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Contributions to Adaptive Equalization and

Timing Recovery For Optical Storage Systems

During the last decades, storage density and data rate of optical storage devices have
increased dramatically. This increase arises out of the evolution from the Compact
Disc (CD) with a storage capacity of 680 MByte and a user data rate of 1.4 Mbit/s
to the recently standardize&F generation format called Blu-ray Disc (BD) with a
single layer storage density of 25 GByte and a user data rate of around 35 MBit/s.

Although this explosive growth has been mainly due to major advances in the
physics, i.e. due to the improvements made in the design of laser diodes with a
shorter wavelength and lenses with a higher numerical aperture, rapid advances in
coding and signal processing algorithms have also played a significant role.

As storage density and data rate of optical storage systems increase, many system
artifacts, e.g. media noise and channel nonlinearities, become important and result
in reduction of system margins and signal-to-noise ratio. In order to cope with these
artifacts, data receivers for optical storage systems need to employ powerful signal
processing methods.

Among the signal processing blocks in data receivers for optical storage systems,
the equalizer, data-detector and the timing recovery block are the most important.
The way of equalization consists of using one or more filters to mitigate the effect of
interference and noise prior to data-detection. The timing recovery block deals with
the synchronization of the readback signal with the data written on the disc.

Because of system artifacts at high storage densities, the tasks of equalization and
timing recovery become more difficult and, at the same time, increasingly critical for
reliable data recovery. Existing equalization and timing recovery algorithms can not
cope with these artifacts efficiently.

The objective of this thesis is to push the state of the art in equalization and timing
recovery for optical storage systems and propose powerful adaptive equalization and
timing recovery algorithms to meet the challenges of future optical storage systems.
The thesis contains seven chapters. These chapters are written to be as independent



Vi

and as self-contained as possible, so that they can be read separately.

Chapter 1 gives an introduction to optical storage technology and a review of
signal processing techniques for optical storage data receivers. It also presents the
main challenges in future high-density optical storage systems. This introductory
chapter concludes with the motivations, contributions and organization of the thesis.

In Chapters 2 and 3 we introduce a novel adaptive equalization technique that
seeks to minimize the probability of detection error. These chapters explain, first, the
limitations of the existing adaptive equalization techniques and then propose a new
adaptation technique for detection error rate minimization. The key property of the
new adaptation technique is its selectivity in the sense that it mainly focuses on the
data patterns that have the highest likelihood of detection error. The strength of the
proposed technique is not restricted to providing a better performance but extends to
allowing very low implementation costs.

Chapter 4 reports an asynchronous adaptive equalization scheme that aims at
minimizing latencies inside the timing-recovery loop. The chapter explains the im-
plication of this scheme for equalizer adaptation and proposes a highly simple yet
efficient method for asynchronous equalizer adaptation.

Following this, and with respect to the objective of strengthening the timing-
recovery loop, Chapter 5 focuses on designing a timing-recovery scheme for channels
with data-dependent noise. The applicability of the proposed scheme thus extends
well beyond optical storage channels. The chapter exploits the data-dependent and
colored nature of noise to improve the performance of timing recovery. It starts by
analyzing the maximum-likelihood (ML) timing-recovery criterion and proposes a
novel and practical scheme to achieve near ML performance.

As recently all-digital timing recovery is often employed, design of efficient
sampling-rate converter (SRC) digital filters is very important for performance op-
timization and complexity limitation. In this respect, SRC filters that also realize
channel equalization can be attractive. Chapter 6 explains first the problem of equal-
izing SRC filters and then presents algorithms for designing such filters.

Chapter 7 concludes the thesis with some remarks and directions for future work.

The development of all new algorithms presented in the different chapters is sup-
plemented with computer simulation results. These simulation results are used for
demonstrating the effectiveness of the proposed algorithms and for validating the
analytical developments.
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Chapter 1

Introduction

In this chapter, we first give an overview of optical storage technology. Then we
explain the role of signal processing in existing optical storage systems. Following
this, we exhibit the key challenges, from the signal processing perspective, of future
high-density optical storage systems. The chapter concludes by highlighting the mo-
tivations for the work presented in this thesis and by presenting a description of the
contribution of each chapter of this thesis.

1.1 Introduction to Digital Optical Storage

In this digital information era, our need for storage is growing explosively because of
multimedia requirements for text, images, video and audio. This need has prompted
the development of various digital storage systems, such as hard disks, compact discs
(CDs), digital versatile discs (DVDs) [31, 115] and magneto-optical disks [155].

Optical storage systems are systems that use light for recording and retrieval of
information. Information is recorded on a disc as a change in the material charac-
teristics by modulating the phase, intensity, polarization, or reflectivity of a readout
optical beam [10,42,111]. In the case of read-only discs, the information is mastered
on the media by injection molding of plastics or by embossing of a layer of pho-
topolymer coated on a glass substrate [10,42]. In other types of optical discs, some
information is stamped onto the media and the substrate is coated with a storage layer
that can be modified by the user during storage of information.

Compared to the other storage technologies, the most distinguishing feature of
optical storage is the removability of the storage medium. In fact, a key difference
between existing optical storage and magnetic storage systems is the ease with which
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the optical media can be made removable with excellent robustness, archival lifetime
and very low cost. The separation between the media surface and the optical pick-
up unit (OPU), which includes the laser diode, the lenses and the photo-detector IC
(PDIC), excludes all risks of the infamous head crashes experienced in hard disk
drives.

The storage density and data rate of optical storage devices have increased dra-
matically in the last decades. Although this explosive growth has been mainly due
to major breakthroughs in the physics, i.e. due to the improvements made in the
design of the OPU and storage media, sophisticated coding and signal processing
techniques as well as accurate servo control algorithms have also played a signif-
icant role [113, 152]. The potential of coding and signal processing technigues to
substantially further enhance the storage capacity is becoming evident.

The remaining part of this section provides first a brief historical overview of
optical storage technology and then discusses the optical disc readout and digital
optical formats.

1.1.1 Optical Storage History and Trends

This section gives a brief historical overview of optical storage technology. A more
detailed overview can be found in [74] and the references therein.

The huge popularity of the gramophone record and the growth of television in the
1960’s called for techniques for storing video signals on a disc. The use of a disc, as
an information carrier, solves the problem of slow accessibility of tape-based storage
in the sense that fast access to any part of the programme is made possible. Moreover,
using a disc for data storage still presents the low price advantage brought about
by production methods similar to that of the gramophone disc [1], i.e. mechanical
impressing the information in the disc by using a master stamper.

In this period, research on this subject started at different laboratories. Early
investigations showed that optical read out of information has distinct advantages
over the mechanical read out as was used in case of the gramophone record. The
first edition of ‘Philips Technisch Tijdschrift’ [151] describes the so-called Philips-
Miller-System for optical registration of audio information. The main advantage of
this system over the gramophone is that mechanical wear due to read out of the in-
formation is eliminated because there is no mechanical contact between the medium



and the readout device. However, the idea could not be made practically viable until
the availability of a very bright, and in principle cheap, light source in the form of a
laser.

In 1967 the basic idea of storing data on a transparent optical disc was disclosed
by D. Gregg [49]. In 1972, a standard established by Philips, Thomson, Music Corpo-
ration of America and later on Pioneer described the Video Long Play (VLP) system
with the goal of playing back video content on a television set [24, 149]. The system
uses discs of a transparent polymer material with standardized diameters of 20 and
30 cm and a thickness of 2.6 mm. The VLP disc resembles a gramophone record but
has a mirror-like appearance [1], see Figure 1.1.

Figure 1.1: ‘The video disc resembles a gramophone record but has a
mirror-like appearance’ [1].

The information on these discs is stored in tracks spiraling outward with a track-
to-track distance of 1.gm. The discs are manufactured by mechanical impressing of
information in the disc using a master stamper to allow a cheap and fast replication
process. The master stamper is made by illuminating aub®€hin photo-sensitive
layer on a glass substrate and developing the photo resist to remove it at positions
where it was illuminated. The information is present in the so-called pits and lands
(non-pits). The readout of information from the disc is achieved via a laser beam
with a wavelength of 632.8 nm, which is focused onto the information layer by a so-
called objective lens. Explanation of the readout process is presented in Section 1.1.2.
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Table 1.1: Key properties and advantages of optical storage systems.

Property Advantage
e Mechanical impression of informa- e Cheap replication of discs.

tion using a master stamper.
e No mechanical contact betweene No mechanical wear during read

medium and readout device. out and easily removable storage

medium.
e Protective cover-layer in the form of e Robust against dust and scratches.

the disc substrate.

It was already recognized that the small size of the pits (width ofuh4aver-
age length of 0.qum) requires a special protection of the information layer. Small
dust particles and scratches on the disc can easily damage the imprinted information
layer and lead to signal drop-outs. To solve this problem, the use of a transparent,
protective layer on top of the information layer has proven to be necessary. More
importantly, the use of the disc substrate itself as this protective layer has proven to
be one of the key ideas that made the optical storage system a robust information
carrier as we know it today [99]. Table 1.1 shows an overview of the key properties
and advantages that make the optical storage system the system of choice for many
of today’s applications [74].

The major drawback of the VLP system was its limited playing time. This made
competition with the video cassette recorder rather difficult [16] and limited the mar-
ket share of the VLP system. In the meantime, research was done to replace the old
gramophone disc by an optical system to distribute audio content. The large increase
in areal capacity when going from the mechanical to the optical readout was exploited
in two ways. First, the optical disc was reduced considerably in size compared to the
gramophone disc. Second, the audio signal was digitized allowing the use of error
correction codes (ECC). This made the system even more robust against dust and
scratches compared to the VLP.



1.1.2 Readout of Optical Discs

In optical storage systems, the data is written on the disc in the form of marks of

various lengths in a track spiraling outwards from an inner radius (R1) towards an

outer radius (R2), see Figure 1.2. The separation in the radial direction between
adjacent tracks is called track pitch. Read-only systems, such as CD-ROM, employ
a pattern of pits and lands to write the information on the disc. In rewritable systems,

such as DVD-RW, phase changes due to local differences in material structure are
generally used to represent information [150].

Outer
(R2)

Figure 1.2: Schematic drawing of the outward spiraling track on an optical
disc. In the inset the pits on the disc are shown in detail.

The data is read out with a focused laser beam. A schematic drawing of the opti-
cal light path is shown in Figure 1.3 [74]. A light beam is generated by a semiconduc-
tor laser diode. The light is pointed towards a beam-splitting cube and then directed
towards the objective lens via a collimating lens that makes a parallel light bundle.
The objective lens focuses the parallel bundle onto the rotating storage medium. By
actuating the objective lens towards and from the disc, ideal focus can be maintained
even when the disc is not ideally flat. Additionally, by actuating it in the radial direc-
tion (the direction perpendicular to the along-track direction) the spiraling track can
be followed accurately. The focused light beam is reflected by the storage medium,
after which the light is collected again by the same objective lens. Via the same op-
tical path and the beam splitter it is now focused onto a photo detector that transfers
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the optical signal into an electrical signal. This electrical signal contains information
on the pit sequence on the disc from which we can derive the original bit sequence.

Beam
splitter

Photo
detector

Collimator
Laser

Figure 1.3: The optical light path.

1.1.3 Digital Optical Formats

The digital audio long play disc that originated from the VLP system was renamed
compact disc (CD). The CD standard was introduced by Philips and Sony in 1980
and was officially brought to the market in Europe and Japan in 1982. Besides the
digitization of the data and a change in laser wavelengtbh 780 nm, the basic
principle was kept the same. The storage density of 680 MByte on a single layer disc
with a diameter of 12 cm was reached using a track pitch ofuh@&nd a channel bit
length of 277 nm. This storage density is directly dependent on the size of the optical
spot which is a function of the wavelength and the numerical aperture (NA). The
NA is defined as the sine of the opening angle of the light cone that is focused on the
storage medium. For CD, NA=0.45. The thickness of the transparent disc (that serves
as the protecting cover layer for the data) is 1.2 mm. Figure 1.4 shows an overview of
existing optical storage formats together with the main parameters. By reducing the
wavelength of the laser light and by increasing the numerical aperture, the storage
capacity of the disc has been increased in a few steps. The ‘digital versatile disc’
(DVD) uses a laser with a wavelength of 650 nm and the NA is increased to 0.6.
By further reducing the margins slightly, which is made possible by more advanced



CD BD

A=400 nm
NA=0.85

0.1 mm cover layer

A=780 nm
NA=0.45

[V ]

1.2 mm substrate

Figure 1.4: Overview of existing optical storage formats.

signal processing and manufacturing methods, a storage capacity of 4.7 GB on a
single layer is achieved. This has been realized by using a track pitch ofuth74

and a bit length of 133 nm (see Table 1.2 for an overview of these parameters [74]).
Recently, the Blu-ray Disc (BD) standard was introduced. It offers a capacity of
25 GB and uses a blue-violet laser diode with a wavelength of 405 nm. The NA is
0.85. More recently, but still at the research level, an improvement in storage density
has been achieved by going to values of NA that are higher than 1. This is known as
near-field storage [74].

