
 

Contributions to adaptive equalization and timing recovery for
optical storage systems
Citation for published version (APA):
Riani, J. (2008). Contributions to adaptive equalization and timing recovery for optical storage systems. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR638300

DOI:
10.6100/IR638300

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR638300
https://doi.org/10.6100/IR638300
https://research.tue.nl/en/publications/314ae3c9-6e5d-40d3-8ba3-7228200d65aa


Contributions to Adaptive Equalization and

Timing Recovery For Optical Storage Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische

Universiteit Eindhoven, op gezag van de Rector Magnificus,

prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door

het College voor Promoties in het openbaar te verdedigen op

woensdag 19 november 2008 om 14.00 uur

door

Jamal Riani

geboren te T́etouan, Marokko



Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. J.W.M. Bergmans

Copromotor:

dr. W.M.J. Coene

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Riani, Jamal

Contributions to Adaptive Equalization and Timing Recovery For Optical Storage Systems / by Jamal Riani. -

Eindhoven : Technische Universiteit Eindhoven, 2008.

Proefschrift. - ISBN 978-90-386-1436-6

NUR 959

Subject headings: signal processing / adaptive equalizers / timing recovery / Viterbi detection / digital storage

systems.



Committee:

prof.dr.ir. J.W.M. Bergmans

Eindhoven University of Technology, The Netherlands.

dr. W.M.J. Coene

ASML Research, Veldhoven, The Netherlands.

prof.dr. D.T.M. Slock

Institut Eurecom, France.

dr. H. Zhang

Shanghai Jiaotong University, China.

prof.dr.ir. P.G.M. Baltus

Eindhoven University of Technology, The Netherlands.

This work has been supported in part via a European IST-project called ‘TwoDOS’

(Project Nr. IST-2001-34168)



Pour Yemma et Baba (que Dieu les préserve).



Contributions to Adaptive Equalization and

Timing Recovery For Optical Storage Systems

During the last decades, storage density and data rate of optical storage devices have

increased dramatically. This increase arises out of the evolution from the Compact

Disc (CD) with a storage capacity of 680 MByte and a user data rate of 1.4 Mbit/s

to the recently standardized3rd generation format called Blu-ray Disc (BD) with a

single layer storage density of 25 GByte and a user data rate of around 35 MBit/s.

Although this explosive growth has been mainly due to major advances in the

physics, i.e. due to the improvements made in the design of laser diodes with a

shorter wavelength and lenses with a higher numerical aperture, rapid advances in

coding and signal processing algorithms have also played a significant role.

As storage density and data rate of optical storage systems increase, many system

artifacts, e.g. media noise and channel nonlinearities, become important and result

in reduction of system margins and signal-to-noise ratio. In order to cope with these

artifacts, data receivers for optical storage systems need to employ powerful signal

processing methods.

Among the signal processing blocks in data receivers for optical storage systems,

the equalizer, data-detector and the timing recovery block are the most important.

The way of equalization consists of using one or more filters to mitigate the effect of

interference and noise prior to data-detection. The timing recovery block deals with

the synchronization of the readback signal with the data written on the disc.

Because of system artifacts at high storage densities, the tasks of equalization and

timing recovery become more difficult and, at the same time, increasingly critical for

reliable data recovery. Existing equalization and timing recovery algorithms can not

cope with these artifacts efficiently.

The objective of this thesis is to push the state of the art in equalization and timing

recovery for optical storage systems and propose powerful adaptive equalization and

timing recovery algorithms to meet the challenges of future optical storage systems.

The thesis contains seven chapters. These chapters are written to be as independent
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and as self-contained as possible, so that they can be read separately.

Chapter 1 gives an introduction to optical storage technology and a review of

signal processing techniques for optical storage data receivers. It also presents the

main challenges in future high-density optical storage systems. This introductory

chapter concludes with the motivations, contributions and organization of the thesis.

In Chapters 2 and 3 we introduce a novel adaptive equalization technique that

seeks to minimize the probability of detection error. These chapters explain, first, the

limitations of the existing adaptive equalization techniques and then propose a new

adaptation technique for detection error rate minimization. The key property of the

new adaptation technique is its selectivity in the sense that it mainly focuses on the

data patterns that have the highest likelihood of detection error. The strength of the

proposed technique is not restricted to providing a better performance but extends to

allowing very low implementation costs.

Chapter 4 reports an asynchronous adaptive equalization scheme that aims at

minimizing latencies inside the timing-recovery loop. The chapter explains the im-

plication of this scheme for equalizer adaptation and proposes a highly simple yet

efficient method for asynchronous equalizer adaptation.

Following this, and with respect to the objective of strengthening the timing-

recovery loop, Chapter 5 focuses on designing a timing-recovery scheme for channels

with data-dependent noise. The applicability of the proposed scheme thus extends

well beyond optical storage channels. The chapter exploits the data-dependent and

colored nature of noise to improve the performance of timing recovery. It starts by

analyzing the maximum-likelihood (ML) timing-recovery criterion and proposes a

novel and practical scheme to achieve near ML performance.

As recently all-digital timing recovery is often employed, design of efficient

sampling-rate converter (SRC) digital filters is very important for performance op-

timization and complexity limitation. In this respect, SRC filters that also realize

channel equalization can be attractive. Chapter 6 explains first the problem of equal-

izing SRC filters and then presents algorithms for designing such filters.

Chapter 7 concludes the thesis with some remarks and directions for future work.

The development of all new algorithms presented in the different chapters is sup-

plemented with computer simulation results. These simulation results are used for

demonstrating the effectiveness of the proposed algorithms and for validating the

analytical developments.
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Chapter 1

Introduction

In this chapter, we first give an overview of optical storage technology. Then we

explain the role of signal processing in existing optical storage systems. Following

this, we exhibit the key challenges, from the signal processing perspective, of future

high-density optical storage systems. The chapter concludes by highlighting the mo-

tivations for the work presented in this thesis and by presenting a description of the

contribution of each chapter of this thesis.

1.1 Introduction to Digital Optical Storage

In this digital information era, our need for storage is growing explosively because of

multimedia requirements for text, images, video and audio. This need has prompted

the development of various digital storage systems, such as hard disks, compact discs

(CDs), digital versatile discs (DVDs) [31,115] and magneto-optical disks [155].

Optical storage systems are systems that use light for recording and retrieval of

information. Information is recorded on a disc as a change in the material charac-

teristics by modulating the phase, intensity, polarization, or reflectivity of a readout

optical beam [10,42,111]. In the case of read-only discs, the information is mastered

on the media by injection molding of plastics or by embossing of a layer of pho-

topolymer coated on a glass substrate [10, 42]. In other types of optical discs, some

information is stamped onto the media and the substrate is coated with a storage layer

that can be modified by the user during storage of information.

Compared to the other storage technologies, the most distinguishing feature of

optical storage is the removability of the storage medium. In fact, a key difference

between existing optical storage and magnetic storage systems is the ease with which
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the optical media can be made removable with excellent robustness, archival lifetime

and very low cost. The separation between the media surface and the optical pick-

up unit (OPU), which includes the laser diode, the lenses and the photo-detector IC

(PDIC), excludes all risks of the infamous head crashes experienced in hard disk

drives.

The storage density and data rate of optical storage devices have increased dra-

matically in the last decades. Although this explosive growth has been mainly due

to major breakthroughs in the physics, i.e. due to the improvements made in the

design of the OPU and storage media, sophisticated coding and signal processing

techniques as well as accurate servo control algorithms have also played a signif-

icant role [113, 152]. The potential of coding and signal processing techniques to

substantially further enhance the storage capacity is becoming evident.

The remaining part of this section provides first a brief historical overview of

optical storage technology and then discusses the optical disc readout and digital

optical formats.

1.1.1 Optical Storage History and Trends

This section gives a brief historical overview of optical storage technology. A more

detailed overview can be found in [74] and the references therein.

The huge popularity of the gramophone record and the growth of television in the

1960’s called for techniques for storing video signals on a disc. The use of a disc, as

an information carrier, solves the problem of slow accessibility of tape-based storage

in the sense that fast access to any part of the programme is made possible. Moreover,

using a disc for data storage still presents the low price advantage brought about

by production methods similar to that of the gramophone disc [1], i.e. mechanical

impressing the information in the disc by using a master stamper.

In this period, research on this subject started at different laboratories. Early

investigations showed that optical read out of information has distinct advantages

over the mechanical read out as was used in case of the gramophone record. The

first edition of ‘Philips Technisch Tijdschrift’ [151] describes the so-called Philips-

Miller-System for optical registration of audio information. The main advantage of

this system over the gramophone is that mechanical wear due to read out of the in-

formation is eliminated because there is no mechanical contact between the medium
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and the readout device. However, the idea could not be made practically viable until

the availability of a very bright, and in principle cheap, light source in the form of a

laser.

In 1967 the basic idea of storing data on a transparent optical disc was disclosed

by D. Gregg [49]. In 1972, a standard established by Philips, Thomson, Music Corpo-

ration of America and later on Pioneer described the Video Long Play (VLP) system

with the goal of playing back video content on a television set [24,149]. The system

uses discs of a transparent polymer material with standardized diameters of 20 and

30 cm and a thickness of 2.6 mm. The VLP disc resembles a gramophone record but

has a mirror-like appearance [1], see Figure 1.1.

Figure 1.1: ‘The video disc resembles a gramophone record but has a

mirror-like appearance’ [1].

The information on these discs is stored in tracks spiraling outward with a track-

to-track distance of 1.6µm. The discs are manufactured by mechanical impressing of

information in the disc using a master stamper to allow a cheap and fast replication

process. The master stamper is made by illuminating a 100µm thin photo-sensitive

layer on a glass substrate and developing the photo resist to remove it at positions

where it was illuminated. The information is present in the so-called pits and lands

(non-pits). The readout of information from the disc is achieved via a laser beam

with a wavelengthλ of 632.8 nm, which is focused onto the information layer by a so-

called objective lens. Explanation of the readout process is presented in Section 1.1.2.
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Table 1.1: Key properties and advantages of optical storage systems.

Property Advantage
• Mechanical impression of informa-

tion using a master stamper.
• No mechanical contact between

medium and readout device.

• Protective cover-layer in the form of

the disc substrate.

• Cheap replication of discs.

• No mechanical wear during read-

out and easily removable storage

medium.
• Robust against dust and scratches.

It was already recognized that the small size of the pits (width of 0.4µm; aver-

age length of 0.6µm) requires a special protection of the information layer. Small

dust particles and scratches on the disc can easily damage the imprinted information

layer and lead to signal drop-outs. To solve this problem, the use of a transparent,

protective layer on top of the information layer has proven to be necessary. More

importantly, the use of the disc substrate itself as this protective layer has proven to

be one of the key ideas that made the optical storage system a robust information

carrier as we know it today [99]. Table 1.1 shows an overview of the key properties

and advantages that make the optical storage system the system of choice for many

of today’s applications [74].

The major drawback of the VLP system was its limited playing time. This made

competition with the video cassette recorder rather difficult [16] and limited the mar-

ket share of the VLP system. In the meantime, research was done to replace the old

gramophone disc by an optical system to distribute audio content. The large increase

in areal capacity when going from the mechanical to the optical readout was exploited

in two ways. First, the optical disc was reduced considerably in size compared to the

gramophone disc. Second, the audio signal was digitized allowing the use of error

correction codes (ECC). This made the system even more robust against dust and

scratches compared to the VLP.
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1.1.2 Readout of Optical Discs

In optical storage systems, the data is written on the disc in the form of marks of

various lengths in a track spiraling outwards from an inner radius (R1) towards an

outer radius (R2), see Figure 1.2. The separation in the radial direction between

adjacent tracks is called track pitch. Read-only systems, such as CD-ROM, employ

a pattern of pits and lands to write the information on the disc. In rewritable systems,

such as DVD-RW, phase changes due to local differences in material structure are

generally used to represent information [150].

Figure 1.2: Schematic drawing of the outward spiraling track on an optical

disc. In the inset the pits on the disc are shown in detail.

The data is read out with a focused laser beam. A schematic drawing of the opti-

cal light path is shown in Figure 1.3 [74]. A light beam is generated by a semiconduc-

tor laser diode. The light is pointed towards a beam-splitting cube and then directed

towards the objective lens via a collimating lens that makes a parallel light bundle.

The objective lens focuses the parallel bundle onto the rotating storage medium. By

actuating the objective lens towards and from the disc, ideal focus can be maintained

even when the disc is not ideally flat. Additionally, by actuating it in the radial direc-

tion (the direction perpendicular to the along-track direction) the spiraling track can

be followed accurately. The focused light beam is reflected by the storage medium,

after which the light is collected again by the same objective lens. Via the same op-

tical path and the beam splitter it is now focused onto a photo detector that transfers
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the optical signal into an electrical signal. This electrical signal contains information

on the pit sequence on the disc from which we can derive the original bit sequence.

Figure 1.3: The optical light path.

1.1.3 Digital Optical Formats

The digital audio long play disc that originated from the VLP system was renamed

compact disc (CD). The CD standard was introduced by Philips and Sony in 1980

and was officially brought to the market in Europe and Japan in 1982. Besides the

digitization of the data and a change in laser wavelengthλ to 780 nm, the basic

principle was kept the same. The storage density of 680 MByte on a single layer disc

with a diameter of 12 cm was reached using a track pitch of 1.6µm and a channel bit

length of 277 nm. This storage density is directly dependent on the size of the optical

spot which is a function of the wavelength and the numerical aperture (NA). The

NA is defined as the sine of the opening angle of the light cone that is focused on the

storage medium. For CD, NA=0.45. The thickness of the transparent disc (that serves

as the protecting cover layer for the data) is 1.2 mm. Figure 1.4 shows an overview of

existing optical storage formats together with the main parameters. By reducing the

wavelength of the laser light and by increasing the numerical aperture, the storage

capacity of the disc has been increased in a few steps. The ‘digital versatile disc’

(DVD) uses a laser with a wavelength of 650 nm and the NA is increased to 0.6.

By further reducing the margins slightly, which is made possible by more advanced
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Figure 1.4: Overview of existing optical storage formats.

signal processing and manufacturing methods, a storage capacity of 4.7 GB on a

single layer is achieved. This has been realized by using a track pitch of 0.74µm

and a bit length of 133 nm (see Table 1.2 for an overview of these parameters [74]).

Recently, the Blu-ray Disc (BD) standard was introduced. It offers a capacity of

25 GB and uses a blue-violet laser diode with a wavelength of 405 nm. The NA is

0.85. More recently, but still at the research level, an improvement in storage density

has been achieved by going to values of NA that are higher than 1. This is known as

near-field storage [74].

Because the tolerance to disc tilt goes with the third power of NA [74], disc tilt

becomes a serious issue for systems with a high NA. This is counteracted partially

by choosing a thinner protective layer (0.6 mm for DVD and 0.1 mm for BD) at the

cost of a decreased robustness against dust and scratches. This has also implications

for the receiver architecture and the employed signal processing techniques as we

discuss in Section 1.3.

1.2 Signal Processing in Current Optical Storage Systems

The key components in the development of a storage system are optical pick-up units,

media, and signal processing. In the past, the main growth in optical storage systems

was due to development of shorter-wavelength lasers and stronger lenses, along with
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Property CD DVD BD

λ [nm] 780 650 405

NA 0.45 0.6 0.85

(d,k)-constraint (2,10) (2,10) (1,7)

Channel bit length [nm] 280 133 74.5

User bit length [nm] 700 313 137

ECC rate 0.85 0.85 0.8170

Track pitch [µm] 1.6 0.74 0.32

cover layer thickness [mm] 1.2 0.6 0.1

Inner radius (R1) [mm] 24 24 24

Outer radius (R2) [mm] 58 58 58

User Capacity [GB] 0.68 4.7 25.0

Density [Gb/inch2] 0.40 2.78 14.74

Table 1.2:Key parameters of various optical storage formats. The user bit

length is calculated based on the channel bit length, the overhead

for error correction and the rate of the channel modulation code.

The(d,k)-constraints (see Section 1.2.1) determine, respectively,

the minimum and maximum number of consecutive ones or zeros

in the channel bit stream.
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developments in media technologies. However, the role of sophisticated signal pro-

cessing techniques is increasingly becoming crucial in supporting and augmenting

the advancement in media, lasers and lenses technologies. In fact, fuelled by the

advances in CMOS technology, digital signal processing is recognized as a cost effi-

cient means for increasing density while satisfying challenging design constraints in

terms of data rate, power consumption and implementation cost [33,66,79,113,152].

Moreover, the necessity of using advanced signal processing techniques becomes

even more obvious as the storage density increases and the signal to distortion ratios

reduce [22,42,86,113,142,145].
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Figure 1.5: Schematic block diagram of an optical storage system.

Figure 1.5 shows a schematic diagram with the basic building blocks involved in

an optical storage system [42, 86]. The upper part of Figure 1.5 highlights the write

part of the system which is analogous to the transmitter part in a communication

system. The lower part of Figure 1.5 highlights the read part, commonly referred to as

the read channel, which is equivalent to the receiver part in a communication system.

The write part involves an error correction code (ECC) encoder which encodes the

user data bits to protect the recorded data from channel noise and disc defects [30,

138]. A modulation encoder is then used for matching the data to the storage channel

characteristics and to facilitate the operation of the different receiver control loops,

e.g. timing recovery [93, 96, 125]. The write circuits transform the binary data to

be written on the storage media into a certain format to facilitate the writing. They

modulate the laser light according to a so-called write strategy in order to modify or
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compensate for distortions that occur while writing the data on the disc, e.g. [57,146].

During the readout process and based on the reflected light from the disc, a photo

detector generates an electrical signal, called replay signal and modelled in Figure 1.5

as the output of the photo-detector IC (PDIC). Throughout this thesis, we refer to the

combination of the write circuits, the storage medium and the PDIC as the optical

storage channel or optical channel for conciseness. The optical channel output or

replay signal is processed to recover the recorded data as reliably as possible. This is

the task of the data receiver.

A modulation decoder then inverts the modulation encoding step. In this whole

process, the erroneously detected user bits will be corrected by the ECC decoder us-

ing the redundant information that was added at the transmitting side by the ECC

encoder. The replay signal often includes linear and nonlinear distortions and timing

variations [8, 22, 61, 86, 100, 101, 145, 148]. To recover the recorded data reliably, a

typical data receiver contains an analog front-end circuit, an equalizer, a timing re-

covery circuit and a bit detector (Figure 1.6). The front-end circuit conditions the re-

play signal prior to equalization. This includes amplification of the replay signal and

limitation of its noise bandwidth [13]. The main task of the equalizer is to suppress

noise and to reshape the replay signal in order to simplify bit detection [86,119,144].

The purpose of the timing recovery is to ensure that the replay signal, which contains

timing variations as caused by disc rotation speed variation, is sampled at the correct

sampling instants for bit detection [37,86,91,127].
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Figure 1.6: Schematic block diagram of a data receiver.

In the rest of this section we elaborate on selected parts of the optical storage sys-

tem, namely, optical channel and modulation codes. We also provide an explanation

of the main signal distortion sources, equalization, timing recovery and detection.

We put special emphasis on equalization and timing recovery as these functions are
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of central interest to this thesis.

1.2.1 Optical channel model and modulation codes
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Figure 1.7: Continuous-time model of the optical storage channel. Noise is

omitted.

Figure 1.7 shows a continuous-time model of the optical storage channel. The

user data, at the rate1/Tu bits/second, is applied to the ECC and modulation encoders.

These encoders add redundancy to the user data which results in channel bitsbk at

the rate1/T, whereT = RTu, with Rbeing the joint code rate of these encoders.

In optical storage there exist two formats to denote the information bits, namely,

the non-return-to-zero-inverse (NRZI) and non-return-to-zero (NRZ) formats. In the

NRZI format the bit ‘1’ represents a change in the state of the storage medium and the

bit ‘0’ represents no change. In the NRZ format, one state of the medium corresponds

to the bit ‘1’ and the other state corresponds to the bit ‘0’. Usually the output of the

different encoders is encoded using the NRZI format and then transformed into NRZ

format before being sent to the write circuit [93]. This operation is known as NRZI-

to-NRZ precodingand can be characterized by a transfer function1/1⊕D, where

‘⊕’ is the Boolean XOR operator and ‘D’ is the 1 bit-duration delay operator. The

precoder output is then mapped to channel bitsbk ∈ {−1,+1}, by assigning+1 to

‘1’ and −1 to ‘0’. The channel bits are then stored on the disc. In this thesis, we

associate pits withbk = +1 and lands withbk =−1.

A linear pulse modulator (LPM) [86] transforms the channel bit sequencebk into

a binary write signals(t) given by

s(t) = ∑
k

bkc(t−kT),
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where the symbol responsec(t) of the LPM is given by

c(t) =

{
1, |t|< T

2 ,

0, otherwise.

For current disc formats, the continuous-time replay signalr(t) can be assumed

to be a linearly filtered and noisy version of the write signals(t). This assumption

is not entirely realistic for higher storage densities as we will discuss in Section 1.3.

Here we assume linearity as we focus on current optical storage systems. For now

we omit channel noise, which will be the subject of Section 1.2.2. The replay signal

can then be written as

r(t) = (s∗ f )(t). (1.1)

Here f (t) denotes the impulse response of the channel and ‘∗’ denotes the linear con-

volution operator. The characteristics of the impulse responsef (t) depend on the

optics. A model of the impulse responsef (t), based on scalar diffraction theory, was

developed by Hopkins [42,68]. In short, the analysis in [68] is based on the concate-

nation of the following facts. Light, generated by the laser source, propagates through

the lens towards the disc surface. Field propagation is described by the Fourier trans-

form of the scalar input field. Then, disc reflectivity is modelled making use of the

Fourier analysis for periodic structures. Light is reflected in proportion to the phase

profile of the disc, times the incident field. Then the field is back-propagated to the

detector, through the same lens as in the forward path. Back-propagation can be

modelled by another Fourier transform. Finally, the photodiode converts the incident

field into an electrical signal. According to [42], the Fourier transform off (t), called

Modulation Transfer Function (MTF), is given, at a frequencyΩ, by

F(Ω) =





2
π

(
cos−1| Ω

Ωc
|− Ω

Ωc

√
1− ( Ω

Ωc
)2

)
, |Ω|< Ωc,

0, |Ω| ≥Ωc,

whereΩc denotes the optical cut-off frequency. This expression of the channel MTF

F(Ω) is known in the optical storage signal processing community as the Braat-

Hopkins formula [42]. The optical cut-off frequencyΩc depends on the laser wave-

lengthλ and the numerical apertureNA of the objective lens and is given by

Ωc =
2NA

λ
.



15

For an optical storage system using a channel bit lengthLbit = νT whereν denotes

the velocity of the media, the highest frequency that can be represented on the disc,

i.e. 1/(2Lbit), is called the Nyquist frequency. At densities of practical interest,

optical storage channels are said to have a negative excess bandwidth [86] meaning

that the optical cut-off frequency is below the Nyquist frequency, i.e.2NA
λ < 1

2Lbit
.

For example, for a BD channel withλ = 405nm,NA = 0.85andLbit = 74.5 nm, we

obtainΩc ≈ 0.31
Lbit

< 1
2Lbit

.

For the sake of clarity, we keep the same notations and use throughout the re-

maining part of this thesis normalized frequencies to the inverse channel bit length

1/Lbit. The normalized optical cut-off frequency is then given byΩc = 2NA
λ Lbit. For

a given optical channel parameters, the normalized cut-off frequency is a direct mea-

sure of the storage density as it is proportional to the channel bit length. The higher

the storage density is, the smaller the normalized cut-off frequency becomes.

The channel symbol responsehc(t) is obtained by convolvingf (t) with c(t). In

the frequency domain, this gives

H(Ω) =





2T
π

sin(πΩ)
πΩ

(
cos−1| Ω

Ωc
|− Ω

Ωc

√
1− ( Ω

Ωc
)2

)
, |Ω|< Ωc,

0, |Ω| ≥Ωc.
(1.2)

The optical storage channel has a low-pass nature with a normalized cut-off frequency

Ωc and approximately a linear roll-off. By way of illustration we show in Figure 1.8

the transfer functions of the CD and DVD channels according to (1.2). For CD the

normalized cut-off frequency isΩc ≈ 0.32 and for DVD Ωc ≈ 0.26. The low-pass

nature of the optical channel is apparent, with an almost linear roll-off.

BecauseH(Ω) is bandlimited to normalized frequencies well within[−0.5,0.5]
for storage densities of practical interests, the replay signalr(t) can be sampled at

the baud rate1/T without loss of information and the cascade of the continuous-

time model in Figure 1.7 with the sampler can then be replaced by the discrete-time

model of Figure 1.9. The discrete-time impulse responsehk and the readback signal

rk are the sampled versions ofhc(t) and r(t), respectively, all at the rate of1/T

samples/second. The discrete-time counterpart of equation (1.1) then becomes

rk = (h∗b)k = ∑
i

hibk−i , (1.3)

where ‘∗’ denotes discrete convolution.
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Figure 1.8: The transfer functions of the CD (continuous line) and DVD

(dashed line) channels. Both channels are normalized to have

a unit transfer at DC.
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Figure 1.9: The equivalent discrete-time model of a noiseless optical storage

channel.

The negative excess bandwidth property, i.e.Ωc < 0.5, has several implications.

On the one hand, intersymbol interference increases rapidly as excess bandwidth de-

creases. At the same time the replay signal comes to contain progressively less timing

information. On the other hand, receiver performance tends to become more sensi-

tive to channel parameter variations [86]. These factors have direct consequences

on modulation coding, equalization, detection, timing recovery and adaptation as we

will explain in the forthcoming sections.

Modulation Codes:

Modulation codes for storage systems [93,96,125], known as runlength-limited (RLL)

codes, are commonly used in optical storage to spectrally shape the information writ-

ten on the disc in accordance with the MTF of the optical channel. This is meant

to improve detection performance and to facilitate the operation of control loops in
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the receiver. Moreover, the use of RLL codes also helps to considerably reduce the

impact of some nonlinear artifacts on system performance, e.g. signal asymmetry as

we will discuss in Section 1.2.2.

RLL codes are characterized by so-called(d,k) constraints or runlength con-

straints where a runlength is the length of runs of consecutive pits and lands on the

disc. RLL coded sequences have a minimum runlength ofd + 1 channel bits, and

a maximum runlength ofk+ 1 channel bits. Thed constraint controls the high-

frequency content of the data stream and helps to increase the minimum spacing

between transitions in the data recorded on the medium. This has an impact on

the linear and nonlinear interferences and distortions present in the readback signal.

The k constraint controls the low-frequency content of the data stream and ensures

frequent transitions in the channel bit-stream for proper functioning of the timing-

recovery loop. Modulation codes for optical storage often also include a dc-free

constraint [154] in order to reduce interference between data and servo signals and to

mitigate the effect of all kinds of low-frequency noise. For a detailed review of RLL

codes, we recommend [93].

Typical values of the minimum runlength constraint ared = 1,2. In CD systems,

an eight-to-fourteen modulation (EFM) code is used [95], withd = 2 andk = 10.

DVD systems use the same runlength constraints and employ the so-called EFMPlus

code [94]. In BD systems, the so-called 17PP code [115] is used. This code hask = 7

and the minimum runlength constraint has been reduced fromd = 2 to d = 1 to allow

a higher code rate and especially to allow a larger tolerance against writing jitter or

the so-called mark-edge noise [152].

1.2.2 Signal Distortions and Artifacts in Optical Storage

Readback signals in optical storage systems are corrupted by various noise sources,

interferences and nonlinear distortions. The major artifacts in optical storage are

Intersymbol Interference (ISI), noise, and signal asymmetry.

One way to visualize system sensitivity and gauge the severeness of the different

system artifacts is via the so-called eye pattern or eye diagram [80]. The eye pattern is

obtained by overlaying segments of the signal in a phase-aligned manner. The shape

of the resulting ‘eye’ indicates the margins of the system against various disturbances,

such as timing phase errors, ISI and noise. By way of illustration Figure 1.10 shows
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the eye pattern for the noiseless CD channel. The eye pattern in this case shows

that data can be detected, at the ideal sampling phase, by means of a simple slicer

with zero threshold at the middle of the ‘eye’. Referring to the middle of the eye

pattern, two key parameters for system sensitivity are shown in Figure 1.10, namely

the ‘eye width’ and ‘eye opening’. The eye width is defined as the width of the

interval around the optimal phase over which the eye is not closed. The eye width

is a straightforward measure of system timing sensitivity or timing phase margins

defined as the maximum error in sampling phase that the receiver can tolerate before

the performance becomes unacceptable. The eye opening is the opening of the eye

pattern at the ideal sampling phase. The eye opening defines the margin of the system

against noise.

In the following paragraphs we discuss the different artifacts in optical storage

systems.
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Figure 1.10: Eye pattern for the CD channel with(d,k)=(2,10) RLL data in

the absence of noise.

Intersymbol Interference (ISI):

The bandwidth limitation of the optical storage channel, as described earlier, causes

the channel impulse responsehk to be of long duration compared to the bit inter-

val T. Therefore, channel responses due to successive channel bits interfere with

each other, resulting in intersymbol interference (ISI) characterized by the linear im-
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pulse responsehk. This can be seen from (1.3) where the termshibk−i for i 6= 0 cause

the readback signalrk to be also dependent, in a linear fashion, on the neighboring

bits of bk. This ISI increases with density as the cut-off frequency of the optical

channel decreases. By way of illustration, Figure 1.11 shows the idealized impulse

response of the CD and DVD channels. In terms of eye pattern, the ISI increase

results in a reduction of the eye opening and eye width, see Figure 1.12.

As we mentioned earlier, the channel for current optical storage systems behaves

essentially linearly. This means that ISI is mainly linear at current densities. The

effect of this type of ISI is often mitigated by the use of linear equalization techniques

as will be discussed in Section 1.2.4.
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Figure 1.11: The idealized impulse responsehk corresponding to the CD and

DVD channels. Both responses are normalized to have a cen-

tral tap value of 1.

Noise in Optical Storage:

There are three main types of noise in optical storage. These areElectronics Noise,

Laser NoiseandMedia Noise[67, 74, 142]. In general, electronics noise is the noise

due to the electronics of the system [74]. Laser noise is the noise contributed by the

laser due to variations in light intensity, phase and wavelength. Finally, media noise

originates from small deviations in the storage medium from its ideal form, e.g. as

caused by roughness of the mirror-like surface, variations in reflectivity, and cover-
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Figure 1.12: Eye pattern for the CD channel (left plot) and the DVD channel

(right plot).

layer thickness variations. An important source of media noise in optical storage is

caused by inaccuracy in the pit-shape. One possible inaccuracy is that the pit size

varies from one pit to the other [74], see Figure 1.13.

Figure 1.13: Scanning electron microscope image of an experimental opti-

cal disc showing clear pit-size variations [74]. Note that these

variations are highly exaggerated with respect to normal oper-

ating conditions.

Whereas electronics noise is often modelled as additive white Gaussian noise

(AWGN), laser noise is usually multiplicative, see [67] and the references therein.
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However, laser noise power is typically lower than that of electronics noise [74]. For

this reason, laser noise is neglected in this thesis.

As far as media noise is concerned, this becomes important only at high storage

densities [74]. For this reason, we treat and model media noise in Section 1.3 that

deals with challenges in high-density optical storage systems.

Signal Asymmetry:

Although channels for current optical storage systems are essentially linear, there ex-

ist several sources of nonlinearities [86]. For read-only systems, the principal source

of nonlinearities arises during the writing process and is caused by systematic differ-

ences in the size of pits and lands on the disc. This is known asdomain bloomor

asymmetry[86] [60] which is the fact that pits can be longer than lands of the same

nominal size or vice versa. This causes asymmetry in the signal levels of the replay

signal.

In CD and DVD systems, the use of RLL codes withd = 2, which makes the

minimum pit length to be 3 times the channel bit length, helps to considerably reduce

the impact of asymmetry on system performance. For writable or rewritable systems,

asymmetry is less significant than for read-only systems [60] because of the finer

control of the writing process in rewritable systems. A typical approach to circumvent

asymmetry in rewritable systems is to use the so-calledwrite precompensation[57,

86] andwrite strategies[74,145,146].

