the

solutions e(t) and r(t) converge to zero as time t increases. In addition, the

adaptation errors Φ̃i(t), c̃(t) and ρ̃(t) remain bounded for all time t ≥ 0.

Proof. First, the positive definite function

V =

n
∑

i=1

[

1

b2
ln(cosh(b2ri)) +

1

2
e2i +

1

2b3
Φ̃Ti Φ̃i

]

+
1

2b4
c̃T c̃+

1

2b5
ρ̃T ρ̃ (52)

is defined, where b1, b2, b3, b4, and b5 are strictly positive constants used in the
control and the adaptation laws. Taking the time derivative of (52) along of the

13



closed-loop equations (26) and (47) we have

V̇ =

n
∑

i=1

[

tanh(b2ri)ṙi + eiėi +
1

b3
Φ̃Ti

˙̃Φi

]

+
1

b4
c̃T ˙̃c+

1

b5
ρ̃T ˙̃ρ. (53)

By replacing the equation (25) and (47) into equation (53) and performing the
appropriate algebraic manipulations we obtain

V̇ =
n
∑

i=1

[

−b1 tanh(b2ri)
2 + tanh(b2ri)Φ̃

T
i Ĥ(r̄, ĉ, ρ̂) + tanh(b2ri)Φ̂

T
i ∆Ĥcc̃

+tanh(b2ri)Φ̂
T
i ∆Ĥρρ̃+ tanh(b2ri)ǭi + tanh(b2ri)(αri − α2ei)

− tanh(b2ri)krisign(ri) + ei(ri − αei) +
1

b3
Φ̃Ti

˙̃Φi

]

+
1

b4
c̃T ˙̃c

+
1

b5
ρ̃T ˙̃ρ. (54)

In order to simplify the equation (54), the following products are reordered by
using the property xTAy = yTATx, with matching dimensions of x, A and y

Φ̂Ti ∆Ĥcc̃ = c̃T∆ĤT
c Φ̂i,

Φ̂Ti ∆Ĥρρ̃ = ρ̃T∆ĤT
ρ Φ̂i.

Then, the equation (54) can be rewritten after grouping common terms as

V̇ =

n
∑

i=1

[

−b1 tanh(b2ri)
2 + tanh(b2ri)ǭi + tanh(b2ri)(αri − α2ei)

−kri| tanh(b2ri)|+ ei(ri − αei)]

+Φ̃Ti

(

n
∑

i=1

[

Ĥ(r̄, ĉ, ρ̂) tanh(b2ri) +
1

b3

˙̃Φi

]

)

+c̃T

(

n
∑

i=1

[

tanh(b2ri)∆Ĥ
T
c Φ̂i

]

+
1

b4
˙̃c

)

+ρ̃T

(

n
∑

i=1

[

tanh(b2ri)∆Ĥ
T
ρ Φ̂i

]

+
1

b5
˙̃ρ

)

. (55)

It is clear that the adaptation laws (48), (49) and (50) are suggested from
the last three terms in (55). Specifically, substituting the adaptation laws (48),
(49) and (50) into the equation (55) leads to

V̇ =
n
∑

i=1

−b1 tanh(b2ri)
2 + tanh(b2ri)(αiri − α2

i ei) + ei(ri − αiei) + βi(ri) (56)

where
βi(ri) = tanh(b2ri)ǭi − kri| tanh(b2ri)| ≤ 0,

14



since kri ≥ |ǭi|.
Now, two cases are analyzed, when ri = 0 and ri 6= 0. Firstly, analyzing

the case ri = 0, from the equation (56) it is easy to see that all the terms with
tanh(b2ri) are equal to zero, which leads to

V̇i = −αie
2
i ≤ 0,

this result guarantees the boundedness of the trajectory tracking error when
ri = 0.