Because the tolerance to disc tilt goes with the third power of NA [74], disc tilt
becomes a serious issue for systems with a high NA. This is counteracted partially
by choosing a thinner protective layer (0.6 mm for DVD and 0.1 mm for BD) at the
cost of a decreased robustness against dust and scratches. This has also implications
for the receiver architecture and the employed signal processing techniques as we
discuss in Section 1.3.

1.2 Signal Processing in Current Optical Storage Systems

The key components in the development of a storage system are optical pick-up units,
media, and signal processing. In the past, the main growth in optical storage systems
was due to development of shorter-wavelength lasers and stronger lenses, along with
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Property CD DvD | BD

A [nm] 780 650 405
NA 045 | 0.6 0.85
(d,k)-constraint (2,10) | (2,10)| (1,7)
Channel bit length [nm] 280 133 74.5
User bit length [nm] 700 313 137
ECC rate 0.85 | 0.85 | 0.8170
Track pitch pm] 1.6 0.74 | 0.32

cover layer thickness [mm] 1.2 0.6 0.1
Inner radius (R1) [mm] 24 24 24
Outer radius (R2) [mm] 58 58 58
User Capacity [GB] 0.68 | 4.7 25.0
Density [Gb/incR] 0.40 |2.78 | 14.74

Table 1.2:Key parameters of various optical storage formats. The user bit
length is calculated based on the channel bit length, the overhead
for error correction and the rate of the channel modulation code.
The(d, k)-constraints (see Section 1.2.1) determine, respectively,
the minimum and maximum number of consecutive ones or zeros
in the channel bit stream.
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developments in media technologies. However, the role of sophisticated signal pro-
cessing techniques is increasingly becoming crucial in supporting and augmenting
the advancement in media, lasers and lenses technologies. In fact, fuelled by the
advances in CMOS technology, digital signal processing is recognized as a cost effi-
cient means for increasing density while satisfying challenging design constraints in
terms of data rate, power consumption and implementation cost [33,66,79,113,152].
Moreover, the necessity of using advanced signal processing techniques becomes
even more obvious as the storage density increases and the signal to distortion ratios
reduce [22,42,86,113,142,145].

Optical Storage Channel

User

| |
| |

ECC o | Modulation [ RV |

Data ——»| Encoder »Encoder :V Write Circuits :
I Y I

| |

I | Storage | !

| | Medium | |

| |

| |

| |

| y |

| |

Read Channel | PDIC I
__________________________________ | |

r | |

I
|
Recovered | - [N R AN |
I
Data ECC - Modulation - Data

| Decoder Decoder Receiver

Figure 1.5: Schematic block diagram of an optical storage system.

Figure 1.5 shows a schematic diagram with the basic building blocks involved in
an optical storage system [42,86]. The upper part of Figure 1.5 highlights the write
part of the system which is analogous to the transmitter part in a communication
system. The lower part of Figure 1.5 highlights the read part, commonly referred to as
the read channel, which is equivalent to the receiver part in a communication system.
The write part involves an error correction code (ECC) encoder which encodes the
user data bits to protect the recorded data from channel noise and disc defects [30,
138]. A modulation encoder is then used for matching the data to the storage channel
characteristics and to facilitate the operation of the different receiver control loops,
e.g. timing recovery [93, 96, 125]. The write circuits transform the binary data to
be written on the storage media into a certain format to facilitate the writing. They
modulate the laser light according to a so-called write strategy in order to modify or
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compensate for distortions that occur while writing the data on the disc, e.g. [57,146].

During the readout process and based on the reflected light from the disc, a photo
detector generates an electrical signal, called replay signal and modelled in Figure 1.5
as the output of the photo-detector IC (PDIC). Throughout this thesis, we refer to the
combination of the write circuits, the storage medium and the PDIC as the optical
storage channel or optical channel for conciseness. The optical channel output or
replay signal is processed to recover the recorded data as reliably as possible. This is
the task of the data receiver.

A modulation decoder then inverts the modulation encoding step. In this whole
process, the erroneously detected user bits will be corrected by the ECC decoder us-
ing the redundant information that was added at the transmitting side by the ECC
encoder. The replay signal often includes linear and nonlinear distortions and timing
variations [8, 22, 61, 86, 100, 101, 145, 148]. To recover the recorded data reliably, a
typical data receiver contains an analog front-end circuit, an equalizer, a timing re-
covery circuit and a bit detector (Figure 1.6). The front-end circuit conditions the re-
play signal prior to equalization. This includes amplification of the replay signal and
limitation of its noise bandwidth [13]. The main task of the equalizer is to suppress
noise and to reshape the replay signal in order to simplify bit detection [86,119,144].
The purpose of the timing recovery is to ensure that the replay signal, which contains
timing variations as caused by disc rotation speed variation, is sampled at the correct
sampling instants for bit detection [37, 86,91, 127].

Timing
P Recovery
Circuit

A

repiay A\ detected
signal _ bits
Frgir;::::-i?d > Equalizer | Bit Detector [————m

Figure 1.6: Schematic block diagram of a data receiver.

In the rest of this section we elaborate on selected parts of the optical storage sys-
tem, namely, optical channel and modulation codes. We also provide an explanation
of the main signal distortion sources, equalization, timing recovery and detection.
We put special emphasis on equalization and timing recovery as these functions are



13

of central interest to this thesis.

1.2.1 Optical channel model and modulation codes

channel bits write signal replay signal
r-—— """ - -7~ 1
ECC and b | s(t Lor t2
ljser—> Modulation K C(t) ( )= f (t) ' (
ata I |
Encoders {i 1} I !
|
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C

Figure 1.7: Continuous-time model of the optical storage channel. Noise is
omitted.

Figure 1.7 shows a continuous-time model of the optical storage channel. The
user data, at the ralg'T,, bits/second, is applied to the ECC and modulation encoders.
These encoders add redundancy to the user data which results in chanbglabits
the ratel/T, whereT = RT,;, with R being the joint code rate of these encoders.

In optical storage there exist two formats to denote the information bits, namely,
the non-return-to-zero-inverse (NRZI) and non-return-to-zero (NRZ) formats. In the
NRZI format the bit ‘1’ represents a change in the state of the storage medium and the
bit ‘0’ represents no change. In the NRZ format, one state of the medium corresponds
to the bit ‘1’ and the other state corresponds to the bit ‘0’. Usually the output of the
different encoders is encoded using the NRZ| format and then transformed into NRZ
format before being sent to the write circuit [93]. This operation is known as NRZI-
to-NRZ precodingand can be characterized by a transfer funcfigh® D, where
‘@’ is the Boolean XOR operator an®* is the 1 bit-duration delay operator. The
precoder output is then mapped to channel bits {—1,+1}, by assigning+1 to
‘1’ and —1to ‘0’. The channel bits are then stored on the disc. In this thesis, we
associate pits withy = +1 and lands witho, = —1.

A linear pulse modulator (LPM) [86] transforms the channel bit sequbpizeo
a binary write signas(t) given by

s(t) = Zbkc(t —kT),
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where the symbol responsé) of the LPM is given by

1L ftj<g

0, otherwise

For current disc formats, the continuous-time replay sigftalcan be assumed
to be a linearly filtered and noisy version of the write sigs(&). This assumption
is not entirely realistic for higher storage densities as we will discuss in Section 1.3.
Here we assume linearity as we focus on current optical storage systems. For now
we omit channel noise, which will be the subject of Section 1.2.2. The replay signal
can then be written as

F(t) = (5% f)(t). (1.1)

Heref(t) denotes the impulse response of the channeldrhotes the linear con-
volution operator. The characteristics of the impulse respdiigedepend on the
optics. A model of the impulse respongg), based on scalar diffraction theory, was
developed by Hopkins [42,68]. In short, the analysis in [68] is based on the concate-
nation of the following facts. Light, generated by the laser source, propagates through
the lens towards the disc surface. Field propagation is described by the Fourier trans-
form of the scalar input field. Then, disc reflectivity is modelled making use of the
Fourier analysis for periodic structures. Light is reflected in proportion to the phase
profile of the disc, times the incident field. Then the field is back-propagated to the
detector, through the same lens as in the forward path. Back-propagation can be
modelled by another Fourier transform. Finally, the photodiode converts the incident
field into an electrical signal. According to [42], the Fourier transfornfi(§, called
Modulation Transfer Function (MTF), is given, at a frequefxyby

%(cogl\g% -2 1—(9%)2), Q] < Q,

F(Q) =
07 ‘Q| ZQC7

whereQ. denotes the optical cut-off frequency. This expression of the channel MTF
F(Q) is known in the optical storage signal processing community as the Braat-
Hopkins formula [42]. The optical cut-off frequen€¥ depends on the laser wave-
lengthA and the numerical apertuMA of the objective lens and is given by

_ 2NA

Qc X
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For an optical storage system using a channel bit lelgth- vT wherev denotes
the velocity of the media, the highest frequency that can be represented on the disc,
i.e. 1/(2Lpit), is called the Nyquist frequency. At densities of practical interest,
optical storage channels are said to have a negative excess bandwidth [86] meaning
that the optical cut-off frequency is below the Nyquist frequency, %'}éﬁ < fbn
For example, for a BD channel with=405nm, NA = 0.85andLpj; = 74.5 nm, we
obtainQc ~ §3t < L.

For the sake of clarity, we keep the same notations and use throughout the re-
maining part of this thesis normalized frequencies to the inverse channel bit length
1/Lpit. The normalized optical cut-off frequency is then giventhy= ZNTALbit. For
a given optical channel parameters, the normalized cut-off frequency is a direct mea-
sure of the storage density as it is proportional to the channel bit length. The higher
the storage density is, the smaller the normalized cut-off frequency becomes.

The channel symbol responkgt) is obtained by convolving (t) with c(t). In
the frequency domain, this gives

27 sin(rmQ) 1Q)_ 9 Q
i@ — | 3 (cos MR- &1 (&)%) lal <

(1.2)
07 ‘Q’ Z QC'

The optical storage channel has a low-pass nature with a normalized cut-off frequency
Q. and approximately a linear roll-off. By way of illustration we show in Figure 1.8
the transfer functions of the CD and DVD channels according to (1.2). For CD the
normalized cut-off frequency i€ ~ 0.32 and for DVD Q. =~ 0.26. The low-pass
nature of the optical channel is apparent, with an almost linear roll-off.

BecauseH (Q) is bandlimited to normalized frequencies well wittjin0.5, 0.5
for storage densities of practical interests, the replay sigtaican be sampled at
the baud ratel /T without loss of information and the cascade of the continuous-
time model in Figure 1.7 with the sampler can then be replaced by the discrete-time
model of Figure 1.9. The discrete-time impulse respdpsend the readback signal
rg are the sampled versions bf(t) andr(t), respectively, all at the rate df/T
samples/second. The discrete-time counterpart of equation (1.1) then becomes

re= (hxb)= "3 hibi, (1.3)

where %’ denotes discrete convolution.
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Figure 1.8: The transfer functions of the CD (continuous line) and DVD
(dashed line) channels. Both channels are normalized to have
a unit transfer at DC.
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Figure 1.9: The equivalent discrete-time model of a noiseless optical storage

channel.

The negative excess bandwidth property,fe.< 0.5, has several implications.
On the one hand, intersymbol interference increases rapidly as excess bandwidth de-
creases. At the same time the replay signal comes to contain progressively less timing
information. On the other hand, receiver performance tends to become more sensi-
tive to channel parameter variations [86]. These factors have direct consequences
on modulation coding, equalization, detection, timing recovery and adaptation as we
will explain in the forthcoming sections.

Modulation Codes:

Modulation codes for storage systems [93,96,125], known as runlength-limited (RLL)
codes, are commonly used in optical storage to spectrally shape the information writ-
ten on the disc in accordance with the MTF of the optical channel. This is meant
to improve detection performance and to facilitate the operation of control loops in
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the receiver. Moreover, the use of RLL codes also helps to considerably reduce the
impact of some nonlinear artifacts on system performance, e.g. signal asymmetry as
we will discuss in Section 1.2.2.

RLL codes are characterized by so-callghlk) constraints or runlength con-
straints where a runlength is the length of runs of consecutive pits and lands on the
disc. RLL coded sequences have a minimum runlengtth-6fL channel bits, and
a maximum runlength ok+ 1 channel bits. Thel constraint controls the high-
frequency content of the data stream and helps to increase the minimum spacing
between transitions in the data recorded on the medium. This has an impact on
the linear and nonlinear interferences and distortions present in the readback signal.
Thek constraint controls the low-frequency content of the data stream and ensures
frequent transitions in the channel bit-stream for proper functioning of the timing-
recovery loop. Modulation codes for optical storage often also include a dc-free
constraint [154] in order to reduce interference between data and servo signals and to
mitigate the effect of all kinds of low-frequency noise. For a detailed review of RLL
codes, we recommend [93].