1.2.3 Detection Techniques in Optical Storage

First optical storage systems, such as CD and DVD, relied heavily on modulation cod-

ing to maintain data integrity. This has enabled the use of simple symbol-by-symbol

detection schemes. A common reception scheme for CD includes a fixed prefilter

for noise suppression, and a memoryless slicer for bit detection [34]. In order to im-

prove the performance of symbol-by-symbol detectors, an improved scheme, known

as Runlength Pushback Detector (RPD), was proposed in [147] [47]. The RPD de-

tects and corrects bit patterns that violate the constraints of the RLL code used. For

thed = 1 runlength constraint, the RPD can correct only single bit-errors. This be-

comes problematic as density increases and other bit-errors become important. An

improved detector called Missing-Run Detector (MRD) was proposed in [62], and is
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based on identifying the most probable bit-errors after single bit-errors and devoting

a simple scheme to detect and correct for these errors.

Recently, the threshold detectors have given way to more powerful maximum-

likelihood sequence detection (MLSD) schemes [41] which detect the most likely

recorded bit sequence [121] [152]. MLSD is implemented via a Viterbi Detector

(VD) [41].

The drawback of the VD is that it is bit-recursive, requiring the execution of an

Add Compare Select (ACS) operation for every state in the VD trellis and at each bit-

interval. This limits the attainable speed of the VD which, however, needs to follow

the rapidly increasing data rate of optical storage systems. Substantial simplification

of the baseline VD can be obtained by folding the states diagram of the VD via

formulating the detection problem as a transition detection problem [89].

Throughout Chapters 2 and 3 we assume the use of a VD for bit detection. The

other chapters of this thesis do not depend on the employed detection scheme.

1.2.4 Partial Response Equalization

Among the various methods available to handle ISI and noise, equalization methods,

which consist of using one or more filters to mitigate the effect of ISI and noise, play

an important role [80,86,144].

The earliest roots of equalization can be found in the annals of telegraphy [82].

The notion of full equalization, which consists of using a linear filter to suppress

all ISI at the decision instants, stems back to the work of Küpfmüller and Nyquist

[58, 59, 92]. Full equalization is widely used in data communications and has long

been studied in the past. For a historical perspective and a detailed description, the

reader may refer to [80,86,106,144] and the references therein.

Although full equalization allows the use of simple symbol-by-symbol detec-

tors [86], it finds little application in optical storage, because of its noise enhance-

ment penalty, especially at relatively high densities. In fact, because full equalization

consists of undoing the effect of the channel, it will severely enhance noise in view

of the negative excess bandwidth nature of optical storage channels, see Figure 1.8.

For this reason, another equalization method, known as Partial Response (PR)

equalization, was widely accepted and used in storage systems including magnetic

storage systems. PR equalization allows a well-defined quantity of ISI to remain
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untackled before detection. The remaining untackled ISI is characterized by a lin-

ear impulse responsegk that we call target response. This can be seen as providing

additional freedom of equalization that can be used to reduce noise enhancement sig-

nificantly. The origin of this equalization method can be linked to partial-response

coding and signaling techniques that aim at spectrum control and signaling rate en-

largement [9,36,119].
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Figure 1.14: Block diagram of the PRML system. MLSD must be designed

for the target responsegk.

Application of PR equalization to digital storage systems was first reported in

the field of magnetic storage where the combination of PR equalization and MLSD

was proposed to replace the peak detection technique [124] in order to achieve high

reliability and high storage densities [20, 38, 51, 53, 54, 70]. For similar reasons, PR

equalization was also employed in optical storage systems. Systems that combine PR

equalization and MLSD are known as partial response maximum-likelihood (PRML)

systems. A block diagram of the PRML system is shown in Figure 1.14. The MLSD

is implemented via a VD whose trellis is tailored to the target responsegk and to

the d constraint of the underlying code. Therefore, the performance improvement

of PRML systems in comparison to systems employing symbol-by-symbol detec-

tion, comes at the price of a more complicated detector whose complexity, in fact,

increases exponentially with the target response length.

1.2.5 Timing recovery

For optimum detection performance, receivers for storage systems need to determine

the ideal sampling instants of the replay signal. These instants correspond to the

instants of maximum opening in the eye pattern of the replay signal. Clearly, errors

in the choice of sampling instants will directly translate to poor detection performance

as this generates a significant amount of residual ISI. The task of the timing-recovery

unit is to estimate the ideal sampling instants and compensate for any random timing

uncertainty in the replay signal. The timing uncertainty in optical storage may come,
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for example, from differences between the writing and the reading clocks, mechanical

motion fluctuation of the media during the writing and reading process or variations

in the group delays of the analog front-end filters.

Being a crucial task in digital storage and communication systems, timing recov-

ery has been a subject of investigation for several decades and many timing-recovery

schemes have been proposed. A comprehensive exposition and classification of these

schemes can be found in [55,56,86,106,153].

Among the existing timing recovery approaches, we focus in this thesis on the

self-timing approach which consists of extracting timing information from the replay

signal itself [86,91,105,129]. This approach is of particular interest for read channels

for storage systems. At the heart of a self-timing scheme is an objective function of

the readout signal samples such that timing errors can be obtained directly and with-

out ambiguity from this function [4, 52, 76, 91, 105]. Figure 1.15 shows a schematic
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Figure 1.15: Schematic diagram of the timing-recovery loop.

of the timing-recovery scheme architecture that is widely used in read channels for

storage systems. The replay signalr(t) is first processed and filtered by the front-end

circuit to suppress out-of-band noise. The front-end circuit output is first sampled,

equalized and then passed to a detector that produces bit decisionsb̂k. In order for the

detector to operate properly, a timing-recovery subsystem ensures that the sampling

instants closely approach their ideal values. Based on the sampled and equalized

sequencexk, the timing-recovery subsystem extracts a clock signal that indicates the

sampling instantstk. The timing-recovery subsystem takes the form of a phase-locked

loop (PLL) [45], with a timing-error detector (TED), loop filter (LF), and a voltage

controlled oscillator (VCO). The TED produces an estimate of the sampling-phase

error. The filtered TED output is used to control the phase and frequency of the

VCO. The LF has a significant role in determining the PLL properties in terms of
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noise suppression and bandwidth. A detailed description of this role can be found

in [45] [86].

A key part in the design of timing recovery is the design of the TED. In the past

decades, several techniques were reported. An excellent review and classification of

the key contributions can be found in [86].

The TED scheme that is mostly used in current optical storage systems is known

as the Zero-Crossing (ZC) technique [11,34,140]. This consists of tracking the posi-

tion of the zero crossings in the replay signal and deriving the TED output by compar-

ing the actual zero crossings with those of a sampling clock signal [34] [11]. Several

extensions of this scheme incorporating asymmetry and pattern jitter compensation

were reported in [140] and [123]. ZC timing recovery is a non-data aided scheme in

the sense that the recorded data is not used in the TED to extract timing information.

However, as storage density increases, ZC timing recovery performs poorly and

faces some serious limitations. The next section shows these limitations and exhibits

the main signal distortions present at high storage densities, and highlights their main

implications for equalization and timing recovery.

1.3 Challenges for High-Density Optical Storage Systems

As density and data rate of optical storage systems increase, many system artifacts

become important and result in reduction of system margins and SNR. In order to

cope with these artifacts, new coding and signal processing methods must be devel-

oped. In this section we give an overview of the main artifacts in high-density optical

storage systems, e.g. beyond BD, and explain their implications for equalization and

timing recovery. These artifacts can be divided into four main categories: linear ISI,

nonlinear ISI, media noise and channel parameter variations.

In the following paragraphs we discuss the different artifacts in high-density op-

tical storage systems.

Linear ISI:

As mentioned in Section 1.1.1, high-density optical storage is mainly achieved by

using lasers with short wavelengthsλ and lenses with high numerical apertureNA.

Since the diameter of the laser spot is proportional toλ/NA, decrements ofλ and
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increments ofNA cause the disc area illuminated by the spot to be smaller, leading to

an increased ability to detect small details on the disc surface, i.e. a higher resolution

[152]. However, in order to push storage densities to even higher levels, the size of

the recorded bits is reduced relative to the size of the laser spot. This increase in

density relative to the resolution leads to more ISI. Figure 1.16 shows the impulse

response of the Blu-ray Disc (BD) channel at densities of 25 GB, 30 GB and 35 GB.

This clearly points out the ISI increase as function of storage density.
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Figure 1.16: BD channel impulse response at different densities. The time

axis is normalized to the bit intervalT and the impulse re-

sponses are normalized to have a central tap value of 1.

Nonlinear ISI:

It is often assumed that the readback signal in storage systems can be constructed

from linear superposition of isolated impulse responses. In practice, this is true only

at low storage densities. As density increases, neighboring bits start to interact in a

nonlinear way resulting in significant nonlinear ISI [22, 61, 68, 101, 137, 145]. The

sources of nonlinear ISI can be divided into two groups: nonlinearity sources from

the write process, as explained in Section 1.2.2, and sources from the readout pro-

cess. The nonlinear distortion during readout is inherent in the readout process itself.

In fact, according to the scalar diffraction theory [22, 68], the propagation of light in

the readout process is represented by a chain of linear transformations, e.g. Fourier
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transform and inverse Fourier transform, followed by the quadratic operation in the

photo detector to obtain light intensity. This causes the readback signal to be non-

linearly dependent on the written bits. This dependence is bilinear in the sense that

the bilinear termsbkbk−i , i 6= 0 become visible in the readback signal [22]. The most

important nonlinear contribution comes from the immediately neighboring bits to the

central bit [22]. For this reason and for simplicity, we consider in the thesis only the

bilinear termsbkbk−1 andbkbk+1, although the techniques that we develop are much

more generally applicable.

media noise:

At high storage densities, media noise becomes important [142] [74]. This causes

noise to be highly data-dependent, correlated and non-stationary. This particularity

of storage systems compared to classical communication systems has to be taken into

account in the design of signal processing algorithms in order to limit performance

degradation at high storage densities.

Unlike electronics noise, which can be modelled as additive white Gaussian noise

(AWGN) [74], media noise in optical storage is correlated, data-dependent, non-

stationary and non-additive in nature. For read-only systems, the most important

sources of media noise are random pit-position and pit-size variations [74]. Pit-

position variation is a deviation of the center of gravity of a pit from its nominal

position. Pit-size variation is caused by the fact that the pit size depends on the

number of pits in a wide neighborhood. For example, for Electron-Beam Recording

(EBR), a proximity effect is caused by the scattering of electrons in the resist dur-

ing mastering which generates a background illumination that increases the size of

pits [74].

For rewritable optical storage systems, media noise is caused by fluctuations in

the reflectivity of the crystalline state, representing pits. In the amorphous states,

representing lands, no such fluctuations arise [18]. This media noise can be modelled

as a random disturbance at the channel input that is injected only in the presence of

pits [139]. We model this noise as an additive white Gaussian random processuk

with varianceσ2
u that is injected at the channel input whenbk = +1. We introduce

then the media noise term asmk = 1+bk
2 uk. This is illustrated in Figure 1.17. The

multiplication with 1+bk
2 , in Figure 1.17, reflects the data-dependent nature of the
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media noise. That is, the channel bitbk is corrupted bymk = uk only whenbk = +1.

Whenbk =−1 we havemk = 0. The readback signalrk can then be written as

rk = ∑
i

hibk−i +∑
i

himk−i +zk, (1.4)

wherezk denotes electronics noise and is modelled as an AWGN with a varianceσ2
z.

For clarity of the derivations in this thesis, we denote bynk the sum of the electronics

and media noise, i.e.

nk = ∑
i

himk−i +zk.

khkb

{ }1±
kr⊕

⊗ kz

⊕

⊕ ⊗

1 2/1 ku

km

Figure 1.17: Discrete-time model of the optical storage channel with media

noisemk and electronics noisezk.

Because media noisemk and electronics noisezk have different characteristics,

they introduce different effects on the system performance. For this reason, we adopt

in this thesis two different signal-to-noise ratio (SNR) measures: a signal to media

noise ratio (SMNR) and a signal to additive noise ratio (SANR) given by

SMNR=
2

σ2
u
, (1.5)

and

SANR=
∑k h2

k

σ2
z

. (1.6)

The SANR in (1.6) is defined according to the matched-filter bound [86]. The

normalization by the factor 2 in (1.5) takes into account thatE[b2
k] = 1 and that the

average media noise variance over pits and lands equalsσ2
u/2.

The impact of media noise, as modelled in Figure 1.17, on the eye pattern for

the 23 GB rewritable BD channel is illustrated in Figure 1.18. This figure shows that

media noise mainly affects the upper traces of the eye pattern and that lower traces

are less hampered. This is caused by the fact that media noise affects only the pits on

the disc.



29

−1 −0.5 0 0.5 1

−2

−1

0

1

2

Sampling phase error

A
m

pl
itu

de

−1 −0.5 0 0.5 1

−2

−1

0

1

2

Sampling phase error

A
m

pl
itu

de
Figure 1.18: Eye pattern for the 23 GB BD channel with(d,k)=(1,7) in the

absence of noise (left plot) and in the presence of media noise

at SMNR=20 dB (right plot).

Parameter Variations:

The trend of increasing storage densities results in reduced margins and in growing

sensitivity of system performance to any variations of storage channel parameters. To

counteract these variations, the use of accurate and adaptive techniques, e.g. adaptive

equalization, in the data receiver becomes a necessity.

The accuracy in adaptation is especially hard to accomplish for the tracking of

rapid variations, and is limited in part by latencies in the adaptation loops. Therefore,

minimizing latencies inside the critical adaptation loops becomes crucial for proper

functioning of the system [15].

One of the most important sources of rapid variations in high-density optical

storage is caused by fast timing variations [74]. This has a direct implication for

the structure of the different adaptation loops and especially the equalizer adaptation

loop as we will discuss in Chapter 4.

1.3.1 Implications of increasing density on equalization

As storage density increases, adaptive equalization techniques become more and

more attractive because of their ability to counteract the reduced system margins.

In addition, adaptive equalization presents some other advantages. First, it can com-

pensate for the variations in optics and media that inevitably occur during the manu-

facturing process. Second, it allows eliminating the need for any manual adjustment
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for different discs.
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Figure 1.19: Block diagram of a PRML system with an adaptive equalizer.

Different equalizer adaptation techniques exist in literature. Among these, the

most widely used techniques are the Least Mean Square (LMS) and the Zero-Forcing

(ZF) techniques. LMS adaptation is based on minimizing the power of the error

signalεk, see Figure 1.19, taken as the difference between the detector inputxk and

its ideal value(g∗b)k. ZF adaptation is based on forcing residual ISI at the detector

input to zero [86]. The ZF criterion can be written as forcing the equalizer impulse

responsewk to meet on a given span(w∗ h)k = gk. Both ZF and LMS adaptation

are based on the error signalεk. The generation of the error signal obviously assumes

knowledge of the channel bitsbk. This mode of operation is known as the Data-Aided

(DA) mode [86] where the channel bits are available in the form of a known preamble

or as decisions taken from the bit detector. When bit decisions are used inside the

adaptation loop we speak about ‘decision-directed’ (DD) mode of operation [86].

These adaptive equalization techniques date back to the second half of the last

century. The LMS equalizer was first reported in [3, 83, 132] and its ZF counter-

part was first proposed in [131]. After these pioneering contributions, several pub-

lications focused on the behavior of these techniques, in terms of convergence and

performance, and dealt with their implementation issues, e.g. [14, 44, 130]. For an

excellent review of adaptive equalization we recommend [144] and [86].

A problem associated to adaptive equalization for PR systems relates to the de-

sign and adaptation of the target responsegk. In fact, receivers for future high-density

storage systems may need to resort to joint equalizer and target-response adaptation

because it presents particular advantages. First, in order to cope with the ISI increase

at high storage densities, the length of the target response used for detection has to

increase. This causes detection complexity to increase substantially as this complex-
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ity depends exponentially on the target response length [41]. Therefore, adaptive

design and training of powerful short target responses becomes essential at high den-

sities. Second, considering that the optical channel is not completely known until

after the entire storage device is manufactured, adaptive equalization and target re-

sponse adaptation provide a better fitting and tracking of the channel. Third, because

the noise in high density storage systems depends heavily on the medium, see Section

1.3, an equalizer and target response that adaptively take the noise characteristics into

consideration is very desirable.

Because the target response largely determines PR system performance, several

papers attempted to solve the target response design and adaptation problem. In

[143], the target response was designed as a truncated version of the channel impulse

response and the equalizer was chosen to minimize the Mean Square Error (MSE).

The MSE-minimization problem was extended to the target response adaptation in

[29] and [27]. An inherent issue in joint equalizer and target-response adaptation is

the interaction problem between the equalizer and target-response adaptation. This

interaction is usually prevented by employing a constraint on the target response. In

[29], a fixed energy constraint for the target response was used, i.e. the target response

energy was fixed to unity, while [27] used the monic constraint, i.e. the first nonzero

term in the target response was fixed to one. The latter corresponds to a minimum-

phase target response that is optimum for decision feedback equalization [106] and

thus presents similar noise whitening properties [78]. The minimum MSE (MMSE)

target response design and adaptation problem was also discussed in [71] [72].

Although the problem of PR equalization and target response adaptation received

a lot of attention in the past decades, several challenges remain unsolved. In fact,

because all existing adaptation algorithms are based on the LMS or ZF criteria, they

are not necessarily optimum in terms of minimizing detection bit-error rate (BER)

as we will show in Chapters 2 and 3. Referring to Figure 1.19, the BER reflects the

frequency of occurrence of bit errors at the detector output and is defined as

BER=
number of error bits at detector output

number of channel bits
.

Moreover, nonlinear ISI and data-dependent noise, which are inevitable at high densi-

ties, see Section 1.3, degrade the performance of existing adaptation schemes. Impor-

tant improvements in system performance and robustness can then be accomplished

by applying more sophisticated adaptation schemes such as those that we propose in
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Chapters 2 and 3.

Note that the new adaptation techniques that we develop in Chapters 2 and 3

are quite general in the sense that they are not restricted to optical storage and are

applicable to a wide range of communication and storage systems, e.g. to magnetic

storage systems.

1.3.2 Implications of increasing density on timing recovery

The increase in ISI caused by increased density translates into a reduced timing phase

margin. This latter is defined as the maximum error in sampling phase that the re-

ceiver can tolerate before the performance becomes unacceptable. The timing phase

margin can be gauged by examining the eye pattern of the signal at the input of the

decision device within the receiver [80]. Figure 1.20 shows eye patterns in the noise-

less case for the CD channel and the 23 GB BD channel. This illustrates that the

higher the density is, the smaller the eye width becomes which implies a decreased

timing phase margin. One should note that the eye width decreases further at higher

BD densities and that the eye pattern becomes completely closed which excludes the

simple threshold detector for data-detection.
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Figure 1.20: Noiseless eye pattern for the CD channel with(d,k)=(2,10)

RLL data (left plot) and the 23 GB BD channel with

(d,k)=(1,7) RLL data (right plot).

Besides the fact that sampling-phase errors become increasingly critical for re-

liable data detection at high densities, extracting accurate timing information from

the incoming signal becomes comparatively difficult. In fact, because the readback
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signal conveys fewer high-frequency components at high densities, the amount of

timing information in the readback signal per unit of time and SNR, i.e. the timing

efficiency, decreases rapidly [87].

Because at high storage densities, the replay signal contains more ISI and fewer

high-frequency components, i.e. because of the absence of sharp transitions in the re-

play signal, Zero-Crossing (ZC) timing recovery becomes unfeasible [11]. Moreover,

as mentioned earlier, the eye pattern becomes closed at high storage densities. This

implies that non-data aided timing-recovery schemes, e.g. the ZC schemes, where no

information on the transmitted data is exploited by the TED, become impractical at

such densities [86]. For this reason, Data Aided (DA) timing recovery must be used.

In a DA timing recovery technique, the recorded bits are assumed to be available to

the TED in the form of a known preamble, or as decisions, taken from the detector,

see Figure 1.21. The latter mode of operation is called Decision-Directed (DD) and

is useful to track timing variations once the PLL has locked up.
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Figure 1.21: Schematic diagram of the data-aided and decision-directed

timing-recovery loops.

Another problem for timing recovery for high-density optical storage systems

is caused by the data-dependent media noise and nonlinearities. In fact, this data-

dependency translates into a replay signal that contains more distortions for specific

bit patterns than for other patterns. In order to achieve the best performance, the tim-

ing recovery has to be ‘selective’ in the sense that it should extract timing information

primarily from data patterns with less noise. This can be achieved by designing a

TED that incorporates knowledge about the data-dependent nature of noise. Existing

TED algorithms do not incorporate this knowledge because they generally assume

stationary and additive noise. For this reason, Chapter 5 proposes and analyzes a new

practical timing-recovery scheme that exploits the nature of data-dependent noise in
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optical storage. This new scheme is not restricted to optical storage channels but

extends naturally to magnetic storage and is applicable to a wide range of communi-

cation channels with data-dependent noise.

The above mentioned aspects have motivated the research work reported in this

thesis. In the next section, we summarize the contributions in each of the chapters.

1.4 Outline and contributions of the thesis

As it can be seen from Section 1.2, most of the adaptive signal processing techniques

used in todays optical storage systems originate from different communication sys-

tems and are quite basic in the sense that they do not fully exploit the nature of the

optical storage channel in terms of key artifacts such as noise and nonlinearities. This

thesis is devoted to the development of new adaptive equalization and timing recov-

ery techniques that are meant to meet the future challenges in high-density optical

storage systems as presented in Section 1.3.

This thesis contains seven chapters. The work in this thesis has resulted in several

publications and patent applications, see the list of publications at the end of this

chapter. The different chapters are written to be as independent and as self-contained

as possible, so that they can be read separately. Chapter 1 gives an introduction

to optical storage technology and a review of signal processing techniques for read

channels. It also presents the main challenges in future high-density optical storage

systems. This introductory chapter concludes with the motivations, contributions and

organization of the thesis.

In Chapter 2 we introduce a novel adaptive equalization technique that seeks to

minimize detection bit-error rate for PRML systems. Although the idea behind this

chapter, i.e. basing equalizer adaptation/design on minimizing BER, is not entirely

new, we are the first to propose a practical and simple adaptive algorithm that achieves

a near minimum-BER performance. The chapter explains, first, the limitations of

the existing equalization techniques and then proposes a new adaptive algorithm for

BER optimization. The superiority of the proposed algorithm is first demonstrated

analytically and then verified based on computer simulations. The key property of

the new adaptation scheme is its selectivity in the sense that it mainly focuses on the

data patterns that have the highest likelihood of detection error. The strength of the

proposed algorithm is not restricted to providing a better performance but extends
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to allowing very low implementation costs. Further simplification of the proposed

algorithm for different channels and extension to diverse detection schemes is also

discussed and validated in Chapter 2.

Because target-response adaptation is an important problem for high density stor-

age systems, as explained earlier, Chapter 3 generalizes and applies the near minimum-

BER adaptation technique to joint target response and equalizer adaptation. This is

achieved by focusing target-response adaptation on the most likely bit-error events

and by acting towards decreasing their corresponding probability of occurrence. Anal-

ysis of the near minimum-BER technique for target-response adaptation is presented

in Chapter 3 to prove its superiority with respect to existing techniques. Also simula-

tion results for optical storage channels with electronics and media noise and channel

nonlinearities are provided. Relative to the existing adaptation methods, the near

minimum-BER scheme is comparable in terms of implementation complexity. How-

ever, in terms of performance, it allows significant improvements especially for short

target or equalizer lengths or in the presence of nonlinear ISI and media noise. This

is of great importance for high-density storage systems. On the one hand, this can

be used to reduce system complexity, by allowing the use of a short target response

without significant performance degradation. On the other hand, it can help mitigat-

ing nonlinearities and media noise without increasing complexity.

With respect to the objective of minimizing latencies inside the timing-recovery

loop to allow tracking of the fast variations, Chapter 4 reports an asynchronous

equalization scheme for storage systems. It involves an equalizer that operates at

a sampling-rate asynchronous to the data rate [28, 112, 114]. Chapter 4 explains the

implication of this scheme for equalizer adaptation and proposes a highly simple yet

efficient method for asynchronous equalizer adaptation. For simplicity, Chapter 4

focuses on LMS adaptation. However, the results of this chapter carry over to other

adaptation criteria as well, e.g. the near minimum-BER criterion proposed in Chap-

ter 2.

With respect to the objective of strengthening the timing-recovery loop, Chap-

ter 5 focuses on designing an optimal timing-recovery scheme for channels with

data-dependent noise. The key benefits of the proposed scheme is its simplicity,

generality and near-optimality. The applicability of the proposed algorithm extends

well beyond optical storage channels. The chapter exploits the data-dependent and

colored nature of noise to improve the performance of timing recovery. It starts by
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analyzing the maximum-likelihood (ML) timing-recovery criterion and proposes a

practical scheme to achieve near-ML performance. It presents both theoretical and

numerical evidences of the performance gain provided by the scheme compared to

existing schemes.

As recently all-digital timing recovery is often employed, e.g. [112, 121], design

of efficient sampling-rate converter (SRC) digital filters is very important for per-

formance optimization and complexity limitation. More precisely, design of SRC

filters that also realize channel equalization presents a two-fold attractive property.

First, it helps to reduce complexity by shifting a big part of channel equalization

(amplitude equalization) towards the SRC filters and thus shortens significantly the

equalizer length for the same performance. Second, for systems employing a digi-

tal synchronous equalizer, shortening the equalizer length limits the delay inside the

timing-recovery loop which is crucial for the latter to function properly [15]. Chapter

6 explains first the problem of equalizing SRC filters and then presents algorithms

for designing such filters.

Chapter 7 concludes the thesis with some remarks and directions for future work.

The development of all new algorithms presented in the different chapters is sup-

plemented with computer simulation results. These simulation results are used for

demonstrating the effectiveness of the proposed algorithms and for validating the

analytical developments.

1.4.1 About author’s publications and patent applications

During the course of this Ph.D. work, the author worked first on a two-dimensional

optical storage system called TwoDOS [17, 73–75]. Inspired by the work on Two-

DOS, the author then focused, in the second part of his Ph.D. period, on equalization

and timing recovery for optical storage systems.

The TwoDOS period was, for the author, a great opportunity for learning on

several levels. During this period, the author published different papers, coauthoring

with his supervisor and project partners (see the list of publications below).

In the after-TwoDOS period, the author published several papers and filed two

patent applications related to equalization and timing recovery. The totality of this

thesis relates to this period. The following list contains the publications and patent

applications by the author.
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Chapter 2

Minimum Bit-Error Rate Equalization

Receivers for Partial Response Maximum-Likelihood systems typically use a linear

equalizer followed by a Viterbi detector. The equalizer tries to confine the channel in-

tersymbol interference to a short span in order to limit the implementation complexity

of the Viterbi detector. Equalization is usually made adaptive in order to compensate

for channel variations. Conventional adaptation techniques, e.g. LMS, are in general

suboptimal in terms of bit-error rate. In this chapter we present a new equalizer adap-

tation algorithm that seeks to minimize bit-error rate at the Viterbi detector output.

The algorithm extracts information from the Sequenced Amplitude Margin (SAM)

histogram and incorporates a selection mechanism that focuses adaptation on partic-

ular data and noise realizations. The selection mechanism is based on the reliability

of the Add Compare Select (ACS) operations in the Viterbi detector. From a com-

plexity standpoint, the algorithm is essentially as simple as the conventional LMS

algorithm. Moreover, we present a further simplified version of the algorithm that

does not require any hardware multiplications. Simulation results, for an idealized

optical storage channel, confirm a substantial performance improvement relative to

existing adaptation algorithms.

2.1 Introduction

The optimal receiver for estimating a data sequence in the presence of intersymbol

interference (ISI) and additive Gaussian noise [41] can generally not be realized be-

cause of its excessive complexity. This fact has led to a development of a variety of

suboptimal and lower complexity receivers.

In many practical systems, a linear equalizer is first used to shape the channel
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symbol response to an acceptably shorter target response. A Viterbi detector (VD),

suitable for the target response [143], subsequently estimates the transmitted data se-

quence. Such systems are known as Partial Response Maximum-Likelihood (PRML)

systems. PRML systems are widely used in digital storage systems [20] to combat

the extensive ISI, caused by the channel, especially at high storage densities. The

extensive ISI at high densities precludes the application of full Maximum Likelihood

Sequence Detection (MLSD) [41] because of system complexity and data rate con-

straints.

Equalization in PRML systems is usually made adaptive in order to compensate

for channel variations. One of the most popular adaptation methods is based on

the Minimum Mean Square Error (MMSE) criterion [86]. This method minimizes

the power of the error signal, with the error signal being the difference between the

actual and the ideal (noiseless) VD input. This minimization is achieved regardless of

correlation or data-dependency of the error signal, as caused, for example, by residual

ISI (RISI) due to mis-equalization. However, it is known that RISI or correlated noise

can cause considerable bit-error rate (BER) degradation when compared to a system

operating with a comparable amount of additive white Gaussian noise (AWGN) and

no RISI. Therefore, MMSE equalization does not guarantee, in general, optimum

BER performance. To minimize BER, the equalizer must minimize RISI for data

patterns that are critical for bit detection and might tolerate more RISI for less critical

data patterns. In other words, the effort of equalization must be focused primarily on

critical data patterns, by improving their corresponding detection Signal to Noise

Ratio (SNR). As far as noise correlation is concerned, the equalizer must seek an

appropriate trade-off between noise correlation and RISI in order to achieve the best

BER. These requirements cannot, in general, be fulfilled with MMSE equalization.

Adaptive minimum-BER equalization has been already studied for the case of full

response equalization and sample-by-sample detection [19] and decision-feedback

equalization [134]. However, in the context of PRML systems, no such studies have

been reported. A step towards minimum-BER adaptive equalization was reported

in [117] where a new equalizer adaptation criterion was derived from the Sequenced

Amplitude Margin (SAM) [122] [118]. The novel idea in [117], known as least-

mean squared SAM error (LMSAM), is to base equalizer adaptation on minimizing

the ‘variance’ of the SAM for particular bit patterns and error events. The error

events considered by the LMSAM technique are single bit-errors at transitions in the
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data. This restriction to single bit-errors makes the LMSAM technique suboptimal

for channels where other error events are important. Moreover, basing the equalizer

adaptation on minimizing the SAM variance only is in general not optimal in terms

of BER, as will be shown in this chapter.

This chapter presents a new equalizer adaptation algorithm that seeks to mini-

mize BER. The algorithm incorporates a selection mechanism that focuses equalizer

adaptation only on a particular region of the SAM histogram. The selection mech-

anism is based on the reliability of the Add Compare Select (ACS) operation in the

VD. From an implementation standpoint, our algorithm is essentially as simple as the

LMS algorithm. Moreover, a further simplified version of the algorithm that does not

require any multiplications is proposed.

The remainder of this chapter is organized as follows. Section 2.2 describes the

system model and nomenclature. Section 2.3 provides analytical steps needed to

understand the behavior of the VD as a function of the error signal at its input. This

allows us to propose a cost function for equalizer adaptation. Section 2.4 explains

the new equalizer adaptation schemes. Simulation results, presented in Section 2.6,

show the merits of our algorithm compared to existing ones.

2.2 System Model and Problem Definition
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Figure 2.1: A discrete-time model of a PRML system.

A discrete-time model of a PRML system is shown in Figure 2.1. A binary se-

quencebk ∈ {±1} is transmitted, at a rate1/T, over a linear dispersive channel with

finite impulse responsehk. The channel output is corrupted by additive zero-mean

noisenk. The reasoning in this chapter is quite general and does not assume any prior

knowledge of the nature of the noisenk, e.g. the noisenk is not necessarily Gaussian

and can be data-dependent. The readback signalrk is the noisy channel output and is



44 Minimum Bit-Error Rate Equalization

given by

rk = (h∗b)k +nk,

where ∗̀´ denotes linear convolution. The channel impulse response is in general

quite long and may be time-varying. For this reason adaptive Partial Response (PR)

equalization [86] is used in order to transform the channel response to a shorter and

well defined impulse response. The equalizer impulse responsewk is optimized so

that the overall impulse response, at its output, is as close as possible to a prescribed

short impulse response that we refer to as the target responsegk. The equalizer out-

put xk serves as input to a VD that is matched to the target responsegk and that

produces bit decisionŝbk. The detector inputxk is ideally equal to the reference

signal(g∗b)k. However, because of channel noise, RISI and the different channel

artifacts,xk can be written as

xk = (g∗b)k + εk,

whereεk denotes the error signal at the detector input and contains contribution of

channel noise and RISI caused by mis-equalization.