Secondly, when ri 6= 0, V̇ can be rewritten as

V̇ =
n
∑

i=1

−

(

b1 −
αiri

tanh(b2ri)

)

tanh(b2ri)
2 −

(

α2
i −

ri
tanh(b2ri)

)

ei tanh(b2ri)

−αie
2
i + βi(ri). (57)

Thus, defining the vector Ei = [ei tanh(b2ri)]
T the equation (57) can be ex-

pressed as

V̇ =

n
∑

i=1

−ET
i Qi(ri)Ei −

αi
2
e2i + βi(ri), (58)

where Qi(ri) is given by

Qi(ri) =

[

αi
2

α2

i

2 − ri
2 tanh(b2ri)

α2

i

2 − ri
2 tanh(b2ri)

b1 −
αiri

tanh(b2ri)

]

,

where the term −αie
2
i has been conveniently split up to include one half in the

first term of (58).
To guarantee the convergence of the proposed control scheme, it is necessary

to prove that the matrix Qi(ri) is positive definite. By using Sylvester’s criterion
it is possible to find the conditions for Qi(ri) to be a positive definite matrix.
This criterion leads to the following conditions:

αi > 0, (59)

αi
2

(

b1 −
αiri

tanh(b2ri)

)

−

(

α2
i

2
−

ri
2 tanh(b2ri)

)2

> 0. (60)

The condition (59) is trivially satisfied. By expanding and rearranging the
expression (60), we have

2αib1 − α4
i >

[

ri
tanh(b2ri)

]2

. (61)

By using the fact that
∣

∣

∣

∣

ri
tanh(b2ri)

∣

∣

∣

∣

≤ |ri|+
1

b2
,
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it becomes clear that the expression (61) is satisfied if the inequality

αi(2b1 − α3
i ) >

[

|ri|+
1

b2

]2

(62)

is achieved.
The inequality (62), and in consequence (59), is satisfied for |ri| < rimax

for some rimax > 0. In fact, the sufficient condition for the existence of some
rimax > 0 is given in (51), which is always accomplished with b1 large enough
and is a sufficient condition for V̇ to be a locally negative definite function.

Considering the definition of V in (52) we can write

V ≥

n
∑

i=1

1

b2
ln(cosh(b2ri)).

By using the following property [64]

1

b2
ln(cosh(b2ri)) ≥ |ri| −

1

b2
ln(2),

and clearing for ri, we obtain

Vri +
1

b2
ln(2) > |ri|, (63)

where Vri =
1
b2

ln(cosh(b2ri)).
Then, replacing the equation (63) into the inequality (62) the following ex-

pression is obtained

αi(2b1 − α3
i ) >

(

Vri +
ln(2) + 1

b2

)2

,

which is satisfied for “small” ri as we stated earlier. Therefore, since βi(ri) ≤ 0
for all ri, V̇ can be upper-bounded as

V̇ ≤

n
∑

i=1

−
αi
2
e2i for all |ri| < rimax, i = 1, 2, ..., 4, (64)

leading to the conclusion that V̇ (t) ≤ 0 ∀ t ∈ [0,∞) for initial conditions ri(0),
ei(0), Φ̃i(0), c̃(0), and ρ̃(0) starting at some compact set.

In agreement with the equations (52), (59), and (64), and invoking Barbalat’s
lemma [65], these results guarantee the boundedness and convergence to zero of
the control error signal ei(t) during the closed-loop operation of the proposed
control scheme. In other words, the trajectory tracking control aim is satisfied
with the controller (30), (48), (49), and (50).
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Communication
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Ground station

Figure 3: Experimental set up with the motion capture system Optitrack and the QBall 2
quadrotor.

4. Experimental results

In order to validate the proposed control scheme, experimental tests are per-
formed. The experimental validation consisted of implementing the proposed
control scheme in the QBall 2 quadrotor and compare it with three different
control schemes. The control schemes selected for the comparison are the em-
bedded controller plus a PD scheme, an adaptive model regressor-based control
scheme, and an adaptive neural network algorithm. The comparisons were de-
signed to perform the trajectory tracking task for two different trajectories. The
selected trajectories are a lemniscate path and a circular path.

