958 research outputs found

    Sustainable Cooperative Coevolution with a Multi-Armed Bandit

    Get PDF
    This paper proposes a self-adaptation mechanism to manage the resources allocated to the different species comprising a cooperative coevolutionary algorithm. The proposed approach relies on a dynamic extension to the well-known multi-armed bandit framework. At each iteration, the dynamic multi-armed bandit makes a decision on which species to evolve for a generation, using the history of progress made by the different species to guide the decisions. We show experimentally, on a benchmark and a real-world problem, that evolving the different populations at different paces allows not only to identify solutions more rapidly, but also improves the capacity of cooperative coevolution to solve more complex problems.Comment: Accepted at GECCO 201

    A methodology for determining an effective subset of heuristics in selection hyper-heuristics

    Get PDF
    We address the important step of determining an effective subset of heuristics in selection hyper-heuristics. Little attention has been devoted to this in the literature, and the decision is left at the discretion of the investigator. The performance of a hyper-heuristic depends on the quality and size of the heuristic pool. Using more than one heuristic is generally advantageous, however, an unnecessary large pool can decrease the performance of adaptive approaches. Our goal is to bring methodological rigour to this step. The proposed methodology uses non-parametric statistics and fitness landscape measurements from an available set of heuristics and benchmark instances, in order to produce a compact subset of effective heuristics for the underlying problem. We also propose a new iterated local search hyper-heuristic usingmulti-armed banditscoupled with a change detection mechanism. The methodology is tested on two real-world optimisation problems: course timetabling and vehicle routing. The proposed hyper-heuristic with a compact heuristic pool, outperforms state-of-the-art hyper-heuristics and competes with problem-specific methods in course timetabling, even producing new best-known solutions in 5 out of the 24 studied instances

    Extreme compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection

    Get PDF
    The goal of adaptive operator selection is the on-line control of the choice of variation operators within evolutionary algorithms. The control process is based on two main components, the credit assignment, that defines the reward that will be used to evaluate the quality of an operator after it has been applied, and the operator selection mechanism, that selects one operator based on some operators qualities. Two previously developed adaptive operator selection methods are combined here: Compass evaluates the performance of operators by considering not only the fitness improvements from parent to offspring, but also the way they modify the diversity of the population, and their execution time; dynamic multi-armed bandit proposes a selection strategy based on the well-known UCB algorithm, achieving a compromise between exploitation and exploration, while nevertheless quickly adapting to changes. Tests with the proposed method, called ExCoDyMAB, are carried out using several hard instances of the satisfiability problem (SAT). Results show the good synergetic effect of combining both approaches
    • …
    corecore