Before proceeding with equalizer adaptation that minimizes BER, let us first un-

derstand, in the next section, the dependency of the VD performance on the error

signalεk. This is then used in order to derive a practical equalizer adaptation crite-

rion that is directly linked to BER.

For mathematical convenience we omit the delays of the different modules and

the latency of the bit detector and assume thatb̂k = bk.

2.3 Derivation of the adaptation criterion

The VD in Figure 2.1 operates on a trellis that is matched to the target responsegk.

Every path in this trellis corresponds to an admissible bit sequence. The detector

selects the sequence that leads to the smallest path metric in the trellis [41]. The

metric of a bit sequenceak is given by the Euclidian metric

M (a) = ∑
i

(xi− (g∗a)i)2, (2.1)

where the above summation is taken over all readback symbols indices.
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An example of a 4-state trellis is shown in Figure 2.2. At timekT the VD em-

ploys, for every state, an Add Compare Select (ACS) operation to select the best path

arriving at each state; the other path is discarded. Let us assume for the sake of the

argument that the path corresponding to the transmitted bit sequencebk arrives at

stateS0 at timekT. We denote byb0
k andb1

k the selected and discarded paths by the

ACS operation at stateS0 and timekT. An erroneous ACS decision will occur at time

kT when the correct path, corresponding tobk, is discarded, i.e. whenb1 = b. The

selected path in this case isb0 = b+2e wheree= b0−b
2 (ek ∈ {0,±1}) is referred to

as the bit-error sequence. This erroneous ACS decision occurs with a probability:

Pr(ACS error|b,e) = Pr(M (b+2e)−M (b) < 0). (2.2)

The left part of (2.2) represents the probability that the ACS operation induces a

decision error, by discarding the correct path, given the transmitted bit sequencebk

and an admissible bit-error sequenceek, i.e. a sequence in{0,±1} for whichbk+2ek

is an admissible bit sequence.
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Figure 2.2: An example of a 4-state trellis.

With the assumption of an infinitely long backtracking depth in the VD, the over-

all BER is directly related to the probability of ACS errors over all possible data

patterns and admissible bit-error sequences. Minimization of the probability of ACS

error for a given bit-error sequence leads to minimization of BER for that specific

bit-error sequence, i.e. of the contribution of this sequence to the overall BER.

The variableS(e) = M (b+ 2e)−M (b) is known in literature as the Sequence

Amplitude Margin (SAM) and was first introduced in [122]. Upon invoking (2.1),
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S(e) can be written as

S(e) = 4∑
i

(g∗e)2
i − (g∗e)iεi

= 4(δT
e δe−Xe), (2.3)

whereδe is a column vector given byδe,i = (g∗e)i , δT
e δe is the Euclidian weight of

the bit-error sequenceek, andXe = δT
e ε denotes the correlation betweenδe,k and the

error signalεk. Using (2.3), Eq. (2.2) can be rewritten as:

Pr(ACS error|b,e) = Pr(δT
e δe < Xe). (2.4)

In order to minimize (2.4) for a particular bit-error sequenceek, optimal equal-

ization must shapeεk, or equivalently the variableXe, such thatPr(δT
e δe < Xe) is

minimized. A first attempt towards this goal is to minimizeE[X2
e ] according to the

LMSAM algorithm as suggested, for single bit-errors, in [117]. However, this is not

optimal because minimization ofE[X2
e ] yields no control on the sign ofE[Xe] whereas

this sign is of capital importance forPr(δT
e δe < Xe).

By way of illustration, we consider in Appendix A the case when the channel

noisenk is additive and Gaussian and study the impact of linear residual ISI on the

SAM. We show mainly two points. First,E[Xe] andE[X2
e ] are both function of the

equalizer responsewk (2.20)(2.21). Second,E[Xe] affects (2.4) differently than the

varianceσ2
Xe

= E[X2
e ]−E[Xe]2 of Xe. The average ofXe, when positive, causes a

degradation in effective Euclidian weight of the bit-error sequenceek. The variance

of Xe can be seen as an increase in channel noise power. Thus minimizingE[X2
e ]

is suboptimal because, on the one hand, this does not provide the optimal trade-off

betweenE[Xe] and σXe and on the other hand, this does not constrain the sign of

E[Xe] whereas the latter is of capital importance for (2.4). This sign tells whether the

residual ISI is constructive or destructive in terms of (2.4).

Because Appendix A assumes the prior knowledge of the channel response and

noise characteristics, its results cannot be directly used in the context of adaptive

equalization. In order to come up with a simple criterion onXe that is directly linked

to minimization of (2.4) we make the following observations:

• First, an ACS error occurs only whenδT
e δe < Xe. Therefore, it is natural to

consider the values ofXe only in a certain interval of interest, namely whenXe

is higher than a certain threshold aroundδT
e δe.
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• Second, although the distribution ofXe is in general not Gaussian, its tail above

δT
e δe, or equivalently the tail ofS(e) below zero, can be approximated with a

Gaussian tail. This argument has been first used and validated in [118] in order

to extract BER estimates from the SAM distribution. The validation of this

argument in [118] was based on both simulated data and experimental replay

signals taken from different optical disk systems.

Example 2.1:

In order to provide a simple explanation of the Gaussian tail approximation, let us

consider the case where the channel noisenk has a Gaussian distribution. The error

signalεk can be written asεk = (q∗b)k+vk whereqk = (w∗h)k−gk andvk = (w∗n)k

is Gaussian as it is a filtered version of a Gaussian noise. The variableXe, which is

written as

Xe = ∑
k

(g∗e)k(q∗b)k +∑
k

(g∗e)kvk,

can then be interpreted as a superposition of different Gaussian distributions; one

distribution per bit sequence. For a given bit sequencebk, the mean of the corre-

sponding Gaussian distribution is given byE[Xe|b] = ∑k(g∗e)k(q∗b)k and its vari-

ance byδT
e Rvvδe whereRvv denotes the autocorrelation matrix ofvk. Because the

variance of these Gaussian distributions is independent ofbk, the tail ofXe, above

δT
e δe, is mainly determined by the bit sequenceb for which∑k(g∗e)k(q∗b)k is the

biggest, i.e.b = argmaxb ∑k(g∗e)k(q∗b)k. This justifies the Gaussian tail approx-

imation on the distribution ofXe. Note that the bit sequenceb corresponds to the

sequence with most destructive ISI for the bit-error sequenceek. ♦

Following the above mentioned observations, we introduce the truncated version

of Xe over the interval]Te,+∞[ where the positive thresholdTe is smaller thanδT
e δe,

i.e. 0 < Te≤ δT
e δe. The truncated version ofXe is denoted byX′e and is defined as

X′e
.= Xe1l{Xe>Te} =

{
Xe if Xe > Te,

0 otherwise,
(2.5)

where the function1l{Y} takes the value 1 if the Boolean variableY is true and 0

otherwise.
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Figure 2.3: A conceptual plot of the distribution ofXe (solid). The dashed

curve corresponds to the Gaussian fitting of the tail ofXe on

]Te,+∞[. The hashed area corresponds toPr(δT
e δe < Xe).

Under the assumption that the tail of the distribution ofXe over ]Te,+∞[ can still

be approximated as a tail of a Gaussian, we will show that, for a judicious choice

of Te, Pr(δT
e δe < Xe) is an increasing function ofE[X′e]. In other words, increasing

E[X′e] leads necessarily to an increase inPr(ACS error|b,e) and vice versa. In fact, if

we denote byµe andσ2
e, respectively, the average and the variance of the Gaussian

distribution that fits best the tail of the distribution ofXe over]Te,+∞[, see Figure 2.3,

then one can write:

Pr(δT
e δe < Xe)'Q

(
δT

e δe−µe

σe

)
, (2.6)

where theQ-function is defined asQ(x) = 1√
2π

∫ ∞
x e

−t2
2 dt. Besides, it can be shown

that

E[X′e] = µeQ

(
Te−µe

σe

)
+ (2π)−1/2σeexp{−(Te−µe)2

2σ2
e

}.

This expression can be further simplified, over the SNR range of practical interest,

by using the approximationQ(x)' (2πx2)−1/2exp{−x2/2} for x > 2. This leads to

E[X′e]' TeQ

(
Te−µe

σe

)
. (2.7)

In order to make the argument of theQ-function in (2.7) proportional to that in

(2.6), an obvious choice ofTe is Te = δT
e δe. However, this choice ofTe implies that
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X′e is nonzero only when the VD makes a detection error. Accordingly any equalizer

adaptation in this case can only operate in a Data-Aided (DA) mode where prior

knowledge of the transmitted bits is available. In order to be able to also operate in

the Decision-Directed (DD) mode, where the detected bits are used in the adaptation

loop, the thresholdTe has to be taken strictly smaller thanδT
e δe. To this aim, one can

readily show that thresholdsTe of the form

Te = (1−α)δT
e δe+αµe, (2.8)

whereα ∈ [0,1], make the argument of theQ-function in (2.7) proportional to that of

(2.6). In fact, such a choice ofTe leads to

E[X′e]
Te

'Q

(
(1−α)

δT
e δe−µe

σe

)
. (2.9)

It is apparent that minimizing (2.6) is equivalent to minimizing (2.9). Thus, in order

to minimize BER for a particular bit-error sequenceek, equalizer adaptation can be

based on minimizing the following cost function:

∆e =
E[X′e]

Te
, (2.10)

where the thresholdTe is given by (2.8). The value ofα is chosen such that the

Gaussian tail approximation holds on]Te,+∞[. Typical values ofα are in the interval

[0,0.5]. The dependence ofTe onµe (2.8) implies that in practice the variablesµe for

the different bit-error sequences must be estimated and adapted. However, because

at reasonable SNRs,µe ' E[Xe] = E[δT
e ε]¿ δT

e δe, one can simply neglect the de-

pendency ofTe on µe. Unless specified otherwise, we fix a value ofα and consider

the thresholdTe to be equal to(1−α)δT
e δe.

Example 2.2:

For the sake of illustration, let us consider the error signalεk as a zero-mean Gaus-

sian noise signal and denote its autocorrelation matrix byRε. This is especially true

if residual ISI at the detector input is negligible.

For a given bit-error sequenceek, the variableXe is then Gaussian with a mean

µe = 0 and a varianceσ2
e = δT

e Rεεδe. The thresholdTe in (2.8) is then given by
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Te = (1−α)δT
e δe and one can show, after few straightforward mathematical steps,

that (2.10) boils down to

∆e = f

(
Te

σe

)

where the functionf is given byf (x) = 1√
2πx2

exp
{
−x2

2

}
.

Becausef is a strictly decreasing function forx > 0, one concludes that mini-

mizing∆e is equivalent to maximizing the ratioTe
σe

= (1−α) δT
e δe√

δT
e Rεδe

which is pro-

portional to the root square of the effective SNR, i.e.δT
e δ2

e

δT
e Rεδe

, [41]. This example

illustrates once more that designing an equalizer that minimizes∆e is equivalent to

maximizing the effective SNR, i.e. minimizing BER for a given bit-error sequence.♦

2.4 Near minimum-BER equalizer adaptation

In the previous section, a cost function (2.10), which is directly related to the BER

for a given bit-error sequence, was derived. In this section we employ (2.10) in order

to derive the Near Minimum-BER (NMBER) equalizer adaptation. The basic idea

of the NMBER adaptation is to minimize (2.10) for all relevant bit-error sequences.

The different functions∆e for the different bit-error sequences are then combined

with different weights so as to achieve the best overall BER. For clarity, let us first

focus on a given bit-error sequenceek and develop an adaptive equalization scheme

that minimizes (2.10). The second part of this section combines the different mini-

mizations of the different functions∆e such that the overall BER, approximated by

its union bound expression, is optimized.

For a given bit-error sequenceek, an equalizer adaptation scheme that minimizes

(2.10) can be based on the steepest descent algorithm. This consists of following at

each iteration the opposite direction of the gradient of∆e with respect to the equalizer

coefficients. The adaptation of thepth equalizer tap can be written as follows:

w(k+1)
p = w(k)

p −η′(e)
∂∆e

∂wp

∣∣∣∣
w=w(k)

, (2.11)

wherew(k)
p is thepth equalizer tap at timekT. The coefficientη′(e) denotes the equal-

izer adaptation constant. Note that this adaptation constant is, in general, dependent
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on the error sequenceek. The reasons for this dependency are explained in the next

paragraph. By using (3.2) and the equality∂εi
∂wp

= r i−p, one can prove that

∂X′e
∂wp

∣∣∣∣
w=w(k)

=

(
∑
i≤k

δe,ir i−p

)
1l{Xe>Te}.

Upon replacing the expectation ofX′e in (2.10) by its instantaneous realization, (2.11)

can be rewritten as:

w(k+1)
p = w(k)

p −η(e)
(

δT
e rk−p

)
1l{M (b+2e)−M (b)<Th(e)} (2.12)

whereη(e) = η′(e)/Te, rk−p = [rk−p, rk−p−1, ...]T andTh(e) = 4αδT
e δe and where the

selection condition, i.e.1l{Xe>Te}, was rewritten in terms of path metrics in the VD

trellis using (2.3).

Now, if we consider a set of bit-error sequences, the overall BER can be seen

as the accumulation of conditional bit-error rates for each bit sequence and admis-

sible bit-error sequence, weighted differently for every bit sequence and bit-error

sequence. More precisely, if we assume that transmitted sequences are of lengthN,

then a union bound on the BER can be obtained using Bayes’ rule. This is written as

BER≤∑
b,e

p(b,e)
Hw(e)

N
Pr(δT

e δe < Xe), (2.13)

where the summation is taken over all possible bit sequencesb of lengthN and bit-

error sequencese. The probability that a bit sequenceb is transmitted and thate

is an admissible bit-error sequence is denoted byp(b,e). The Hamming weight of

the bit-error sequencee, i.e. the number of non-zeros ine, is denoted byHw(e). In

order to derive a near optimal expression of the weightsη(e), we use the union bound

expression to approximate BER.

Averaging over all bit sequences and admissible bit-error sequences, one can see

that the NMBER adaptation in (2.11) seeks to minimize the total cost function

∆ = ∑
b,e

p(b,e)η′(e)∆e. (2.14)

Note that the averaging operation is inherited in the equalizer adaptation loop. If we

first consider the case whereα = 0, then we haveTe = δT
e δe and∆e = Pr(δT

e δe < Xe)
using (2.6), (2.9) and (2.10). It follows that, in order to make the minimization of
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(2.14) equivalent to that of the right hand expression of (2.13), it is sufficient to take

η′(e) = η(e)Te to be proportional toHw(e), or equivalently

η(e) = η0
Hw(e)
δT

e δe

, (2.15)

whereη0 is a constant independent of the bit-error sequenceek. Therefore, in or-

der to minimize BER, the minimization of the different cost functions∆e should be

weighted differently for different bit-error sequences according to (2.15). The di-

vision by δT
e δe in (2.15) can be omitted in practice because the dominant bit-error

sequences have approximately similar Euclidian weights, which are close to the min-

imal Euclidian weight.

Whenα > 0 then the expression ofη(e) given in (2.15) becomes sub-optimal

in general. However, from our simulations, no noticeable improvement in BER was

provided by further optimization ofη(e). For this reason, we consider the expression

of η(e) given by (2.15) in the sequel.
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Figure 2.4: The NMBER adaptation. Only the adaptation of thepth equal-

izer tap is shown.

The overall adaptation of thepth equalizer tap value is depicted in Figure 2.4. At

every clock cyclekT, an ACS operation is employed at every state. At every state,

two quantities are derived. First, the difference in path metrics between the selected

and the discarded paths is taken. Second, a bit-error sequenceek is derived as the

bitwise difference between the two sequences corresponding to the discarded and the
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selected paths. The bit-error sequenceek, taken from the state where the best path

ends, is used to compute the vectorδe = [(g∗ e)k,(g∗ e)k−1, ...(g∗ e)k−L]T , where

the integer valueL depends on the maximum length of relevant bit-error sequences.

In the sequel, we simply fixL to the backtracking depth of the VD. The equalizer

adaptation is enabled only when the difference in path metrics is smaller thanTh(e) =
4αδT

e δe. For simplicity, one can fixTh(e) to

Th(e) = Th = 4αmin
e

δT
e δe

without any significant loss in performance. When the adaptation is enabled, the

scalar product of the vectorδe with the equalizer input vectorrk−p = [rk−p, ...rk−p−L]T

is computed, scaled with−η(e) and then passed to an ideal discrete-time integrator

that produces the updatedpth equalizer tap value.

A geometrical interpretation of the NMBER algorithm, which provides an intu-

itive explanation, is given in Section 2.5.

2.4.1 Efficient realization of near minimum-BER adaptation

In Figure 2.4 the scalar product operationδT
e rk−p can be interpreted as focusing

equalizer adaptation on the frequency region that is of interest for the bit-error se-

quenceek. The amplitude response ofgk in the calculation ofδT
e rk−p can be inter-

preted as only a modification of the adaptation open loop gain per frequency. There-

fore, one can replace, inδT
e rk−p, gk by any responseg′k that has the same phase

response asgk. This degree of freedom in the choice of the amplitude response ofg′k
can be used to simplify further the NMBER algorithm.

Because target responses for optical storage systems are often symmetric, a sim-

ple responseg′(z) = z−Dg, whereDg denotes the delay in bits of the target response

gk, can be used to computeδT
e rk−p.

Remark :

For longitudinal magnetic storage systems, the target response is antisymmetric and

is of the formg(z) = (1− z−1)(1+ z−1)n wheren = 1, n = 2 or n = 3 correspond-

ing to PR4, EPR4 and E2PR4 classes of targets. In this case, the responseg′(z) =
(1− z−1)z−n/2 if n is even andg′(z) = (1− z−2)z−(n−1)/2 if n is odd captures the

phase response of the target responseg(z). This choice ofg′(z) can thus be used to
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computeδT
e rk−p.

The Simplified NMBER (SNMBER) equalizer adaptation rule is then obtained

by replacing in (2.12)gk by g′k = δ(k−Dg). This can be written as:

w(k+1)
p = w(k)

p −η(e)
(

eT
k−Dg

rk−p

)
1l{M (b+2e)−M (b)<Th}, (2.16)

WhereDg is the delay of the target responsegk andeT
k−Dg

= [ek−Dg, ...,ek−Dg−L]. The

SNMBER equalizer adaptation algorithm is shown in Figure 2.5. This adaptation

algorithm presents the advantage of further improved efficiency. In fact, because, in

practice, relevant bit-error sequences span only few bits, the scalar products withe

can be realized with only few additions. As an example, single bit-errors are given

by e=±[1,0,0], the simplified equalizer update boils down, except for the selection

mechanism, toeT
k−Dg

rk−p = ± rk−p+Dg. In the case of a double bit-error given bye=
[1,0,−1], the equalizer update is simply given byeT

k−Dg
rk−p = rk−p+Dg− rk−p−2+Dg.
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Figure 2.5: The SNMBER equalizer adaptation for a linear phase target re-

sponse.

2.4.2 Extension of the NMBER algorithm to NPML systems

Noise-Predictive Maximum-Likelihood (NPML) detectors arise by imbedding a noise

prediction/whitening process into the branch metric computation of the Viterbi de-

tector [32] [23]. This boils down to modifying the path metric in (2.1) by replac-

ing the target response byg′k = gk−∑M
i=1 pigk−i and the detector input byyk =
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xk−∑M
i=1 pixk−i wherepi denotes anM-tap noise prediction filter. The NPML path

metric becomesM ′(a) = ∑i(yi − (g′ ∗ a)i)2. Therefore the NMBER algorithm in

this case can be derived by simple analogy to the PRML case. One can check that

the NMBER adaptation for NPML systems can be obtained by simply replacing in

(2.12)gk by g′k and applying a whitening filter to the delayed equalizer input, i.e. by

replacing in (2.12)rk−p by r ′k−p = rk−p−∑M
i=1 pirk−p−i . The equalizer adaptation

rule becomes then

w(k+1)
p = w(k)

p −η(e)
(

δ′Te r ′k−p

)
1l{M ′(b+2e)−M ′(b)<Th(e)},

whereδ′e,i = (g′ ∗e)i andr ′k−p = [r ′k−p, r
′
k−p−1, ..., r

′
k−p−L]

T .

2.4.3 The NMBER algorithm for symbol-by-symbol detection

In the case of a receiver employing a symbol-by-symbol detector, the NMBER equal-

izer adaptation can be simplified further. In order to illustrate this, let us consider a

system employing uncoded binary data taken from the alphabetA = {−1,1}. The

receiver is composed of a linear equalizer that tries to undo the effect of the channel

and a threshold detector or slicer that outputs bit decisionsb̂k, see Figure 2.6. Based

on the equalized samplexk, the threshold detector outputs its closest symbol from the

alphabetA .

kb kxkr
������� ��	��
���

∧

kb


���������

��������

Figure 2.6: model of the symbol-by-symbol detection system.

As the threshold detector is equivalent to a VD with a full target response, i.e.

g0 = 1 andgi = 0 for i 6= 0, the NMBER algorithm we derived earlier applies thus

to this simple case. Because the NMBER algorithm contains three main building

blocks: the error sequence generation block, the enabling signal generation block and

the correlation block, we are going to describe these blocks for systems of Figure 2.6.

• The error sequence generation block produces at every clock cycle the most

likely error sequence. In the case of symbol-by-symbol detection only single

symbol errors are to be considered. Similarly to the Viterbi detection case, the
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threshold detector is slightly modified to output not only the closest symbol to

xk but also the second closest symbol. We denoteb1
k andb2

k the closest and the

second closest symbols toxk, respectively. We haveb2
k =−b1

k. The derivation

of the symbol error sequenceek differs from the DD to the non-DD modes.

In the DA but non-DD mode the bitsbk are known and the derivation ofek is

given by

2ek =

{
b1

k−bk if b1
k 6= bk (case of a detection error)

b2
k−b1

k if b1
k = bk (no detection error)

In the DD mode the detector is assumed to output correct decisions and the

derivation ofek is given by

2ek = b2
k−b1

k.

• The enabling signal generation block is also simpler than in the case of Viterbi

detection. Given the error eventek, the general expression of the enabling

condition is given byM (b+ 2e)−M (b) < Th in the non-DD mode and by

M (b1 +2e)−M (b1) < Th in the DD mode. UsingM (b) = (xk−bk)2 for the

threshold detector andTh = 4αe2
k = 4α, it is easy to show that the enabling

condition boils down to

(1−α)≤ ek(xk−bk) (non-DD)

(1−α)≤ ek(xk−b1
k) (DD)

• the correlation of the equalizer input signal with the error sequence simplifies

in this case toekrk−p for the adaptation ofwp.

The NMBER algorithm applies as well to systems employing threshold detection

and leads to a very simple multiplication-free implementation.

2.5 A geometrical interpretation of the NMBER algorithm

In order to develop an intuitive understanding of the NMBER algorithm, let us col-

lect the readback samplesrk in a vectorr = [r0, ..., rN−1]T that we call the readback

vector. We denote byx = [x0, ...,xN−1]T the column vector of equalized samples

xk = (w∗ r)k. For simplicity, let us focus on one admissible bit-error sequenceek.

This means that we consider for detection only the two sequencesbk and(b+2e)k.
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Figure 2.7: a geometrical representation of the NMBER algorithm enabling

condition.

The VD will decide for the bit sequencebk if and only if the vectorx is closer toδb

than to the vectorδb+2e, whereδa = [(g∗a)0, ...,(g∗a)Nb−1]T for a bit sequenceak

(see Figure 2.7). The distance between two vectors is computed using the L2-norm

given by:‖X‖2 = XTX. Figure 2.7 shows also the vectorδe = 1
2(δb+2e−δb) and the

boundary decision of the VD. Let us then see what happens to the vectorx after the

NMBER equalizer adaptation. For this purpose let us assume that we receive a vector

r and that the NMBER equalizer adaptation is enabled. The same vectorr is assumed

to be received again after equalizer adaptation.

First of all, one needs to note that what matters for detection is the orthogonal

projection ofε = x−δb over the vectorδe, i.e. AB= δT
e ε.

The NMBER adaptation is enabled whenδT
e ε > (1−α)δT

e δe. This defines an

enabling subspace as shown in Figure 2.7. When the vectorx falls in the enabling

subspace, the adaptation is enabled and the equalizer tap values are changed accord-

ing to (2.12). A correction response∂w, given by∂wp =−η(e)δT
e rk−p, is then added

to the equalizer response. After adaptation and reception of the same vectorr, the

vectorx will change with∂x and more importantly its orthogonal projection onδe

changes as follows

∂AB= δT
e ∂x.

Using the fact that∂xk = ∑p ∂wprk−p and that∂wp =−η(e)∑k δe,krk−p, one can eas-
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ily prove that

∂AB=−η(e)∑
p

(δT
e rk−p)

2 ≤ 0. (2.17)

It is then visible that NMBER adaptation tries to shift the vectorx outside the en-

abling subspace and as far as possible from the VD decision boundary such as to

increase detection reliability (reliability can be seen, here, as the distanceBC in Fig-

ure 2.7, betweenx and the VD decision boundary). When the vectorx falls outside

the enabling subspace, the VD will output the bit sequencebk with a high reliability.

In this case the NMBER equalizer adaptation is disabled. However, because the LM-

SAM minimizesE[δT
e ε2] (for single bit-errors), it does not make any distinction, in

Figure 2.7, between the pointB (δT
e ε > 0) and its mirrorB′ with respect toA (δT

e ε < 0)

whereas these points correspond to completely different reliabilities.

Compared to LMSAM or LMS, the NMBER algorithm does not spend equaliza-

tion effort when this does not improve detection reliability and moreover, it is clear

from (2.17) that when the NMBER adaptation is enabled, it always acts towards im-

proved reliability.

2.6 Simulation Results

By way of illustration we consider an idealized optical storage channel according to

the Braat-Hopkins model [42], see Chapter 1,

H(Ω) =





2T
π

sin(πΩ)
πΩ

(
cos−1| Ω

Ωc
|− Ω

Ωc

√
1− ( Ω

Ωc
)2

)
, |Ω|< Ωc,

0, |Ω| ≥Ωc.

whereΩc denotes the normalized optical cut-off frequency. Databk is taken to

be run-length-limited [93] with run-length parameters(d,k) = (1,7). In this section

we consider only electronics noise modelled as Additive White and Gaussian (AWG)

with a varianceσ2
n. Simulation results in the presence of media noise and channel

nonlinearities are presented in Chapter 3 as this requires the target response to be

designed appropriately. Channel SNR is defined asSNR= ∑k h2
k

σ2
n

. This is the same

as theSANR defined in Section 1.2.2 as we focus in this section only on additive

electronics noise.

We use here the Blu-ray optical parameters, i.e.NA = 0.85, a laser wave-

lengthλ = 405 nm and a track pitch of 320 nm [135]. We consider two different
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disk capacities that are 23 GB and 30 GB on a single layer 12 cm disk. The corre-

sponding channel bit-lengths are, respectively,Tbit = 81nm andTbit = 62nm and the

resulting normalized cut-off frequencies are respectivelyΩc = 0.34 andΩc = 0.26.

The comparison of the NMBER with respect to the LMS algorithm is done at both

capacities. To compare the NMBER and the LMSAM algorithms, the 30 GB channel

is considered where a more pronounced improvement can be pointed out. To allow

fair comparison between the different adaptation algorithms, all schemes are run first

in the DA mode where the prior knowledge of the transmitted bit sequence is used in

all adaptation loops. For LMS this is used to extract the error signalεk and for the

NMBER and the SNMBER it is used to select the state that corresponds to the correct

bits from where to extract the bit-error sequenceek. Simulation results of NMBER

performances in the DD mode are then shown at the end of this section.
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Figure 2.8: Amplitude-frequency of idealized optical channel having a nor-

malized cut-offΩc = 0.34, 3-tap targetsg0 = [1,2,1] andg1 =
[1,1.6,1] and 5-tap targetg2 = [0.17,0.5,0.67,0.5,0.17]. For

clarity of the plot the different targets are normalized to have

the same DC.

In order to demonstrate the benefits gained by employing the NMBER equalizer

adaptation over the conventional LMS adaptation, three target responses are con-
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sidered. The first one is a 3-tap target response with integer coefficients given by

g0 = [1,2,1]. The second one,g1 = [1,1.6,1], provides a better match to the chan-

nel response. A 4-state VD is employed forg0 andg1. The third target response

is a 5-tap response, which corresponds, because of the d=1 constraint, to a 10-state

VD, given byg2 = [0.17,0.5,0.67,0.5,0.17]. The response ofg2 approximates the

in-band characteristics and cut-off frequency of the channel quite well. Amplitude

responses ofh(t), g0
k, g1

k andg2
k are depicted in Figure 2.8.

To illustrate the concept of the NMBER adaptation, Figure 2.9 shows the SAM

histograms for both LMS and NMBER adaptations using the target responseg1. The

SAM histogram is the accumulation of the different probability distribution functions

of S(e) for the different bit-error sequences. The area below the tail of this histogram

below zero determines the BER. It can be seen already that, below zero, the SAM

histogram with NMBER adaptation is below the one with LMS adaptation. More-

over, because the SAM distribution on the positive axis is irrelevant for BER, our

adaptation scheme uses this degree of freedom and does not spend any equalization

effort there.

−3 −2.5 −2 −1.5 −1 −0.5 0 −2 0 2 4 6 8

Figure 2.9: The SAM distribution, atSNR= 13dB, is shown in the right plot

for LMS adaptation (solid) and NMBER adaptation (dashed). A

zoom of the SAM histogram around zero is shown in the left plot.

For the 23 GB channel, Figure 2.10 shows the simulated BER as function of SNR

for the different targets and adaptation algorithms. The equalizer lengthNw is fixed

to 9 andα = 0.4.
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For the target responseg0, Figure 2.10 shows that, on the one hand, the NM-

BER algorithm outperforms the LMS algorithm by 1.5 dB atBER= 10−5. On the

other hand, the simplified algorithm SNMBER is indistinguishable, in terms of BER,

from the NMBER algorithm. For the target responseg1, the NMBER algorithm out-

performs LMS by 0.6 dB. Moreover, whereas with the latter the difference in SNR

betweeng0 andg1 is∼1 dB, it is reduced to less than 0.1 dB using the NMBER algo-

rithm. The SNR difference between the two targets in the case of LMS is explained

by the fact thatg1 is better matched to the channel thang0 in the in-band frequencies,

i.e. for Ω < Ωc.

The 5-tap target responseg2 presents a good match to the channel response as

shown in Figure 2.8. For this reason, the LMS adaptation is already very close to

optimal in the case of additive white noise. In this case, the NMBER algorithm is

practically identical to its LMS counterpart over the whole SNR range. In addition,

using LMS the 3-tap targetg1 presents a loss in SNR of 1 dB compared to the 5-tap

targetg2. This gap in SNR betweeng1 andg2 is reduced to only 0.4 dB using the

NMBER algorithm. Such improvement in SNR for short target responses, i.e. less

states in the VD trellis, makes the NMBER algorithm very attractive for practical

systems.

For the 30 GB channel, Figure 2.11 shows the simulated BER as function of SNR

for the different targets and adaptation algorithms. The parameterα is here fixed to

α = 0.3. Figure 2.11 shows clearly that as density increases, the short lengths target

responseg0 andg1 become completely impractical using the LMS algorithm. Never-

theless, using the NMBER algorithm allows significant performance improvements

for these short target responses. This improvement amounts to 3.4 dB forg1 and to

even more forg0. However, because of their short length,g0 andg1 still lag few

dBs behind the 5-tap target responseg2. Furthermore, for the targetg2, the NMBER

allows an improvement of 1.2 dB in SNR with respect to the LMS algorithm.

It is apparent from Figure 2.10 and Figure 2.11 that the NMBER algorithm can

be very useful in practice. First, in order to limit detection complexity, which grows

exponentially with the target length, short target responses are preferably employed.

For these targets, LMS adaptation becomes suboptimal and the NMBER adaptation

allows significant performance improvements. Second, at a given complexity, i.e.

target length, the SNR improvement of the NMBER equalization with respect to LMS

increases with storage density. This should help to achieve higher storage densities
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Figure 2.10: Simulated BER versus SNR for the different target responses

and adaptation schemes at a disk capacity of 23 GB.

without sacrificing complexity.