4.1. Experimental platform

The real-time experiments are carried out in the QBall 2 quadrotor inte-
grated with the motion capture system Optitrack as shown in Figure 3. The
QBall 2 quadrotor is a Quanser experimental platform useful to test differ-
ent control schemes. The controllers are developed in MATLAB-Simulink, and
Quarc software is used to compile and upload the Simulink model to the UAV
on-board computer. The position and yaw angle of the quadrotor are sensed
by the motion capture system Optitrack using an array of 6 synchronized Flex
3 cameras. The roll and pitch angles and the angular velocities are obtained
using the inertial sensors: 3-axis accelerometer and 3-axis gyroscope. The con-
trol inputs for the QBall 2 quadrotor are the PWM signals associated with the
thrust of each rotor. The sampling rate is 500 [Hz] for both the inertial mea-
surement unit of the quadrotor and the on-board computer where the controller
is executed. For the motion capture system, the sampling rate is 30 [Hz].
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The embedded controller (3)-(4) and (7)-(10) was implemented in our ex-
perimental system by using the following parameters and gains:

m = 1.79 [kg], g = 9.81 [m/s2],

ωφ = 13.944, ωθ = 13.944,

ξφ = 1.593, ξθ = 1.593,

τż = 0.728. (65)

In addition, the proposed adaptive GRNN external controller in equations (30),
(48), (49), and (50) was implemented with the gains given by

b1 = 1.5, b2 = 1.0, b3 = 15, Ku = diag {15.812, 15.812, 10.6, 2.38} ,

b4 = 0.1, b5 = 0.1, m = 5, Kr = diag {0.001, 0.001, 0.001, 0.001} ,

α = diag {3, 2, 5, 2} . (66)

Random values into the set [−1, 1] were selected to initialize the matrix Φ̂
and the vector ĉ. Unitary values were used to initialize the components of the
vector ρ̂. R3C2Owing to the discontinuous term on our controller the chattering
phenomenon is present on the experimental tests. This is an undesired effect
that can be attenuated by means of small gains on the discontinuous term. More
specifically, to reduce the chattering phenomenon in our controller the values
of the matrix Kr that corresponds to the gains of the discontinuous term were
selected considerably small in comparison with the other gains. In consequence,
the neural network handles the disturbance rejection and deals with parametric
uncertainties.

4.2. Control schemes implemented for comparison

The performance of the proposed control scheme is compared with respect
to other control schemes. Specifically, the embedded controller (3)-(4) together
with a PD outer loop control, the adaptive model regressor-based controller
reported in [14] and the adaptive neural network scheme given in [66] are im-
plemented for the comparison.

Embedded controller plus outer PD control loop

The embedded controller (3)-(4) and (7)-(10) was implemented along with
a PD outer controller given by

u = (RKu)
−1(ẍwd −Kpe−Kdė), (67)

where e is the control error signal in (24) and Kp, Kd ∈ R
4×4 are diagonal pos-

itive definite matrices. In this experimental case study, the embedded controller
in equations (3)-(4) and (7)-(10) was implemented with the gains (65) and the
external PD controller used the gains

Kp = diag {4.5, 3, 7.5, 3} ,

Kd = diag {1.5, 1.5.1.5} . (68)

The controller expressed by (3)-(4), (7)-(10), and (67) will be denoted as ECPD.
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Adaptive model regressor control scheme

The adaptive controller implemented for the experimental validation was
presented in [14], and consists of an outer control loop of position and an inner
control loop of attitude. This control scheme is designed considering that the
control inputs are the thrust F and the torque τ . The position controller is
given by

F =
fz

cos(φ) cos(θ)
, (69)

θd = tan−1

(

1

fz
[fy sin(ψd) + fx cos(ψd)]

)

,

φd = tan−1

(

cos(θd)

fz
[fx sin(ψd)− fy cos(ψd)]

)

,

where F ∈ R is the total thrust, θd and φd are the pitch and roll desired angles
respectively. The vector f = [fx fy fz]

T ∈ R
3 is defined as

f = m̂p̈d + m̂gez +Kpp̃+Kd
˙̃p,

with the position error defined as p̃(t) = pd(t)−p(t), m̂ as a dynamic estimation
of the quadrotor mass, ez = [0 0 1]T is a unitary vector along the z axis in the
inertial reference frame, and Kp ∈ R

3×3 and Kd ∈ R
3×3 are positive definite

diagonal matrices. The adaptation law for the quadrotor mass is given by

˙̂m = γpYp(p̈d)
T ˙̃p+ γpǫYp(p̈d)