Typical values of the minimum runlength constraintdre 1,2. In CD systems,
an eight-to-fourteen modulation (EFM) code is used [95], with 2 andk = 10.

DVD systems use the same runlength constraints and employ the so-called EFMPlus
code [94]. In BD systems, the so-called 17PP code [115] is used. This cokle-lias

and the minimum runlength constraint has been reduceddrer tod = 1 to allow

a higher code rate and especially to allow a larger tolerance against writing jitter or
the so-called mark-edge noise [152].

1.2.2 Signal Distortions and Artifacts in Optical Storage

Readback signals in optical storage systems are corrupted by various noise sources,
interferences and nonlinear distortions. The major artifacts in optical storage are
Intersymbol Interference (ISl), noise, and signal asymmetry.

One way to visualize system sensitivity and gauge the severeness of the different
system artifacts is via the so-called eye pattern or eye diagram [80]. The eye pattern is
obtained by overlaying segments of the signal in a phase-aligned manner. The shape
of the resulting ‘eye’ indicates the margins of the system against various disturbances,
such as timing phase errors, I1SI and noise. By way of illustration Figure 1.10 shows
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the eye pattern for the noiseless CD channel. The eye pattern in this case shows
that data can be detected, at the ideal sampling phase, by means of a simple slicer
with zero threshold at the middle of the ‘eye’. Referring to the middle of the eye
pattern, two key parameters for system sensitivity are shown in Figure 1.10, namely
the ‘eye width’ and ‘eye opening’. The eye width is defined as the width of the
interval around the optimal phase over which the eye is not closed. The eye width
is a straightforward measure of system timing sensitivity or timing phase margins
defined as the maximum error in sampling phase that the receiver can tolerate before
the performance becomes unacceptable. The eye opening is the opening of the eye
pattern at the ideal sampling phase. The eye opening defines the margin of the system
against noise.

In the following paragraphs we discuss the different artifacts in optical storage
systems.

I<— Eye width —>I
T T

Amplitude

0
Sampling phase error

Figure 1.10: Eye pattern for the CD channel witll, k)=(2,10) RLL data in
the absence of noise.

Intersymbol Interference (I1SI):

The bandwidth limitation of the optical storage channel, as described earlier, causes
the channel impulse responbkgto be of long duration compared to the bit inter-

val T. Therefore, channel responses due to successive channel bits interfere with
each other, resulting in intersymbol interference (ISI) characterized by the linear im-



19

pulse responsk. This can be seen from (1.3) where the teiging_; for i £ 0 cause

the readback signai to be also dependent, in a linear fashion, on the neighboring
bits of bx. This ISI increases with density as the cut-off frequency of the optical
channel decreases. By way of illustration, Figure 1.11 shows the idealized impulse
response of the CD and DVD channels. In terms of eye pattern, the ISI increase
results in a reduction of the eye opening and eye width, see Figure 1.12.

As we mentioned earlier, the channel for current optical storage systems behaves
essentially linearly. This means that ISI is mainly linear at current densities. The
effect of this type of ISl is often mitigated by the use of linear equalization techniques
as will be discussed in Section 1.2.4.

| - CD
1 -8B DVD

0.8f

0.6
hk

0.4

0.2f

Figure 1.11: The idealized impulse resporsecorresponding to the CD and
DVD channels. Both responses are normalized to have a cen-
tral tap value of 1.

Noise in Optical Storage:

There are three main types of noise in optical storage. Thedeleectonics Noisg
Laser NoiseandMedia Noisd67, 74,142]. In general, electronics noise is the noise
due to the electronics of the system [74]. Laser noise is the noise contributed by the
laser due to variations in light intensity, phase and wavelength. Finally, media noise
originates from small deviations in the storage medium from its ideal form, e.g. as
caused by roughness of the mirror-like surface, variations in reflectivity, and cover-
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Figure 1.12: Eye pattern for the CD channel (left plot) and the DVD channel
(right plot).

layer thickness variations. An important source of media noise in optical storage is
caused by inaccuracy in the pit-shape. One possible inaccuracy is that the pit size
varies from one pit to the other [74], see Figure 1.13.

Figure 1.13: Scanning electron microscope image of an experimental opti-
cal disc showing clear pit-size variations [74]. Note that these
variations are highly exaggerated with respect to normal oper-
ating conditions.

Whereas electronics noise is often modelled as additive white Gaussian noise
(AWGN), laser noise is usually multiplicative, see [67] and the references therein.
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However, laser noise power is typically lower than that of electronics noise [74]. For
this reason, laser noise is neglected in this thesis.

As far as media noise is concerned, this becomes important only at high storage
densities [74]. For this reason, we treat and model media noise in Section 1.3 that
deals with challenges in high-density optical storage systems.

Signal Asymmetry:

Although channels for current optical storage systems are essentially linear, there ex-
ist several sources of nonlinearities [86]. For read-only systems, the principal source
of nonlinearities arises during the writing process and is caused by systematic differ-
ences in the size of pits and lands on the disc. This is knowdoasain bloonor
asymmetryf86] [60] which is the fact that pits can be longer than lands of the same
nominal size or vice versa. This causes asymmetry in the signal levels of the replay
signal.

In CD and DVD systems, the use of RLL codes with= 2, which makes the
minimum pit length to be 3 times the channel bit length, helps to considerably reduce
the impact of asymmetry on system performance. For writable or rewritable systems,
asymmetry is less significant than for read-only systems [60] because of the finer
control of the writing process in rewritable systems. A typical approach to circumvent
asymmetry in rewritable systems is to use the so-calleté precompensatiofb7,

86] andwrite strategieg74,145,146].

1.2.3 Detection Techniques in Optical Storage

First optical storage systems, such as CD and DVD, relied heavily on modulation cod-
ing to maintain data integrity. This has enabled the use of simple symbol-by-symbol
detection schemes. A common reception scheme for CD includes a fixed prefilter
for noise suppression, and a memoryless slicer for bit detection [34]. In order to im-
prove the performance of symbol-by-symbol detectors, an improved scheme, known
as Runlength Pushback Detector (RPD), was proposed in [147] [47]. The RPD de-
tects and corrects bit patterns that violate the constraints of the RLL code used. For
thed = 1 runlength constraint, the RPD can correct only single bit-errors. This be-
comes problematic as density increases and other bit-errors become important. An
improved detector called Missing-Run Detector (MRD) was proposed in [62], and is
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based on identifying the most probable bit-errors after single bit-errors and devoting
a simple scheme to detect and correct for these errors.

Recently, the threshold detectors have given way to more powerful maximum-
likelihood sequence detection (MLSD) schemes [41] which detect the most likely
recorded bit sequence [121] [152]. MLSD is implemented via a Viterbi Detector
(VD) [41].

The drawback of the VD is that it is bit-recursive, requiring the execution of an
Add Compare Select (ACS) operation for every state in the VD trellis and at each bit-
interval. This limits the attainable speed of the VD which, however, needs to follow
the rapidly increasing data rate of optical storage systems. Substantial simplification
of the baseline VD can be obtained by folding the states diagram of the VD via
formulating the detection problem as a transition detection problem [89].

Throughout Chapters 2 and 3 we assume the use of a VD for bit detection. The
other chapters of this thesis do not depend on the employed detection scheme.

1.2.4 Partial Response Equalization

Among the various methods available to handle ISI and noise, equalization methods,
which consist of using one or more filters to mitigate the effect of ISI and noise, play
an important role [80, 86, 144].

The earliest roots of equalization can be found in the annals of telegraphy [82].
The notion of full equalization, which consists of using a linear filter to suppress
all ISI at the decision instants, stems back to the work ap#niller and Nyquist
[58,59,92]. Full equalization is widely used in data communications and has long
been studied in the past. For a historical perspective and a detailed description, the
reader may refer to [80, 86,106, 144] and the references therein.

Although full equalization allows the use of simple symbol-by-symbol detec-
tors [86], it finds little application in optical storage, because of its noise enhance-
ment penalty, especially at relatively high densities. In fact, because full equalization
consists of undoing the effect of the channel, it will severely enhance noise in view
of the negative excess bandwidth nature of optical storage channels, see Figure 1.8.

For this reason, another equalization method, known as Partial Response (PR)
equalization, was widely accepted and used in storage systems including magnetic
storage systems. PR equalization allows a well-defined quantity of ISI to remain
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untackled before detection. The remaining untackled ISl is characterized by a lin-
ear impulse respongg that we call target response. This can be seen as providing
additional freedom of equalization that can be used to reduce noise enhancement sig-
nificantly. The origin of this equalization method can be linked to partial-response
coding and signaling techniques that aim at spectrum control and signaling rate en-
largement [9, 36,119].

L
r
k—> Equalizer Xk > EAGS)D —Ek
k

Figure 1.14: Block diagram of the PRML system. MLSD must be designed
for the target responsgx.

Application of PR equalization to digital storage systems was first reported in
the field of magnetic storage where the combination of PR equalization and MLSD
was proposed to replace the peak detection technique [124] in order to achieve high
reliability and high storage densities [20, 38,51, 53, 54, 70]. For similar reasons, PR
equalization was also employed in optical storage systems. Systems that combine PR
equalization and MLSD are known as partial response maximume-likelihood (PRML)
systems. A block diagram of the PRML system is shown in Figure 1.14. The MLSD
is implemented via a VD whose trellis is tailored to the target respgusad to
the d constraint of the underlying code. Therefore, the performance improvement
of PRML systems in comparison to systems employing symbol-by-symbol detec-
tion, comes at the price of a more complicated detector whose complexity, in fact,
increases exponentially with the target response length.

1.2.5 Timing recovery

For optimum detection performance, receivers for storage systems need to determine
the ideal sampling instants of the replay signal. These instants correspond to the
instants of maximum opening in the eye pattern of the replay signal. Clearly, errors
in the choice of sampling instants will directly translate to poor detection performance
as this generates a significant amount of residual ISI. The task of the timing-recovery
unit is to estimate the ideal sampling instants and compensate for any random timing
uncertainty in the replay signal. The timing uncertainty in optical storage may come,
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for example, from differences between the writing and the reading clocks, mechanical
motion fluctuation of the media during the writing and reading process or variations
in the group delays of the analog front-end filters.

Being a crucial task in digital storage and communication systems, timing recov-
ery has been a subject of investigation for several decades and many timing-recovery
schemes have been proposed. A comprehensive exposition and classification of these
schemes can be found in [55, 56, 86, 106, 153].

Among the existing timing recovery approaches, we focus in this thesis on the
self-timing approach which consists of extracting timing information from the replay
signal itself [86,91,105,129]. This approach is of particular interest for read channels
for storage systems. At the heart of a self-timing scheme is an objective function of
the readout signal samples such that timing errors can be obtained directly and with-
out ambiguity from this function [4,52, 76,91, 105]. Figure 1.15 shows a schematic
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Figure 1.15: Schematic diagram of the timing-recovery loop.

of the timing-recovery scheme architecture that is widely used in read channels for
storage systems. The replay sign@) is first processed and filtered by the front-end
circuit to suppress out-of-band noise. The front-end circuit output is first sampled,
equalized and then passed to a detector that produces bit detisiomsrder for the
detector to operate properly, a timing-recovery subsystem ensures that the sampling
instants closely approach their ideal values. Based on the sampled and equalized
sequencey, the timing-recovery subsystem extracts a clock signal that indicates the
sampling instant&. The timing-recovery subsystem takes the form of a phase-locked
loop (PLL) [45], with a timing-error detector (TED), loop filter (LF), and a voltage
controlled oscillator (VCO). The TED produces an estimate of the sampling-phase
error. The filtered TED output is used to control the phase and frequency of the
VCO. The LF has a significant role in determining the PLL properties in terms of
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noise suppression and bandwidth. A detailed description of this role can be found
in [45] [86].

A key part in the design of timing recovery is the design of the TED. In the past
decades, several techniques were reported. An excellent review and classification of
the key contributions can be found in [86].

The TED scheme that is mostly used in current optical storage systems is known
as the Zero-Crossing (ZC) technique [11, 34, 140]. This consists of tracking the posi-
tion of the zero crossings in the replay signal and deriving the TED output by compar-
ing the actual zero crossings with those of a sampling clock signal [34] [11]. Several
extensions of this scheme incorporating asymmetry and pattern jitter compensation
were reported in [140] and [123]. ZC timing recovery is a non-data aided scheme in
the sense that the recorded data is not used in the TED to extract timing information.