Next, also the LMSAM is taken into account. The LMSAM scans the data for

particular patterns and adapts the equalizer in order to minimizeE[X2
e ] for single bit-

errors at data transitions. However, as storage capacity increases, other error events,

e.g. the double bit-errorse=±[1,0,−1], become substantial. The difference in pre-

detection SNR between LMSAM and NMBER becomes then more pronounced. In

order to illustrate the sub-optimality of the LMSAM algorithm, Figure 2.12 shows

simulated BER as function of SNR for the target responseg0 at a disk capacity

of 30 GB andNw = 9. The LMSAM algorithm is implemented in the DA mode

where the transmitted data is scanned for the patterns(−−+ + +), (−−−+ +),
(+ + +−−) and (+ +−−−). LMSAM equalizer adaptation is implemented as

explained in [117]. For NMBER and SNMBER adaptations,α is taken to be equal

to 0.3. Figure 2.12 shows that the LMSAM algorithm yields a loss of 1.4 dB com-

pared to the NMBER or the SNMBER algorithm at the capacity of 30 GB. This loss

will increase at higher storage capacities.
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Figure 2.11: Simulated BER versus SNR for the different target responses

and adaptation schemes at a disk capacity of 30 GB.

2.6.1 Stability and convergence behavior of the NMBER algorithm

Because of the nonlinear and selective nature of the NMBER algorithm, a theoretical

analysis of its stability and convergence behavior is quite fastidious. The conver-

gence behavior of the NMBER algorithm depends on the adaptation constantη0 and

on the thresholdTh. The higher the thresholdTh becomes, the more frequent the

NMBER adaptation is enabled and the smallerηo should be taken in order to ensure

convergence of the algorithm. In order to highlight the dependence of the NMBER

performance as function ofη0, Figure 2.13 and Figure 2.14 show BER as function

of η0 for the 30 GB channel at different SNR values for the target responsesg = g0

andg = g2, respectively. The threshold, or equivalentlyα, is optimized to achieve

the best BER for the smallest value ofη0. Figures 2.13 and 2.14 illustrate that the

performance of the NMBER algorithm is basically independent ofη0 if this latter

is smaller than a given valueηmax (≈ 10−3, in this case) and that ifη0 > ηmax, the

NMBER algorithm can become unstable.
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Figure 2.12: Simulated BER versus SNR forg = g0 and the different adap-

tation schemes at a disk capacity of 30 GB.

2.6.2 Behavior of the NMBER algorithm in the decision-directed mode

The previous simulation results were conducted in the DA mode where the prior

knowledge of the transmitted bits was used to extract the necessary control signals

for the different algorithms. In many practical systems, prior knowledge about the

transmitted bits is not available and (preliminary) VD decisions have to be used in-

stead, i.e. the scheme must be run in DD mode.

In the DD mode, the choice ofα is crucial. In fact, ifα≈ 0, then the NMBER al-

gorithm will mainly adapt on wrong decisions which causes the algorithm to diverge.

From this perspective,α has to be as high as possible to minimize the probability of

adapting on wrong decisions. However, in order to limit BER degradations,α has

to be chosen as small as possible such that the Gaussian tail approximation holds.

Therefore,α must realize a trade-off between these two criteria.

To implement the NMBER algorithm in the DD mode, a bit-error sequence and a

Boolean variable need to be stored at every state of the trellis up to the decision back-

tracking depthL. The Boolean variable tells whether the difference in path metrics

between the selected and discarded paths by the ACS unit is smaller or bigger than
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Figure 2.13: Simulated BER versusη0 at a capacity of 30 GB and different

SNR values for the target responseg = g0.

the thresholdTh. At every clock cycle, a bit decision is taken from the VD trellis, at a

decoding state, following a selected path at a depthL. The decoding state is also used

to extract a bit-error sequence and one Boolean variable. The equalizer adaptation is

then performed according to Figure 2.4 where the equalizer inputrk−p is delayed to

compensate for the backtracking delay prior to correlation withδe.

Figure 2.15 and Figure 2.16 show the simulated BER for the target responses

g = g0 andg = g2 and, respectively, the 23 and 30 GB channel using the NMBER

adaptation in both DA and DD modes. This shows that the performance of the NM-

BER adaptation in the DD mode is within a fraction of a dB from its DA counterpart,

which proves the practical value of the NMBER algorithm. The SNMBER algorithm

has a similar behavior. The performance degradation of the DD mode, compared to

the DA mode, increases with storage density as illustrated in Figure 2.15 and Figure

2.16. This is not surprising as system sensitivity increases with density [86], i.e. per-

formance becomes more sensitive to small system parameter deviations.

Remark :

In a practical optical storage system, choosing the threshold to be very small, can
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Figure 2.14: Simulated BER versusη0 at a capacity of 30 GB and different

SNR values for the target responseg = g2.

cause serious problems to the NMBER algorithm. In fact, small values of the differ-

ence in VD path metrics can be caused for example by media defects, scratches or

finger prints. Adapting the equalizer when these artifacts occur, will cause the NM-

BER algorithm to diverge. A simple remedy to this issue is to add a second smaller

thresholdTh2 < Th and freeze the NMBER adaptation when the VD path metrics dif-

ference is smaller thanTh2. This threshold should serve also to freeze all adaptation

loops, e.g. DC, AGC, PLL, to prevent them from divergence.

2.7 Conclusions

A new equalizer adaptation scheme has been proposed for PRML systems. This

new scheme seeks to minimize directly the bit-error rate. Based on an analysis of

Viterbi detection performance, we highlighted a practical cost function for equalizer

adaptation. This function was used to realize a remarkably simple equalizer adapta-

tion scheme. The proposed scheme incorporates a selection mechanism that enables

equalizer adaptation only if the difference in path metrics, between selected and dis-

carded paths from the Viterbi trellis, is smaller than a prescribed threshold. The actual
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Figure 2.15: Simulated BER versus SNR using the NMBER algorithm in

both DA and DD modes forg = g0 and the 23 GB channel

(α = 0.4). As a basis of reference, also the LMS performance

in DA mode is shown.

version of the new adaptation scheme is essentially as simple as LMS. A simplified

scheme that allows a further improved efficiency was also presented. Because of the

selection mechanism, the proposed schemes present an advantage in terms of power

consumption especially for long equalizers.

Simulation results for an idealized optical storage system showed that our scheme

outperforms significantly the existing adaptation schemes especially at high storage

densities or short target response lengths.
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Figure 2.16: Simulated BER versus SNR using the NMBER algorithm in

both DA and DD modes forg = g2 and the 30 GB channel

(α = 0.3). As a basis of reference, also the LMS performance

in DA mode is shown.

Appendix A: Impact of residual ISI on the sequenced ampli-

tude margin

In order to develop a better understanding of the impact of residual linear ISI on the

SAM, let us consider the case where the channel noisenk is data-independent, addi-

tive and Gaussian. In this case, the error signalεk is composed of two components.

The first component is time-invariant and linearly dependent on the bit sequencebk,

i.e. RISI, and the second one is a data-independent zero-mean and Gaussian noise.

For simplicity of the analysis, we assume that the binary data is uncoded. The error

signal is given by

εk = (q∗b)k +vk, (2.18)

wherevk = (w∗n)k denotes the noise component. The RISI component is character-

ized by the impulse responseqk, whereqk = (w∗h)k−gk.

In order to evaluatePr(δT
e δe < Xe), let us consider a bit-error sequenceek and

computeE[Xe] andE[X2
e ], where the expectations are taken over all possible realiza-
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tions ofuk andbk such thatb+2e is an admissible bit sequence. Plugging (2.18) in

Xe = δT
e ε and substitutingδe,k by (g∗e)k, we can write

Xe = ∑
k

(g∗e)k(q∗b)k +∑
k

(g∗e)kvk. (2.19)

Sincevk is independent ofek and is zero on average, we haveE[∑k(g∗e)kvk] = 0.

The average ofXe is then equal to

E[Xe] = E[∑
k

(g∗e)k(q∗b)k] = ∑
k,i, j

gk−iqk− jE[eib j ].

In order to evaluateE[eib j ] we introduce the setI(e) of indicesi such thatei 6= 0,

i.e. (i ∈ I(e)⇔ ei 6= 0). The summation overj in the previous equality is split into

two terms depending onj ∈ I(e) or not:

E[Xe] = ∑
k,i, j∈I(e)

gk−iqk− jE[eib j ]+ ∑
k,i, j∈/I(e)

gk−iqk− jE[eib j ].

When j ∈ I(e), b j becomes deterministic. In fact, becauseb+ 2e is an admissible

bit sequence, the only possibility forb j , whenej 6= 0, is b j = −ej . In this case

E[eib j ] =−eiej . However, whenj ∈/I(e), it is easy to prove thatE[eib j ] = 0 because

the data is assumed to be uncoded. It follows that

E[Xe] =− ∑
k,i, j∈I(e)

gk−iqk− jeiej .

Becauseej = 0 for j ∈/I(e), the previous summation can be taken over all values

of j. It is then straightforward to show that

E[Xe] =−∑
k

(g∗e)k(q∗e)k =−δT
e q

e
(2.20)

where the vectorq
e

is given by(q
e
)k = (q∗e)k = (w∗h∗e)k− (g∗e)k.

In a similar manner as we derived (2.20), one can prove thatE[X2
e ] can be written

as follows:

E[X2
e ] = (δT

e q
e
)2 +δT

e (Me+Rvv)δe, (2.21)

whereRvv is the autocorrelation matrix ofvk and the matrixMe is defined by:

Me
k,k′ = ∑

j∈/I(e)
qk− jqk′− j = (q∗q∗)k−k′− ∑

j∈I(e)
qk− jqk′− j ,
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whereq∗ is defined byq∗i = q−i .

Equations (2.20) and (2.21) give a closed form expression ofE[Xe] andE[X2
e ]. In

order to link these quantities to ACS error probabilities, let us assume that the dis-

tribution of Xe can be approximated by a Gaussian. This assumption is not valid in

general because of the data-dependent component of the error signalεk. However,

in the limiting case of a small amount of residual ISI, this approximation is accept-

able. Note that the approximation is only used at this part of this section to provide

more insights and that the other results of this chapter are more general. With this

assumption, one can write

Pr(ACS error|e)'Q


 δT

e δe+δT
e q

e√
δT

e (Me+Rvv)δe


 , (2.22)

wherePr(ACS error|e) equals the average ofPr(ACS error|b,e) over all possible bit

sequencesbk such thatb+2e is an admissible bit sequence.

The impact onPr(ACS error|e) of the RISI differs significantly from the impact

of the channel noise. The RISI has basically two different impacts. First, compared

to the case ofq = 0, it induces a modification in the nominator of theQ-function

argument in (2.22). We name this nominator the effective Euclidian weight of the

bit-error sequenceek. The effective Euclidian weight can be either bigger or smaller

thanδT
e δe (constructive or destructive ISI for the bit-error sequenceek) depending

on the sign ofδT
e q

e
= −E[Xe]. Second, the denominator of the argument of theQ-

function in (2.22) is also modified. One can check that the matrixMe is positive and

therefore the denominator increases whenq 6= 0 compared toq = 0. The impact of

Me in (2.22) can be seen as an increase in effective channel noise power.

An expression of the effective predetection SNRρVD can be extracted from

(2.22):
√

ρVD = min
e

δT
e δe+δT

e q
e√

δT
e (Me+Rvv)δe

(2.23)

Note that if there is no residual ISI, i.e.q = 0, andvk is white with a varianceσ2,

ρVD boils down to the known expressionρVD = mine
δT

e δe
σ2 .

Application to equalizer adaptation:Designing the equalizer response to mini-

mizeE[X2
e ] (2.21) does not necessarily minimizePr(ACS error|e) because of two rea-

sons. First, the impact ofδT
e q

e
on Pr(ACS error|e) is different than that ofδT

e (Me+
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Rvv)δe as explained earlier. Thus minimizing (2.21) would not, in general, be optimal

because this does not provide the optimal trade-off betweenδT
e q

e
andδT

e (Me+Rvv)δe.

Second, and more important, minimizingE[X2
e ] does not provide any constraint on

the sign ofE[Xe], i.e. the opposite sign ofδT
e q

e
, whereas it has been shown that

this sign is of capital importance forPr(ACS error|e). We conclude that minimiz-

ing E[X2
e ], as suggested in [117], is not optimal in general. Simulation results of

Figure 2.12 confirm this conclusion.
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Chapter 3

Minimum Bit-Error Rate Target

Response Adaptation

In order to reduce the implementation complexity of maximum likelihood sequence

detectors, equalized maximum likelihood receivers are often used. This consists of

employing an equalizer to transform the channel response to a short target response

to which the Viterbi detector is matched. Existing equalizer and target adaptation

schemes are often based on the minimum mean-square error (MMSE) criterion which

is not always optimal in terms of detection bit-error rate at the Viterbi detector output.

In this chapter we consider minimum bit-error rate joint adaptation of equalizer and

target response and present a practical adaptation algorithm that achieves near mini-

mum bit-error rate performance. This chapter can be seen as a generalization of the

results of Chapter 2 to include target response adaptation. The proposed algorithm

extracts control information from within the Viterbi detector and focuses adaptation

on those bit sequences, bit-error events and noise realizations that lead to non-reliable

decisions in the Viterbi detector. Simulation results for an optical storage channel,

show that, compared to the MMSE-based adaptation methods, the new scheme allows

significant performance improvements especially for short target or equalizer lengths

or in the presence of channel nonlinearities and media noise. This is very promising

for high-density storage systems in terms of system complexity reduction or in terms

of fighting nonlinearities and media noise. Moreover, the proposed algorithm is no

more complex than the existing MMSE-based algorithms.
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3.1 Introduction

The optimal receiver for estimating a data sequence in the presence of intersymbol

interference (ISI) and additive Gaussian noise [41] can generally not be realized be-

cause of its excessive complexity. This fact has led to a development of a variety

of suboptimal and lower complexity receivers. In many practical systems, e.g. stor-

age systems, a combination of partial response equalization with Viterbi detection is

used to achieve a simplification of the optimal Maximum-Likelihood Sequence De-

tection (MLSD) [25, 27, 29, 143]. This consists of using a linear equalizer to shape

the channel to a short target response, which allows for a practical use of the Viterbi

algorithm (VA), whose computational complexity increases exponentially with the

target response length.

In receivers for digital storage systems, equalizer and eventually target response

adaptation is usually employed because it presents particular advantages. First, con-

sidering that the channel response may be time varying and is not known until after

the entire storage device is manufactured, adaptive equalization and target response

design provide a better fitting and tracking of the channel response. Second, be-

cause the noise in high density storage systems depends on the medium and the data

throughput, e.g. this relates to the disc mastering quality and disc rotation speed for

optical storage systems, and thus an equalizer and target response that adaptively take

the noise characteristics into consideration is very desirable.

Because the target response plays a key role in system performance determina-

tion, several papers attempted to solve the target response design and adaptation prob-

lem. In [143], the target response was chosen as a truncated version of the channel re-

sponse and the equalizer was chosen to minimize the Mean Square Error (MSE). The

MSE-minimization problem was extended to the target response design and adapta-

tion in [29] and [27]. Because joint equalizer and target adaptation inevitably inherits

an issue of interaction between the two adaptation loops, several solutions were re-

ported in literature. In [29], a fixed energy constraint for the target response was used

while [27] used the monic constraint, i.e. the first nonzero term in the target response

is fixed to one. The latter corresponds to a minimum-phase target response that is op-

timum for decision feedback equalization [106]. The minimum MSE (MMSE) target

response design and adaptation problem was also discussed in [71] for a fixed energy

constraint and in [72] for a monic constraint.
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All existing target adaptation techniques are based on the MMSE criterion with

different constraints. Among the different constraints, the monic constraint was

shown to lead to very close to optimal performance, in the bit-error rate sense, for

a linear channel [78]. This is especially true if the target and the equalizer are long

enough to handle noise coloration. However, for short target or equalizer lengths, as

constrained by complexity limitations for example, residual ISI and remaining noise

coloration may hamper system performance severely.

Moreover, an important problem at high storage densities, either for optical or

magnetic storage systems, is the occurrence of nonlinear intersymbol interference

[22, 120]. Applying noise whitening, via monic target adaptation, for such channels

will cause the nonlinear ISI after equalization to be spread over many symbols. This

causes a memory increase of the nonlinear ISI and leads overall performance degra-

dation. Furthermore, noise tends to become strongly data-dependent at high storage

densities. This makes specific bit patterns especially vulnerable to noise. These ar-

tifacts are neglected by the MMSE-based adaptation techniques because they do not

discriminate vulnerable bit patterns and bit-error events but consider an average MSE

over the different bit patterns.

In this chapter we present a new equalizer and target adaptation algorithm that

seeks to minimize bit-error rate (BER). The proposed algorithm incorporates a selec-

tion mechanism that focuses adaptation on those particular bit patterns and bit-error

events that are relevant in terms of predetection SNR or BER. Compared to existing

schemes, the new adaptation scheme shows an important performance improvement

for short target response and equalizer lengths and in the presence of channel non-

linearities and media noise. Moreover, from an implementation standpoint, the new

technique is not more complex than existing techniques.

The remainder of this chapter is organized as follows. Section 3.2 describes the

system model. Section 3.3 presents the adaptation criterion that will be used in Sec-

tion 3.4 to derive the new adaptation algorithm. Simulation results, presented in

Section 3.6, show the merits of our algorithm compared to existing ones.

3.2 System Model and Problem Definition

A discrete-time model of an Equalized Maximum Likelihood (EML) system is shown

in Figure 3.1. An NRZ sequencebk ∈ {±1} is transmitted, at a rate1/T, over
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Figure 3.1: A discrete-time model of an adaptive equalized maximum likeli-

hood system.

a dispersive channel (linear or nonlinear) whose output at timekT is denoted by

h(b)k = h(. . . ,bk−1,bk,bk+1, . . .). In the case of a linear channel, the channel output

boils down toh(b)k = (h∗b)k wherehk is the channel impulse response. The channel

output is corrupted by additive noisenk which can be either white, colored or data-

dependent as caused by media noise, see Section 1.2.2 for explanation. The readback

signalrk is the noisy channel output and is given by

rk = h(b)k +nk.

Because the channel may be time-varying and its memory span is in general quite

long, adaptive Partial Response (PR) equalization [86] is used in order to shorten the

channel memory. Equalization can be either linear or nonlinear as it is the case for

Volterra filter-based equalization [26,102]. For simplicity, we focus in the sequel on

linear equalization. The results of this chapter can be easily generalized to the case

of Volterra filter-based equalization.

The equalizer impulse responsewk is optimized so that the overall impulse re-

sponse, at its output, is as close as possible to a short linear impulse response that

we refer to as the target responsegk. The equalizer outputxk serves as input to

a Viterbi detector (VD) that produces bit decisionsb̂k. In the case of a nonlinear

channel, the VD employs pattern-dependent offsets in order to account for nonlinear

ISI [116]. These offsets are combined with the linear target values in order to produce

the branch metrics in the VD. The number of required offsets equals the number of

branches in the VD trellis; one offset is used for each branch. Training and adaptation

of the pattern-dependent offsets is also explained in [116].

Contrary to Partial Response Maximum Likelihood (PRML) systems [20] where
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the target response is considered to be fixed, EML systems optimize both the equal-

izer and the target response simultaneously in order to achieve better performance.

In [78], adaptive techniques are employed to simultaneously find the targetgk and the

equalizer responsewk by minimizing the Mean-Squared Error (MSE)E[ε2
k] between

the equalizer outputxk and the desired signal(g∗b)k, whereεk = xk−(g∗b)k denotes

the error signal. In this case, a constraint must be applied to solve the interaction be-

tween the equalizer and target adaptation and prevent the system from reaching the

trivial solutiongk = wk = 0. The monic constraint on the target response, i.e.g0 = 1,

was used in [78]. Applying the monic constraint to the target response and minimiz-

ing the MSE was shown to result in an equalizer that is equivalent to the forward

equalizer of the MMSE solution of Decision Feedback Equalization (DFE) [106].

This provides similar noise-whitening ability especially if the target and the equal-

izer are long enough to handle noise coloration and residual ISI. However, for a short

target or small equalizer lengths, minimizing the MSE with the monic constraint does

not guarantee the best tradeoff between noise coloration and residual ISI. This is il-

lustrated in Section 3.6.

Furthermore, although the MMSE target adaptation with monic constraint showed

very close to optimal performance, in the BER sense, for a linear channel and additive

noise [78], its robustness in the presence of channel nonlinearities was not considered

earlier. In fact, applying noise whitening in the presence of nonlinearities causes the

nonlinear ISI after equalization to be spread over many symbols, potentially caus-

ing its memory to increase beyond the span of the target response. This, obviously,

causes performance degradation as will be seen in Section 3.6. The choice of the

(linear) target response is thus still a key issue for high density storage systems with

nonlinear ISI.

This chapter presents a joint equalizer and target adaptation scheme that seeks to

minimize BER. The adaptation criterion and the corresponding near-minimum bit-

error rate (NMBER) equalizer adaptation for a fixed target were presented in Chap-

ter 2. Because the equalizer adaptation used in this chapter is similar to that in Chap-

ter 2, we focus in the sequel primarily on target adaptation. Moreover, we initially

omit the pattern-dependent offsets in the VD. These are considered in Section 3.6 to

account for channel nonlinearities.

Before proceeding with target adaptation, let us briefly recapitulate, in the next

section, the NMBER adaptation criterion. For mathematical convenience we omit
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the delays of the different modules and the latency of the bit detector. We use

the following notations:δz = [(g∗ z)Nb−1, . . . ,(g∗ z)0]T for any sequencezk and

ε = [εNb−1, . . . ,ε0]T whereNb denotes the length of transmitted sequence.

3.3 The Minimum-BER Adaptation Criterion

The VD in Figure 3.1 operates on a trellis that is matched to the linear target response

gk. Every path in this trellis corresponds to an admissible bit sequence. The detector

selects the sequence that leads to the smallest path metric in the trellis [41]. The per-

formance of the VD depends on the nature of the error signalεk, i.e. its coloration and

the amount of residual ISI. The probability of detection error is mainly determined

by the bit sequences for which the difference between the best and second best paths

in the VD trellis is small. Moreover, for a given bit sequencebk and an admissible

bit-error eventek, i.e. an event for whichbk + 2ek is an admissible bit sequence,

the difference in path metrics between the paths corresponding tobk andbk + 2ek

depends on the Euclidian weight ofek and on the orthogonal projection of the error

signal overδe. In Chapter 2, an analysis of the performance of the VD was presented

and a criterion, which was shown to be directly linked to the probability of detection

error, was highlighted. For a given bit sequencebk and an admissible bit-error event

ek this criterion was written as minimizing the following variable

∆e =
E[X′e]

Te
, (3.1)

where

X′e = Xe1l{Xe≥Te} =

{
Xe = δT

e ε if δT
e ε > Te,

0 otherwise,
(3.2)

and

Te = (1−α)δT
e δe+αµe, (3.3)

whereµe = E[δT
e ε] andα is a fixed value in the interval[0,1].

The cost function∆e involves the variableXe = δT
e ε = ∑k(g∗e)kεk, which reflects

the fact that, when considering the bit-error eventek, only the projection ofε overδe

matters for detection. In other words, the difference in path metrics between the

sequencesbk andbk +2ek depends on the error signal only viaXe. The denominator

of ∆e relates to the Euclidian weight of the bit-error eventek, i.e. δT
e δe, (3.3). It can be
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seen already that optimization of the target response based on∆e will tend to decrease

error signal coloration in the direction ofδe (noise whitening if one considers all

directionsδe) and increase the Euclidian weight of the bit-error eventek.

The thresholding in (3.2) expresses the focusing of adaptation on bit sequences,

bit-error events and noise realizations that correspond to the less reliable decisions in

the VD. In terms of path metrics in the VD trellis, the enabling condition{Xe > Te}
can be expressed as{M (b+2e)−M (b) < 4(δT

e δe−Te)}, whereM (b) = ∑k(xk−
(g∗b)k)2 denotes the path metric of the sequencebk. Therefore, the thresholding in

(3.2) selects automatically the set of worst bit sequences and bit-error events which

are determinant for BER. For example, if we consider mis-equalization ISI then the

thresholding is equivalent to focusing the adaptation effort only on bit sequences and

bit-error events for which ISI is destructive, i.e. leads to degradation of predetection

SNR.

Example 3.1:

For the sake of illustration, let us consider a linear channel, neglect residual ISI at the

detector input and treat the error signalεk as a zero-mean Gaussian noise signal and

denote its autocorrelation matrix byRε. For a given bit-error eventek, the variable

δT
e ε is then Gaussian with a meanµe = 0 and a varianceσ2

e = δT
e Rεδe. The threshold

Te in (3.3) is then given byTe = (1−α)δT
e δe and one can easily show, in this case,

that (3.1) boils down to

∆e =
1√

2π Te
σe

exp

{
−1

2

(
Te

σe

)2
}

.

Because the functionx 7−→ 1
x exp

{−1
2x2

}
for x > 0 is a strictly decreasing function,

one concludes that minimizing∆e is equivalent to maximizing the ratioTe
σe

= (1−
α) δT

e δe√
δT

e Rεδe

which is proportional to the root square of the effective SNR [41, 63, 77].

This example illustrates clearly that designing a target response that minimizes∆e is

equivalent to maximizing the effective SNR, i.e. minimizing BER.♦

The dependence of the thresholdTe onµe in (3.3) implies that in practice the vari-

ablesµe for the different bit-error sequences must be estimated. However, because

at reasonable SNRs,µe = E[δT
e ε] ¿ δT

e δe, one can simply neglect the dependency

of Te on µe. In the sequel, we fix a value ofα and consider the thresholdTe to be
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equal to(1−α)δT
e δe. The cost function∆e can then be rewritten, after omission of

the constant factor(1−α) in the denominator which is independent ofgk, as

∆e =
E[X′e]
δT

e δe

. (3.4)

and the enabling condition can be simplified as{M (b+2e)−M (b) < 4αδT
e δe}.

In order to minimize the overall BER, it was shown in Chapter 2 that the differ-

ent cost functions∆e should be combined with different weights for different bit-error

events. The weight for a bit-error eventek was shown to be proportional to its Ham-

ming weightHw(e), i.e. the number of non-zeros inek.

Extraction of the relevant bit-error sequences:

Because the cost function (3.4) involves knowledge of admissible bit-error events,

one needs to extract from the received signal information about the most likely bit-

error events. Instead of considering all minimum distance bit-error events, ending at

a particular time, one can consider at most one bit-error event at each time. This is

achieved by considering, at timekT, only the bit-error event that corresponds to the

second best path in the Viterbi trellis that merges with the best path at timekT. This

reduces significantly the computational complexity without sacrificing performance.

The dominant bit-error event is extracted as follows. At every Add Compare

Select (ACS) operation in the VD, a bit-error event is derived as the bitwise difference

between the two sequences corresponding to the selected and discarded paths. For

every state the corresponding bit-error event is stored in memory. At the decoding

state, i.e. the state used to output the detected data, the corresponding bit-error event

is extracted and is input to the equalizer and target adaptation loops.

We should point out that knowledge about the dominant bit-error events is not

only needed for adaptation but can also be used to improve system performance at a

moderate cost via employing a reduced complexity post-processor, e.g. [98].

3.4 Target Response Adaptation

The basic idea of the Near Minimum-BER (NMBER) adaptation is to minimize the

cost function∆e for all relevant bit-error sequences. The different functions∆e for

the different bit-error sequences are combined with different weights so as to achieve
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the best overall BER. For clarity, let us first focus on a given bit-error sequenceek

and develop an adaptive target response scheme that minimizes (3.4). The different

functions∆e for different bit-error events are subsequently weighted such that the

overall BER is optimized.

For a given bit-error sequenceek, a target adaptation scheme that minimizes (3.4)

can be based on the steepest descent algorithm. This consists of following at each

iteration the opposite direction of the gradient of∆e with respect to the target coeffi-

cients. The adaptation of thepth target tap can be written as follows:

g(k+1)
p = g(k)

p −η′(e)
∂∆e

∂gp

∣∣∣∣
g=g(k)

, (3.5)

whereg(k)
p is the pth target tap at timekT. The coefficientη′(e) denotes the target

adaptation constant and is ideally proportional to the Hamming weight of the bit-error

eventek, i.e. η′(e) = η0Hw(e) whereη0 is a positive constant value, see Chapter 2.

It should be noted that using the steepest decent algorithm can cause the target

adaptation scheme of (3.5) to converge to a local minimum, especially if the initial

target response is far off. This is inherent in the BER minimization problem because

one can check that BER as a function of the target response is non-convex and can

have several local minima. One possible way to find a global minimum is via the

use of simulated annealing techniques [104] or genetic algorithms [48]. However,

the complexity of these algorithms restricts their use for a real time adaptation of the

target response. In this chapter we simply stick to the steepest decent algorithm for

its simplicity and assume that the initial target responseg(0) is well chosen, e.g. by

settingg(0) to be equal to the MMSE solution [78].

Upon replacing the expectation ofX′e in (3.4) by its instantaneous realization and

taking its gradient with respect to thepth target tap, an expression of the adaptation

rule (3.5) can be derived. This can be written as

g(k+1)
p = g(k)

p −η(e)Γ(k)
p 1l{ δT

e ε
δT
e δe

>(1−α)} (3.6)

Γ(k)
p =

{
eT

k−pε−δT
ebk−p−2

δT
eε

δT
eδe

δT
eek−p

}
, (3.7)

whereη(e) = η0
Hw(e)
δT

eδe
, bk−p = [bk−p,bk−p−1, . . .], ek−p = [ek−p,ek−p−1, . . .] andε =

[εk,εk−1, . . .].
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The term δT
eε

δT
eδe

in the right hand expression of (3.7) can be interpreted as a weigh-

ing factor in the maximization of the Euclidian distanceδT
eδe with respect to the

minimization ofδT
eε. In order to simplify (3.7), this term can be simply fixed to a

valueβ that meets the enabling condition, i.e.β > 1−α. This is taken to be equal

to 1 in the sequel. From our simulations, no noticeable degradation was observed

with this approximation. Moreover, depending on the dominant bit-error events, the

ratio Hw(e)
δT

eδe
in the expression of the adaptation constantη(e) can be assumed to be

approximately independent ofek. This would further simplify (3.6).

Using the above mentioned approximations and expressing the enabling condi-

tion in terms of the VD path metrics, (3.6) and (3.7) can be rewritten as

g(k+1)
p = g(k)

p −η(e)Γ(k)
p 1l{M (b+2e)−M (b)<4αδT

eδe}
Γ(k)

p = eT
k−pε−δT

e

(
bk−p +2ek−p

)
.

(3.8)

The overall target adaptation can be explained as follows. At every clock cycle, an

ACS operation is employed at every state. At the decoding state, two quantities are

derived. First, the difference in path metrics between the selected and the discarded

paths is taken. Second, a bit-error sequenceek is derived as the bitwise difference be-

tween the two sequences corresponding to the discarded and the selected paths. This

derivation of the bit-error sequence reflects the Decision Directed (DD) mode where

the transmitted data is not known to the receiver. In the Data Aided (DA) mode where

the transmitted data is available to the receiver as a known preamble, the derivation

of the bit-error event is simpler because the state that corresponds to the transmitted

data is known at every clock cycle. In this case, the bit-error sequence corresponds

to the discarded path by the ACS operation if the ACS decision is correct and to the

selected path otherwise.

The bit-error sequenceek is used to compute the vectorδe = [(g∗e)k, ...(g∗e)k−L]T ,

where the integer valueL depends on the maximum length of relevant bit-error se-

quences. In the sequel, we simply fixL to the backtracking depth of the VD. The

target adaptation is enabled only when the difference in path metrics is smaller than

4αδT
e δe. When the adaptation is enabled, the expressionΓ(k)

p in (3.8) is evaluated,

scaled with−η(e) and then passed to an ideal discrete-time integrator that produces

the updatedpth target tap value. One should note that evaluation ofΓ(k)
p does not

require real multiplications.
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Remark :

Storage systems usually employ parity-check (PC) and error correction codes (ECC)

in order to tackle the remaining bit-errors at the VD output. The performance of these

codes depends on the dominant bit-error events after the VD. Therefore, to optimize

sector error rate (SER) after PC and ECC decoding, the adaptation constantsη(e)
can be better chosen such that the target and equalizer adaptation focuses primarily

on the error events that are not covered or ‘less covered’ by the PC and ECC. In

other words, the scheme presented in this chapter can be generalized to achieve SER

minimization through optimization of the adaptation constantsη(e).