T p̃,

where γp and ǫ are positive constants, Yp(p̈d) ∈ R
3×1 is the position regression

matrix defined as Yp(p̈d) = p̈d + gez. The attitude controller is given by

τ = Yη(η,ω,ωr, ω̇r)χ̂η +Kss (70)

where χ̂η ∈ R
6 is the estimated parameter vector and Ks ∈ R

3×3 is a positive

definite diagonal matrix, s = ˙̃η + Λη̃ is the filtered attitude error with the
attitude error defined as η̃(t) = ηd(t)− η(t) and Λ ∈ R

3×3 is a positive definite
diagonal matrix. A detailed description of this controller and its implementation
can be consulted in [14]. The dynamic adaptive controller in (69) and (70) was
implemented experimentally by using the gains

Kp = diag {7.0, 7.0, 6.5} ,

Kd = diag {2.5, 2.5, 4} ,

Ks = diag {0.4, 0.4, 1.0} ,

Λ = diag {4.38, 4.38, 1.5} ,

γp = 0.014,

ǫ = 1.39,

Γη = 1.5× 10−3diag {1, 1, 1, 1, 1, 1} . (71)

Hereafter, the controller (69)-(70) will be denoted as AMRC.
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Adaptive neural network controller

The controller given in [66] is formed by an integral sliding mode control
loop for the attitude and an adaptive neural network-based control loop for the
position. The vector uA = [ū1F, ū2F, F ]

T is the control input for the position
subsystem which is defined as

uA =M(η)−1(ge3 + f̂(Xin) + kvγ + ξ̈r), (72)

where F ∈ R is the total thrust, ū1 = cos(ψ) sin(θ) cos(φ) + sin(ψ) sin(φ) and
ū2 = sin(ψ) sin(θ) cos(φ)− cos(ψ) sin(φ) are auxiliary control inputs. It is note-
worthy to mention that ξ̈d = [ẍd, ÿd, z̈d]

T is an acceleration pre-compensation
term added to improve the performance of the controller in the experimental
tests. The matrix M(η) = diag {1/m, 1/m, cos(φ) cos(θ)/m} ∈ R

3×3, m is
the quadrotor mass, g is the gravitational acceleration constant, e3 = [0 0 1]T

is a unitary vector along the vertical axis, γ =
˙̃
ξ + Λξ̃ is an auxiliary state

vector, with Λ = ΛT > 0, and ξ̃ = ξd − ξ as the position error, being ξd
the position desired signal, and kv a strictly positive constant. The vector
f̂(Xin) = ŴTP (Xin) is the output of a radial basis function neural network,
Xin is the input vector of the neural network with the activation function defined
by

Pi(Xin) = e

(

−
||Xin−ci||

2

σ2
i

)

,

where ci and σi are the center and width of the Gaussian function, respectively.
The matrix Ŵ is the estimated weight matrix obtained from

˙̂
W = AP (Xin)γ

T ,

where A is a symmetric positive definite gain matrix. The attitude control loop
is given by

τ =M(η)v̇η + C(η, η̇)η̇ + ρηsign(sη) + kηM ṽ, (73)

where ρη and kη are positive constants, C(η, η̇) is the Coriolis matrix, ṽ = vη−η̇

is the angular velocity error, vη = η̇d + kwη̃ + ρwsign(sw), the attitude error
is defined as η̃ = ηd − η, with η as the attitude of the quadrotor, and ηd the
attitude desired signal, ρw and kw are positive constants. Finally, the sliding
surfaces are defined as sw = η̃ + kw

∫ t

0
η̃ and sη = ṽ + kη

∫ t

0
ṽ. A detailed

description of this control scheme can be consulted in [66]. The adaptive neural
network controller was experimentally implemented using the following gains

c = [−1.5,−1,−0.5, 0, 0.5, 1, 1.5]T , kw = 4.5,

σ = [5, 5, 5, 5, 5, 5, 5]T , ρw = 1× 10−6,

Λ = diag {2.55, 2.55, 3.55} , kη = 15,

A = 0.15, ρη = 1× 10−4,

kv = 1.257. (74)

The controller(72)-(73) will be denoted for referencing as ANNC.
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4.3. Experimental validation

Two different experiments are carried out in order to validate the proposed
controller. The first experiment consists of tracking a lemniscate path, and the
second one consists of tracking a circular path.