However, as storage density increases, ZC timing recovery performs poorly and
faces some serious limitations. The next section shows these limitations and exhibits
the main signal distortions present at high storage densities, and highlights their main
implications for equalization and timing recovery.

1.3 Challenges for High-Density Optical Storage Systems

As density and data rate of optical storage systems increase, many system artifacts
become important and result in reduction of system margins and SNR. In order to
cope with these artifacts, new coding and signal processing methods must be devel-
oped. In this section we give an overview of the main artifacts in high-density optical
storage systems, e.g. beyond BD, and explain their implications for equalization and
timing recovery. These artifacts can be divided into four main categories: linear ISI,
nonlinear ISI, media noise and channel parameter variations.

In the following paragraphs we discuss the different artifacts in high-density op-
tical storage systems.

Linear ISI;

As mentioned in Section 1.1.1, high-density optical storage is mainly achieved by
using lasers with short wavelengthsand lenses with high numerical apertiNA.
Since the diameter of the laser spot is proportional tblA, decrements ok and
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increments oNA cause the disc area illuminated by the spot to be smaller, leading to
an increased ability to detect small details on the disc surface, i.e. a higher resolution
[152]. However, in order to push storage densities to even higher levels, the size of
the recorded bits is reduced relative to the size of the laser spot. This increase in
density relative to the resolution leads to more ISI. Figure 1.16 shows the impulse
response of the Blu-ray Disc (BD) channel at densities of 25 GB, 30 GB and 35 GB.
This clearly points out the ISl increase as function of storage density.

BD-25GB
1r g -5~ BD-30GB |
-9~ BD-35GB

Figure 1.16: BD channel impulse response at different densities. The time
axis is normalized to the bit interval and the impulse re-
sponses are normalized to have a central tap value of 1.

Nonlinear ISI:

It is often assumed that the readback signal in storage systems can be constructed
from linear superposition of isolated impulse responses. In practice, this is true only
at low storage densities. As density increases, neighboring bits start to interact in a
nonlinear way resulting in significant nonlinear ISI [22, 61, 68,101, 137, 145]. The
sources of nonlinear ISI can be divided into two groups: nonlinearity sources from
the write process, as explained in Section 1.2.2, and sources from the readout pro-
cess. The nonlinear distortion during readout is inherent in the readout process itself.
In fact, according to the scalar diffraction theory [22, 68], the propagation of light in
the readout process is represented by a chain of linear transformations, e.g. Fourier



27

transform and inverse Fourier transform, followed by the quadratic operation in the
photo detector to obtain light intensity. This causes the readback signal to be non-
linearly dependent on the written bits. This dependence is bilinear in the sense that
the bilinear term&yby_i, i # 0 become visible in the readback signal [22]. The most
important nonlinear contribution comes from the immediately neighboring bits to the
central bit [22]. For this reason and for simplicity, we consider in the thesis only the
bilinear termdoby 1 andbyby, 1, although the techniques that we develop are much
more generally applicable.

media noise:

At high storage densities, media noise becomes important [142] [74]. This causes
noise to be highly data-dependent, correlated and non-stationary. This particularity
of storage systems compared to classical communication systems has to be taken into
account in the design of signal processing algorithms in order to limit performance
degradation at high storage densities.

Unlike electronics noise, which can be modelled as additive white Gaussian noise
(AWGN) [74], media noise in optical storage is correlated, data-dependent, non-
stationary and non-additive in nature. For read-only systems, the most important
sources of media noise are random pit-position and pit-size variations [74]. Pit-
position variation is a deviation of the center of gravity of a pit from its nominal
position. Pit-size variation is caused by the fact that the pit size depends on the
number of pits in a wide neighborhood. For example, for Electron-Beam Recording
(EBR), a proximity effect is caused by the scattering of electrons in the resist dur-
ing mastering which generates a background illumination that increases the size of
pits [74].

For rewritable optical storage systems, media noise is caused by fluctuations in
the reflectivity of the crystalline state, representing pits. In the amorphous states,
representing lands, no such fluctuations arise [18]. This media noise can be modelled
as a random disturbance at the channel input that is injected only in the presence of
pits [139]. We model this noise as an additive white Gaussian random pragcess
with varianceo? that is injected at the channel input whiap= +1. We introduce
then the media noise term a% = ”Tbkuk. This is illustrated in Figure 1.17. The
multiplication with 1%bk in Figure 1.17, reflects the data-dependent nature of the
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media noise. That is, the channel bjtis corrupted bym, = ux only whenby = +1.
Whenby = —1 we havemy = 0. The readback signak can then be written as

Mg = |Z hibk_i + |Z hime_i + (1.4)

wherez, denotes electronics noise and is modelled as an AWGN with a varai}sfnce
For clarity of the derivations in this thesis, we denotepyhe sum of the electronics
and media noise, i.e.

Ne= Y himei+ 2z
1 1/2 Uk
&—>%—>é Zy
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Figure 1.17: Discrete-time model of the optical storage channel with media
noisemy and electronics noise.

Because media noise and electronics noisg have different characteristics,
they introduce different effects on the system performance. For this reason, we adopt
in this thesis two different signal-to-noise ratio (SNR) measures: a signal to media
noise ratio (SMNR) and a signal to additive noise ratio (SANR) given by

SMNR= 2 (1.5)
o2’
u
and 2
SANR= z(';zk. (1.6)

z

The SANR in (1.6) is defined according to the matched-filter bound [86]. The
normalization by the factor 2 in (1.5) takes into account EEIM] =1 and that the
average media noise variance over pits and lands eqgaks

The impact of media noise, as modelled in Figure 1.17, on the eye pattern for
the 23 GB rewritable BD channel is illustrated in Figure 1.18. This figure shows that
media noise mainly affects the upper traces of the eye pattern and that lower traces
are less hampered. This is caused by the fact that media noise affects only the pits on
the disc.
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Figure 1.18: Eye pattern for the 23 GB BD channel witth, k)=(1,7) in the
absence of noise (left plot) and in the presence of media noise
at SMNR=20 dB (right plot).

Parameter Variations:

The trend of increasing storage densities results in reduced margins and in growing
sensitivity of system performance to any variations of storage channel parameters. To
counteract these variations, the use of accurate and adaptive techniques, e.g. adaptive
equalization, in the data receiver becomes a necessity.

The accuracy in adaptation is especially hard to accomplish for the tracking of
rapid variations, and is limited in part by latencies in the adaptation loops. Therefore,
minimizing latencies inside the critical adaptation loops becomes crucial for proper
functioning of the system [15].

One of the most important sources of rapid variations in high-density optical
storage is caused by fast timing variations [74]. This has a direct implication for
the structure of the different adaptation loops and especially the equalizer adaptation
loop as we will discuss in Chapter 4.

1.3.1 Implications of increasing density on equalization

As storage density increases, adaptive equalization techniques become more and
more attractive because of their ability to counteract the reduced system margins.
In addition, adaptive equalization presents some other advantages. First, it can com-
pensate for the variations in optics and media that inevitably occur during the manu-
facturing process. Second, it allows eliminating the need for any manual adjustment
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for different discs.
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Figure 1.19: Block diagram of a PRML system with an adaptive equalizer.

Different equalizer adaptation techniques exist in literature. Among these, the
most widely used techniques are the Least Mean Square (LMS) and the Zero-Forcing
(ZF) techniques. LMS adaptation is based on minimizing the power of the error
signaleg, see Figure 1.19, taken as the difference between the detectomxirgod
its ideal value(g* b)x. ZF adaptation is based on forcing residual ISI at the detector
input to zero [86]. The ZF criterion can be written as forcing the equalizer impulse
responsevk to meet on a given spafw h), = gx. Both ZF and LMS adaptation
are based on the error sigrggl The generation of the error signal obviously assumes
knowledge of the channel bitg. This mode of operation is known as the Data-Aided
(DA) mode [86] where the channel bits are available in the form of a known preamble
or as decisions taken from the bit detector. When bit decisions are used inside the
adaptation loop we speak about ‘decision-directed’ (DD) mode of operation [86].

These adaptive equalization techniques date back to the second half of the last
century. The LMS equalizer was first reported in [3, 83, 132] and its ZF counter-
part was first proposed in [131]. After these pioneering contributions, several pub-
lications focused on the behavior of these techniques, in terms of convergence and
performance, and dealt with their implementation issues, e.g. [14, 44, 130]. For an
excellent review of adaptive equalization we recommend [144] and [86].

A problem associated to adaptive equalization for PR systems relates to the de-
sign and adaptation of the target respaogsén fact, receivers for future high-density
storage systems may need to resort to joint equalizer and target-response adaptation
because it presents particular advantages. First, in order to cope with the ISl increase
at high storage densities, the length of the target response used for detection has to
increase. This causes detection complexity to increase substantially as this complex-
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ity depends exponentially on the target response length [41]. Therefore, adaptive
design and training of powerful short target responses becomes essential at high den-
sities. Second, considering that the optical channel is not completely known until
after the entire storage device is manufactured, adaptive equalization and target re-
sponse adaptation provide a better fitting and tracking of the channel. Third, because
the noise in high density storage systems depends heavily on the medium, see Section
1.3, an equalizer and target response that adaptively take the noise characteristics into
consideration is very desirable.

Because the target response largely determines PR system performance, several
papers attempted to solve the target response design and adaptation problem. In
[143], the target response was designed as a truncated version of the channel impulse
response and the equalizer was chosen to minimize the Mean Square Error (MSE).
The MSE-minimization problem was extended to the target response adaptation in
[29] and [27]. An inherent issue in joint equalizer and target-response adaptation is
the interaction problem between the equalizer and target-response adaptation. This
interaction is usually prevented by employing a constraint on the target response. In
[29], a fixed energy constraint for the target response was used, i.e. the target response
energy was fixed to unity, while [27] used the monic constraint, i.e. the first nonzero
term in the target response was fixed to one. The latter corresponds to a minimum-
phase target response that is optimum for decision feedback equalization [106] and
thus presents similar noise whitening properties [78]. The minimum MSE (MMSE)
target response design and adaptation problem was also discussed in [71] [72].

Although the problem of PR equalization and target response adaptation received
a lot of attention in the past decades, several challenges remain unsolved. In fact,
because all existing adaptation algorithms are based on the LMS or ZF criteria, they
are not necessarily optimum in terms of minimizing detection bit-error rate (BER)
as we will show in Chapters 2 and 3. Referring to Figure 1.19, the BER reflects the
frequency of occurrence of bit errors at the detector output and is defined as

number of error bits at detector output
number of channel bits

BER=

Moreover, nonlinear ISI and data-dependent noise, which are inevitable at high densi-

ties, see Section 1.3, degrade the performance of existing adaptation schemes. Impor-
tant improvements in system performance and robustness can then be accomplished
by applying more sophisticated adaptation schemes such as those that we propose in
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Chapters 2 and 3.

Note that the new adaptation techniques that we develop in Chapters 2 and 3
are quite general in the sense that they are not restricted to optical storage and are
applicable to a wide range of communication and storage systems, e.g. to magnetic
storage systems.

1.3.2 Implications of increasing density on timing recovery

The increase in ISI caused by increased density translates into a reduced timing phase
margin. This latter is defined as the maximum error in sampling phase that the re-
ceiver can tolerate before the performance becomes unacceptable. The timing phase
margin can be gauged by examining the eye pattern of the signal at the input of the
decision device within the receiver [80]. Figure 1.20 shows eye patterns in the noise-
less case for the CD channel and the 23 GB BD channel. This illustrates that the
higher the density is, the smaller the eye width becomes which implies a decreased
timing phase margin. One should note that the eye width decreases further at higher
BD densities and that the eye pattern becomes completely closed which excludes the
simple threshold detector for data-detection.

Amplitude
Amplitude

. 0 . . 0
Sampling phase error Sampling phase error

Figure 1.20: Noiseless eye pattern for the CD channel withk)=(2,10)
RLL data (left plot) and the 23 GB BD channel with
(d,k)=(1,7) RLL data (right plot).

Besides the fact that sampling-phase errors become increasingly critical for re-
liable data detection at high densities, extracting accurate timing information from
the incoming signal becomes comparatively difficult. In fact, because the readback
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signal conveys fewer high-frequency components at high densities, the amount of
timing information in the readback signal per unit of time and SNR, i.e. the timing
efficiency, decreases rapidly [87].

Because at high storage densities, the replay signal contains more ISI and fewer
high-frequency components, i.e. because of the absence of sharp transitions in the re-
play signal, Zero-Crossing (ZC) timing recovery becomes unfeasible [11]. Moreover,
as mentioned earlier, the eye pattern becomes closed at high storage densities. This
implies that non-data aided timing-recovery schemes, e.g. the ZC schemes, where no
information on the transmitted data is exploited by the TED, become impractical at
such densities [86]. For this reason, Data Aided (DA) timing recovery must be used.
In a DA timing recovery technique, the recorded bits are assumed to be available to
the TED in the form of a known preamble, or as decisions, taken from the detector,
see Figure 1.21. The latter mode of operation is called Decision-Directed (DD) and
is useful to track timing variations once the PLL has locked up.