Example 3.2:

In order to illustrate the way NMBER target adaptation works, let us consider a sim-

ple case where only two bitsb0 andb1 are transmitted over a linear channelh(D) =
1+h1D with additive Gaussian noise, assume that the equalizer is fixed tow(D) = 1

and consider only target responses of the formg(D) = 1+ γD whereD denotes the

unit delay operator. Let us also focus only on the single bit-error event on the bitb1,

i.e. e0 = 0 ande1 =−b1. Because the equalizer is fixed, designing a target response

in this case is equivalent to defining a constellation of four points corresponding to

the four possible bit sequences(b0,b1) ∈ {(+1,+1),(+1,−1),(−1,+1),(−1,−1)}.
The NMBER adaptation ofγ is given by (3.8). It can be shown easily that the

NMBER enabling condition is written asb1x1 < α + γb0b1 and thatΓ1 = b0b1. For

example ifb0 = b1 = 1, the enabling condition becomesx1 < α + γ which means

that the NMBER algorithm focuses adaptation on realizations ofx1 that are close to

the decision boundary given byb1x1 = γb0b1. An example of how the constellation

changes in such case is shown in Figure 3.2. The constellation points change so that

the detector input vectorx is farther from the new decision boundary.

When the adaptation is enabled, thenγ(k+1) = γ(k)−η(e)b0b1. Therefore, when

enabled, the NMBER algorithm increasesγ if b0b1 = −1 and decreases it with the

same absolute value ifb0b1 = 1. For simplicity, let us consider only the two upper

points of the constellation corresponding tob0 = 1 andb1 =±1. One can check that

the convergence is reached when

Pr(x1 < γ+α|b1 = 1) = Pr(x1 > γ−α|b1 =−1). (3.9)

Becauseb0 = 1, we havex1 = b1+h1+n1 wheren1 denotes the noise component
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Figure 3.2: An example of adaptation ofγ for a transmitted sequenceb0 =
b1 = 1 and a detector input vectorx. The gray constellation

points correspond toγ(0) = 0 and the black ones correspond to

γ(1) =−η(e).

of x1. The MMSE solution forγ is given byγmmse= h1. The NMBER solution ofγ is

given by (3.9) which can be written asPr(n1 < γ+α−1−h1) = Pr(n1 > γ−α+1−
h1). One can easily show that this is equivalent toγ+α−1−h1 =−(γ−α+1−h1)
which leads toγnmber= h1. Therefore, in this case the MMSE and NMBER solutions

are identical, i.e.γnmber= γmmse.♦

Example 3.3:

Let us consider in this example the same scenario of Example 3.2 at the exception

of the channel. The channel outputx1 for b1 = 1 is assumed to take in the absence

of noise two possible values:x1 = 1−υ or x1 = 1+υ with equal probabilities. The

channel output in the absence of noise forb1 =−1 is x1 =−1. This can be a result of

nonlinear ISI for example or can be seen as a simple model of media noise in optical

storage channels, where the ones on the disc are either a bit oversized or undersized.

In this case, it is easy to prove that the MMSE target response is given byγmmse= 0.

The derivations provided in Example 3.2 of the steady state NMBER equation

apply also to this case. The NMBER solutionγnmber can be derived from (3.9) and
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can be written as the solution of

Pr(n1 > γ−α+1) =
1
2

[Pr(n1 < γ+α−υ−1)+Pr(n1 < γ+α+υ−1)]

It can be shown after some algebraic manipulations thatγnmber' −υ
2 6= γmmse.

For a givenγ, the BER is given by

BER(γ) =
1
2

Q

(
1+ γ
σn

)
+

1
4

Q

(
1− γ−υ

σn

)
+

1
4

Q

(
1− γ+υ

σn

)
,

whereσn denotes the variance ofn1. Figure 3.3 shows the BER of the NMBER and

MMSE targets as a function ofυ for differentSNR= 1/σ2
n values. It is apparent that

the NMBER target has a superior BER performance than the MMSE one. Moreover,

the gain in BER increases withυ and decreases with SNR.♦
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Figure 3.3: BER versusυ for differentSNRvalues.

3.4.1 interaction between the equalizer and target adaptation

The BER of the EML system of Figure 3.1 does not change if the equalizer and target

responses are scaled with the same factor. This interaction can cause the equalizer
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and target energy to drift to big values or decrease to very small values which leads

to saturation or quantization problems in fixed-point implementations. A simple way

to solve this interaction problem is to fix the energy of the target response. The target

adaptation rule (3.8) is then modified so that after every adaptation the target is scaled

to have a unit energy.

Another interaction problem arises from the fact that, for a linear channel and

long equalizer, BER is independent of the phase response of the target response.

Contrary to the minimum phase target response that arises from MMSE adaptation

with a monic constraint, the simplest practical choice of the target response phase for

storage channels is linear phase. In fact, a linear phase target presents the following

advantages:

• Because both magnetic and optical storage channels have nominally a linear

phase, a linear phase target implies that no phase equalization is required, i.e.

the nominal equalizer needs only to handle amplitude channel distortions. This

relaxes the requirement on the equalizer complexity.

• It avoids automatically the interaction problem that arises between the target

adaptation and the timing recovery loop.

• It allows simplifications of the VD without loss in BER because the total num-

ber of branch metrics that need to be computed at every clock cycle is roughly

halved. Complexity reduction can also be obtained by folding the VD trel-

lis [69].

• Only half of the total number of target taps needs to be adapted. This halves the

target adaptation complexity and improves its tracking capabilities compared to

a situation where all the target taps need to be adapted. In fact, for a symmetric

target response of lengthNg, the adaptation rule (3.8) can be written as

∀p, 0≤ p≤ Ng−1
2 , p′ = Ng−1− p

Γ′p
(k) = (ek−p +ek−p′)

Tε−δT
e

(
bk−p +bk−p′ +2(ek−p +ek−p′)

)

g(k+1)
p = g(k)

p −η(e)Γ′p
(k)1l{M (b+2e)−M (b)<4αδT

eδe}
g(k+1)

p′ = g(k+1)
p .

A similar adaptation rule can be derived for antisymmetric target responses.

This boils down to replacing in the above equations,ek−p + ek−p′ andbk−p +
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bk−p′ by ek−p−ek−p′ andbk−p−bk−p′ respectively and changing the last equa-

tion tog(k+1)
p′ =−g(k+1)

p .

We make a distinction between optical and magnetic storage channels. For optical

channels and perpendicular magnetic storage channels, the target is constrained to be

symmetric and its energy is fixed to 1. For longitudinal magnetic storage channels,

the target is constrained to be antisymmetric with a unit energy.

3.5 Stability Analysis of the NMBER target adaptation

In order to derive stability conditions of the NMBER adaptation, let us for the sake

of simplicity assume that the equalizer is fixed and focus only on the NMBER target

adaptation. Let us also consider only one bit sequencebk and a given admissible

bit-error sequenceek. Let us consider first the case where channel noise is absent. A

discussion on the impact of noise is provided afterwards.

The NMBER target adaptation was given in (3.8). One can rewrite this adaptation

rule using the vectorg = [g0, . . . ,gNg−1]T, whereNg denotes the target length, as

g(k+1) = g(k)−η(e)(Mb,eg
(k) +cb,e)1l{ 1

2g(k)TMb,eg(k)+cT
b,eg

(k)>0}, (3.10)

where(cb,e)p = eT
k−px, x = [xk,xk−1, . . .]T, and the symmetric matrixMb,e is given by

(Mb,e)p,q =−eT
k−pbk−q−eT

k−qbk−p−2eT
k−pek−q. (3.11)

As mentioned earlier, the NMBER algorithm can converge to a local minimum

because of the non-convex nature of the cost function that it minimizes, i.e. the non-

convex nature of BER as a function of the target coefficients. The possible existence

of local minima can also be seen by the fact that the matrixMb,e is not necessarily

positive definite for all bit sequencesbk. In fact, if we consider single bit-error events,

it can be easily shown thatE[Mb,e] = 0, where the expectation is taken over all pos-

sible bit sequences. This means that there exist at least one bit sequencebk such that

the matrixMb,e is not positive.

We will qualify then the NMBER algorithm of being stable if and only ifg(k)

converges to a finite targetg(∞) regardless of the initialization pointg(0).

Before deriving the condition for stability of (3.10), let us first rewrite (3.10) in

a simpler form. Let us introduce the vectorĉb,e such thatMb,eĉb,e = cb,e. Using the
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vectorĉb,e, one can prove that (3.10) can be rewritten as:

ĝ(k+1) = ĝ(k)−η(e)Mb,eĝ
(k)1l{ĝ(k)T

Mb,eĝ(k)>ĉT
b,eMb,eĉb,e}

, (3.12)

whereĝ(k) = g(k) + ĉb,e. In order to derive stability conditions of (3.10) or equiva-

lently (3.12), let us start by considering an eigenvalueλ of Mb,e and initializeĝ to a

corresponding eigenvectorvλ, i.e. ĝ(0) = vλ. Generalization to any initial vectorg(0)

is discussed afterwards. With this initialization, the adaptation rule (3.12) becomes

ĝ(k+1) = ĝ(k)−λη(e)ĝ(k)1l{λĝ(k)T
ĝ(k)>ĉT

b,eMb,eĉb,e}
.

If λ > 0 and initially the enabling condition is met, then one can show that

the only case the algorithm diverges is when|1− λη(e)| ≤ 1. In fact, when|1−
λη(e)| ≤ 1 then it is easy to show that the enabling condition is always met be-

cause∀k ĝ(k)T
ĝ(k) ≥ ĝ(0)T

ĝ(0). In such case, the adaptation rule becomes:ĝ(k+1) =
(1−λη(e))ĝ(k) which does not converge when|1−λη(e)| ≤ 1.

If λ < 0 then it can be shown that the algorithm will always converge. In fact,

instability can only occur if the enabling condition is always met. The algorithm

freezes as soon as the enabling condition is not met. If one supposes that the enabling

condition is always met, then̂g(k+1) = (1− λη(e))ĝ(k) will diverge becauseλ < 0.

We would have thenlimk→∞ ĝ(k)T
ĝ(k) = +∞ which is contradictory to the fact that the

enabling condition met, i.e.λĝ(k)T
ĝ(k) > ĉT

b,eMb,eĉb,e, becauseλ < 0. Therefore, the

enabling condition is not always met and the algorithm does not diverge in this case.

In the caseλ = 0 it is trivial that there is no divergence problem. Therefore the

stability condition can be written

∀λ > 0 eigenvalue ofMb,e, |1−λη(e)|< 1. (3.13)

Now, considering any initialization vectorĝ(0), it can be easily shown by decom-

posingĝ(0) on the basis of eigenvectors ofMb,e that (4.21) is a sufficient condition

for stability. The demonstration follows the same reasoning as that presented above.

Impact of noise:

In the noiseless case, the NMBER algorithm freezes as soon as the enabling con-

dition is met. In the presence of noise, the enabling condition in (3.10) becomes
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dependent on noise realizations. This can be equivalently seen as changing the adap-

tation loop gain which becomes proportional to the enabling rate of the NMBER

algorithmEnR= E
[
1l{∆M b,e≤4αδT

eδe}
]

= Pr(δT
eε≥ (1−α)δT

eδe). The impact of noise

on stability can be derived from the noiseless case by replacingη(e) with η(e)EnR.

The stability condition of (4.21) is then written as

∀λ > 0 eigenvalue ofMb,e, |1−λη(e)EnR|< 1. (3.14)

BecauseEnR≤ 1 then the stability condition in the noiseless case (4.21) becomes a

sufficient condition for stability in the noisy case.

3.6 Simulation Results

By way of illustration we consider an idealized optical storage channel according to

the Braat-Hopkins model [42], see Chapter 1,

H(Ω) =





2T
π

sin(πΩ)
πΩ

(
cos−1| Ω

Ωc
|− Ω

Ωc

√
1− ( Ω

Ωc
)2

)
, |Ω|< Ωc,

0, |Ω| ≥Ωc.

whereΩc denotes the normalized optical cut-off frequency. We consider a capacity

of 30 GB on a single layer 12 cm disc. The corresponding channel bit-length is

Tbit = 62 nm and the resulting normalized cut-off frequency, given byΩc = 2NA
λ Tbit,

equalsΩc = 0.26.

The channel output is corrupted by two different noise components. The first one

is data-dependent noise media noiseuk and the second one is additive white Gaussian

electronics noisezk with zero mean and varianceσ2
z. We recall the two SNR measures

defined in Chapter 1: a signal to media noise ratio (SMNR) and a signal to additive

noise ratio (SANR) given by

SMNR=
2

σ2
u
[dB] and SANR=

∑k h2
k

σ2
z

[dB].

3.6.1 Impact of channel nonlinearities

At high storage densities, the optical channel exhibits bilinear ISI as shown in [22].

In order to mimic the bilinear ISI in the channel we introduce bilinear ISI components
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caused by the central bitbk and its two neighboring bitsbk+1 andbk−1, i.e. the replay

signal is written as

rk = (h∗b)k + γ(bkbk−1 +bkbk+1 +bk−1bk+1)+mk +zk,

whereγ denotes the bilinear ISI parameter. Throughout the simulations, the databk

is taken to be run-length-limited with run-length parameters(d,k) = (1,7).

In this subsection, the length of the target response is fixed to 5-taps which cor-

responds to a 10-state VD and the equalizer length is fixed to 11. Throughout the

simulation results the value of the parameterα for the NMBER adaptation is fixed to

α = 0.25.

In order to assess the performance of the NMBER target adaptation, we consider,

for comparison, the MMSE target adaptation with the monic and energy constraints.

All adaptation algorithms are run in the data-aided mode where the databk is used in

the different adaptation loops.

By way of comparison, let us first consider the case where only the additive elec-

tronic noise is present, i.e. no media noise. Figure 3.4 and Figure 3.5 show simulated

BER as function of SANR forγ = 0 and γ = 0.1, respectively. In the absence of

nonlinearities, the different target adaptation schemes yield a similar performance

because noise is white. However, they behave differently in the presence of channel

nonlinearities. For clarity, we distinguish here between the first case where the branch

metrics in the VD are based only on the linear target and the second case where also

the pattern-dependent offsets (PD-offsets) are employed as in [116].

• In the first case, it is apparent from Figure 3.5 that MMSE adaptation with the

monic constraint behaves slightly better than that with the energy constraint.

The NMBER adaptation allows, however, an important gain in SANR of 1.8

dB with respect to MMSE adaptation with the monic constraint.

• When the PD-offsets are employed in the VD, the performance of MMSE adap-

tation with the energy constraint outperforms that with the monic constraint.

NMBER adaptation still outperforms MMSE adaptation with both constraints.

The gain in SANR of the NMBER adaptation with respect to the MMSE adap-

tation with energy constraint is about 0.7 dB. In order to understand the behav-

ior of the monic constraint and the relatively poor performance in the presence
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of nonlinearities, Figure 3.6 shows the bilinear RISI components at the de-

tector input. The first bilinear RISI component results from the ISI terms of

the formbkbk−1 and the second bilinear RISI results from the ISI terms of the

form bkbk−2. Figure 3.6 shows clearly that, because of the phase equalization

involved, the monic constraint causes a spreading of the nonlinear ISI. This

spreading causes the nonlinear ISI component to span bits that are outside the

linear target response span (VD span). However, the energy constraint and

the NMBER adaptation keep most nonlinear components within the VD span

which allows a performance improvement using the PD-offsets in the VD.
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Figure 3.4: Simulated BER vs SANR in the absence of media noise forγ = 0.

In the case where only the media noise is present, i.e. no electronic noise, Figure

3.7 and Figure 3.8 show BER as function of SMNR. In the absence of nonlinearities

(Figure 3.7), MMSE adaptation with the monic constraint allows similar performance

as the NMBER adaptation because of its known noise whitening abilities. The energy

constraint has, however, a penalty of 0.9 dB in SMNR compared to the monic con-

straint. In the presence of nonlinearities,γ = 0.1 in Figure 3.8, the monic constraint

suffers from spreading the nonlinearities similarly to Figure 3.5 and Figure 3.6. The

NMBER adaptation in this case allows a gain of around 1.3 dB in SMNR with respect
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Figure 3.5: Simulated BER vs SANR in the absence of media noise forγ =
0.1.

to MMSE adaptation with the monic constraint. As far as the gap in SMNR between

the monic and energy constraint is concerned, this depends on the amount of me-

dia noise with respect to channel nonlinearities. As shown in Figure 3.8, the monic

constraint allows a better performance in the presence of media noise and the energy

constraint is superior in the presence of nonlinearities as shown in Figure 3.5. As the

amount of channel nonlinearity increases, the gap between the monic and energy con-

straints becomes bigger. Figure 3.9 shows BER as function of SMNR forγ = 0.15.

Because of the spreading of nonlinearities, the monic constraint performs very poorly

in this case and is outperformed by the energy constraint. The NMBER adaptation

in this case allows an important improvement of around 2.8 dB with respect to the

energy constraint.

3.6.2 NMBER adaptation performance as function of the equalizer and
target lengths

In Section 3.6.1 the length of the target response was fixed to 5 and that of the equal-

izer to 11. We observed that in the absence of nonlinear ISI, the MMSE target adap-
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Figure 3.6: Bi-linear RISI at the detector input for the MMSE adaptation

with the monic constraint and NMBER adaptation forγ = 0.1.

tation with the monic constraint provided a similar performance than the NMBER

target adaptation. As the equalizer and target lengths decrease the two schemes be-

have differently. Figure 3.10 shows BER as a function of the equalizer length in the

absence of nonlinearities. In the presence of media noise the monic target requires

the use of relatively longer equalizers than the NMBER target because of the noise

whitening. Contrary to the monic target adaptation, the NMBER adaptation is quite

robust to equalizer length reduction. This implies an important reduction in equalizer

implementation complexity. Similar observations hold in the presence of additive

noise although the reduction of equalizer length is smaller than in the presence of

media noise. This is mainly because only little equalization is required with a 5-tap

target and additive white noise.

As the length of the target decreases, the amount of residual ISI at the detector

input becomes more pronounced. Figure 3.11 shows BER versus SMNR for a 2 and

3 tap target in the absence of channel nonlinearities. The performance of a 3-tap

target in this case is very close to that of a 5-tap target. This is not surprising as

the noise spectrum in the media noise environment follows the signal spectrum very

closely and there is no noise enhancement penalty of one target relative to the other.
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Figure 3.7: Simulated BER vs SMNR at the absence of electronic noise for

γ = 0.

Figure 3.11 shows that the NMBER adaptation outperforms the monic constraint for

a 2-tap target. Figure 3.10 shows also the robustness of the NMBER against target

length reduction.

3.6.3 Convergence Behavior of NMBER adaptation scheme

Because of the highly nonlinear nature of the NMBER adaptation, a full theoreti-

cal analysis of the convergence behavior of the equalizer and target adaptation is not

straightforward. A typical convergence behavior of the NMBER target adaptation

algorithm is captured in Figure 3.12 at SANR=14 dB and in the absence of media

noise and channel nonlinearities. The upper plot in Figure 3.12 shows the conver-

gence of the first tap of the targetg0 for different values of the adaptation constant

η0. The lower plot shows the adaptation enabling rateEnRfor η0 = 4×10−4 where

it is apparent that at the start of adaptation, EnR is high and that the closer the target

gets to its steady state solution, the smaller EnR becomes. Because the adaptation

loop gain is proportional to EnR, the NMBER adaptation presents the advantage that

its adaptation gain is high at the start of adaptation, or if the channel changes, which
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Figure 3.8: Simulated BER vs SMNR at the absence of electronic noise for

γ = 0.1.

allows a fast adaptation and becomes smaller as the target gets close to its steady state

which in turn allows a fine tracking of small channel variations. The MMSE-based

adaptation algorithms do not share this property as their loop gain is fixed over time.

Another appealing property of theEnR= Pr(δT
eε ≥ (1− α)δT

eδe) is its direct

relation to BER. In fact, using the Gaussian approximation of the error signal at the

steady state target, one can write

EnR= Q


(1−α)

δT
e δe√

δT
e Rεδe


 (3.15)

whereRε denotes the autocorrelation matrix of the error signal. The argument of

the Q-function in (3.15) is proportional to that in the expression of bit-error rate

given byBER ∝ Q

(
δT

e δe√
δT

e Rεδe

)
. Therefore, measuringEnR, which comes for free

with the NMBER algorithm, provides a direct and quick indication of BER. Whereas

measuring BER is usually time consuming, measuringEnR can be fast and is very

straightforward. ObservingEnRis thus a simple mean for system performance eval-

uation. This is similar to the sequence amplitude margin method presented in [118]
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Figure 3.9: Simulated BER vs SMNR at the absence of electronic noise for

the 30GB Blu-ray channel andγ = 0.15.

but however comes for free with the NMBER target adaptation.

Remark :

The simulation results presented in this chapter relate to optical storage channels,

however the result of this chapter carry over directly to longitudinal and perpen-

dicular magnetic storage channels. The generalization to perpendicular magnetic

storage channels is more straightforward because of their similarities to optical stor-

age channels.

3.6.4 Discussion on gradient noise

Because the NMBER algorithm attempts to minimize BER, it will also minimize the

EnR because this latter is a monotonous function of BER (3.15). Therefore, because

the gradient of EnR is zero at steady state, a first order approximation of the target

adaptation rule (3.10) near steady state can be written as

g(k+1) = g(k)−η(e)(Mb,eg
(k) +cb,e)EnR(g∞).
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Figure 3.10: BER vs the equalizer length at the absence of nonlinearities,

i.e. γ = 0, for the all media noise case at SMNR=13 dB (upper

plot) and all additive noise case at SANR=14 dB (lower plot).

Therefore the NMBER target adaptation behaves asymptotically as a linear first

order adaptation loop. Therefore, by analogy to a linear first order loop [86] the total

loop gain of the NMBER adaptation is proportional toη(e)EnR(g∞) and the adapta-

tion gradient noise is also proportional toη(e)EnR(g∞), i.e. σ2
g ∝ η(e)EnR(g∞).

Because EnR is also a function of the gradient noiseσ2
g and thus ofη(e), the
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Figure 3.11: Simulated BER vs SMNR for different target lengths at the ab-

sence of channel nonlinearities and electronic noise.

gradient noise in the NMBER adaptation is not a linear function ofη(e) as it is the

case for a linear first order loop. This could also be seen from Figure 3.12 where

multiplying η(e) by a factor 2 leads to an increase in gradient noise by a facto higher

than two.

However, similarly to a linear first order loop, the efficiency of the NMBER adap-

tation scheme, which is, roughly speaking, defined as the ratio between gradient noise

and total loop gain, is independent on the adaptation constantη(e).

3.7 Conclusions

In this chapter a new equalizer and target adaptation scheme has been proposed for

equalized maximum likelihood systems. This new scheme seeks to minimize di-

rectly the bit-error rate. The proposed scheme incorporates a selection mechanism

that enables equalizer and target adaptation only if the difference in path metrics,

between the selected and discarded paths from the Viterbi trellis, is smaller than a

prescribed threshold. The new adaptation scheme is not more complex than MMSE-

based schemes. Simulation results for an optical storage system showed that our
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Figure 3.12: The NMBER target convergence behavior and the correspond-

ing enabling rate forη0 = 4× 10−4 computed over the last

1000 samples.

scheme outperforms significantly the existing scheme especially for short target or

equalizer lengths or in the presence of media noise and channel nonlinearities.
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Chapter 4

Asynchronous Adaptive Equalization

Advanced data receivers for storage systems often operate at a sampling rate1/Ts that

is asynchronous to the baud rate1/T. A digital equalizer will then also operate in

the asynchronous clock domain. The adaptation of this equalizer is based on an error

signalεk that is produced in the synchronous clock domain. Existing adaptation tech-

niques, derived from LMS, require the use of a complex sampling rate converter or

inverse sampling rate converter in the adaptation path. The objective of this chapter

is to analyze and design an alternative topology that is simpler from an implemen-

tation standpoint and still close to optimal. Whereas this chapter focuses on LMS

adaptation for simplicity, its main results generalize to other adaptation techniques,

e.g. NMBER adaptation of Chapter 2. The proposed asynchronous LMS topology is

comparable to its synchronous counterpart in terms of complexity. Numerical results

are provided for an idealized optical channel. They show the merits of our scheme

compared to the state of the art.

4.1 Introduction

Most modern data receivers for storage and transmission systems operate in the digi-

tal domain in order to profit from advanced digital signal processing techniques. An

adaptive equalizer is commonly used in these systems as a key part of the receiver.

In early transmission systems, symbol-spaced equalization, in the form of a transver-

sal filter with variable tap gains and tap spacing equal to the symbol spacingT, was

used. For automatic adjustment of the tap gains in an adaptive manner during the en-

tire period of transmission, the least mean-square (LMS) error algorithm has become

a standard method, e.g. [133].
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Already in early telephone line modems, equalizers with tap spacing that is less

than the symbol interval were suggested. These Fractionally Spaced Equalizers (FSE)

[103], [43], [144] offered many improvements over symbol-spaced equalizers in

terms of performance insensitivity to sampling phase and ability to compensate for

more severe delay and amplitude distortions with less noise enhancement [144].

A different equalization trend arises from receivers for digital storage systems.

In these systems, symbol-spaced equalization was first employed and applied to the

digitized and synchronized analog replay signal [20]. This requires the analog signal

to be first sampled at the baud rate1/T prior to equalization, where the sampling in-

stants are defined by a timing-recovery circuit. A major drawback of symbol-spaced

equalization is that the equalizer is inside the timing-recovery loop. This causes the

equalizer latency to contribute to the timing-recovery loop delay which has a signifi-

cant impact on its stability margin and convergence speed [85]. This can be especially

dramatic for systems where fast timing variations occur, e.g. for high-density optical

storage systems. In order to reduce loop delay, the digital equalizer is shifted out of

the timing-recovery loop [21], [112], [35]. A common baseband topology is depicted

in Figure 4.1.

���

sT/1T/1

�����	
�� 
�������

�	�	���

��������

�����	
��

�������	��

����	����

�	����
�	��


��	�	���

T/1

sT/1

�����

�	����

)(tr

�




�

���

 ���!���	���

����"

kε

Figure 4.1: Baseband receiver with asynchronous equalizer. Asynchronous

and synchronous clock domains are indicated with the symbols

1/Ts and1/T, respectively.

The replay signalr(t) is filtered with an analog low-pass filter (LPF) which sup-

presses out of band noise. The LPF output is then digitized by an analog to digital

converter (ADC) which is operating at a free-running frequency1/Ts that is asyn-

chronous to the baud rate1/T, where1/Ts is chosen to be high enough to prevent

aliasing. The ADC output is applied to an equalizer which controls intersymbol inter-
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ference (ISI) and noise. This equalization is called asynchronous because it operates

on samples that are asynchronous to the bit clock in both frequency and phase. A

sampling rate converter (SRC) [40] [86], re-samples the equalizer output signal at the

correct rate and phase. The SRC is controlled by an all digital timing-recovery circuit

that defines the re-sampling instants. The re-sampled sequence serves as input to a bit

detector that produces bit decisions and an error signalεk. This error signal serves as

a basis to adjust the equalizer taps and the re-sampling instants of the timing-recovery

as we will see in Chapter 5.

Although an asynchronous equalizer and a FSE look similar, there are two funda-

mental differences that have significant impacts on adaptation. First, synchronization

in systems employing FSEs is normally achieved at the front-end of the receiver by

controlling the sampling phase and frequency of the ADC. This makes the FSE adap-

tation quite simple because alignment (in phase and frequency) of the error and the

equalizer input signal is straightforward in contrast to asynchronous equalization as

we will see in the continuation of this chapter. However, this causes the FSE to

be part of the timing-recovery loop and thus affecting its stability margin and con-

vergence speed as mentioned earlier. Second, whereas FSEs are normally used for

channels with positive excess bandwidth, i.e. the channel cut-off frequencyΩc is

bigger than the Nyquist frequency1/2T, asynchronous equalization is usually ap-

plied to channels with negative excess bandwidth, i.e.Ωc < 1/2T, where timing-

recovery becomes critical for system performance as it is the case for high-density

optical storage systems [86]. Besides, in asynchronous equalization, the sampling

rate1/Ts may be lower than1/T in the case of a negative excess bandwidth channel,

i.e. Ωc ≤ 1/2Ts < 1/2T. This allows the asynchronous equalizer to have fewer taps

than its synchronous counterpart without any loss in performance.

To achieve the advantages of asynchronous equalization, it is necessary to de-

velop an asynchronous adaptation scheme that can achieve near optimal performance

while being realizable by means of simple circuits. These advantages have motivated

several research activities.

In [35] an equalizer adaptation scheme that is based on the synchronous error

signal εk was proposed. The error signal is converted to the asynchronous clock

domain via an inverse sampling rate converter (ISRC) before cross-correlation with

a delayed equalizer input. This conversion is meant to align the error signal and the

equalizer input both in sampling rate and phase.
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In [28] the equalizer adaptation was obtained by converting the equalizer input to

the synchronous clock domain via an auxiliary sampling rate converter (SRC) and a

fractional shift register (FSR) prior to cross-correlation with the error signal.

Because the first scheme [35] is quite complex and the second [28] can only han-

dle a limited range of oversampling ratiosT/Ts, this chapter focuses on developing

an alternative adaptation topology that overcomes these two disadvantages while af-

fording near-optimum performance.

The basic idea compared to [28] is that the combination of the auxiliary SRC and

the FSR is replaced by a very simple form of interpolation to re-sample the equalizer

tap signals at the correct instants. The re-sampling instants are determined by the

timing-recovery circuit.

The remainder of this chapter is organized as follows. Section 4.2 describes the

system model and nomenclature. Section 4.3 presents analytical results for asyn-

chronous MMSE equalization and Sections 4.4 and 4.5 analyze the problem of adap-

tive asynchronous equalization. A simple solution is then presented in Section 4.6.

Section 4.7 provides numerical results that illustrate the performance of the proposed

adaptation scheme for an idealized optical storage system.

4.2 System Model and Nomenclature

In Figure 4.2, a binary data sequencebk of baud rate1/T is applied to a linear disper-

sive channel with symbol responseh(t) and additive noisez(t) with power spectral

density equal toN0. In this chapter we consider channels without excess bandwidth,

i.e. channels that have no transfer beyond the Nyquist frequency1/2T.
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Figure 4.2: The system model. Timing-recovery loop is not shown.
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The output of the channel is a continuous-time signal

r(t) = ∑
k

bkh(t−kT)+z(t).

This output is applied to an ideal low-pass filter (LPF) to prevent aliasing and then

digitized via an ADC at a free-running frequency1/Ts. We denote byrn the ADC

output at the sampling instantts
n = nTs. This output may be written

rn = ∑
k

bkh(ts
n−kT)+zn (4.1)

wherezn is pre-filtered and sampled noise. For simplicity, the noise in this chapter is

assumed to be uncorrelated and to have a varianceσ2
z = N0/Ts which corresponds to

considering only electronics noise in an optical storage channels.

The sequencern is applied to a transversal equalizer with coefficientswp, p ∈
{0, ...,Nw−1}, whereNw is the length of the equalizer. The equalizer outputyn =
(r ∗w)n, where∗ denotes discrete convolution, is used as input of an SRC that serves

to re-samples the asynchronous signalyn at the correct frequency and phase. The

SRC is part of a timing-recovery loop [40], [112], [86]. Throughout the chapter

we assume that the timing-recovery is ideal and denote the re-sampling instants by

tr
k = tr

0 + kT wheretr
0 denotes the time instant at which the SRC output sample with

index 0 becomes available. For simplicity we settr
0 = 0. The SRC output may be

written as

xk = ∑
n

ync(tr
k−nTs),

wherec(t) is the equivalent continuous-time symbol response of the SRC. Following

[40], we expresstr
k as a sum of an integer multiple and a fraction ofTs, i.e. tr

k =
(mk + µk)Ts wheremk = btr

k/Tsc andµk = tr
k/Ts−mk. Clearly0≤ µk < 1. We will

refer tomk andµk as the basepoint index and the fractional interval respectively. It is

easy to recastxk in terms ofmk andµk, which givesxk = ∑nymk−nc((n+µk)Ts). This

can be written as a discrete time convolution

xk = (cµk ∗y)mk (4.2)

wherecµk
n = c((n+µk)Ts) is the discrete version of the SRC symbol response, sam-

pled with the fractional delayµkTs. The SRC is driven by a phase-locked loop (PLL),

that is part of the timing-recovery circuit, and that provides at each synchronous clock
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cycle the values ofmk andµk. The SRC outputxk is fed to a bit detector (DET) that

produces bit decisionŝbk. For mathematical convenience we neglect the delays of the

different modules and the latency of the bit detector and assume thatb̂k = bk.