The gains of the proposed control scheme in (3)-(4), (7)-(10) and (30), the
ECPD scheme in (3)-(4), (7)-(10) and (67), the AMRC scheme in (69)-(70), and
the ANNC algorithm in (72)-(73) were selected by a trial and error procedure
resulting in the values given in (65), (66), (68), (71), and (74).

4.3.1. Experiment 1: Lemniscate path

The lemniscate path is described by the following desired signals

xd(t) = 0.5 sin

(

2π

4
t

)

[m],

yd(t) = cos

(

2π

8
t

)

[m],

zd(t) = 1.0 [m], (75)

ψd(t) = 0.0 [◦]. (76)

As can be seen in Figure 4, all the control schemes fulfill the assigned task.
However, the proposed controller remains closer to the reference than the other
controllers that were tested.

The obtained signals of position error x̃(t), ỹ(t), z̃(t), and yaw angle er-
ror ψ̃(t) of the quadrotor during the trajectory tracking task are depicted
in Figure 5. Note that the proposed controller presents smaller error sig-
nals during all the experiment. The control actions correspond to the total
thrust F (t) provided by the rotors and the torques around each rotation axis
τ (t) = [τφ(t), τθ(t), τψ(t)]

T . The control action signals F (t) and τ (t) produced
during the experiment are shown in Figure 6. The control actions for all the
control schemes are similar. Nevertheless, the control actions τφ(t) and τθ(t)
provided by the proposed controller are smaller in comparison to that produced
by the other controllers and the amplitude of its oscillations is smaller too.

In order to obtain a quantitative comparison index of the controllers per-
formance, the root mean square (RMS) value of the tracking errors and the
control signals for each controller are computed. The tracking error signals are
calculated with the following expression

γ̃ι = γι − γd,

where γ represents the signals x, y, z, and ψ, the sub-index d denotes the desired
signal, ι indicates the control scheme implemented to obtain that signal, being
denoted as “Proposed” for the controller in (3)-(4), (7)-(10), (30), and (48)-(50),
ECPD, AMRC and ANNC, which were previously described.

The RMS values of the tracking errors are presented in Table 1. The time
interval to compute the RMS values was established in 10 [s] ≤ t ≤ 35 [s]
when all the signals have reached their steady states. The lowest values are

21



Figure 4: Experiment 1: Path (x(t), y(t), z(t)) drawn by the quadrotor for the specification
of the desired trajectory in (75) and (76) when implementing the ECPD scheme, the AMRC
controller, the ANNC algorithm, and the Proposed scheme.

R3C3

Figure 5: Experiment 1: Time evolution of position error x̃(t), ỹ(t), z̃(t), and yaw angle
error ψ̃(t) for the specification of the desired trajectory in (75) and (76) when implementing
the ECPD scheme, the AMRC controller, the ANNC algorithm, and the Proposed scheme.
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Figure 6: Experiment 1: Control actions provided by the ECPD scheme, the AMRC con-
troller, the ANNC algorithm, and the Proposed scheme.

Table 1: Experiment 1: RMS values of position error x̃(t), ỹ(t), z̃(t), and yaw angle error
ψ̃(t) in the time interval 10 [s] ≤ t ≤ 35 [s].

Error Units ECPD AMRC (Pimp%) ANNC (Pimp%) Proposed (Pimp%)

x̃ [m] 0.0981 0.0529 46.12 0.0952 2.97 0.0480 51.12
ỹ [m] 0.1104 0.0525 52.47 0.0637 42.32 0.0348 68.47
z̃ [m] 0.0525 0.0137 73.86 0.0256 51.19 0.0125 76.17

ψ̃ [◦] 0.9445 0.7952 15.81 0.4566 51.66 0.3427 63.72

in bold font and indicate better performance for the trajectory tracking task.
In addition, the relative percentage of improvement Pimp% with respect to the
ECPD controller was also computed aiming to provide a better understanding
of the enhance obtained with the AMRC, ANNC and proposed controller, being
computed as

Pimp%(γ̃ς) =
RMS(ECPD)− RMS(ς)

RMS(ECPD)
× 100%,

where ς represents either the proposed, the AMRC or the ANNC scheme im-
plemented to obtain that error signal.
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Figure 7: Experiment 2: Path (x(t), y(t), z(t)) drawn by the quadrotor for the specification
of the desired trajectory in (77) and (78) when implementing the ECPD scheme, the AMRC
controller, the ANNC algorithm, and the Proposed scheme.