Data-Aided bk
"—| LF J— TED I::_@__l
[veo] b
t,

L
r(t - x| I
( ) Front-end 7K, Equalizer Xk > Detector —|—>bk

Circuits

Figure 1.21: Schematic diagram of the data-aided and decision-directed
timing-recovery loops.

Another problem for timing recovery for high-density optical storage systems

is caused by the data-dependent media noise and nonlinearities. In fact, this data-
dependency translates into a replay signal that contains more distortions for specific
bit patterns than for other patterns. In order to achieve the best performance, the tim-
ing recovery has to be ‘selective’ in the sense that it should extract timing information
primarily from data patterns with less noise. This can be achieved by designing a
TED that incorporates knowledge about the data-dependent nature of noise. Existing
TED algorithms do not incorporate this knowledge because they generally assume
stationary and additive noise. For this reason, Chapter 5 proposes and analyzes a new
practical timing-recovery scheme that exploits the nature of data-dependent noise in
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optical storage. This new scheme is not restricted to optical storage channels but
extends naturally to magnetic storage and is applicable to a wide range of communi-
cation channels with data-dependent noise.

The above mentioned aspects have motivated the research work reported in this
thesis. In the next section, we summarize the contributions in each of the chapters.

1.4 Outline and contributions of the thesis

As it can be seen from Section 1.2, most of the adaptive signal processing techniques
used in todays optical storage systems originate from different communication sys-

tems and are quite basic in the sense that they do not fully exploit the nature of the

optical storage channel in terms of key artifacts such as noise and nonlinearities. This
thesis is devoted to the development of new adaptive equalization and timing recov-

ery techniques that are meant to meet the future challenges in high-density optical

storage systems as presented in Section 1.3.

This thesis contains seven chapters. The work in this thesis has resulted in several
publications and patent applications, see the list of publications at the end of this
chapter. The different chapters are written to be as independent and as self-contained
as possible, so that they can be read separately. Chapter 1 gives an introduction
to optical storage technology and a review of signal processing techniques for read
channels. It also presents the main challenges in future high-density optical storage
systems. This introductory chapter concludes with the motivations, contributions and
organization of the thesis.

In Chapter 2 we introduce a novel adaptive equalization technique that seeks to
minimize detection bit-error rate for PRML systems. Although the idea behind this
chapter, i.e. basing equalizer adaptation/design on minimizing BER, is not entirely
new, we are the first to propose a practical and simple adaptive algorithm that achieves
a near minimum-BER performance. The chapter explains, first, the limitations of
the existing equalization techniques and then proposes a new adaptive algorithm for
BER optimization. The superiority of the proposed algorithm is first demonstrated
analytically and then verified based on computer simulations. The key property of
the new adaptation scheme is its selectivity in the sense that it mainly focuses on the
data patterns that have the highest likelihood of detection error. The strength of the
proposed algorithm is not restricted to providing a better performance but extends
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to allowing very low implementation costs. Further simplification of the proposed
algorithm for different channels and extension to diverse detection schemes is also
discussed and validated in Chapter 2.

Because target-response adaptation is an important problem for high density stor-
age systems, as explained earlier, Chapter 3 generalizes and applies the near minimum-
BER adaptation technique to joint target response and equalizer adaptation. This is
achieved by focusing target-response adaptation on the most likely bit-error events
and by acting towards decreasing their corresponding probability of occurrence. Anal-
ysis of the near minimum-BER technique for target-response adaptation is presented
in Chapter 3 to prove its superiority with respect to existing techniques. Also simula-
tion results for optical storage channels with electronics and media noise and channel
nonlinearities are provided. Relative to the existing adaptation methods, the near
minimum-BER scheme is comparable in terms of implementation complexity. How-
ever, in terms of performance, it allows significant improvements especially for short
target or equalizer lengths or in the presence of nonlinear ISI and media noise. This
is of great importance for high-density storage systems. On the one hand, this can
be used to reduce system complexity, by allowing the use of a short target response
without significant performance degradation. On the other hand, it can help mitigat-
ing nonlinearities and media noise without increasing complexity.

With respect to the objective of minimizing latencies inside the timing-recovery
loop to allow tracking of the fast variations, Chapter 4 reports an asynchronous
equalization scheme for storage systems. It involves an equalizer that operates at
a sampling-rate asynchronous to the data rate [28,112,114]. Chapter 4 explains the
implication of this scheme for equalizer adaptation and proposes a highly simple yet
efficient method for asynchronous equalizer adaptation. For simplicity, Chapter 4
focuses on LMS adaptation. However, the results of this chapter carry over to other
adaptation criteria as well, e.g. the near minimum-BER criterion proposed in Chap-
ter 2.

With respect to the objective of strengthening the timing-recovery loop, Chap-
ter 5 focuses on designing an optimal timing-recovery scheme for channels with
data-dependent noise. The key benefits of the proposed scheme is its simplicity,
generality and near-optimality. The applicability of the proposed algorithm extends
well beyond optical storage channels. The chapter exploits the data-dependent and
colored nature of noise to improve the performance of timing recovery. It starts by
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analyzing the maximum-likelihood (ML) timing-recovery criterion and proposes a
practical scheme to achieve near-ML performance. It presents both theoretical and
numerical evidences of the performance gain provided by the scheme compared to
existing schemes.

As recently all-digital timing recovery is often employed, e.g. [112,121], design
of efficient sampling-rate converter (SRC) digital filters is very important for per-
formance optimization and complexity limitation. More precisely, design of SRC
filters that also realize channel equalization presents a two-fold attractive property.
First, it helps to reduce complexity by shifting a big part of channel equalization
(amplitude equalization) towards the SRC filters and thus shortens significantly the
equalizer length for the same performance. Second, for systems employing a digi-
tal synchronous equalizer, shortening the equalizer length limits the delay inside the
timing-recovery loop which is crucial for the latter to function properly [15]. Chapter
6 explains first the problem of equalizing SRC filters and then presents algorithms
for designing such filters.

Chapter 7 concludes the thesis with some remarks and directions for future work.

The development of all new algorithms presented in the different chapters is sup-
plemented with computer simulation results. These simulation results are used for
demonstrating the effectiveness of the proposed algorithms and for validating the
analytical developments.

1.4.1 About author’s publications and patent applications

During the course of this Ph.D. work, the author worked first on a two-dimensional
optical storage system called TwoDOS [17, 73—75]. Inspired by the work on Two-
DOS, the author then focused, in the second part of his Ph.D. period, on equalization
and timing recovery for optical storage systems.

The TwoDOS period was, for the author, a great opportunity for learning on
several levels. During this period, the author published different papers, coauthoring
with his supervisor and project partners (see the list of publications below).

In the after-TwoDOS period, the author published several papers and filed two
patent applications related to equalization and timing recovery. The totality of this
thesis relates to this period. The following list contains the publications and patent
applications by the author.
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Chapter 2

Minimum Bit-Error Rate Equalization

Receivers for Partial Response Maximum-Likelihood systems typically use a linear
equalizer followed by a Viterbi detector. The equalizer tries to confine the channel in-
tersymbol interference to a short span in order to limit the implementation complexity
of the Viterbi detector. Equalization is usually made adaptive in order to compensate
for channel variations. Conventional adaptation techniques, e.g. LMS, are in general
suboptimal in terms of bit-error rate. In this chapter we present a new equalizer adap-
tation algorithm that seeks to minimize bit-error rate at the Viterbi detector output.
The algorithm extracts information from the Sequenced Amplitude Margin (SAM)
histogram and incorporates a selection mechanism that focuses adaptation on partic-
ular data and noise realizations. The selection mechanism is based on the reliability
of the Add Compare Select (ACS) operations in the Viterbi detector. From a com-
plexity standpoint, the algorithm is essentially as simple as the conventional LMS
algorithm. Moreover, we present a further simplified version of the algorithm that
does not require any hardware multiplications. Simulation results, for an idealized
optical storage channel, confirm a substantial performance improvement relative to
existing adaptation algorithms.

2.1 Introduction

The optimal receiver for estimating a data sequence in the presence of intersymbol
interference (ISI) and additive Gaussian noise [41] can generally not be realized be-
cause of its excessive complexity. This fact has led to a development of a variety of
suboptimal and lower complexity receivers.

In many practical systems, a linear equalizer is first used to shape the channel
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symbol response to an acceptably shorter target response. A Viterbi detector (VD),
suitable for the target response [143], subsequently estimates the transmitted data se-
guence. Such systems are known as Partial Response Maximum-Likelihood (PRML)
systems. PRML systems are widely used in digital storage systems [20] to combat
the extensive ISI, caused by the channel, especially at high storage densities. The
extensive ISI at high densities precludes the application of full Maximum Likelihood
Sequence Detection (MLSD) [41] because of system complexity and data rate con-
straints.

Equalization in PRML systems is usually made adaptive in order to compensate
for channel variations. One of the most popular adaptation methods is based on
the Minimum Mean Square Error (MMSE) criterion [86]. This method minimizes
the power of the error signal, with the error signal being the difference between the
actual and the ideal (noiseless) VD input. This minimization is achieved regardless of
correlation or data-dependency of the error signal, as caused, for example, by residual
ISI (RISI) due to mis-equalization. However, it is known that RISI or correlated noise
can cause considerable bit-error rate (BER) degradation when compared to a system
operating with a comparable amount of additive white Gaussian noise (AWGN) and
no RISI. Therefore, MMSE equalization does not guarantee, in general, optimum
BER performance. To minimize BER, the equalizer must minimize RISI for data
patterns that are critical for bit detection and might tolerate more RISI for less critical
data patterns. In other words, the effort of equalization must be focused primarily on
critical data patterns, by improving their corresponding detection Signal to Noise
Ratio (SNR). As far as noise correlation is concerned, the equalizer must seek an
appropriate trade-off between noise correlation and RISI in order to achieve the best
BER. These requirements cannot, in general, be fulfilled with MMSE equalization.

Adaptive minimum-BER equalization has been already studied for the case of full
response equalization and sample-by-sample detection [19] and decision-feedback
equalization [134]. However, in the context of PRML systems, no such studies have
been reported. A step towards minimum-BER adaptive equalization was reported
in [117] where a new equalizer adaptation criterion was derived from the Sequenced
Amplitude Margin (SAM) [122] [118]. The novel idea in [117], known as least-
mean squared SAM error (LMSAM), is to base equalizer adaptation on minimizing
the ‘variance’ of the SAM for particular bit patterns and error events. The error
events considered by the LMSAM technique are single bit-errors at transitions in the



43

data. This restriction to single bit-errors makes the LMSAM technique suboptimal
for channels where other error events are important. Moreover, basing the equalizer
adaptation on minimizing the SAM variance only is in general not optimal in terms
of BER, as will be shown in this chapter.

This chapter presents a new equalizer adaptation algorithm that seeks to mini-
mize BER. The algorithm incorporates a selection mechanism that focuses equalizer
adaptation only on a particular region of the SAM histogram. The selection mech-
anism is based on the reliability of the Add Compare Select (ACS) operation in the
VD. From an implementation standpoint, our algorithm is essentially as simple as the
LMS algorithm. Moreover, a further simplified version of the algorithm that does not
require any multiplications is proposed.

The remainder of this chapter is organized as follows. Section 2.2 describes the
system model and nomenclature. Section 2.3 provides analytical steps needed to
understand the behavior of the VD as a function of the error signal at its input. This
allows us to propose a cost function for equalizer adaptation. Section 2.4 explains
the new equalizer adaptation schemes. Simulation results, presented in Section 2.6,
show the merits of our algorithm compared to existing ones.

2.2 System Model and Problem Definition
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Figure 2.1: A discrete-time model of a PRML system.

A discrete-time model of a PRML system is shown in Figure 2.1. A binary se-
quenceyy € {+1} is transmitted, at a rate/T, over a linear dispersive channel with
finite impulse responsky. The channel output is corrupted by additive zero-mean
noiseny. The reasoning in this chapter is quite general and does not assume any prior
knowledge of the nature of the noisg e.g. the nois@ey is not necessarily Gaussian
and can be data-dependent. The readback sigi@the noisy channel output and is
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given by
e = (hxb)k +ng,

where %" denotes linear convolution. The channel impulse response is in general
quite long and may be time-varying. For this reason adaptive Partial Response (PR)
equalization [86] is used in order to transform the channel response to a shorter and
well defined impulse response. The equalizer impulse respangeoptimized so

that the overall impulse response, at its output, is as close as possible to a prescribed
short impulse response that we refer to as the target resgen$ée equalizer out-

put xx serves as input to a VD that is matched to the target respgnaed that
produces bit decisionEk. The detector inpuky is ideally equal to the reference
signal (g« b)x. However, because of channel noise, RISI and the different channel
artifacts,x, can be written as

Xk = (9*b)k + &,

wheregy denotes the error signal at the detector input and contains contribution of
channel noise and RISI caused by mis-equalization.