4.3 Asynchronous MMSE Equalization

The task of the Minimum Mean Square Error (MMSE) equalizer in the system model

of Figure 4.2 is to minimize the power of the error signal at the bit detector input. The

error signal is derived as the mismatch between the actual detector inputxk and the

ideal input for bit detection called reference signal. In the case of a partial-response

maximum-likelihood (PRML) receiver [20], see Chapter 1, the detector has a pre-

scribed target responsegk, and all the signal processing modules act to make the

detector input look as much as possible similar to the corresponding reference sig-

nal. This reference signaldk, as function of the target responsegk, can be written

dk = (g∗b)k. The error signalεk is then given byεk = xk− (g∗b)k. Replacingyn by

(w∗ r)n in (4.2) yields

εk =
Nw−1

∑
p=0

wp(cµk ∗ r)mk−p− (g∗b)k. (4.3)

The MMSE coefficientswp are obtained by minimizing the cost functionJ =
E[ε2

k], whereE[.] denotes the expectation operation. This problem has been stud-

ied in [114]. It has been shown in particular that the MMSE equalizer tap vector

w = [w0, ...,wNw−1]T, where[·]T denotes matrix transposition, is characterized by

the following linear system:

(FRbFT+CRzCT)w = FRbg, (4.4)

where the matrixF has entriesFp,q = ∑nc(nTs− pTs)h(qT− nTs), C is given by

Cp,q = c(−pTs−qTs) and the autocorrelation matrices of the input data and noise are

denoted byRb andRz respectively. The vectorg = [g0,g1, ...]T contains the target

response coefficients.

Due to the presence of the anti-aliasing filter and the low pass nature ofc(t),
the system (4.4) may not be well defined, i.e. the matrix(FRbFT+ CRzCT) can

be singular. This can occur in particular if the oversampling ratioT
Ts

is high and

the equalizer is long. A near-optimal solution to this problem has been proposed
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in [114] and consists of introducing a small correction term to regularize the MMSE

equation (4.4). This is achieved by replacing the matrix(FRbFT+ CRzCT) in (4.4)

by (FRbFT+CRzCT +εI) whereI is the identity matrix andε is a small non-negative

value. In the sequel we will take this regularized solution as a basis of reference.

4.4 Adaptive Asynchronous Equalization

In the previous section we assumed prior knowledge of the channel and reported the

closed form solution of the MMSE asynchronous equalization problem. In practical

systems the channel is subject to parameter variations, e.g. due to tilt in optical

storage systems. Therefore equalization should be made adaptive.

The equalizer adaptation scheme studied in this chapter makes use of the LMS

technique that consists of minimizing the instantaneous power of the error. LMS

equalizer adaptation consists of adding to the equalizer taps, at each iteration, a

change proportional to the negative gradient of the instantaneous squared error. The

equalizer adaptation is then written as follows:

w(k+1)
p = w(k)

p − 1
2

η
∂ε2

k

∂wp

∣∣∣∣
w=w(k)

,

wherew(k)
p is the pth tap of the equalizer at timekT. The coefficientη denotes the

equalizer adaptation constant. The expression of the error signal as a function of the

equalizer taps has been given in equation (4.3). Using expression (4.3) to calculate

the above partial derivatives leads to the following adaptation equation:

w(k+1)
p = w(k)

p −ηεk(cµk ∗ r)mk−p. (4.5)

This equation describes the asynchronous LMS adaptation rule and suggests that

LMS adaptation may be based on correlating the error signal with a synchronous ver-

sion of the equalizer input. This version is obtained using an auxiliary sampling rate

converter in the adaptation loop. For clarity of the sequel and in order to make a clear

distinction with the main SRC, we designate this auxiliary sampling rate converter

SRC2 and denote its symbol response byc2(t). Equation (4.5) is then re-written as

w(k+1)
p = w(k)

p −ηεk(c
µk
2 ∗ r)mk−p. (4.6)
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The LMS adaptation scheme is depicted in Figure 4.3. The auxiliary sampling

rate converter SRC2 aligns, both in frequency and phase, the error signal and the

equalizer input. In particular the overall delay from the point denotedA in Figure 4.3

to pointB, through SRC2, should match the delay fromA to C through the equalizer

and the main SRC. The result of correlation between the error signal and the re-

sampled equalizer input is first scaled with the adaptation constantη and then passed

to a digital integrator. Since this integrator produces an output at the synchronous

clock rate and the equalizer operates in the asynchronous clock domain, a form of

inverse sampling rate conversion is needed. Moreover, since equalizer tap values

change only slowly with respect to both sampling rates, this inverse sampling rate

conversion can be achieved in the simplest conceivable manner, namely via a bank of

latches (or, equivalently zeroth-order interpolation).
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Figure 4.3: The LMS adaptation of thepth equalizer tap.

A direct implementation of this scheme is, however, quite complex for practi-

cal systems. In fact, equation (4.6) requires us to compute all the gradient signals

(cµk
2 ∗ r)mk−p for p∈ {0. . .Nw−1}, i.e. the re-sampled signalr at the instantstr

k− pTs.

Therefore, in order to adapt all the equalizer taps at the rate1
T , Nw duplications of
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SRC2 would in principle be needed.

A solution to this problem has been proposed in [28]. It consists of using one

auxiliary SRC2, identical to the main SRC, to re-sample the equalizer input at the

instanttr
k. This is followed by a set of linear interpolators, in the synchronous do-

main, to produce the gradient signals. Explicitly, it consists of linearly interpo-

lating between the samples(cµk
2 ∗ r)mk ≈ r(tr

k) = r(kT) to build approximations of

(cµk
2 ∗ r)mk−p ≈ r(tr

k− pTs) = r(kT− pTs). However, this solution is still complex in

that it requires an additional sampling rate converter and more importantly it has been

shown to be applicable to only limited ranges of oversampling ratios.

In the following section we first analyze the impact of SRC2 on the equalizer

adaptation, derive a set of criteria to designc2(t) and describe a very simple choice

that achieves close to MMSE performance. This simple choice renders the topology

of Figure 4.3 practical while being applicable to a wide range of oversampling ratios.

4.5 Effect of The Auxiliary SRC on LMS Adaptation

The proper design ofc2(t) is a key element in the realization of the asynchronous

LMS adaptation scheme. A straightforward choice isc2(t) = c(t). However, in this

section we will highlight a set of degrees of freedom for the design ofc2(t). Such

degrees of freedom will be exploited to simplify the asynchronous LMS adaptation

scheme. In the first two subsections we consider the case where SRC2 does not

introduce aliasing. In the third subsection, we will focus on the effect of aliasing in

SRC2 on the equalizer adaptation.

4.5.1 Effect of the auxiliary SRC on the steady-state solution

A theoretical analysis of the behavior of the LMS adaptation scheme, for an aliasing-

free SRC2, is presented in Appendix A. It reveals that the average update signal for

the adaptation of thepth equalizer tap,∆p
k = εk(c

µk
2 ∗ r)mk−p (see Figure 4.3), can be

written as

E[∆p
k ] =

1
Ts

∫ +∞

−∞

[
1
Ts

( |H|2
T

+N0

)
CW−H∗G

]
C∗2ej2πpTsΩdΩ, (4.7)

where we have suppressed all dependencies onΩ for notational convenience. In this

expressionH is the channel transfer function,W(ej2πΩTs) andG(ej2πΩT) denote the
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discrete Fourier transforms ofwn andgk respectively. The notationX∗ denotes the

complex conjugate of the transfer functionX. The expectation operation in (4.7) is

taken over all data and noise realizations.

The equalizer steady-state response is characterized by the set of equationsE[∆p
k ] =

0, ∀p < Nw. In order to understand the impact ofc2(t) on this steady-state response,

let us first consider the case where the equalizer is infinitely long. In this case, the

steady-state response is obtained when the integrand in the right hand side of (4.7) is

zero at all frequencies, i.e.

[
1/Ts

(|H|2/T +N0
)
CW−H∗G

]
C∗2 = 0. (4.8)

The latter expression shows that ifC2(Ω0) = 0, for Ω0 within the channel pass-band,

the steady-state equalizer transfer function is ill-defined atΩ = Ω0. If, however,C2

has no spectral nulls within the channel pass-band, the steady-stateW is unambigu-

ously defined byH, G andC and is independent ofC2. Conversely, spectral nulls that

are outside the channel pass-band do not alter equalizer steady-state solution.

As the length of the equalizer decreases, (4.8) can be met at an increasingly lim-

ited set of frequencies. As a result the degeneracy problem becomes smaller.

We may conclude that, ifC2(Ω) 6= 0 for each frequency in the channel pass-

band, the equalizer steady-state solution is not affected by the amplitude and phase

responses ofc2(t). However, the impact ofc2(t) on loop stability still needs to be

explored. The following subsection deals with this issue.

4.5.2 Stability analysis

Stability analysis of the equalizer adaptation loop is presented in Appendix B. It is

found that, for long equalizer lengths, the loop is stable if and only if the following

condition is met:

∀Ω ∈ BC η
1
Ts

( |H|2
T

+N0

) |C(Ω)||C2(Ω)|
T2

s
< 2cos[ϕC2(Ω)−ϕC(Ω)], (4.9)

whereBC is the pass-band ofC(Ω) (i.e. ∀Ω ∈/ BC C(Ω) = 0), andϕC(Ω) andϕC2(Ω)
denote the phase responses ofc(t) andc2(t) respectively. Equation (4.9) provides a

condition that links the adaptation constantη, the amplitude response|C2(Ω)| and the

phase mismatchϕC2(Ω)−ϕC(Ω) in order to ensure stability. In particular, it shows

that by fixingη and|C2(Ω)|, a range of phase mismatches betweenc2(t) andc(t) can
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be tolerated. Similarly, fixingη andϕC2(Ω) defines a range of acceptable amplitude

responses that ensure stability.

As the length of the equalizer decreases, inequality (4.9) becomes a sufficient

condition for stability as will be seen from simulations.

In many practical systems, equalizer adaptation is often designed to be slow, i.e.

η¿ 1. The left hand side of (4.9) is then close to zero. This implies that the phases of

c2(t) andc(t) must be withinπ
2 throughoutBC. In other words, a necessary condition

for loop stability is that the phase mismatch betweenc2(t) andc(t) is smaller than

π/2 throughoutBC.

Example 4.1:

Let us consider a channel with a cut-off frequencyΩc≤ 1/(2T). In order to suppress

out-of-band noise, the transfer function of the ideal SRC is zero outside the interval

[−Ωc,Ωc]. Assume that there is a delay mismatch ofδ seconds between the two SRCs,

i.e. thatϕC(Ω)−ϕC2(Ω) = 2πδΩ. A necessary condition onδ to ensure stability is

that 2π|δΩ| < π/2 ∀|Ω| < Ωc. The maximum tolerable delay mismatchδmax is thus

given by

δmax =
1

4Ωc
.

The closer the delay mismatchδ gets toδmax, the slower the loop must be in order to

guarantee stability.

4.5.3 Effect of aliasing in the auxiliary SRC

The impact of aliasing, introduced by SRC2, is a key potential issue in the design of

practical asynchronous LMS equalizer adaptation. Actually, it is still not clear from

the previous subsections how the equalizer adaptation behaves whenc2(t) does not

reject out-of-band frequencies. We will prove, in particular that aliasing in SRC2

does not hamper the LMS adaptation for channels without excess bandwidth. In this

case, following similar steps as in Appendix A, one can show that the average update

signal for a general symbol responsec2(t) is given by

E[∆p
k ] =

1
Ts

∫ [
1
Ts

( |H|2
T

+N0

)
CW−H∗G

]
C∗b(Ω)ej2πpTsΩdΩ, (4.10)
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where the expectation operation is taken over all data and noise realizations, and

where

Cb(Ω) = ∑
n

e− j2πn
trk
TsC2(Ω− n

Ts
). (4.11)

Equation (4.10) is analog to (4.7) where the factorC2(Ω) is replaced by its aliased

versionCb(Ω). This aliased version is now time dependent, more precisely it depends

on the re-sampling instanttr
k. This implies that the adaptation loop gain [86] is now

time-varying and depends on the sampling instantstr
k. The same reasoning as in

Section 4.5.1 holds here if one can ensure that, in average over time,Cb(Ω) does

not have zeros within the channel pass-band and that the phase mismatch relative to

C(Ω) of the averageCb(Ω) obeys (4.9). In that case the steady-state equalizer will

not depend onc2(t) and the adaptation loop will be stable.

Now replacing in (4.11) the re-sampling instant by its expressiontr
k = (mk + µk)Ts

leads to

Cb(Ω) = ∑
n

e− j2πnµkC2(Ω− n
Ts

).

The fractional intervalµk (∈ [0,1[) depends on the oversampling ratio and on the

channel delay that can vary randomly. As a consequence we can assumeµk to be

uniformly distributed in[0,1[. In this case it can be proven thatEµk[e
− j2πnµk] = δn,

whereδn denotes the Kronecker delta function. Therefore the average over all the

sampling instantstr
k of the functionCb(Ω) is simply given by

Etr
k
[Cb(Ω)] = C2(Ω). (4.12)

From (4.10) it can be seen that the influence of aliasing on the LMS adapta-

tion manifests itself as a time-varying loop gain per frequency that is proportional to

C∗b(Ω). From (4.12) it is apparent that the loop gain, in average over time, is not in-

fluenced by aliasing. More precisely, in average over time, the LMS adaptation loop

gain at frequencyΩ = Ω0 is proportional toC∗2(Ω0). An intermediate consequence of

the above reasoning is that a spectral null inC2(Ω) in the channel pass-band cannot

be tolerated.

From (4.12) one can also see that the phase of the average over time ofCb(Ω)
is equal to the phase ofC2(Ω). Therefore stability is ensured if the phase ofC2(Ω)
satisfies (4.9) within the channel pass-band.

The above considerations suggest that the symbol responsec2(t) needs only to

meet (4.9) and to have no spectral nulls in the channel pass-band. In this case the
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steady-state equalizer will not be altered by aliasing and the adaptation loop will be

stable.

4.6 Simplified Asynchronous LMS Adaptation

In the previous section the relationship between SRC2 and the equalizer adaptation

has been discussed. First, we showed that amplitude distortions in SRC2 do not

alter equalizer steady-state solution ifC2(Ω) has no zeros within the channel pass-

band. Second, adaptation stability is preserved as long as the phase mismatch be-

tweenC2(Ω) andC(Ω) is kept below a defined stability bound. Finally, it has been

shown that aliasing in SRC2 does not hamper equalizer adaptation. A summary of

design criteria for SRC2 can now be presented as follows:

1. The transfer functionC2(Ω) must not have any spectral zeros within the pass-

band of the channel.

2. The phase mismatch betweenc2(t) andc(t) must be kept as small as possible

according to (4.9).

The design of SRC2 is now made simpler. This can be used to simplify the complete

asynchronous LMS adaptation. In order to meet the second design criterion, the

simplest possible choice is to consider a symmetric responsec2(t) with the same

symmetry point asc(t). The first criterion is also met with very simple waveforms.

For example, a rectangular function on the interval[−Ts/2,Ts/2], i.e.

c2(t) =

{
1, |t|< Ts/2,

0, otherwise,
(4.13)

satisfies both conditions. Its transfer functionC2(Ω) = Tssinc(πΩTs) has a first spec-

tral null atΩ = 1/Ts that is always outside the channel pass-band (Ωc < 1/Ts). This

choice ofc2(t) corresponds to an implementation of SRC2 via nearest neighbor in-

terpolation (0th order interpolation). The support[−Ts/2,Ts/2] is the shortest interval

that permits adaptation at every synchronous clock cycle independent of the value of

µk. In fact, if the support ofc2(t) has a shorter length thanTs thencµk
2,n is zero for a

range of fractional intervalµk, which implies that the equalizer is not adapted at these

instants.
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With the mentioned choice ofc2(t), the equalizer adaptation (4.6) can be rewritten

as

w(k+1)
p = w(k)

p −ηεkrmk+bµk+0.5c−p, (4.14)

where

rmk+bµk+0.5c−p =

{
rmk−p if µk < 0.5,

rmk+1−p if µk ≥ 0.5.
(4.15)

This adaptation rule leads to the simplified scheme presented in Figure 4.4.
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Figure 4.4: The simplified adaptation of thepth equalizer tap.

At each asynchronous clock cycle, a value of the equalizer tap signalrn−p is fed

into a shift register (SHR). At each synchronous clock cycle, the PLL produces the

basepoint indexmk and the fractional intervalµk. The latter serves to select the sample

rmk−p or rmk−p+1 according to (4.15). The selected sample is correlated with the error

signal, scaled byη and passed to an integrator. With the proposed simplified asyn-

chronous LMS scheme, the auxiliary SRC reduces to a very simple sample selector.

This makes the proposed scheme no more complex than a completely synchronous

LMS adaptation scheme while allowing the benefits of asynchronous equalization as

mentioned in the introduction.
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4.7 Simulation Results

By way of illustration we consider in this section an idealized optical storage chan-

nel according to the Braat-Hopkins model as presented in Chapter 1. In terms of

normalized frequencies to the baud rate1/T, the channel transfer function is given

by

H(Ω) =





2T
π

sin(πΩ)
πΩ

(
cos−1| Ω

Ωc
|− Ω

Ωc

√
1− ( Ω

Ωc
)2

)
, |Ω|< Ωc,

0, |Ω| ≥Ωc

where the normalized optical cut-off frequencyΩc is fixed at1/3 in this section. Data

bk is taken to be run-length-limited with run-length parameters(d,k) = (1,7). The

target response has 5 tapsg = [0.17,0.5,0.67,0.5,0.17]. These choices reflect the

system described in [115]. We consider here only electronics noise and fix channel

SANR (defined as in Chapter 1) at the value of 15 dB. Similar conclusions can be

drawn in the presence of media noise.

Amplitude response ofh(t) andgk are depicted in Figure 4.5. The target response

approximates the in-band characteristics and cut-off frequency of the channel quite

well. However, because of its finite length it has some transfer above the cut-off

frequency.

Since the channel passes no normalized frequencies above1/3, we can choose

1/Ts as low as2/(3T) without any loss of information. The upper limit of1/Ts is

set to2/T in the sequel. The SRC is implemented via a six-tap Lagrange interpo-

lator [110]. At the SRC output, beyond the cut-off frequencyΩc almost no spectral

components are present. The error signal in this band will be negligible irrespective

of the equalizer transfer function. As a result, the equalizer steady-state solution tends

to become ill-defined, and regularization will be needed. For this purpose we incor-

porate tap leakage [46] into the equalizer adaptation. Equation (4.6) is then written

as

w(k+1)
p = (1−α)w(k)

p −ηεk(c
µk
2 ∗ r)mk−p (4.16)

whereα is a small and positive tap leakage factor.

To illustrate the impact of tap leakage we consider the case of1/Ts = 1.25/T. The

amplitude response of various equalizers of lengthNw = 15are depicted in Figure 4.6.

The amplitude response of the theoretical regularized MMSE solution, described in

Section 4.3, is plotted together with the simulated equalizer transfer function in the
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Figure 4.5: Amplitude-frequency characteristics of idealized optical chan-

nel having a normalized cut-offΩc = 1/3 (solid) and 5-tap tar-

get responsegk = [0.17,0.5,0.67,0.5,0.17] (dashed).

absence and presence of leakage. This figure shows that tap leakage is needed to

regularize the equalizer transfer function in the out of band region. Besides, the

steady-state solution of the simplified LMS scheme is indiscernible, in the in-band

region, from the theoretical MMSE solution.

To highlight the merit of the simplified LMS scheme compared to MMSE, Figure

4.7 shows the normalized MSE, i.e. the MSE divided by the average power of the

reference signal, as a function of the oversampling ratioT/Ts for an equalizer length

Nw = 15. This proves that the simplified scheme is on the one hand equivalent to the

full LMS adaptation scheme from MSE point of view and on the other hand leads to

close to MMSE performance over the complete range of oversampling ratios. The

penalty in MSE with respect to MMSE is less than 0.08 dB.

LMS equalizers tend to be, in general, quite insensitive to variations of the sam-

pling phase. The proposed simplified LMS scheme is no exception. Normalized

MSE of the simplified LMS as a function of sampling phase variations is shown in

Figure 4.8.

In order to illustrate the impact of a delay mismatch between SRC2 and SRC
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Figure 4.6: Amplitude response of various equalizers for1
Ts

= 1.25
T . a) simu-

lated LMS, no tap leakage (dashed); b) (regularized) theoretical

MMSE solution (solid); c) The simplified LMS with tap leakage

(dotted).

on the equalizer adaptation, and validate the theoretical analysis of Section 4.5.2,

we measured simulated MSE as a function of the delayδ betweenc2(t) and c(t)
for different values ofNw. For every value ofNw, the equalizer adaptation constant

is tuned to have optimum MSE atδ = 0 and then fixed for other values ofδ. The

simulation result is shown in Figure 4.9.

According to the theoretical analysis of Section 4.5.2, the maximum tolerable

delay forΩc = 1/(3T) is given byδmax = 1
4Ωc

= 3
4T. This gives a limit that is in

particular valid for a very slow adaptation and a very long equalizer. Figure 4.9 shows

that, especially for a bigNw, the adaptation is unstable ifδ > δmax= 0.75T. However,

and more importantly, the equalizer adaptation is not affected whenδ < 0.6T. For

this range ofδ, the steady-state equalizer responses are also not affected.
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Figure 4.7: Normalized MSE as a function of oversampling ratio forNw =
15: a) Simulated full asynchronous LMS, i.e.c2 = c; b) Simu-

lated simplified LMS; c) Theoretical MMSE (4.4).

4.8 Conclusions

Design and implementation considerations may favor digital equalization to be per-

formed in a clock domain that is asynchronous to the baud rate1/T. Such a con-

sideration arises, for example, in systems where asynchronous equalization has to

be employed to minimize the delay inside the timing-recovery loop. In this chapter

we have studied the asynchronous LMS adaptation and provided its stability analysis.

We highlighted a set of interesting degrees of freedom for the design of asynchronous

equalizer adaptation. These allowed us to propose a simple asynchronous adaptation

scheme that is comparable from a complexity standpoint to the synchronous LMS

algorithm. Indeed, compared with the latter, our method requires no true extra com-

plexity apart from a sample selection mechanism.

Simulation results for an idealized optical storage system showed that, on the

one hand, the proposed algorithm leads very close to MMSE performance. On the

other hand, it is applicable to a wide range of oversampling ratios and is insensitive

to sampling phase variations.
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Figure 4.8: Simulated mean-square error of the simplified LMS scheme as a

function of sampling phase variations, atT/Ts = 1 andNw = 15.

Appendix A: Derivation of equality (4.7)

The expression of the average update signal expressed in (4.7) holds for uncoded

binary data. A similar expression applies in the case of coded data by simply replac-

ing in (4.7)|H|2 by Pb|H|2 andHG∗ by PbHG∗ wherePb denotes the power spectral

density of the input data. However because the conclusions of Section 4.5 are inde-

pendent of the power spectral density of the data, we will, for simplicity, analyze the

average update signal for uncoded data.

The update signal, for thepth equalizer tap,∆p
k is given by∆p

k = εk(c
µk
2 ∗ r)mk−p.

Taking into account (4.3) we can write

E[∆p
k ] =

Nw−1

∑
q=0

wqE[(cµk ∗ r)mk−q(c
µk
2 ∗ r)mk−p]−E[(cµk

2 ∗ r)mk−p(g∗b)k]. (4.17)
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Figure 4.9: Simulated MSE as a function of the delay mismatch between

c2(t) andc(t) for different values ofNw. The oversampling ratio

is T/Ts = 1.

Let us first simplify the expression ofE1 = E[(cµk ∗ r)mk−q(c
µk
2 ∗ r)mk−p]. Upon re-

placingr with (4.1) we get:

E1 = ∑
n,m,n′,m′

E[c2
µk
mk−p−ncµk

mk−q−n′h(nTs−mT)h(n′Ts−m′T)bmb′m]

+ ∑
n,n′

E[c2
µk
mk−p−ncµk

mk−q−n′znz′n].

In view of the fact that the noise is assumed to be white and the data is uncoded, we

may express the last equality as

E1 = ∑
n,m,n′

E[c2
µk
mk−p−ncµk

mk−q−n′h(nTs−mT)h(n′Ts−mT)]+σ2
z ∑

n
E[c2

µk
mk−p−ncµk

mk−q−n].

By changing the order of summations, the last equality can be rewritten as

E1 =

∑mE[∑nc2((mk +µk−n− p)Ts)h(nTs−mT)∑n′ c((mk +µk−n′−q)Ts)h(n′Ts−mT)]
+N0

Ts
∑nE[c2((mk +µk)Ts−(n+ p)Ts)c((mk +µk)Ts−(n+q)Ts)]
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where we usedσ2
z = N0

Ts
andcµ

n = c((n+µ)Ts).
Now the remaining steps in this proof use the following equalities derived from the

Poisson summation formula:

∑
n

x(t1−nTs)h(t2 +nTs) =
1
Ts

∑
n

e− j2πn t1
Ts

∫
X(Ω− n

Ts
)H(Ω)ej2π(t1+t2)ΩdΩ (4.18)

and

∑
n

x1(t1−nTs)x2(t2−nTs) =
1
Ts

∑
n

ej2πn t1
Ts

∫
X1(

n
Ts
−Ω)X2(Ω)ej2π(t2−t1)ΩdΩ (4.19)

whereX(Ω) is the Fourier transform ofx(t). By substitutingc(t) for x(t) on one hand

andc2(t) on the other hand, the argument of the right hand summation in equation

(4.18) is non-zero only forn= 0. This is justified by the fact thatc andc2 are designed

such that no aliasing occurs. It follows that

s1,m = ∑
n

c2((mk +µk)Ts− (n+ p)Ts)h(nTs−mT)

=
1
Ts

∫
C2(Ω)H(Ω)ej2πΩ((mk+µk)Ts−pTs)e− j2πmΩTdΩ

and

s2,m = ∑
n′

c((mk +µk)Ts− (n
′
+q)Ts)h(n

′
Ts−mT)

=
1
Ts

∫
C(Ω)H(Ω)ej2πΩ((mk+µk)Ts−qTs)e− j2πmΩTdΩ

Using the integration Fubini rule we can be write:

∑
m

s1,ms2,m =
1

T2
s

∫∫
C(Ω1)H(Ω1)ej2πΩ1((mk+µk)Ts−qTs)C2(Ω2)H(Ω2)ej2πΩ2((mk+µk)Ts−pTs)

×∑
m

e− j2πm(Ω1+Ω2)TdΩ1dΩ2

Now if we make use of∑me− j2πm(Ω1+Ω2)T = 1
T ∑mδ(Ω1 + Ω2− m

T ) we get after

removing the aliasing terms, which are filtered out byC(Ω) andC2(Ω)

∑ms1,ms2,m = 1
T2

s

∫ |H(Ω)|2
T C(Ω)C∗2(Ω)ej2π(p−q)TsΩdΩ.

Now replacing in equation (4.19)x1 = c2 andx2 = c and using the fact that the

argument of the right hand summation in (4.19) is non-zero only forn = 0 due to the
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absence of aliasing, one can show that

∑nE[c2((mk +µk)Ts− (n+ p)Ts)c((mk +µk)Ts− (n+q)Ts)]
= 1

Ts

∫
C(Ω)C∗2(Ω)ej2π(p−q)TsΩdΩ.

Grouping these last two equations together leads to

E1 =
1

T2
s

∫
(
|H(Ω)|2

T
+N0)C(Ω)C∗2(Ω)ej2π(p−q)TsΩdΩ.

In a similar way one can show that

E[(cµk
2 ∗r)mk−p(g∗b)k] =

1
Ts

∫
H∗(Ω)G(ej2πTΩ)C∗2(Ω)e− j2πΩ((mk+µk)Ts−kT)ej2πpTsΩdΩ.

The last step that remains at this point is(mk + µk)Ts = tr
k = kT. Now plugging the

last three equalities into (4.17) leads to (4.7).
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Appendix B: Stability Analysis of the Asynchronous

Equalizer Adaptation

Ensuring stability of an adaptation loop is very crucial for its proper functioning. This

appendix provides stability conditions of the asynchronous equalizer adaptation loop

as function of the adaptation constantη, the SRC2 amplitude and phase responses

and the oversampling ratioT/Ts. For simplicity of the analysis of this appendix we

make the assumption of a big equalizer length. When the length of the equalizer is

small, our stability conditions become sufficient conditions for stability.

In order to derive the stability condition, let us first rewrite equation (4.7) using

matrix notations as follows:

∆ = M(w− w̃),

wherew̃ is the equalizer steady-state vector solution,∆ = [∆0, ...,∆Nw−1]T and the

matrixM is given by

M p,q = 1
T2

s

1/2Ts∫
−1/2Ts

( |H|2
T +N0

)
C(Ω)C∗2(Ω)ej2π(p−q)TsΩdΩ 0≤ p,q < Nw. (4.20)

�

η

w~
∆

w

Figure 4.10: Equivalent equalizer adaptation. Gradient noise is neglected.

The equivalent equalizer adaptation is shown in Figure 4.10. This adaptation is

stable if and only if

lim
k→+∞

(I −ηM)k = 0. (4.21)

where the convergence to zero is taken in the Frobenius norm sense, i.e.limk→+∞ ‖I−
ηM k‖F = 0. In such a case the equalizer misadjustment error will be always brought
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to zero by the adaptation loop. Equation (4.21) gives a constraint on the matrixM

and the adaptation constantη to ensure stability. In order to express the stability

condition (4.21) as a function ofC2(Ω) few steps are needed.

Let us denote byN the matrixI −ηM . One can easily show that

Np,q =

1/2Ts∫

−1/2Ts

(
Ts−η

1
T2

s

( |H|2
T

+N0

)
C(Ω)C∗2(Ω)

)
ej2π(p−q)TsΩdΩ

=
∫

X(Ω)ej2π(p−q)TsΩdΩ

whereX(Ω) = Ts−η 1
T2

s

( |H|2
T +N0

)
C(Ω)C∗2(Ω).

In order to express the stability condition in terms ofX(Ω) we need to compute

Nk and check when it converges to zero fork going to infinity. For that let us first

computeN2. We have

N2
p,q = ∑

l

Np,l Nl ,q = ∑
l

∫∫
X(Ω1)ej2π(p−l)TsΩ1X(Ω2)ej2π(l−q)TsΩ2dΩ1dΩ2

=
∫∫

X(Ω1)X(Ω2)ej2π(pTsΩ1−qTsΩ2) ∑
l

e− j2πlTs(Ω1−Ω2)dΩ1dΩ2.

Now if we make use of∑l e
− j2πl(Ω1−Ω2)Ts' 1

Ts
∑l δ(Ω1−Ω2− l

Ts
) (this approximation

is an equality ifNw is infinite) and take into account the fact that the support ofX(Ω)
is in [−1

2Ts
, 1

2Ts
], we can write, removing the aliasing terms, i.e.l 6= 0,

N2
p,q ' 1

Ts

∫∫
X(Ω1)X(Ω2)ej2π(pTsΩ1−qTsΩ2)δ(Ω1−Ω2)dΩ1dΩ2

=
1
Ts

∫
X2(Ω1)ej2π(p−q)TsΩ1dΩ1.

Following a similar computation one can prove that thekth power of the matrix

N is given by

Nk
p,q '

1

Tk−1
s

∫
Xk(Ω)ej2π(p−q)TsΩdΩ.

Now one can see thatlimk→+∞ Nk
p,q = 0∀p,q is equivalent to|X(Ω)|

Ts
< 1∀Ω. This

is equivalent to ∣∣∣∣1−η
1
Ts

( |H|2
T

+N0

)
C(Ω)C∗2(Ω)

T2
s

∣∣∣∣ < 1. (4.22)
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By taking the square of the left hand side and subtracting 1 from both sides, one can

prove that the following inequality

η
1
Ts

( |H|2
T

+N0

) |C(Ω)||C2(Ω)|
T2

s
< 2cos[ϕC2(Ω)−ϕC(Ω)],

holds on the bandwidth ofc that we denoteBC and define as (∀Ω ∈/ BC C(Ω) = 0).