4.3.2. Experiment 2: Circular path

The circular path is described by the following desired signals

xd = 0.75 sin

(

2π

5
t

)

[m],

yd = 0.75 cos

(

2π

5
t

)

[m],

zd = 1.0 [m], (77)

ψd = 0.0 [◦]. (78)

In Figure 7, a tridimensional view of the quadrotor path is depicted. The
error signals of the position and yaw angle of the quadrotor during the circular
path tracking are depicted in Figure 8. The control action signals are shown in
Figure 9.

The RMS values of the tracking errors for the circular path tracking task
are presented in Table 2. The time interval is established in 10 [s] ≤ t ≤ 35 [s]
as in Experiment 1. The lowest values are in bold font to identify which control
scheme provides better performance. The results are accompanied by their
respective percentage of improvement. The proposed control scheme presents
the best tracking accuracy, which confirms the advantage of the GRNN.
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Figure 8: Experiment 2: Time evolution of position error x̃(t), ỹ(t), z̃(t), and yaw angle
error ψ̃(t) for the specification of the desired trajectory in (77) and (78) when implementing
the ECPD scheme, the AMRC controller, the ANNC algorithm, and the Proposed scheme.

Figure 9: Experiment 2: Control actions provided by the ECPD scheme, the AMRC con-
troller, the ANNC algorithm, and the Proposed scheme.
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Table 2: Experiment 2: RMS values of position error x̃(t), ỹ(t), z̃(t), and yaw angle error
ψ̃(t) in the time interval 10 [s] ≤ t ≤ 35 [s].

Error Units ECPD AMRC (Pimp%) ANNC (Pimp%) Proposed (Pimp%)

x̃ [m] 0.0949 0.0812 14.41 0.0730 23.05 0.0446 53.01
ỹ [m] 0.1416 0.0615 56.57 0.0777 45.14 0.0534 62.30
z̃ [m] 0.0536 0.0174 67.58 0.0141 73.67 0.0140 73.86

ψ̃ [◦] 0.7143 0.7590 -6.26 0.5362 24.93 0.4857 32.01

5. Conclusions

This paper explored the modeling and control of UAVs assuming the presence
of an embedded controller. An external control loop consisting of a robust
online learning GRNN was introduced. An analysis of the trajectories of the
closed-loop system was presented. The proposed control scheme was successfully
implemented in a QBall 2 quadrotor. Experimental comparisons of the proposed
controller with respect to the embedded controller plus an outer PD control loop,
an adaptive model regressor control, and an adaptive neural network algorithm
were carried out. The obtained results by using the proposed controller showed
smaller tracking error values of position and yaw angle than the obtained with
the other three control schemes. The relative percentages of improvement proved
the advantages of using the proposed control scheme.
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[14] R. Pérez-Alcocer, J. Moreno-Valenzuela, Adaptive control for quadrotor
trajectory tracking with accurate parametrization, IEEE Access 7 (2019)
53236–53247.

[15] P. J. Rossomando, The achievement of spacecraft autonomy through the
thematic application of multiple cooperating intelligent agents, Telematics
and Informatics 9 (3-4) (1992) 205–219.

[16] E. Mehiel, M. Balas, Optimization of direct adaptive disturbance rejection
systems, in: American Institute of Aeronautics and Astronautics Guidance,
Navigation, and Control Conf. and Exhibit, 2003, pp. 1–8.

[17] O. Naghash-Almasi, M. H. Khooban, PI adaptive LS-SVR control scheme
with disturbance rejection for a class of uncertain nonlinear systems, En-
gineering Applications of Artificial Intelligence 52 (2016) 135–144.

[18] T. Matassini, H.-S. Shin, A. Tsourdos, M. Innocenti, Adaptive control with
neural networks-based disturbance observer for a spherical UAV, IFAC-
PapersOnLine 49 (17) (2016) 308–313.