Before proceeding with equalizer adaptation that minimizes BER, let us first un-
derstand, in the next section, the dependency of the VD performance on the error
signaleg. This is then used in order to derive a practical equalizer adaptation crite-
rion that is directly linked to BER.

For mathematical convenience we omit the delays of the different modules and
the latency of the bit detector and assume Hnai: by.

2.3 Derivation of the adaptation criterion

The VD in Figure 2.1 operates on a trellis that is matched to the target resgonse
Every path in this trellis corresponds to an admissible bit sequence. The detector
selects the sequence that leads to the smallest path metric in the trellis [41]. The
metric of a bit sequenca is given by the Euclidian metric

M(a) =y (x —(g*a)i)?, (2.1)

where the above summation is taken over all readback symbols indices.
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An example of a 4-state trellis is shown in Figure 2.2. At tikTethe VD em-
ploys, for every state, an Add Compare Select (ACS) operation to select the best path
arriving at each state; the other path is discarded. Let us assume for the sake of the
argument that the path corresponding to the transmitted bit seqbgrazeives at
state at timekT. We denote b)b(k’ andbﬁ the selected and discarded paths by the
ACS operation at stat® and timekT. An erroneous ACS decision will occur at time
kT when the correct path, correspondingdotg is discarded, i.e. wheb! = b. The
selected path in this caseli$ = b+ 2e wheree = Lz‘b (ex € {0,£1}) is referred to
as the bit-error sequence. This erroneous ACS decision occurs with a probability:

Pr(ACS errotb,e) = Pr(M (b+ 2e) — M (b) < 0). (2.2)

The left part of (2.2) represents the probability that the ACS operation induces a
decision error, by discarding the correct path, given the transmitted bit seqoience
and an admissible bit-error sequerggi.e. a sequence ifD, +1} for which by + 2e¢

is an admissible bit sequence.

k-3 k-2 k-1 k Time (bits)

Figure 2.2: An example of a 4-state trellis.

With the assumption of an infinitely long backtracking depth in the VD, the over-
all BER is directly related to the probability of ACS errors over all possible data
patterns and admissible bit-error sequences. Minimization of the probability of ACS
error for a given bit-error sequence leads to minimization of BER for that specific
bit-error sequence, i.e. of the contribution of this sequence to the overall BER.

The variableS(e) = M (b+ 2e) — M (b) is known in literature as the Sequence
Amplitude Margin (SAM) and was first introduced in [122]. Upon invoking (2.1),
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S(e) can be written as
Se) = 43 (g+e?—(gxe)s
= 4(3:3,—Xe). 2:3)

whered, is a column vector given by, ; = (g*e);, 313, is the Euclidian weight of
the bit-error sequenag, andX, = §g§ denotes the correlation betwe&s and the
error signaky. Using (2.3), Eq. (2.2) can be rewritten as:

Pr(ACS errotb,e) = Pr(3} 3, < Xe). (2.4)

In order to minimize (2.4) for a particular bit-error sequelgeoptimal equal-
ization must shapeg, or equivalently the variabl, such tha1Pr(§l§e < Xe) Is
minimized. A first attempt towards this goal is to minimigéx?] according to the
LMSAM algorithm as suggested, for single bit-errors, in [L17]. However, this is not
optimal because minimization &{X?] yields no control on the sign &[X.] whereas
this sign is of capital importance fcﬁ?r@g@e < Xe).

By way of illustration, we consider in Appendix A the case when the channel
noiseny is additive and Gaussian and study the impact of linear residual I1SI on the
SAM. We show mainly two points. Firsg[Xe] andE[XZ] are both function of the
equalizer responsey (2.20)(2.21). Second;[Xe| affects (2.4) differently than the
varianceo}, = E[XZ] — E[Xc]? of X.. The average oKe, when positive, causes a
degradation in effective Euclidian weight of the bit-error sequemcd he variance
of Xe can be seen as an increase in channel noise power. Thus minirERigy
is suboptimal because, on the one hand, this does not provide the optimal trade-off
betweenE[X.] and ox, and on the other hand, this does not constrain the sign of
E[Xe] whereas the latter is of capital importance for (2.4). This sign tells whether the
residual ISl is constructive or destructive in terms of (2.4).

Because Appendix A assumes the prior knowledge of the channel response and
noise characteristics, its results cannot be directly used in the context of adaptive
equalization. In order to come up with a simple criterion@rihat is directly linked
to minimization of (2.4) we make the following observations:

e First, an ACS error occurs only whej@e < Xe. Therefore, it is natural to
consider the values of only in a certain interval of interest, namely wh&n
is higher than a certain threshold arow]d,.
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e Second, although the distributionXf is in general not Gaussian, its tail above
§g§e, or equivalently the tail o§(e) below zero, can be approximated with a
Gaussian tail. This argument has been first used and validated in [118] in order
to extract BER estimates from the SAM distribution. The validation of this
argument in [118] was based on both simulated data and experimental replay
signals taken from different optical disk systems.

Example 2.1:

In order to provide a simple explanation of the Gaussian tail approximation, let us
consider the case where the channel nmighas a Gaussian distribution. The error
signaley can be written ask = (gx*b)k + vk wheregy = (W h)x — gk andvi = (W n)g

is Gaussian as it is a filtered version of a Gaussian noise. The varigblhich is
written as

Xe= Z(g* e)k(qxb)k+ Z(g* €)kVk;

can then be interpreted as a superposition of different Gaussian distributions; one
distribution per bit sequence. For a given bit sequebgethe mean of the corre-
sponding Gaussian distribution is given BjXe|b] = 5 (9 *€)k(q*b)x and its vari-

ance by§l Rnd. WhereR,, denotes the autocorrelation matrix @f. Because the
variance of these Gaussian distributions is independet ofhe tail of Xe, above
553, is mainly determined by the bit sequericéor which Sk(g*e)k(gxb)y is the
biggest, i.e.b = argmax 5 (g * €)k(q*b)k. This justifies the Gaussian tail approx-
imation on the distribution oKe. Note that the bit sequendecorresponds to the
sequence with most destructive ISI for the bit-error sequence

Following the above mentioned observations, we introduce the truncated version
of Xe over the intervalTe, +o[ where the positive threshol is smaller tharﬁlg)e,
i.e.0< Te < 813 The truncated version o is denoted by, and is defined as

if Te,
Xéixel[xeﬂe}:{ (>)<e " e (2.5)

otherwise,

where the functionl{Y} takes the value 1 if the Boolean varialMeis true and O
otherwise.
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Figure 2.3: A conceptual plot of the distribution & (solid). The dashed
curve corresponds to the Gaussian fitting of the tailXgfon
|Te, +[. The hashed area correspondsitd, 5, < Xe).

Under the assumption that the tail of the distributiorkgbver|Te, +oo[ can still
be approximated as a tail of a Gaussian, we will show that, for a judicious choice
of Te, Pr(3. 3, < Xe) is an increasing function d[X/]. In other words, increasing
E[X{] leads necessarily to an increasd’mMACS errotb, e) and vice versa. In fact, if
we denote by anda?Z, respectively, the average and the variance of the Gaussian
distribution that fits best the tail of the distributionXf over| T, +[, see Figure 2.3,
then one can write:

.
PHOL, < Xe) = Q (f’e%“‘j , (2.6)
e
where theQ-function is defined aQ(x) = \/%fo"" e dt. Besides, it can be shown

that
2

Te— Te—
S ueQ( e ”e> + (20 opexpl - Tty
O¢ 20%
This expression can be further simplified, over the SNR range of practical interest,

by using the approximatio@(x) ~ (2rx?)~1/2exp{ —x2/2} for x > 2. This leads to

E[X¢] ’:TeQ<Te_“e>. 2.7)

Oe

In order to make the argument of tigefunction in (2.7) proportional to that in
(2.6), an obvious choice ak is Te = §l§e. However, this choice of implies that
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X, is nonzero only when the VD makes a detection error. Accordingly any equalizer
adaptation in this case can only operate in a Data-Aided (DA) mode where prior
knowledge of the transmitted bits is available. In order to be able to also operate in
the Decision-Directed (DD) mode, where the detected bits are used in the adaptation
loop, the thresholde has to be taken strictly smaller théb{)e. To this aim, one can
readily show that thresholdg of the form

Te=(1—0)d 5.+ e, (2.8)

wherea € [0, 1], make the argument of th@-function in (2.7) proportional to that of
(2.6). In fact, such a choice at leads to

EX <(l_a)alaeue> | 29

Te Oe

It is apparent that minimizing (2.6) is equivalent to minimizing (2.9). Thus, in order
to minimize BER for a particular bit-error sequensg equalizer adaptation can be
based on minimizing the following cost function:

A, — EI% (2.10)

where the threshold is given by (2.8). The value df is chosen such that the
Gaussian tail approximation holds PR, +[. Typical values ofx are in the interval

[0,0.5]. The dependence @t on e (2.8) implies that in practice the variablgsfor

the different bit-error sequences must be estimated and adapted. However, because
at reasonable SNRpe ~ E[X¢] = E[3¢] < 8.3, one can simply neglect the de-
pendency oflg on . Unless specified otherwise, we fix a valuenofnd consider

the threshold’, to be equal tq1—o)3] 3.

Example 2.2:
For the sake of illustration, let us consider the error sigeahs a zero-mean Gaus-
sian noise signal and denote its autocorrelation matrixdyThis is especially true
if residual ISI at the detector input is negligible.

For a given bit-error sequencg, the variableXe is then Gaussian with a mean
e = 0 and a varianceo? = §le£§e. The thresholdl in (2.8) is then given by
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Te=(1- 0()§Z§e and one can show, after few straightforward mathematical steps,
that (2.10) boils down to
Te
Ne=TF=
¢ <Ge>

. . . 2
where the functiorf is given byf (x) = \/ﬁ exp{—%}.
Becausef is a strictly decreasing function fot > 0, one concludes that mini-
T
mizing e is equivalent to maximizing the ratié =(1-a) %% _ \yhich is pro-

T
68 =e

T2
portional to the root square of the effective SNR, ig%, [41]. This example
illustrates once more that designing an equalizer that minimizgs equivalent to
maximizing the effective SNR, i.e. minimizing BER for a given bit-error seqgence.

2.4 Near minimum-BER equalizer adaptation

In the previous section, a cost function (2.10), which is directly related to the BER
for a given bit-error sequence, was derived. In this section we employ (2.10) in order
to derive the Near Minimum-BER (NMBER) equalizer adaptation. The basic idea
of the NMBER adaptation is to minimize (2.10) for all relevant bit-error sequences.
The different functiong\e for the different bit-error sequences are then combined
with different weights so as to achieve the best overall BER. For clarity, let us first
focus on a given bit-error sequengeand develop an adaptive equalization scheme
that minimizes (2.10). The second part of this section combines the different mini-
mizations of the different function&e such that the overall BER, approximated by

its union bound expression, is optimized.

For a given bit-error sequeneg, an equalizer adaptation scheme that minimizes
(2.10) can be based on the steepest descent algorithm. This consists of following at
each iteration the opposite direction of the gradieiovith respect to the equalizer
coefficients. The adaptation of tip equalizer tap can be written as follows:

0A
Wg)k+l) — Wl(ok) (e aTvz " (2.11)
w=w

wherew(pk) is thepi" equalizer tap at timkT. The coefficienty’(€) denotes the equal-

izer adaptation constant. Note that this adaptation constant is, in general, dependent
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on the error sequenag. The reasons for this dependency are explained in the next
paragraph. By using (3.2) and the equaﬁ@; = ri_p, One can prove that

- = (gkée,ifip> ]'{xe>Te}.

Upon replacing the expectation ¥f in (2.10) by its instantaneous realization, (2.11)
can be rewritten as:

0Xe

owp

wp Y =wp —n(e) <§llk— p) 1{M(b+26)—fM(b)<Th(e) } (2.12)
wheren(e) =n'(€)/Te, ' p = [Nk—p,Tk—p-1, ..]T andTh(e) = 4ad_ 5, and where the
selection condition, i.elyx 1,1, was rewritten in terms of path metrics in the VD
trellis using (2.3).

Now, if we consider a set of bit-error sequences, the overall BER can be seen
as the accumulation of conditional bit-error rates for each bit sequence and admis-
sible bit-error sequence, weighted differently for every bit sequence and bit-error
sequence. More precisely, if we assume that transmitted sequences are oNgength
then a union bound on the BER can be obtained using Bayes’ rule. This is written as

Hw(e)

BER< 5 p(b.e) Pr(323, < Xe), (2.13)
,e

where the summation is taken over all possible bit sequemoé$éengthN and bit-

error sequences. The probability that a bit sequendgeis transmitted and thag

is an admissible bit-error sequence is denotegfiye). The Hamming weight of

the bit-error sequence i.e. the number of non-zeros @ is denoted byHy(e). In

order to derive a near optimal expression of the weigl¢3, we use the union bound
expression to approximate BER.