The phase responses ofc(t) andc2(t) are denoted byϕC(Ω) andϕC2(Ω) respectively.
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Chapter 5

Timing Recovery For Data-Dependent

Noise Channels

In high density data storage systems, noise becomes highly correlated and data-

dependent as a result of media noise and channel nonlinearities. In such environ-

ments, conventional timing recovery schemes will exhibit large residual timing jitter

and especially data-dependent timing jitter. This chapter presents a new data-aided

timing recovery algorithm for data storage systems with data-dependent noise. Based

on a data-dependent Gauss-Markov model of the noise, a maximum-likelihood tim-

ing recovery scheme is derived. The proposed timing recovery algorithm incorporates

data-dependent noise prediction parameters in the form of linear prediction filters and

prediction error variances. Moreover, because noise can be nonstationary in practice,

an adaptive algorithm is proposed in order to estimate and track the noise prediction

parameters. Simulation results, for an idealized optical storage channel incorporating

media noise, illustrate the merits of the proposed algorithm.

5.1 Introduction

Timing recovery is one of the critical functions for reliable data detection in digital

storage systems. The key problem in timing recovery is the determination of time

instants at which the replay signal should be sampled for reliable data recovery. This

problem has been a subject of investigation for many decades. Among the existing

solutions [86], data-aided (DA) timing recovery schemes, e.g. [20, 88, 91, 127], are

known to be more powerful. DA schemes use the transmitted data sequence as side

information to facilitate timing recovery. This information is available to the receiver

either in the form of a known preamble pattern preceding the user data, or as decisions
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taken from the bit detector.

Timing recovery becomes more critical as storage density increases because of in-

creasing system performance sensitivity to timing jitter on the one hand and increas-

ing bandwidth limitations, signal to noise ratio (SNR) degradation, noise nonstation-

arity and data-dependency on the other hand. Although the problem of data detection

in such noise environments has received considerable attention, e.g. see [7] [6], much

less attention has been devoted to the problem of timing recovery. Conventional tim-

ing recovery schemes assume that the noise at their input is stationary and that noise

statistics are independent of the transmitted data. However, in high density storage

systems, noise becomes colored and data-dependent [5] [81]. This data-dependent

nature of the noise significantly deteriorates the performance of timing recovery. It

increases timing jitter, i.e. the difference between the ideal and the estimated sam-

pling instants, for a given bandwidth of the timing recovery loop. Large timing jitter

leads to an increased bit-error rate and possibly even to loss of lock.

A simple form of timing recovery for data-dependent noise was reported in lit-

erature for optical communication channels where noise was modelled as additive

white and Gaussian (AWG) with a noise variance dependent on the transmitted sym-

bol [2]. This algorithm is not based on an optimal timing function but is derived as a

modification of the well-known Mueller and M̈uller algorithm [91].

In this chapter we derive an optimal timing recovery algorithm for data-dependent

correlated noise. The key to the new timing recovery approach is the modelling

of noise as a data-dependent finite-order Markov process [5]. Based on this model

Maximum-Likelihood (ML) timing recovery is addressed. The resulting structure is a

timing recovery scheme with a new timing error detector (TED) that incorporates, on

the one hand, data-dependent noise prediction and on the other hand a data-dependent

weighing that depends on the remaining unpredictable noise variance. Moreover,

because in practice noise can be nonstationary, an adaptation algorithm that estimates

and tracks noise model parameters is proposed. This estimation algorithm is simpler

than that presented in [5].

Although this chapter assumes that the transmitted data is known to the timing

recovery scheme, its results can be easily extended to the case where soft information

is available [64] and in the context of iterative timing recovery [12] [84] where an

iterative soft decoder is used. In fact, this would boil down to simply substituting the

TEDs in [64] and [12] with the one presented in this chapter.
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The remainder of this chapter is organized as follows. Section 5.2 describes the

system model and nomenclature. Section 5.3 presents the ML timing recovery for

data-dependent noise. Efficiency analysis of the ML timing recovery is addressed in

Section 5.4. Section 5.5 presents a simple sample by sample based adaptation of the

data-dependent noise parameters. Simulation results for a partial response maximum-

likelihood (PRML) system are presented in Section 5.7 and show the important merits

of the new scheme of this chapter.

5.2 System Model and Problem Definition
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Figure 5.1: system model

In Figure 5.1, a zero-mean data sequencebk ∈ {±1} of lengthN, i.e. b1,b2,...bN,

of data rate1/T is applied to a channel with symbol responseh(t), additive noisen(t)
and an a priori unknown and possibly time varying delayφ (in bit intervalsT). Prior

to detection, the receiver performs prefiltering that serves to suppress noise and may

also condition intersymbol interference (ISI). The prefilter output is first sampled and

then passed to a detector that produces bit decisions. For clarity of this chapter, we

assume that excess bandwidth at the prefilter output is negligible and consider only

baud-rate sampling. The results of this chapter can be easily extended to the over-

sampled case. The sampling instants are expressed astk = (k+ ψ)T whereψ is a

sampling phase (normalized in unitsT). Based on the sampled sequencexk, the re-

ceiver produces bit decisionsb̂k as well as a clock signal that indicates the sampling

instantstk. In order for the detector to operate properly, a timing recovery subsystem

ensures that the sampling phaseψ closely approachesφ. The timing recovery subsys-

tem takes the form of a phase-locked loop (PLL) with a timing-error detector (TED),

loop filter (LF), and a voltage controlled oscillator (VCO). The TED produces an esti-
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mateχk of the sampling-phase error∆ = φ−ψ. In this chapter we restrict attention to

data-aided (DA) TEDs wherebk is assumed to be available to the receiver in the form

of a known preamble, or as decisions, taken from the detector, when bit-error rates

are small. PLL behavior depends also on the LF and VCO. A detailed description of

this dependence can be found in [45].

To simplify the forthcoming analysis we assume, first, that the timing recovery

loop has a sufficiently high bandwidth to enable the variations ofφ to be tracked.

This means that we can takeφ to be fixed. Second, the sampling-phase errors∆ are

restricted to a fraction of a symbol intervalT (this reflects the situation when the PLL

is in lock; PLL acquisition properties are beyond the scope of this chapter). In this

case, the equivalent discrete impulse responseq∆
k of the system up until the detector

input can be linearized asq∆
k ' q0

k +∆q′k, whereq′k is the derivative ofq∆
k with respect

to ∆ at∆ = 0. Both responsesq0
k andq′k are assumed to be known to the receiver. The

detector input sequence can be written as

xk ' (q0∗b)k +∆(q′ ∗b)k +nk, (5.1)

where ∗̀´ denotes linear convolution andnk is the equivalent noise sequence at the

detector input, i.e.nk = xk− (q∆ ∗b)k. Unless specified otherwise, we assume thatq0
k

corresponds to the ideal ISI structure assumed by the detector. Any misequalization

ISI (linear or nonlinear) at ideal sampling phase, i.e. due to a mismatch betweenq0
k

and the ideal detector response, is embedded in the noisenk. The noisenk includes

also channel noise that may be linearly or nonlinearly data-dependent. The key to the

new timing recovery approach is the modelling of the noise as proposed in [5]. We

recapitulate the assumptions on the properties of the noisenk as follows:

1. Finite correlation length: The noisenk is assumed to be independent of past

samples before some lengthL ≥ 0 (finite Markov memory length). This inde-

pendence implies that

p(nk|nk−1, ...,n1,b
N
1 ) = p(nk|nk−1, ...,nk−L,b

N
1 ) (5.2)

where p(.) denotes the probability density function (pdf) ofnk conditioned

on the past noise samples and on the databN
1 wherebk2

k1
= [bk1,bk1+1, ...,bk2]

for k2 ≥ k1. The conditioning onbN
1 is meant to take into account the data-

dependent correlation of the noisenk.



131

2. Finite data-dependent span: The noisenk depends only on its firstK-neighbor

symbols, i.e.bk+K2
k−K1

, that we call symbol cluster, whereK = K1 +K2 +1. The

conditioned noise pdf given in Eq. (5.2) becomes

p(nk|nk−1, ...,nk−L,b
N
1 ) = p(nk|nk−1, ...,nk−L,b

k+K2
k−L−K1

) (5.3)

3. Joint Gaussian pdf’s: The joint pdfp(nk,nk−1, ...,nk−L|bk+K2
k−L−K1

), conditioned

on the data sequence, is Gaussian with a covariance matrixCk = C(bk+K2
k−L−K1

)
of size(L+1)× (L+1), i.e.

p(nk, ...,nk−L|bk+K2
k−L−K1

) =
exp[−NT

k C−1
k Nk]√

(2π)L+1detCk
, (5.4)

where [.]T denotes the transpose operation and the(L + 1)× 1 vector Nk =
[nk, ...,nk−L]T.

It is implicitly assumed here that, given the data sequence, the noisenk has zero

mean. This assumption is not entirely true in general, e.g. in the presence of channel

nonlinearities, see [65] and Chapter 1, or in the presence of mis-equalization linear

ISI. In such case the vectorNk throughout the chapter has to be replaced withNk−
E[Nk|bk+K2

k−L−K1
]. For clarity, we omit the mean ofnk in the sequel.

5.3 Maximum-Likelihood Timing-Error Detector

Data-aided ML timing recovery is optimum when no prior statistical knowledge

about the phase-error∆ is available. Before developing the DA ML-TED for sample-

by-sample timing recovery, let us first derive the one-shot ML estimator of the phase-

error∆ based on the observation of the overall detector input sequencex1,...,xN. To

this aim, we assume in this section that noise statistics are known and fixed during

the transmission of theN symbolsbN
1 . The DA ML estimate of the phase-error∆ is

obtained by maximizing the likelihood function, i.e.

∆ML = argmax
δ

p(x1, ...,xN|bN
1 ,∆ = δ), (5.5)

over all possible phase-errorsδ, where the likelihood functionp(x1, ...,xN|bN
1 ,δ) is

the joint probability density function of the received samplesx1,...,xN conditioned on

the transmitted symbolsbN
1 and on the phase-error∆ = δ.
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If prior knowledge on the probability density function of the phase-error∆ is

available, than the optimal estimation technique is based on the maximum a posteriori

(MAP) criterion. This boils down to replacing the maximization argument in (5.5)

by p(x1, ...,xN|bN
1 ,∆ = δ)p(∆ = δ). For simplicity we assume that no such prior

information is available, or equivalently, that∆ has a uniform distribution.

In order to derive a practical criterion from (5.5) a few classical steps are needed.

We first apply Bayes rule and obtain

p(x1, ...,xN|bN
1 ,δ) = p(xN|xN−1, ...,x1,b

N
1 ,δ)p(xN−1, ...,x1|bN

1 ,δ)

=
N

∏
k=1

p(xk|xk−1, ...,x1,b
N
1 ,δ). (5.6)

Then upon invoking (5.1) and thefinite correlation lengthproperty of the noise, i.e.

(5.2), (5.6) can be written as

p(x1, ...,xN|bN
1 ,δ) =

N

∏
k=1

p(xk|xk−1, ...,xk−L,b
N
1 ,δ),

which leads by using thefinite data-dependent spanproperty, i.e. (5.3), to

p(x1, ...,xN|bN
1 ,δ) =

N

∏
k=1

p(xk|xk−1, ...,xk−L,b
k+K2
k−K1

,δ).

Applying Bayes rule once again, (5.6) can then be factorized into

p(x1, ...,xN|bN
1 ,δ) =

N

∏
k=1

p(xk,xk−1, ...,xk−L|bk+K2
k−L−K1

,δ)

p(xk−1, ...,xk−L|bk+K2
k−L−K1

,δ)
. (5.7)

The right-hand factors in (5.7) can be rewritten using (5.4) as:

p(xk, ..,xk−L|bk+K2
k−L−K1

,δ)

p(xk−1, ..,xk−L|bk+K2
k−L−K1

,δ)
∝

exp[−(Ek−δSk)
TC−1

k (Ek−δSk)]
exp[−(ek−δsk)Tc−1

k (ek−δsk)]
, (5.8)

where theL×L matrixck is the lower principal submatrix ofCk, i.e.

Ck =

[
αk νT

k

νk ck

]

and where the column vectorsEk, ek, Sk andsk are given, as function of the error

signalεk = xk− (q0∗b)k and the so called signature signalsk = (q′ ∗b)k, by
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Ek = [εk, ...,εk−L]T, ek = [εk−1, ...,εk−L]T,

Sk = [sk, ...,sk−L]T andsk = [sk−1, ...,sk−L]T.

The proportionality factor in (5.8) equals
√

(2π)L detck

(2π)L+1 detCk
which is independent of

δ and thus can be simply ignored. It follows, by taking the logarithm of (5.7) and in-

voking (5.8), that ML phase-error estimation is obtained by minimizing the following

cost function:

Λ(δ) =
N

∑
k=1

(Ek−δSk)
TC−1

k (Ek−δSk)− (ek−δsk)
Tc−1

k (ek−δsk). (5.9)

This expression ofΛ(δ) is still quite complex in that it involves inversions of the

matricesCk andck for all possible symbol clustersbk+K2
k−L−K1

. A simplified expression

of Λ(δ) can be derived via the matrix inversion lemma [108]. In fact using this

lemma, one can prove that the inverse ofCk =

[
αk νT

k

νk ck

]
simplifies as

C−1
k =

[
0 0

0 c−1
k

]
+

1

αk−νT
k c−1

k νk

[
1

−c−1
k νk

][
1

−c−1
k νk

]T

.

This leads to the following simplified version ofΛ(δ)

Λ(δ) =
N

∑
k=1

1

σ2
k

(wT
k (Ek−δSk))

2, (5.10)

where the(L + 1)×1 vectorwk =

[
1

−ρ(bk+K2
k−L−K1

)

]
and the positive scalarσ2

k are

given by {
ρ(bk+K2

k−L−K1
) = c−1

k νk

σ2
k = αk−νT

k c−1
k νk.

(5.11)

The complexity to computeΛ(δ) is brought down toO(N(L + 1)) in (5.10) in-

stead ofO(N(L + 1)2) in (5.9). The vectorsρ(bk+K2
k−L−K1

) can be interpreted as data-

dependent noise predictors and the valuesσ2
k as noise-prediction variances. In fact,

for a given symbol clusterbk+K2
k−L−K1

, wk = w(bk+K2
k−L−K1

) acts to whiten the noisenk

by substracting fromnk the predicted component from the past noise samples. The

variance of the whitened noise, i.e. ofwT
k Nk, equalsσ2

k.
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The ML one-shot phase-error estimate∆ML can be easily derived from (5.10) and

is given by

∆ML =
1

∑N
k=1

1
σ2

k
(wT

k Sk)2

N

∑
k=1

1

σ2
k

(wT
k Ek)(w

T
k Sk). (5.12)

The ML phase-error estimate (5.12) can be seen as a normalized average of an instan-

taneous timing error function given by1σ2
k
(wT

k Ek)(wT
k Sk). Because, in a PLL based

timing recovery scheme, the averaging operation is ensured by the loop filter, the ML

timing error detector (ML-TED) can be simply written as

χML
k =

1

σ2
k

(wT
k Ek)(w

T
k Sk), (5.13)

where the vectorwk = w(bk+K2
k−L−K1

) and the scalarσ2
k = σ2(bk+K2

k−L−K1
) correspond to the

clusterbk+K2
k−L−K1

.

Equation (5.13) presents two interesting properties.

• First, the division withσ2
k provides a weighing for every cluster of symbols

bk+K2
k−L−K1

. The weight of a given cluster is inversely proportional toσ2
k. More

reliable symbol clusters that have smaller ‘unpredictable’ noise variance will

be attributed higher gains in the extraction of timing information than noisy

clusters and vice versa.

• Second, the ‘predictable’ component ofnk from nk−1,...,nk−L is removed via

the scalar product withwk, thus allowing less noise power to be sensed by

the timing recovery subsystem. For example, in the extreme case wherenk is

a deterministic linear combination ofnk−1,...,nk−L, the filtered noisewT
k Nk is

simply zero.

These two properties together make up the strength of the proposed TED.

A block diagram of the ML-TED is shown in Figure 5.2. This TED has attractive

practical properties. First, from an implementation standpoint, the proposed TED

is quite simple in that it requires only two additional FIR filters of length(L + 1)
and one division. Second, the causal and minimum phase structure ofwk causes the

latency of the ML-TED to be small. This limits the increase in the overall delay of

the timing recovery loop due to the ML-TED. This property is very crucial in view

of the impact of the overall delay of the timing-recovery loop on its stability margin

and convergence speed [85].
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Figure 5.2: The ML-TED. The vectorwk and the varianceσ2
k are varied as

function of the symbol clusterbk+K2
k−L−K1

.

Example 5.1:

In the case of zero-mean additive white and data-independent noise with a variance

σ2, we haveL = 0, σ2
k = σ2 andwk = 1. Equation (5.10) boils down to

Λ(δ) =
1

σ2

N

∑
k=1

(εk−δ(q
′ ∗b)k)2,

whereεk = xk− (q0∗b)k.

The optimum TED in this case is the Zero-Forcing (ZF) TED [86]. Its output, multi-

plied byσ2, is given by

χZF
k = εk(q

′ ∗b)k. (5.14)

Because the ZF-TED achieves maximum-likelihood when noise is data-independent

AWGN, we consider, throughout this chapter, the ZF-TED as baseline of comparison.♦

Example 5.2:

As explained in Chapter 1, media noise is one of the most important disturbances in

optical storage. This is modelled for rewritable systems as a data-dependent AWGN
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noise processmk that is injected at the channel input. The variance ofmk, denoted

by σ2
m(bk), is dependent on the bitbk.

At ideal sampling the noise componentnk of (5.1) equalsnk = (q0∗m)k. Assum-

ing that the channel is invertible, i.e. thatq0
k does not have spectral nulls, and has a

minimum phase, it can be easily shown thatwk is data independent and is given by

(w∗q0)k = δk whereδk denotes the Kronecker delta function. The variance of the

whitened noise(w∗n)k equalsσ2
m(bk). The ML-TED (5.13) simplifies in this case to

χML
k =

((w∗x)k−bk)(c∗b)k

σ2
m(bk)

,

whereck is the impulse response of the discrete derivative, i.e.ck = (−1)k

k , for k 6= 0

and c0 = 0. The filtering withwk achieves full equalization of the channel and the

factors1/σ2
m(bk) makes the loop gain higher for the less noisy bits.♦

5.4 Efficiency of Data-Dependent Timing Recovery

The objective of any timing error detector is to provide an indication of the phase-

error present at the detector input. The capability of the timing recovery loop to track

fast timing variations depends heavily on how much timing information the TED can

extract from the incoming signal, while rejecting the noise as much as possible. Good

noise suppression requires the loop bandwidth to be as small as possible, whereas

a wide bandwidth is required in order to track fast timing variations. In order to

quantify this trade-off, a measure of efficiency was introduced in [87]. The efficiency

of a TED was defined as the amount of the timing information that the TED is able to

extract from the incoming signal per unit of time and SNR. In this section we extend

the efficiency analysis of [87] to the ML-TED and show that this efficiency exceeds

that of the ZF-TED.

The ML-TED (5.12) can be linearized as indicated in Figure 5.3 where

Kd(b) =
(w(b)TS(b))2

σ2(b)

denotes the TED gain andvk(b) is the TED additive noise which induces jitter in the

PLL. Both quantities are symbol cluster dependent. The TED noise and average gain
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Figure 5.3: Phase-domain model of the ML-TED. The TED gainKd(b)
and additive noisevk(b) are dependent on the symbol cluster

b = bk+K2
k−L−K1

.

can be written as 



Kd = Eb

[
(w(b)TS(b))2

σ2(b)

]

vk = (wT
k Sk)(w

T
k Nk)

σ2
k

(5.15)

whereEb[.] denotes averaging over all possible symbol clustersb of lengthK1+K2+
L+1 and where, for clarity, the two equivalent notationsX(bk+K2

k−L−K1
) andXk are used.

The efficiency of a TED was defined in [87] as

γ =
1

SNR
K2

d

V (0)
,

whereV (0) is the power spectral density ofvk at DC. Invoking (5.15) and remarking

that wT
k Nk is white with varianceσ2

k, the expression of the ML-TED efficiency can

be simplified as

γML =
1

SNR
Eb

[
(w(b)TS(b))2

σ2(b)

]
. (5.16)

This efficiency does not only include a measure of the high frequency spectrum of

the transmitted data, i.e.E[s2
k] =

∫
(2πΩ)2|Q(ej2πΩ)|2A(ej2πΩ)dΩ whereQ denotes

the Fourier transform ofq0
k andA is the data power spectral density, but does also

include a measure of how noisy every symbol cluster is. The efficiencyγML can be

seen as the average of a per-cluster efficiencyγ(b) = 1
SNR

(w(b)TS(b))2

σ2(b) . Good symbol

clusters for timing recovery are clustersb for which γ(b) is maximized. This result

can be exploited to design optimal preamble patterns. This must be subject to max-

imizing the average per-cluster efficiency over all possible clusters in the preamble

pattern, i.e.Eb∈preamble[γ(b)].

Example 5.3:

For the sake of comparison between the ZF-TED and the ML-TED, let us consider
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the case when the noisenk is white, i.e.L = 0, but with a data-dependent variance

σ2(b). The ML-TED efficiency simplifies then to

γML =
1

SNR
Eb

[
s2
k

σ2(b)

]
.

The ZF-TED has a gainKd = Eb[s2
k] and noisevk = sknk. Its efficiency in this

case can be written as

γZF =
1

SNR
Eb[s2

k]
2

Eb[s2
kσ2(b)]

.

Now using the Cauchy-Schwarz inequality, it is easy to prove that

γML ≥ γZF,

with equality only when the noise variance is data-independent, i.e.σ2(b) = Cst.

For the sake of illustration, let us consider, in this example, the simplifying case

where the data is uncoded and the noise variance of the symbol clusterbk+K2
k−K1

is only

dependent on the central bitbk, i.e. σ2(bk+K2
k−K1

) = σ2(bk).

The efficiency of the ML-TED simplifies in this case toγML = 1
SNREb[s2

k]Eb

[
1

σ2(bk)

]

becausesk is independent ofbk due to the fact thatq′0 = 0. Similarly, the ZF-TED

efficiency can be written asγZF = 1
SNR

Eb[s2
k]

Eb[σ2(bk)]
. The gain in efficiency brought by

the ML-TED over the ZF-TED can be expressed as function ofβ = σ2(−1)/σ2(1) as

follows
γML

γZF (β) = E
[
1/σ2(bk)

]
E[σ2(bk)] =

1
4

(
2+β+

1
β

)
.

Figure 5.4 shows this gain as function ofβ. It shows in particular that forβ >> 1

or β << 1 a substantial improvement in efficiency is obtained using the ML-TED

compared to the ZF-TED. Forβ >> 1 we haveγML

γZF ∝ β and γML

γZF ∝ 1
β for β << 1.♦

5.5 Adaptive Data-Dependent Noise Characterization

In the previous section, we assumed thatw(bk+K2
k−L−K1

) andσ2(bk+K2
k−L−K1

) are known for

all symbol clusters. However, the statistics of the noise are not known in practice

and need to be estimated from the received signal. Moreover, tracking these statistics

adaptively is preferable in many applications because the noise may be nonstationary.

This section presents an estimation scheme of the noise model parameters.
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Figure 5.4: The gain in efficiency of the ML-TED over the ZF-TED as func-

tion of β = σ2(−1)/σ2(1), for the case that data is uncoded

andL = K1 = K2 = 0 as considered in the illustration ofExam-

ple 5.3.

The noise model parameters,w(bk+K2
k−L−K1

) =

[
1

−ρ(bk+K2
k−L−K1

)

]
andσ2(bk+K2

k−L−K1
),

are given by equation (5.11) for every cluster of symbolsbk+K2
k−L−K1

. This can be written

as [
αk νT

k

νk ck

][
1

−ρ
k

]
=

[
σ2

k

0

]

whereρ
k
= ρ(bk+K2

k−L−K1
). Which is interpreted as the data-dependent version of the

well known Yule-Walker equations encountered in autoregressive modelling prob-

lems [5, 136]. The estimation of the noise model parameters can be based on first

estimating, for all symbol clustersb, the covariance matricesC(b) and then deriving

the vectorsw(b) and the variancesσ2(b) via solving the different Yule-Walker equa-

tions for the different data clusters [5]. This means that at every estimation of one

w(b) a covariance matrix needs to be inverted which can be prohibitively complex

especially for high values ofL.

A simpler alternative that does not involve estimating and inverting the covariance

matrices can be proposed. In fact, as mentioned in Section 5.3, the scalar product with
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w(bk+K2
k−L−K1

) =

[
1

−ρ(bk+K2
k−L−K1

)

]
is meant to whiten the noise samplesnk,...,nk−L, for

the symbol clusterbk+K2
k−L−K1

, andσ2(bk+K2
k−L−K1

) is the variance of the whitened noise.

Thus a scheme to estimate and track the prediction vectorρ(bk+K2
k−L−K1

) can be sim-

ply based on minimizingE[(wT
k Nk)

2]. It is a simple exercise to prove that this es-

timation is unbiased. In order to minimizeE[(wT
k Nk)

2] = E[(nk− ρT
k
nk)

2], where

nk = [nk−1, ...,nk−L]T, a least mean square (LMS) type of algorithm can be adopted.

This consists of updatingρ
k

in the opposite direction of the gradient ofE[(wT
k Nk)

2]
and replacing the expectation of(wT

k Nk)
2 by its instantaneous realization. The vari-

anceσ2
k is then simply the variance of the whitened noise, i.e.σ2

k = E[(wT
k Nk)

2] =
E[(wT

k Nk)(nk−ρT
k
nk)], which can be written as

σ2
k = E[(wT

k Nk)nk]

because the estimation ofρ
k

acts to forceE[(wT
k Nk)(ρT

k
nk)] to zero.

The overall estimation scheme is shown in Figure 5.5. At every clock cycle, one

prediction vectorρ(bk+K2
k−L−K1

) and one varianceσ2(bk+K2
k−L−K1

) are adapted. The adapta-

tion of the prediction vector is based on the LMS technique as explained earlier. The

adaptation ofρ(bk+K2
k−L−K1

) and estimation ofσ2(bk+K2
k−L−K1

) are given by:

ρ(b)new = ρ(b)old +µρ(wold(b)T
Nk)nk

σ2(b)new = (1−µσ2)σ2(b)old +µσ2(wold(b)T
Nk)nk,

(5.17)

whereµρ andµσ2 denote the adaptation constants for the adaptation ofρ(bk+K2
k−L−K1

)
and estimation ofσ2(bk+K2

k−L−K1
), nk = [nk−1, ...,nk−L]T andb = bk+K2

k−L−K1
.

In practice,nk is not available to the receiver and the adaptation of the prediction

parameters has to be based on the error signalεk. In this case, one would like to

ensure a proper dimensioning of the timing recovery loop. In fact, in order to ensure

that average TED gain is well defined, one must include in the characterization of the

prediction parameters, used by the ML-TED, a constraint on the average TED gain.

A simple solution to this issue is presented in Section 5.6.

5.6 Dimensioning of the ML timing recovery loop

We described in Section 5.3 the ML-TED (5.13). This TED uses knowledge about

noise in the form of a data-dependent whitening vectorwT
k = wT(bk+K2

k−L−K1
) and whitened
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). The

averaging(.) is symbol cluster dependent.

noise varianceσ2(bk+K2
k−L−K1

). The characterization of the whitening vector and whitened

noise variance was presented in Section 5.5. This characterization does not involve

any constraint on the TED gain and thus the overall gain of the timing recovery loop

is ‘ill-defined’. However, for proper dimensioning of the timing recovery loop, one

would like to have a controlled TED gain. This section describes how noise charac-

terization (5.17) can be modified to include a constraint on the TED gain.

Figure 5.3 describes the phase-domain model of the TED of (5.13) where the

TED gain is given by

Kd(b
k+K2
k−L−K1

) =
(w(b)TS(b))2

σ2(b)
,

and the TED noisevk(b
k+K2
k−L−K1

) is given by

vk(b
k+K2
k−L−K1

) =
(w(b)TNk)(w(b)TS(b))

σ2(b)
.

The average TED gainKd is defined as the average ofKd(b) over all possible

symbol clusters, i.e.

Kd = ∑b p(b)Kd(b)

= ∑b p(b) (w(b)TS(b))2

σ2(b) ,
(5.18)

wherep(b) is the probability of occurrence of the symbol clusterb. This probability

depends only on the coding scheme and is assumed to be known a priori.

In order to constrain the average TED gain (5.18) to a fixed value, e.g. 1, while

characterizing the data-dependent noise, the variancesσ2(b) for all symbol clusters

b must be scaled with the same value such thatKd = 1. The adaptation ofρ(b)
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(equivalentlyw(b)) is unchanged and is given by (5.17). The estimation ofσ2(b) is

modified to

λ = ∑b′∈I p(b′) (wold(b′)TS(b′))2

σ2old(b′)

σ2new(b) = (1−µσ2)σ2old(b)+µσ2λ(wold(b)T
Nk)nk,

(5.19)

where we introduced the data-independent variableλ in order to forceKd to 1.

In order to reduce implementation complexity, the variableλ can be computed

on a subsetI of symbol clusters (not necessary all symbol clusters). In this casep(b)
must be normalized such that∑b′∈I p(b′) = 1. The variableλ needs to be updated

only if the prediction parameters of one of the symbol clusters ofI is updated.

In practice the setI may be chosen to contain few symbol clusters. A particular

case isI = {b0}, where the TED gain is then constrained to be unity for the symbol

clusterb0. This is of interest when the symbol clusterb0 is often present in the

transmitted data, e.g. part of a preamble sequence. In this case,λ is computed as

λ =
(w(b0)

TS(b0))
2

σ2(b0)

and needs to be recomputed only ifw(b0) or σ2(b0) are changed. Note thatw(b0)
TS(b0)

is computed in the TED (5.13) and thus does not require any extra circuitry.

5.7 Simulation Results For a PRML System

Receivers for PRML systems typically use a linear equalizer followed by a Viterbi

detector (VD), see Chapter 1. The equalizer aims at shaping the channel response

hk to an acceptably shorter target responsegk in order to limit the implementation

complexity of the detector. A discrete-time model of a PRML system is shown in

Figure 5.6.

By way of illustration we consider run-length-limited data with run-length param-

eters(d,k) = (1,7) transmitted over an idealized optical storage channel according

to the Braat-Hopkins model [42]

H(Ω) =





2T
π

sin(πΩ)
πΩ

(
cos−1| Ω

Ωc
|− Ω

Ωc

√
1− ( Ω

Ωc
)2

)
, |Ω|< Ωc,

0, |Ω| ≥Ωc.
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Figure 5.6: A discrete-time model of a PRML system including a data-

dependent noise generator.

whereΩc denotes the optical cut-off frequency normalized to the baud frequency,

fixed at1/3 in the sequel. These choices reflect the system described in [115]. The

channel output is corrupted by two different noise components. The first one is data-

dependent noisemk (media noise) and the second noise component is additive white

Gaussian noisezk (electronic noise) with zero mean and varianceσ2
z. As explained

in Chapter 1, media noise can be equivalently seen as if the pits on the disc represent

fuzzy ones, i.e. values of the form1+ uk. The lands, representing−1 on the disc,

are not hampered by media noise. The data-dependent noisemk results then from a

noise sourceuk that is injected at the channel input, i.e.mk = (h∗u)k. The noiseuk is

modelled as additive white Gaussian noise with a variance that depends on the bitbk,

σ2
u,−1 = 0 for bk =−1 andσ2

u = σ2
u,1 6= 0 for bk = 1. Two SNR measures are defined:

a signal to media noise ratio (SMNR) and a signal to additive noise ratio (SANR)

given by

SMNR=
2

σ2
u

and SANR=
∑k h2

k

σ2
z

.

The channel output is subject to a delayφ as shown in Figure 5.6. The channel

outputrk is first filtered by the equalizer and then interpolated at a delay−ψ where

ψ is provided by the timing recovery subsystem. The interpolator is implemented via

a six-tap Lagrange filter [110]. The equalized and interpolated signalxk is subtracted

from a reference signal(g∗ b)k to produce an error signalεk wheregk denotes the

detector target response. This error signal is used by the timing recovery subsystem to

adjust the interpolation phase and by the noise characterization block to estimate the

noise prediction parameters. The 5-tap target responseg = [0.17,0.5,0.67,0.5,0.17]
and a 9-tap equalizer are used. Bit detection is implemented via a Viterbi detector.
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Because of the d=1 constraint, the number of states in the Viterbi trellis reduces to 10

which is standard for nowadays optical storage systems.