27



[19] L. Liu, Y.-J. Liu, A. Chen, S. Tong, C. P. Chen, Integral barrier Lyapunov
function-based adaptive control for switched nonlinear systems, Science
China Information Sciences 63 (3) (2020) 1–14.

[20] L. Liu, Y.-J. Liu, D. Li, S. Tong, Z. Wang, Barrier Lyapunov function-based
adaptive fuzzy FTC for switched systems and its applications to resistance-
inductance-capacitance circuit system, IEEE Transactions on Cybernetics
50 (8) (2019) 3491 – 3502.

[21] Y. Pan, P. Du, H. Xue, H.-K. Lam, Singularity-free fixed-time fuzzy control
for robotic systems with user-defined performance, IEEE Transactions on
Fuzzy Systems (2020).

[22] M. C. Santos, L. V. Santana, M. M. Martins, A. S. Brandão, M. Sarcinelli-
Filho, Estimating and controlling UAV position using RGB-D/IMU data
fusion with decentralized information/Kalman filter, in: Proc. 2015 IEEE
Int. Conf. on Industrial Technology, pp. 232–239.

[23] L. Tang, D. Ma, J. Zhao, Adaptive neural control for switched non-linear
systems with multiple tracking error constraints, IET Signal Processing
13 (3) (2018) 330–337.

[24] J. Ni, Z. Wu, L. Liu, C. Liu, Fixed-time adaptive neural network control for
nonstrict-feedback nonlinear systems with deadzone and output constraint,
ISA Transactions 97 (2020) 458–473.

[25] J. Fei, H. Wang, Recurrent neural network fractional-order sliding mode
control of dynamic systems, Journal of the Franklin Institute 357 (2020)
4574–4591.

[26] J. Dunfied, M. Tarbouchi, G. Labonte, Neural network based control of a
four rotor helicopter, in: Proc. 2004 IEEE Int. Conf. on Industrial Tech-
nology, Vol. 3, pp. 1543–1548.

[27] H. Voos, Nonlinear and neural network-based control of a small four-rotor
aerial robot, in: 2007 IEEE/ASME Int. Conf. on Advanced Intelligent
Mechatronics, pp. 1–6.

[28] T. Dierks, S. Jagannathan, Neural network control of quadrotor UAV for-
mations, in: 2009 American Control Conf., 2009, pp. 2990–2996.

[29] D. Nodland, H. Zargarzadeh, S. Jagannathan, Neural network-based opti-
mal adaptive output feedback control of a helicopter UAV, IEEE Transac-
tions on Neural Networks and Learning Systems 24 (7) (2013) 1061–1073.

[30] M. Shirzadeh, A. Amirkhani, A. Jalali, M. R. Mosavi, An indirect adaptive
neural control of a visual-based quadrotor robot for pursuing a moving
target, ISA Transactions 59 (2015) 290–302.

28



[31] F. Jiang, F. Pourpanah, Q. Hao, Design, implementation, and evaluation
of a neural-network-based quadcopter UAV system, IEEE Transactions on
Industrial Electronics 67 (3) (2019) 2076–2085.

[32] W. Shen, Z. Li, Backstepping sliding mode RBF network adaptive control
for quadrotor UAV, in: Proc. Chinese Automation Congress, 2019, pp.
4086–4091.

[33] C. Luo, J. Song, C. Lv, Robust adaptive control design based on RBFNN
with an unmanned quadrotor for transporting tasks, in: Proc. 3rd Ad-
vanced Information Management, Communicates, Electronic and Automa-
tion Control Conf., 2019, pp. 614–618.

[34] R.-J. Wai, A. S. Prasetia, Adaptive neural network control and optimal
path planning of UAV surveillance system with energy consumption pre-
diction, IEEE Access 7 (2019) 126137–126153.

[35] D. F. Specht, A general regression neural network, IEEE Transactions on
Neural Networks 2 (6) (1991) 568–576.

[36] T. L. Seng, M. Khalid, R. Yusof, Adaptive GRNN for the modelling of
dynamic plants, in: Proc. IEEE Internatinal Symp. on Intelligent Control,
2002, pp. 217–222.
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