Averaging over all bit sequences and admissible bit-error sequences, one can see

that the NMBER adaptation in (2.11) seeks to minimize the total cost function

A= ; p(b,e)n’(e)e. (2.14)

Note that the averaging operation is inherited in the equalizer adaptation loop. If we
first consider the case wheme= 0, then we havde = 58, andAe = Pr(3. 3, < Xe)
using (2.6), (2.9) and (2.10). It follows that, in order to make the minimization of
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(2.14) equivalent to that of the right hand expression of (2.13), it is sufficient to take
n’(e) = n(e)Te to be proportional tdd,(e), or equivalently

Hw(e)
3¢ 3,

n(e) =no , (2.15)
whereng is a constant independent of the bit-error sequesceTherefore, in or-
der to minimize BER, the minimization of the different cost functidasshould be
weighted differently for different bit-error sequences according to (2.15). The di-
vision by§l§e in (2.15) can be omitted in practice because the dominant bit-error
sequences have approximately similar Euclidian weights, which are close to the min-
imal Euclidian weight.

Whena > 0 then the expression af(e) given in (2.15) becomes sub-optimal
in general. However, from our simulations, no noticeable improvement in BER was
provided by further optimization af(e). For this reason, we consider the expression
of n(e) given by (2.15) in the sequel.

'k Equalizer Xy Viterbi bk
. —_ —
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Figure 2.4: The NMBER adaptation. Only the adaptation of fifeequal-
izer tap is shown.

The overall adaptation of thet" equalizer tap value is depicted in Figure 2.4. At
every clock cyclekT, an ACS operation is employed at every state. At every state,
two quantities are derived. First, the difference in path metrics between the selected
and the discarded paths is taken. Second, a bit-error seqeeigéderived as the
bitwise difference between the two sequences corresponding to the discarded and the
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selected paths. The bit-error sequeegetaken from the state where the best path
ends, is used to compute the vedipr= [(g* €), (g% €)k_1,...(g* €)k_L]", where

the integer valué depends on the maximum length of relevant bit-error sequences.
In the sequel, we simply fik to the backtracking depth of the VD. The equalizer
adaptation is enabled only when the difference in path metrics is smallefittren-
40(§l§e. For simplicity, one can fiX,(e) to

To(e) = To = 4amin3l3,

without any significant loss in performance. When the adaptation is enabled, the
scalar product of the vectdg with the equalizer inputvectcg[;_p =[rk_p,---Mk— p_L]T
is computed, scaled withn(e) and then passed to an ideal discrete-time integrator
that produces the updatg' equalizer tap value.

A geometrical interpretation of the NMBER algorithm, which provides an intu-
itive explanation, is given in Section 2.5.

2.4.1 Efficient realization of near minimum-BER adaptation

In Figure 2.4 the scalar product operati@b[k_p can be interpreted as focusing
equalizer adaptation on the frequency region that is of interest for the bit-error se-
quencee. The amplitude response gf in the calculation oﬁlgk,p can be inter-
preted as only a modification of the adaptation open loop gain per frequency. There-
fore, one can replace, iﬁ;f[k_p, gk by any response that has the same phase
response agk. This degree of freedom in the choice of the amplitude respongge of
can be used to simplify further the NMBER algorithm.

Because target responses for optical storage systems are often symmetric, a sim-
ple responsg (z) = z Ps, whereDg denotes the delay in bits of the target response
Ok, can be used to compu&[k,p.

Remark :

For longitudinal magnetic storage systems, the target response is antisymmetric and
is of the formg(z) = (1 -z 1)(1+z1)" wheren = 1, n = 2 or n = 3 correspond-

ing to PR4, EPR4 and E2PR4 classes of targets. In this case, the regpr)se
(1-zYHz"2if nis even andy(2) = (1—z 2)z ™ Y/2if niis odd captures the
phase response of the target respog&s. This choice ofy(z) can thus be used to
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computedyry .

The Simplified NMBER (SNMBER) equalizer adaptation rule is then obtained
by replacing in (2.12) by g, = 8(k— Dg). This can be written as:

k+1 k
Wy = wp’ —n(e) (QLDngfp) 1{M(b+2e)fM(b)<Th}a (2.16)
WhereDy is the delay of the target resporg;@andg{[_Dg = [&- Dy -+, & Dy-L]. The
SNMBER equalizer adaptation algorithm is shown in Figure 2.5. This adaptation
algorithm presents the advantage of further improved efficiency. In fact, because, in
practice, relevant bit-error sequences span only few bits, the scalar products with
can be realized with only few additions. As an example, single bit-errors are given
by e= £[1,0,0], the simplified equalizer update boils down, except for the selection
mechanism, tg[([Dg[k,p = = rx_pip,- INthe case of a double bit-error given @y
[1,0,—1], the equalizer update is simply given Q&Dggk,p = I'k_p+Dg — Mk—p-2+Dg-
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Figure 2.5: The SNMBER equalizer adaptation for a linear phase target re-
sponse.

2.4.2 Extension of the NMBER algorithm to NPML systems

Noise-Predictive Maximum-Likelihood (NPML) detectors arise by imbedding a noise
prediction/whitening process into the branch metric computation of the Viterbi de-
tector [32] [23]. This boils down to modifying the path metric in (2.1) by replac-
ing the target response hy, = gk — z{\il pigk_i and the detector input byx =
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Xk — Eile piXk_i wherep; denotes amM-tap noise prediction filter. The NPML path
metric becomes\’(a) = Si(yi — (¢ *a)i)%. Therefore the NMBER algorithm in

this case can be derived by simple analogy to the PRML case. One can check that
the NMBER adaptation for NPML systems can be obtained by simply replacing in
(2.12)gx by g, and applying a whitening filter to the delayed equalizer input, i.e. by
replacing in (2.12yx_p by r’k_p =TI p— z}\":l Pifk—p—i- The equalizer adaptation

rule becomes then

k+1 K T
wp Y =wp! —n(e) <§/e£{<fp) L0 0s20) -0 <o

! (o ) / i/ / ’ T
whered o; = (d' xe); and[kfIO = [rkfp,rkfpfl,...,rkfpfl_] .

2.4.3 The NMBER algorithm for symbol-by-symbol detection

In the case of a receiver employing a symbol-by-symbol detector, the NMBER equal-
izer adaptation can be simplified further. In order to illustrate this, let us consider a
system employing uncoded binary data taken from the alphdbet{—1,1}. The
receiver is composed of a linear equalizer that tries to undo the effect of the channel
and a threshold detector or slicer that outputs bit decidipnsee Figure 2.6. Based

on the equalized sampig, the threshold detector outputs its closest symbol from the
alphabet4.

Threshold
Detector C

b r
—k> Channel K »| Equalizer Xk: _>bk

Figure 2.6: model of the symbol-by-symbol detection system.

As the threshold detector is equivalent to a VD with a full target response, i.e.
go = 1andg =0 fori # 0, the NMBER algorithm we derived earlier applies thus
to this simple case. Because the NMBER algorithm contains three main building
blocks: the error sequence generation block, the enabling signal generation block and
the correlation block, we are going to describe these blocks for systems of Figure 2.6.

e The error sequence generation block produces at every clock cycle the most
likely error sequence. In the case of symbol-by-symbol detection only single
symbol errors are to be considered. Similarly to the Viterbi detection case, the
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threshold detector is slightly modified to output not only the closest symbol to
X but also the second closest symbol. We debptandb? the closest and the
second closest symbols g, respectively. We havie? = —bt. The derivation

of the symbol error sequeneg differs from the DD to the non-DD modes.

In the DA but non-DD mode the bitg, are known and the derivation ef is
given by

Do — bi — by if by # by (case of a detection error)
| b2—b} if b =byx (no detection error)

In the DD mode the detector is assumed to output correct decisions and the
derivation ofey is given by
2 = b — b

e The enabling signal generation block is also simpler than in the case of Viterbi
detection. Given the error event, the general expression of the enabling
condition is given byM (b+ 2e) — M (b) < T, in the non-DD mode and by
M (bt 4 2e) — M (b?) < Ty, in the DD mode. UsingV (b) = (x — by)? for the
threshold detector ant, = 40(eﬁ = 4q, it is easy to show that the enabling
condition boils down to

(1
(1

)
)

(X —bx) (non-DD)

—0) < &
—a) < &(x—bt) (DD)
e the correlation of the equalizer input signal with the error sequence simplifies

in this case t@ry_p for the adaptation ofvp.

The NMBER algorithm applies as well to systems employing threshold detection
and leads to a very simple multiplication-free implementation.

2.5 A geometrical interpretation of the NMBER algorithm

In order to develop an intuitive understanding of the NMBER algorithm, let us col-
lect the readback samplesin a vectorr = [ro, ..., rN,l]T that we call the readback
vector. We denote bx = [xo,...,xn_1]' the column vector of equalized samples
Xk = (Wxr)k. For simplicity, let us focus on one admissible bit-error sequexce
This means that we consider for detection only the two sequéncasd (b + 2e)y.
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(1-a)o, Vo

decision

boundary

Enabling Subspace

Figure 2.7: a geometrical representation of the NMBER algorithm enabling
condition.

The VD will decide for the bit sequends if and only if the vectoix is closer tod,

than to the vectod,, ,., whered, = [(g*a)o, ..., (g*a)n,—1]" for a bit sequencey

(see Figure 2.7). The distance between two vectors is computed using the L2-norm
given by: ||X||2 = XTX. Figure 2.7 shows also the vecly= (3, ,. — ) and the
boundary decision of the VD. Let us then see what happens to the weafi@r the
NMBER equalizer adaptation. For this purpose let us assume that we receive a vector
r and that the NMBER equalizer adaptation is enabled. The same véstassumed

to be received again after equalizer adaptation.

First of all, one needs to note that what matters for detection is the orthogonal
projection ofe = x— §,, over the vectod,, i.e. AB= §l§.

The NMBER adaptation is enabled whéhe > (1—a)3.3,. This defines an
enabling subspace as shown in Figure 2.7. When the vgdtiis in the enabling
subspace, the adaptation is enabled and the equalizer tap values are changed accord-
ing to (2.12). A correction response, given byow, = —n(e)@l[k_p, is then added
to the equalizer response. After adaptation and reception of the same wettter
vector x will change withdx and more importantly its orthogonal projection dn
changes as follows

9AB = §;0x

Using the fact thadxc = ¥ ,0wpr_p and thadw, = —n(e) 3k deklk—p, ONE Can eas-
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ily prove that

0AB=—n(e) S (dary_p)* <O. (2.17)
p

It is then visible that NMBER adaptation tries to shift the vectautside the en-
abling subspace and as far as possible from the VD decision boundary such as to
increase detection reliability (reliability can be seen, here, as the didBhireFig-

ure 2.7, betweer and the VD decision boundary). When the veotdalls outside

the enabling subspace, the VD will output the bit sequdnaeith a high reliability.

In this case the NMBER equalizer adaptation is disabled. However, because the LM-
SAM minimizesE[§l§2} (for single bit-errors), it does not make any distinction, in
Figure 2.7, between the poiBt(§£§ > 0) and its mirroB’ with respect tA (§l§ <0)
whereas these points correspond to completely different reliabilities.

Compared to LMSAM or LMS, the NMBER algorithm does not spend equaliza-
tion effort when this does not improve detection reliability and moreover, it is clear
from (2.17) that when the NMBER adaptation is enabled, it always acts towards im-
proved reliability.

2.6 Simulation Results

By way of illustration we consider an idealized optical storage channel according to
the Braat-Hopkins model [42], see Chapter 1,

2T sin(r0) 19,9 /1_(Q)2
H(Q): T TQ (CO§|QC‘ Qcm)’ |Q|<Qm

0, Q] > Qc.

whereQ. denotes the normalized optical cut-off frequency. Dat#és taken to
be run-length-limited [93] with run-length parametédsk) = (1,7). In this section
we consider only electronics noise modelled as Additive White and Gaussian (AWG)
with a varianceo?. Simulation results in the presence of media noise and channel
nonlinearities are presented in Chapter 3 as this requires the target response to be
designed appropriately. Channel SNR is defineGEK = Zg—g‘ﬁ This is the same
as theSANR defined in Section 1.2.2 as we focus in this gection only on additive
electronics noise.

We use here the Blu-ray optical parameters, N&. = 0.85, a laser wave-
lengthA = 405nm and a track pitch of 320 nm [135]. We consider two different
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disk capacities that are 23 GB and 30 GB on a single layer 12 cm disk. The corre-
sponding channel bit-lengths are, respectivgly,= 81 nm andTy;; = 62 nm and the
resulting normalized cut-off frequencies are respectiggly= 0.34 andQ. = 0.26.