Before comparing the new timing recovery algorithm with the ZF algorithm, a

few steps are needed. First, the equalizer taps are trained using the LMS algorithm

at φ = ψ = 0 and noise characterization is achieved as explained in Section 5.5. The

noise characterization parameters are fixed toL = 3 andK1 = K2 = 1. Second, a

calibration process is used in order to ensure that both the ZF-TED and the ML-TED

have the same open-loop gain. To this aim, we fixφ at a given value and normalize

the ML-TED and the ZF-TED such that their open-loop average output equals∆.

The open-loop characteristics of both the ZF and the ML TEDs after calibration

are shown in Figure 5.7 for the case where media noise is dominant, e.g. SMNR=12 dB

and SANR=16 dB. The left plot shows the average of the open-loop TED outputχk

where it is apparent that after calibration, both ZF and ML TEDs have the same gain

especially near∆ = 0. However, as shown in the right plot of Figure 5.7, the variance

of χk for the ZF-TED is always higher than that of the ML-TED. The reduction in

the variance of the open-loop TED output amounts in this case to around 2.5 dB at

∆ = 0. One should recall that in closed-loop and when the PLL is in tracking mode,

only the TED behavior for∆ ' 0 matters. The increase in the open-loop noise vari-

ance around∆ = 0.5 can be explained by the fact that the first order approximation

of xk as function of∆ given in (5.1) holds only for∆' 0.

The gain in the open-loop TED variance depends obviously on SANR and SMNR.

This gain as function of SANR and SMNR follows the same trend as the gain in tim-

ing jitter in closed-loop simulations. This is the subject of the next paragraph.

In order to assess the performance gain of the ML-TED over the ZF-TED in

closed-loop as function of SMNR and SANR, we force the delayφ to be a step func-

tion of time, i.e.φk = 0 for k < k0 andφk = 0.1 for k≥ k0 where the timing recovery

loop is closed atk = k0. The loop filter parameters, i.e. natural frequencywn and

damping factorζ, are optimized in order to achieve the best BER. This optimiza-

tion was carried out at SANR=SMNR=16 dB. The optimal BER was achieved for

wn = 0.03 andζ = 2. Because optimization of the loop filter parameters at different

values of SANR and SMNR did not show any important performance improvement,

we simply fix the loop filter parameters throughout the simulations.

A first measure to estimate the performance of a timing recovery scheme is the

timing jitter defined as the interpolation phase-error variance, i.e.σ2
∆ = E[(φ−ψ)2].
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Figure 5.7: Open-loop characteristics of the ZF and ML TEDs at

SMNR=12 dB and SANR=16 dB.

Figure 5.8 shows timing jitter as function of SMNR for different values of SANR

for the ZF and the ML timing recovery schemes. First, it is apparent that the ML

timing recovery is always superior to the ZF timing recovery. Second, the gain of

the new scheme over the ZF scheme is highly dependent on the ratio of SMNR and

SANR. For a given SANR, the gain is higher at low SMNR and vice versa. This gain

goes from 0.3 dB at SANR=10 dB and SMNR=22 dB to around 2.5 dB for SANR=16

dB and SMNR=12 dB. This is in accordance with the open-loop gain in TED output
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Figure 5.8: Timing jitter as function of SMNR for different values of SANR.

variance around∆ = 0 shown in Figure 5.7.
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Figure 5.9: Simulated BER as function of SMNR for different values of

SANR.

In terms of BER, Figure 5.9 shows simulated BER as function of SMNR for

different values of SANR. At low SANR values, e.g. SANR=10 dB, the BER curve
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is not a steep function of SMNR and thus a little gain in timing jitter translates into

a big gain in SMNR, e.g. 6 dB gain atBER = 10−3. At high SANR values, e.g.

SANR=16 dB, the BER is mainly determined by the data-dependent media noise.

For this reason, a substantial gain in timing jitter does not translate directly into a

relatively big gain in BER. Still, a gain of more than 1 dB in SMNR is achieved

at BER= 10−3. At higher SMNR values the impact of timing jitter is much more

visible and the new timing recovery scheme allows a gain of 2 dB in SMNR.

5.8 Conclusions

In this chapter a new timing recovery algorithm for storage channels with data-

dependent noise was presented. Based on a Gauss-Markov correlated noise model, a

maximum-likelihood timing recovery algorithm was derived and analyzed. The new

algorithm incorporates, on the one hand, data-dependent noise prediction and on the

other hand a data-dependent weighing. The noise prediction aims at whitening the

data-dependent noise and the weighing makes the gain of the timing error detector

data-dependent, i.e. smaller gain for noisier data patterns and vice versa. More-

over, because in practice noise can be nonstationary, a simple adaptation scheme is

proposed to estimate and track the noise prediction parameters. Simulation results

for a partial response maximum-likelihood system show that the proposed algorithm

allows significant improvements in performance in the presence of data-dependent

noise.
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Chapter 6

Equalizing Sampling Rate Converter

Data receivers for storage systems normally operate at a fixed sampling rate1/Ts

that is asynchronous to the baud rate1/T. A sampling-rate converter (SRC) serves

to convert the incoming signal from the asynchronous to the synchronous clock do-

main. These receivers also contain an equalizer that serves to suppress or condition

intersymbol interference and noise. To limit receiver complexity, the equalization

burden can be shifted partially towards the SRC. This possibility is not exploited in

any existing SRC. This chapter presents SRC design methods that combine group

delay flatness and out-of-band rejection criteria with the minimum mean square error

equalization criterion. Numerical examples for an idealized optical storage channel

validate the design methods.

6.1 Introduction

Receivers for data storage systems are often realized with the aid of digital IC tech-

nology. To profit optimally from the rapid advances of this technology, analog-to-

digital conversion is ideally performed early on in the receiver. A common baseband

topology for existing storage systems is depicted in Figure 6.1. A replay signalr(t) is

applied to an analog low-pass filter (LPF) which suppresses out-of-band noise. The

LPF output is digitized by an analog-to-digital converter (ADC) which operates at a

crystal-controlled free-running frequency1/Ts that is high enough to prevent alias-

ing. The ADC output is applied to an equalizer (EQ) which conditions intersymbol

interference (ISI) and noise. The equalizer operates at the sampling rate1/Ts, i.e

asynchronously to the baud rate1/T [21]. It is controlled by an adaptation scheme

that is not depicted for simplicity. Asynchronous equalizer adaptation is treated in
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Figure 6.1: Baseband receiver with asynchronous equalizer. Asynchronous

and synchronous clock domains are indicated with the symbols

1/Ts and1/T, respectively.

Chapter 4. A sampling-rate converter (SRC) [86], which forms part of a timing-

recovery loop, produces an equivalent synchronous output which serves as the input

of a bit detector (DET). Rather than placing the equalizer before the SRC, it would

be possible to reverse their order. That would, however, cause the latency of the

equalizer to contribute to the overall delay of the timing-recovery loop, thus signif-

icantly lowering its stability margin and attainable acquisition speed [85]. Also, the

sampling rate1/Ts can be lower than the baud rate1/T whenever the channel has

negative excess bandwidth. This is so, for example, in existing optical storage sys-

tems, e.g. DVD, Blu-Ray Disc. In such cases the asynchronous equalizer can have

fewer taps and a lower operating speed than its synchronous counterpart, thereby

lowering complexity and power dissipation.

At the heart of the SRC is an interpolation filter that mimics fractional delays, i.e.

delays of a fractionµ of the sampling intervalTs. A shift register that precedes the

interpolation filter produces an additional integer delaym, and the overall delayτ =
(m+µ)Ts is re-determined at every symbol interval by the timing-recovery subsystem

[86].

Design of the interpolator filter is a compromise between complexity and interpo-

lation accuracy. Conventionally, this accuracy has two complementary aspects. First,

the filter should mimic a fractional delay, i.e. its group delay characteristics should

be almost flat. Second, the filter should introduce as little amplitude distortion as

possible. This generally requires a long filter. These requirements only pertain to

the pass-band of the storage channel, i.e. the range of frequencies in which actual

data information is received. Outside that range the interpolator filter should ideally

exhibit a large attenuation, and its group delay characteristics become irrelevant.

The equalizer (EQ) in Figure 6.1 is complementary to the SRC in that it is con-
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ventionally meant to counteract all amplitude distortion as well as all phase distortion

except for pure delays. In practice, digital storage channels have a nominal behavior

that is relatively well known [86]. For this reason it is, in principle, possible to com-

pensate for the nominal channel characteristics (amplitude as well as phase) within

the SRC. This would relieve, and thereby simplify, the equalizer in that it would now

only have to deal with variations of the actual channel characteristics relative to the

nominal ones. Moreover, it should also simplify the interpolator filter in that it no

longer requires a very flat amplitude characteristic and a steep transition between

pass-band and stop-band. Hence, by shifting a part of the burden of the equalizer

towards the SRC both blocks will be made simpler.

Because interpolation filters and anti-aliasing filters constitute the heart of any

practical SRC, the remainder of this chapter is divided into two main sections. Sec-

tion 6.2 describes the design of equalizing interpolators. Section 6.3 treats the prob-

lem of designing equalizing anti-aliasing filters.

6.2 Equalizing Interpolator

In order to explain the principle and the design of an equalizing interpolation filter,

let us first consider, in this section, the case where the ADC frequency1/Ts is equal

to the baud rate, i.e.R= T/Ts = 1. The replay signal, in Figure 6.1, can be written

as

r(t) = ∑
i

bih(t− iT )+n(t),

wherebi denotes channel data,h(t) is the continuous-time channel symbol response

andn(t) is additive noise. We denote byrk the ADC output at the sampling instant

ts
k = (k+µ)T whereµT denotes the sampling phase, i.e.

rk = (hµ∗b)k +nk,

wherehµ
k

.= h((k+ µ)T) andnk is pre-filtered and sampled noise. The signalrk is

applied to a FIR filtercµ of lengthLc, which we call equalizing interpolator, that is

principally meant to compensate for the sampling phaseµT and secondarily to equal-

ize the channel impulse responsehµ
k towards a target responsegk of lengthLg, see

Figure 6.2. The following subsections present two design methods for the equalizing

interpolatorcµ.
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Figure 6.2: Discrete-time system model for1/Ts = 1/T.

6.2.1 MMSE equalizing interpolator

For a given sampling phaseµ, the first design method of the equalizing interpolatorcµ

is based on the minimum mean square error (MMSE) criterion. This method consists

of optimizing the taps ofcµ to minimize the mean square error (MSE), i.e.E[ε2
k],

whereεk denotes the error signal (see Figure 6.2) given by

εk = xk− (g∗b)k−D.

For a given equalizing interpolatorcµ, the MSE can be written as

E[ε2
k] = cµTQcµ−2cµTv+E[(g∗b)2

k−D], (6.1)

where the matrixQ is given byQi, j = E[rk−irk− j ] and the vectorscµ andv are given

by (cµ)k = cµ
k and(v)i = E[rk−i(g∗b)k−D], respectively. In case the noisenk is zero-

mean and white with a varianceσ2
n and the data is uncoded, it can be easily shown

that

Qi, j =
(

∑
m

hµ
mhµ

m+i− j

)
+σ2

nδ(i− j),

and

(v)i = ∑
m

hµ
mgi+m−D

whereδ(.) denotes the delta Kronecker function.

The MMSE equalizing interpolator can be derived by setting the gradient of (6.1)

with respect tocµ to zero. This yields

cµ
MMSE = Q−1v. (6.2)
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Numerical Example :

By way of illustration we consider an idealized optical storage channel accord-

ing to the Braat-Hopkins model [42], see Chapter 1, where the normalized opti-

cal channel cut-off frequency isΩc = 1/3. The target response has 5 tapsg =
[0.17,0.5,0.67,0.5,0.17]. The noisenk is taken to be white and the signal to noise

ratio, as defined in Chapter 1, is fixed to 15 dB. Figure 6.3 shows the amplitude and

group delay of a 7-tap MMSE equalizing interpolator forµ= 0.3. The error in group

delay inside the channel pass-band is around 5% of the bit length.

The previous example illustrates that the MMSE design method does not lead to

a flat group delay and that a method that constrains the group delay is needed. This

is presented in the next subsection.
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Figure 6.3: group delay (left plot) and amplitude response (right plot) of the

7-tap MMSE equalizing interpolator forµ= 0.3.

6.2.2 Group delay constrained equalizing interpolator

The group delay of the interpolation filtercµ
k must be as close as possible to(Lc−1

2 +
µ)T at all frequencies inside the channel pass-band, i.e.|Ω| < Ωc whereΩc is the

channel cut-off frequency. Upon writing the frequency response ofcµ
k asCµ(ej2πTΩ)=

A(Ω)e− j2πϕ(Ω) whereA(Ω) andϕ(Ω) denote the amplitude and phase response ofcµ
k

respectively, it can be easily shown that the group delay ofcµ
k satisfies

ϕ′(Ω) =− 1
2π

Im(Cµ′Cµ∗)
|Cµ|2 ,
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whereCµ′ andCµ∗ denote the derivative and the conjugate ofCµ(ej2πTΩ) respectively

andIm(.) is the imaginary part. This expression can be simplified into

ϕ′(Ω) =
cµTG(Ω)Λcµ

cµTG(Ω)cµ
, (6.3)

whereG(Ω) = vcvT
c +vsvT

s , given by

vc = [1,cos(2πΩT), . . . ,cos(2π(Lc−1)ΩT)]T and

vs = [0,sin(2πΩT), . . . ,sin(2π(Lc−1)ΩT)]T. The matrixΛ is diagonal and its diag-

onal is equal to[0,1, . . . ,Lc−1].
The mismatch in group delay ofcµ

k with respect to its ideal value, i.e.(Lc−1
2 +µ)T,

needs in practice to stays below a predefined marginδgT whereδg depends on system

sensitivity to phase errors. In other words, the interpolation filter needs to meet

τ1 ≤ ϕ′(Ω)≤ τ2, ∀|Ω|< Ωc (6.4)

whereτ1 = (Lc−1
2 + µ)T − δgT andτ2 = (Lc−1

2 + µ)T + δgT. We introduce a finite

frequency gridΩi ∈ [0,Ωc], i = 1...Nc, and define the corresponding constraints sets

as

Si = {c : τ1 ≤ cTG(Ωi)Λc
cTG(Ωi)c

≤ τ2}. (6.5)

The problem of equalizing interpolation boils down to designing the filtercµ
k ∈

Si ,∀i, while achieving amplitude equalization. Amplitude equalization is achieved

by the MMSE technique, i.e. via minimization of

J(cµ) = E[ε2
k] = cµTQcµ−2cµTv+gTRbg, (6.6)

wherecµ = [cµ
0, . . . ,c

µ
Lc−1]

T, g = [g0, . . . ,gLg−1]T, Q = HRbHT+Rn andv = HRbg

where the matrixH has entriesHp,q = h((q− p+ µ)T) andRb andRn denote the

autocorrelation matrices of the input data and noise respectively. The design of the

equalizing interpolator can now be formulated as

cµ = arg min
c∈⋂Nc

i=1 Si

J(c). (6.7)

It should be noted that the group delay of (6.3) is related to the filter coefficients in

a nonconvex rational manner, hence the constraints setsSi are nonconvex in general.

It follows that standard optimization techniques that hold for convex constraints sets
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do not apply to our problem (6.7). However, we will show that, modulo a linear

transformation, (6.7) is equivalent to finding the orthogonal projection of the MMSE

solution, i.e. the minima of (6.6), over an intersection of nonconvex sets. The vector

space projection method (VSPM) [141] extended to nonconvex sets [126] can then

be applied. The VSPM deals with the problem of finding an optimal point in a vector

space that satisfies multiple constraints. The theory of VSPM was initially developed

for intersecting convex constraints sets in [109] and [107]. In recent years the the-

ory was extended to non-convex, non-intersecting sets in [126]. In [126] a parallel

projection algorithm, also known in literature as the Parallel Generalized Projection

Algorithm (PGPA), was shown to ensure weak convergence even if the constraint sets

are non-intersecting. As an example, this theorem was used in [97] to design allpass

filters under group delay constraints.

Via decomposing the positive definite matrixQ into ΓTΓ, whereΓ is positive

definite, one can show that (6.7) yields

cµ′ = Γcµ = arg min
c′∈⋂Nc

i=1 S ′i
‖c′−Γc0‖2, (6.8)

where‖.‖ denotes theL2-norm andc0 = Q−1v is the MMSE solution. The def-

inition of the new constraints setsS ′i is similar to (6.5) by replacingG(Ωi) with

G′(Ωi) = ΓT−1
G(Ωi)Γ−1 andΛ with Λ′ = ΓΛΓ−1. According to (6.8),Γcµ can be in-

terpreted as the orthogonal projection ofΓc0 over
⋂Nc

i=1 S ′i . The setsS ′i can be written

asS ′i = S ′1i ∩S ′2i whereS ′1i = {c′ : τ1≤ c′TG(Ωi)′Λ′c′

c′TG(Ωi)′c′
} andS ′2i = {c′ : c′TG(Ωi)′Λ′c′

c′TG(Ωi)′c′
≤ τ2}.

The solution of (6.8) can then be based on the PGPA theorem which consists of it-

eratively applying a weighted sum of the orthogonal projectionsP1,2
i overS ′1,2

i . For

the sake of conciseness, we refer to [97] where a very similar derivation ofP1,2
i can

be found. The algorithm of designing an equalizing interpolator can be summarized

as follows:

Step 1. we initially setc′0 = Γc0.

Step 2. ∀n≥ 0, c′n+1 = ∑2
j=1 ∑Nc

i=1w j
i P

j
i c′n.

If c′n+1 ∈
⋂Nc

i=1 S ′i then go to step 3 otherwise repeat step 2.

Step 3. after convergence,cµ = Γ−1c′∞.

The weightsw j
i must satisfy∑i, jw

j
i = 1. An obvious choice isw j

i = 1
2Nc

. However, in

our application it was observed that a much faster convergence is obtained by choos-
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ing

w j
i =

‖c′n−P j
i c′n‖2

∑l ,m‖c′n−Pm
l c′n‖2 .

Numerical Example :

Using the same channel as in the numerical example of Section 6.2.1, Figures 6.4 and

6.5 show the amplitude and group delay of a 7-tap and 9-tap group delay constrained

equalizing interpolator forµ = 0.3 and δg = 0.003, i.e. 0.3% of the bit interval.

The signal to noise ratio is fixed to 15 dB. Compared to a 7-tap MMSE equalizer

together with a 6-tap Lagrange interpolation [110], the equalizing interpolator has

a negligible loss in MSE of only0.05dB. This means that the equalizer of Figure 6.1

becomes superfluous.
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+δ
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−δ
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Figure 6.4: left plot: group delay of the 7-tap group delay constrained

equalizing interpolator forµ= 0.3 andδg = 0.0003(solid) and

the 7-tap MMSE equalizing interpolator (dashed). The crosses

denote the frequenciesΩi . right plot: amplitude responses of the

two equalizers.

6.3 Equalizing anti-aliasing filters

In many practical systems, the SRC filters are split into two filters, see Figure 6.6. A

first anti-aliasing filterpn, of lengthLp, rejects a specific frequency band in order to
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Figure 6.5: left plot: group delay of the 9-tap group delay constrained

equalizing interpolator forµ = 0.3 and δg = 0.003 (solid) and

the 9-tap MMSE equalizing interpolator (dashed). The crosses

denote the frequenciesΩi . right plot: amplitude responses of the

two equalizers.

prevent noise and data aliasing. A second filterctr
k that depends ontr

k resamples the

filtered signal at the sampling instantstr
k, provided by the timing-recovery subsystem.

Such a structure allows a relaxation on the stop-band constraints ofctr
k . This simpli-

fies greatly the SRC. It is important to mention here that depending on the channel

cut-off frequency and the oversampling rateR= T/Ts, ctr
k can precede the filterpn.

The results of this section can be easily translated to this case. The SRC filterctr
k

is implemented via a sample selector and an interpolation filter [86]. The interpola-

tion filter can be designed as explained in the previous section. The filterpn should

then tackle all phase distortions and the remaining amplitude distortions, left by the

equalizing interpolator, while providing enough attenuation at the stop-band.

kx

r
kt

nr r
ktc���

np
sT/1 T/1sT/1

Figure 6.6: a practical implementation of the SRC.
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The MSE of a system employing the SRC architecture of Figure 6.6 can be found

in [114]. It is given by

J(p) = pTQRp−2pTvR+gTRbg, (6.9)

wherep = [p0, ..., pLp−1]T , the matrixQR and the vectorvR depend on the oversam-

pling rateRand are given by

QR = FRbFT+CRuCT; vR = FRbg,

where the matrixF has entriesFp,q = ∑nc(nTs− pTs)h(qT− nTs), C is given by

Cp,q = c(−pTs−qTs) and the autocorrelation matrices of the input data and noise are

denoted byRb andRu respectively. The symbol response of the SRC interpolation

filter is denoted byc(t). Similarly to Section 6.2, we introduce a finite frequency grid

Ωi , i = 1...Nc in the stop-band, and constrain the filterpn to meet

|P(ej2πΩiTs)|2 ≤ δa, i = 1...Nc

whereP(ej2π f Ts) = ∑Lp−1
n=0 pne− j2πn f Ts and10log(δa) is the desired stop-band attenu-

ation. This amplitude constraint can be written aspTmim
H
i p≤ δa where

mi = [1,e− j2πΩiTs, . . . ,e− j2π(Lp−1)ΩiTs]T and[.]H denotes transpose conjugate. The op-

timization problem related top can be formulated as

p = arg min
∀i Fi(p)≤0

J(p), (6.10)

whereFi(p) = pTmim
H
i p− δa. The equalizing anti-aliasing filters problem can now

be stated in terms of minimizing the quadratic functionJ(p) subject to the inequalities

constraintsFi(p)≤ 0whereFi(p) are real differentiable and convex functions because

the real matricesmim
H
i are positive. Because the functionJ(p) is also convex, we

know that if a solution of (6.10) exists then it is unique and it is characterized by

the Kuhn-Tucker (KT) conditions [39]. However, solving the KT conditions can be

quite complex in general. For this purpose we propose to use the Uzawa algorithm

[90] which is an iterative method allowing one to solve an inequality constrained

minimization problem, of a structure as in (6.10) by replacing it with a sequence

of unconstrained minimization problems. If we denote the LagrangianL(p,λ) =



159

J(p)+∑Nc
i=1 λiFi(p), the Uzawa algorithm in our context is written as:

L(p(n),λ(n)) = min
p

L(p,λ(n)) (6.11)

∀i λ(n+1)
i = max(0,λ(n)

i +ηFi(p(n))), (6.12)

whereη > 0 is a fixed adaptation constant and the superscript(n) indicates thenth

iteration. Equation (6.12) ensures that the Lagrange multipliers are always positive.

The unconstrained minimization in (6.11) yields a simple linear system. In fact, it

can be easily shown that (6.11) is equivalent to

p(n) =

(
QR+

Nc

∑
i=1

λ(n)
i mim

H
i

)−1

vR. (6.13)

Initially we setλ(0)
i = 0 andp(0) = Q−1

R vR (the MMSE equalizer). At every iteration,

we apply (6.13) and (6.12) and check ifFi(p(n))≤ 0, ∀i. The algorithm is stopped if

this latter condition is met.

−0.5 −0.3 0 0.3 0.5

−55

−35

−15

0

Ω T
s

Figure 6.7: The Amplitude response of the 9-tap filterpn (solid) and the 9-

tap MMSE equalizer (dashed).

Numerical Example :

Using the same channel as in the example of Section 6.2 at an oversampling rate
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R=1.25, Figure 6.7 shows the amplitude response of a 9-tap filterpn for an attenu-

ation of -35 dB in[0.3/Ts,0.5/Ts]. The MSE difference between the filterpn and the

MMSE equalizer is less than 0.1 dB. This shows that the equalization burden can be

shifted towards the SRC which means that the equalizer of Figure 6.1 can be omitted.

6.4 Conclusions

For all-digital timing-recovery loops, design of efficient sampling-rate converter fil-

ters is very important for performance optimization and complexity limitation. In

fact, to limit the overall receiver complexity, sampling-rate converter filters can be

designed to also perform channel equalization. This presents a two-fold attractive

feature. First, it helps to reduce complexity by shifting a big part of channel equal-

ization towards the SRC filters and thus shortens significantly the equalizer length for

the same performance. Second, for systems employing a digital synchronous equal-

izer, shortening the equalizer length limits the delay inside the timing-recovery loop

which is crucial for its proper functioning.

This chapter presents design methods that combine group delay flatness and out-

of-band rejection criteria, required for sampling-rate converter filters, together with

minimum mean square error equalization. This approach and the corresponding de-

sign methods are validated for an idealized optical storage system.
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Chapter 7

Summary and Conclusions

The objectives of this thesis are the study and development of adaptive equalization

and timing recovery techniques that meet the key future challenges in high-density

optical storage systems. These challenges stem from the increase in linear and non-

linear intersymbol interference, the nature of noise and fast channel variations. In

this thesis we study issues related to equalization and timing recovery and present

practical schemes that are of potential interest for future systems.

The work in this thesis should open new doors for research in the field of adaptive

equalization and timing recovery for optical storage systems. In fact, as most of the

adaptation techniques used in todays optical storage systems do not fully exploit the

nature of the optical storage channel in terms of noise and nonlinearities, the different

adaptation schemes proposed in this thesis, and in particular the selective equalizer

adaptation and the data-dependent timing-recovery, can be an important contribution

to the state of the art.

This chapter summarizes the thesis work and provides suggestions for future re-

search. This thesis contains seven chapters. Chapter 1 gives an introduction to optical

storage technology and a review of signal processing techniques for read channels.

It presents the main challenges in terms of linear and nonlinear ISI, noise and fast

channel variations for future high-density optical storage systems. Then it points out

the implications of these challenges for equalization and timing recovery.

In Chapter 2 we introduce a new adaptive equalization technique that seeks to

minimize detection bit-error rate (BER). The proposed algorithm incorporates a se-

lection mechanism that enables equalizer adaptation only when bit-detection be-

comes not reliable. Compared to existing equalization schemes, the proposed algo-

rithm provides an important performance improvement, with no increment of com-
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plexity. The superiority of the proposed algorithm is demonstrated analytically and

verified based on computer simulations.

Chapter 3 can be seen as an extension of Chapter 2 in the sense that it covers the

problem of joint equalizer and target response adaptation. We generalize and apply

the near minimum-BER adaptation technique to joint target response and equalizer

adaptation. This is achieved by focusing target-response adaptation on the most likely

bit-error events and acting towards decreasing their probability of occurrence. Rel-

ative to existing adaptation methods, the near minimum-BER scheme is comparable

in terms of implementation complexity. However, in terms of performance, it al-

lows significant improvements especially for short target or equalizer lengths or in

the presence of channel nonlinearities and media noise. This can be important for

high-density storage systems in terms of system complexity reduction, by allowing

the use of a short target response without significant performance degradation, or in

terms of mitigating nonlinearities and media noise.

Chapter 4 tackles the problem of minimizing latencies inside the timing-recovery

loop by shifting the equalizer to the asynchronous clock domain. This involves an

equalizer that operates at a sampling-rate asynchronous to the data rate. Chapter 4

explains, first, the implication of this scheme for equalizer adaptation and then pro-

poses a highly simple yet efficient method for asynchronous equalizer adaptation.

Although Chapter 4 focuses on LMS adaptation for simplicity, its results carry over

to other adaptation criteria as well, e.g. the minimum-BER criterion proposed in

Chapter 2. The main result of this chapter is that asynchronous equalization is now

made as simple as its synchronous counterpart.

With respect to the objective of strengthening the timing-recovery loop, Chap-

ter 5 focuses on designing an optimal timing-recovery scheme for channels with

data-dependent noise. This chapter presents a new data-aided timing recovery al-

gorithm based on a data-dependent Gauss-Markov model of the noise. The proposed

timing recovery algorithm incorporates data-dependent noise prediction parameters

in the form of linear prediction filters and prediction error variances. Compared to

the state of the art, the proposed scheme allows an important performance gain in the

presence of media noise.

As recently all-digital timing recovery is often employed, design of efficient

sampling-rate converter (SRC) digital filters is very important for performance op-

timization and complexity limitation. More precisely, design of SRC filters that also
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realize channel equalization presents attractive features. First, it helps to reduce com-

plexity by shifting a big part of channel equalization towards the SRC filters and thus

shortens significantly the equalizer length for the same performance. Second, for sys-

tems employing a digital synchronous equalizer, shortening the equalizer length lim-

its the delay inside the timing-recovery loop which is crucial for its proper function-

ing. Chapter 6 explains first the problem of equalizing SRC filters and then presents

algorithms for designing such filters.

7.1 Future Research

With respect to the objective of improving the signal-processing part of future optical

storage systems, we can distinguish between two steps. First, improvement of the

write subsystem via development of accurate write-strategy optimization. Second,

amelioration of the read channel which requires dealing with linear and nonlinear ISI

and strengthening the adaptive equalization and timing recovery loop.

Regarding the second step, a possible future research work can aim at enhanc-

ing the performance of the different equalization and timing recovery algorithms

proposed in this thesis. In particular, tailoring the near-minimum BER adaptation

algorithms to decision-directed mode and combining the different algorithms with

soft-decision and iterative techniques could provide some interesting performance

improvements. Also, combination of the near-minimum BER adaptation with post-

processing detection techniques, which focus on the dominant bit-error events pro-

vided by the equalization algorithm, should be investigated. Moreover, extension of

the different algorithms to two-dimensional systems can be a good topic for future

work.

An other topic of future research can be the investigation of nonlinear equaliza-

tion methods to deal with nonlinear ISI. This should also include a generalization

of the selective adaptation criterion of Chapters 2 and 3. Also nonlinearity compen-

sation in combination with a linear or nonlinear equalizer needs to be thoroughly

investigated.

In order to further strengthen the timing recovery loop at low signal to noise

ratios, a possible future work consists of incorporating in our timing error detector

knowledge of the timing errors models. This involves developing proper timing er-

ror models by taking into account the different timing uncertainty sources and then
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designing the corresponding optimal timing error detectors.

An other topic of future work might be the investigation of the interaction prob-

lem between the equalizer adaptation and the timing recovery loop. This is caused

by the fact that a linear phase distortion in the channel can be either compensated

by timing recovery or by the adaptive equalizer. This makes the phase response of

the equalizer ill-defined and causes a degradation of system performance. Although

there exist some constraint-based interaction mitigation algorithms, e.g. [50, 128],

they mainly try, with more or less success, to patch up the problem instead of pre-

venting the source of interaction by decreasing the receiver degrees of freedom. This

subject still needs to be fully explored especially in the case of selective equalizer

adaptation that we developed in Chapters 2 and 3.

Although this thesis focused on optical storage systems, the applicability of the

main results extends well beyond optical storage. A first possible extension of this

thesis, is thus the application of its main results in the field of equalization and tim-

ing recovery to other communication and storage systems. In particular, the near-

minimum BER adaptation scheme developed in Chapters 2,3 and the new timing

recovery scheme of Chapter 5 can be of great interest for high-density magnetic stor-

age systems as these suffer from similar artifacts as optical storage systems. Also,

with modest changes, the new ideas of this thesis might be applicable, among other

systems, to wireless and optical communication systems.
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Télécommunications (ENST) in Paris to specialize in telecommunication systems.

In 2001, he did an internship at Qualcomm Inc. in San Diego, USA, where he

worked on Ultra Wide Band (UWB) systems. He specially analyzed the effect of

UWB signals on Code Division Multiple Access (CDMA) systems and focused on

the impact of aggregate of UWB transmitters on the IS-95 system.

In 2002, he joined the Eindhoven University of Technology as a Ph.D. student.

During the first two years of his Ph.D. period he worked on a European project to

develop a two-dimensional optical storage system (TwoDOS). The work was carried

out in cooperation with Philips research laboratories and 4 other European partners

with the goal of realizing at least a doubling of the storage density compared to the

25 GB Blu-ray Disc system and an increase in data rate by one order of magnitude.

Inspired by the work on TwoDOS, he then focused, in the second part of his Ph.D.

period, on equalization and timing recovery for optical storage systems. The results

of his research are reported in this thesis.

Currently he is working for Marvell Semiconductor, Inc. in the field of digital

signal processing for different communication systems.


	Summary
	Contents
	1. Introduction
	2. Minimum bit-error rate equalization
	3. Minimum bit-error rate target response adaptation
	4. Asynchronous adaptive equalization
	5. Timing recovery for data-dependent noise channels
	6. Equalizing sampling rate converter

