12 research outputs found

    Iterative decoding for magnetic recording channels.

    Get PDF
    The success of turbo codes indicates that performance close to the Shannon limit may be achieved by iterative decoding. This has in turn stimulated interest in the performance of iterative detection for partial-response channels, which has been an active research area since 1999. In this dissertation, the performance of serially concatenated recording systems is investigated by computer simulations as well as experimentally. The experimental results show that the iterative detection algorithm is not sensitive to channel nonlinearities and the turbo coded partial-response channel is substantially better than partial-response maximum-likelihood channels. The classical iterative decoding algorithm was originally designed for additive white Gaussian noise channels. This dissertation shows that the performance of iterative detection can be significantly improved by considering the noise correlation of the magnetic recording channel. The idea is to iteratively estimate the correlated noise sequence at each iteration. To take advantage of the noise estimate, two prediction techniques were proposed, and the corresponding systems were named noise predictive turbo systems. These noise predictive turbo systems can be generalized to other detector architectures for magnetic recording channels straightforwardly

    Contributions to adaptive equalization and timing recovery for optical storage systems

    Get PDF
    no abstrac

    CROSSTALK-RESILIANT CODING FOR HIGH DENSITY DIGITAL RECORDING

    Get PDF
    Increasing the track density in magnetic systems is very difficult due to inter-track interference (ITI) caused by the magnetic field of adjacent tracks. This work presents a two-track partial response class 4 magnetic channel with linear and symmetrical ITI; and explores modulation codes, signal processing methods and error correction codes in order to mitigate the effects of ITI. Recording codes were investigated, and a new class of two-dimensional run-length limited recording codes is described. The new class of codes controls the type of ITI and has been found to be about 10% more resilient to ITI compared to conventional run-length limited codes. A new adaptive trellis has also been described that adaptively solves for the effect of ITI. This has been found to give gains up to 5dB in signal to noise ratio (SNR) at 40% ITI. It was also found that the new class of codes were about 10% more resilient to ITI compared to conventional recording codes when decoded with the new trellis. Error correction coding methods were applied, and the use of Low Density Parity Check (LDPC) codes was investigated. It was found that at high SNR, conventional codes could perform as well as the new modulation codes in a combined modulation and error correction coding scheme. Results suggest that high rate LDPC codes can mitigate the effect of ITI, however the decoders have convergence problems beyond 30% ITI

    Studies on interpolated timing recovery and external clock synchronization for magnetic recording channels

    Get PDF
    制度:新 ; 文部省報告番号:乙1909号 ; 学位の種類:博士(工学) ; 授与年月日:2004/10/28 ; 早大学位記番号:新387

    Current Topics on Risk Analysis: ICRA6 and RISK2015 Conference

    Get PDF
    Peer ReviewedPostprint (published version
    corecore