The comparison of the NMBER with respect to the LMS algorithm is done at both
capacities. To compare the NMBER and the LMSAM algorithms, the 30 GB channel
is considered where a more pronounced improvement can be pointed out. To allow
fair comparison between the different adaptation algorithms, all schemes are run first
in the DA mode where the prior knowledge of the transmitted bit sequence is used in
all adaptation loops. For LMS this is used to extract the error signahd for the
NMBER and the SNMBER it is used to select the state that corresponds to the correct
bits from where to extract the bit-error sequemge Simulation results of NMBER
performances in the DD mode are then shown at the end of this section.
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Figure 2.8: Amplitude-frequency of idealized optical channel having a nor-
malized cut-ofQ). = 0.34, 3-tap targetsg® = [1,2,1] andg' =
[1,1.6,1] and 5-tap targey® = [0.17,0.5,0.67,0.5,0.17]. For
clarity of the plot the different targets are normalized to have
the same DC.

In order to demonstrate the benefits gained by employing the NMBER equalizer
adaptation over the conventional LMS adaptation, three target responses are con-
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sidered. The first one is a 3-tap target response with integer coefficients given by
g° =[1,2,1]. The second oney = [1,1.6,1], provides a better match to the chan-
nel response. A 4-state VD is employed frandg!. The third target response
is a 5-tap response, which corresponds, because of the d=1 constraint, to a 10-state
VD, given byg? = [0.17,0.5,0.67,0.5,0.17]. The response af’ approximates the
in-band characteristics and cut-off frequency of the channel quite well. Amplitude
responses di(t), g2, gi andgZ are depicted in Figure 2.8.

To illustrate the concept of the NMBER adaptation, Figure 2.9 shows the SAM
histograms for both LMS and NMBER adaptations using the target resgén$ae
SAM histogram is the accumulation of the different probability distribution functions
of S(e) for the different bit-error sequences. The area below the tail of this histogram
below zero determines the BER. It can be seen already that, below zero, the SAM
histogram with NMBER adaptation is below the one with LMS adaptation. More-
over, because the SAM distribution on the positive axis is irrelevant for BER, our
adaptation scheme uses this degree of freedom and does not spend any equalization
effort there.

Figure 2.9: The SAM distribution, @8NR= 13dB, is shown in the right plot
for LMS adaptation (solid) and NMBER adaptation (dashed). A
zoom of the SAM histogram around zero is shown in the left plot.

For the 23 GB channel, Figure 2.10 shows the simulated BER as function of SNR
for the different targets and adaptation algorithms. The equalizer |&ygik fixed
to 9 anda = 0.4
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For the target responsg®, Figure 2.10 shows that, on the one hand, the NM-
BER algorithm outperforms the LMS algorithm by 1.5 dBBER = 10°°. On the
other hand, the simplified algorithm SNMBER is indistinguishable, in terms of BER,
from the NMBER algorithm. For the target respomsethe NMBER algorithm out-
performs LMS by 0.6 dB. Moreover, whereas with the latter the difference in SNR
betweerg® andg! is ~1 dB, it is reduced to less than 0.1 dB using the NMBER algo-
rithm. The SNR difference between the two targets in the case of LMS is explained
by the fact thag? is better matched to the channel tigfrin the in-band frequencies,

i.e. forQ < Q..

The 5-tap target responsgg presents a good match to the channel response as
shown in Figure 2.8. For this reason, the LMS adaptation is already very close to
optimal in the case of additive white noise. In this case, the NMBER algorithm is
practically identical to its LMS counterpart over the whole SNR range. In addition,
using LMS the 3-tap targef presents a loss in SNR of 1 dB compared to the 5-tap
targetg?. This gap in SNR betweeg! andg? is reduced to only 0.4 dB using the
NMBER algorithm. Such improvement in SNR for short target responses, i.e. less
states in the VD trellis, makes the NMBER algorithm very attractive for practical
systems.

For the 30 GB channel, Figure 2.11 shows the simulated BER as function of SNR
for the different targets and adaptation algorithms. The pararagtehere fixed to
o = 0.3. Figure 2.11 shows clearly that as density increases, the short lengths target
responsg® andg! become completely impractical using the LMS algorithm. Never-
theless, using the NMBER algorithm allows significant performance improvements
for these short target responses. This improvement amounts to 3.4 gBdad to
even more forg®. However, because of their short lengt,and g* still lag few
dBs behind the 5-tap target respogge Furthermore, for the target, the NMBER
allows an improvement of 1.2 dB in SNR with respect to the LMS algorithm.

It is apparent from Figure 2.10 and Figure 2.11 that the NMBER algorithm can
be very useful in practice. First, in order to limit detection complexity, which grows
exponentially with the target length, short target responses are preferably employed.
For these targets, LMS adaptation becomes suboptimal and the NMBER adaptation
allows significant performance improvements. Second, at a given complexity, i.e.
target length, the SNR improvement of the NMBER equalization with respectto LMS
increases with storage density. This should help to achieve higher storage densities
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Figure 2.10: Simulated BER versus SNR for the different target responses
and adaptation schemes at a disk capacity of 23 GB.

without sacrificing complexity.

Next, also the LMSAM is taken into account. The LMSAM scans the data for
particular patterns and adapts the equalizer in order to mini&{i%g] for single bit-
errors at data transitions. However, as storage capacity increases, other error events,
e.g. the double bit-erroms= +[1,0, —1], become substantial. The difference in pre-
detection SNR between LMSAM and NMBER becomes then more pronounced. In
order to illustrate the sub-optimality of the LMSAM algorithm, Figure 2.12 shows
simulated BER as function of SNR for the target respogat a disk capacity
of 30 GB andN,, = 9. The LMSAM algorithm is implemented in the DA mode
where the transmitted data is scanned for the patterns +++), (— — —++),
(+++——) and(++———). LMSAM equalizer adaptation is implemented as
explained in [117]. For NMBER and SNMBER adaptatioods taken to be equal
to 0.3. Figure 2.12 shows that the LMSAM algorithm yields a loss of 1.4 dB com-
pared to the NMBER or the SNMBER algorithm at the capacity of 30 GB. This loss
will increase at higher storage capacities.
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Figure 2.11: Simulated BER versus SNR for the different target responses
and adaptation schemes at a disk capacity of 30 GB.

2.6.1 Stability and convergence behavior of the NMBER algorithm

Because of the nonlinear and selective nature of the NMBER algorithm, a theoretical
analysis of its stability and convergence behavior is quite fastidious. The conver-
gence behavior of the NMBER algorithm depends on the adaptation congtand

on the threshold,. The higher the threshold, becomes, the more frequent the
NMBER adaptation is enabled and the smafjgishould be taken in order to ensure
convergence of the algorithm. In order to highlight the dependence of the NMBER
performance as function ofy, Figure 2.13 and Figure 2.14 show BER as function
of no for the 30 GB channel at different SNR values for the target respanseg’

andg = g?, respectively. The threshold, or equivalentlyis optimized to achieve

the best BER for the smallest valuem. Figures 2.13 and 2.14 illustrate that the
performance of the NMBER algorithm is basically independemy©ff this latter

is smaller than a given valugnay (= 1072, in this case) and that fjp > Nmax the
NMBER algorithm can become unstable.
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Figure 2.12: Simulated BER versus SNR fpe= ¢° and the different adap-
tation schemes at a disk capacity of 30 GB.

2.6.2 Behavior of the NMBER algorithm in the decision-directed mode

The previous simulation results were conducted in the DA mode where the prior
knowledge of the transmitted bits was used to extract the necessary control signals
for the different algorithms. In many practical systems, prior knowledge about the
transmitted bits is not available and (preliminary) VD decisions have to be used in-
stead, i.e. the scheme must be run in DD mode.

In the DD mode, the choice afis crucial. In fact, ifa ~ O, then the NMBER al-
gorithm will mainly adapt on wrong decisions which causes the algorithm to diverge.
From this perspectivey has to be as high as possible to minimize the probability of
adapting on wrong decisions. However, in order to limit BER degradatiniigs
to be chosen as small as possible such that the Gaussian tail approximation holds.
Thereforep must realize a trade-off between these two criteria.

To implement the NMBER algorithm in the DD mode, a bit-error sequence and a
Boolean variable need to be stored at every state of the trellis up to the decision back-
tracking depth.. The Boolean variable tells whether the difference in path metrics
between the selected and discarded paths by the ACS unit is smaller or bigger than
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Figure 2.13: Simulated BER versug at a capacity of 30 GB and different
SNR values for the target resporge: g°.

the threshold},. At every clock cycle, a bit decision is taken from the VD trellis, at a
decoding state, following a selected path at a dépfrhe decoding state is also used
to extract a bit-error sequence and one Boolean variable. The equalizer adaptation is
then performed according to Figure 2.4 where the equalizer mpytis delayed to
compensate for the backtracking delay prior to correlation d4th

Figure 2.15 and Figure 2.16 show the simulated BER for the target responses
g = g° andg = g? and, respectively, the 23 and 30 GB channel using the NMBER
adaptation in both DA and DD modes. This shows that the performance of the NM-
BER adaptation in the DD mode is within a fraction of a dB from its DA counterpart,
which proves the practical value of the NMBER algorithm. The SNMBER algorithm
has a similar behavior. The performance degradation of the DD mode, compared to
the DA mode, increases with storage density as illustrated in Figure 2.15 and Figure
2.16. This is not surprising as system sensitivity increases with density [86], i.e. per-
formance becomes more sensitive to small system parameter deviations.

Remark :
In a practical optical storage system, choosing the threshold to be very small, can
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Figure 2.14: Simulated BER versug at a capacity of 30 GB and different
SNR values for the target resporge: g°.

cause serious problems to the NMBER algorithm. In fact, small values of the differ-
ence in VD path metrics can be caused for example by media defects, scratches or
finger prints. Adapting the equalizer when these artifacts occur, will cause the NM-
BER algorithm to diverge. A simple remedy to this issue is to add a second smaller
thresholdT,, < T, and freeze the NMBER adaptation when the VD path metrics dif-
ference is smaller thafi,,. This threshold should serve also to freeze all adaptation
loops, e.g. DC, AGC, PLL, to prevent them from divergence.

2.7 Conclusions

A new equalizer adaptation scheme has been proposed for PRML systems. This
new scheme seeks to minimize directly the bit-error rate. Based on an analysis of
Viterbi detection performance, we highlighted a practical cost function for equalizer
adaptation. This function was used to realize a remarkably simple equalizer adapta-
tion scheme. The proposed scheme incorporates a selection mechanism that enables
equalizer adaptation only if the difference in path metrics, between selected and dis-
carded paths from the Viterbi trellis, is smaller than a prescribed threshold. The actual
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Figure 2.15: Simulated BER versus SNR using the NMBER algorithm in
both DA and DD modes fog = g° and the 23 GB channel
(a = 0.4). As a basis of reference, also the LMS performance
in DA mode is shown.

version of the new adaptation scheme is essentially as simple as LMS. A simplified
scheme that allows a further improved efficiency was also presented. Because of the
selection mechanism, the proposed schemes present an advantage in terms of power
consumption especially for long equalizers.

Simulation results for an idealized optical storage system showed that our scheme
outperforms significantly the existing adaptation schemes especially at high storage
densities or short target response lengths.
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Figure 2.16: Simulated BER versus SNR using the NMBER algorithm in
both DA and DD modes fog = g and the 30 GB channel
(a =0.3). As a basis of reference, also the LMS performance
in DA mode is shown.

Appendix A: Impact of residual ISI on the sequenced ampli-
tude margin

In order to develop a better understanding of the impact of residual linear ISI on the
SAM, let us consider the case where the channel nyise data-independent, addi-
tive and Gaussian. In this case, the error sigpas composed of two components.
The first component is time-invariant and linearly dependent on the bit seghgnce
i.e. RISI, and the second one is a data-independent zero-mean and Gaussian noise.
For simplicity of the analysis, we assume that the binary data is uncoded. The error
signal is given by

&k = (g*xb)k + W, (2.18)

wherevy = (W= n)x denotes the noise component. The RISI component is character-
ized by the impulse responsgg wheregx = (W h)x — gk.

In order to evaluaté’r(§l§e < Xe), let us consider a bit-error sequergeand
computeE [Xg] andE[X2], where the expectations are taken over all possible realiza-
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tions of ux andby such that + 2e is an admissible bit sequence. Plugging (2.18) in
Xe = 3¢ € and substitutingek by (g €)x, we can write

Xe = Z(g*e)k(q* b)k+Z(g*e)kvk. (2.19)

Sincev is independent o and is zero on average, we havg (g e)kvik] = O.
The average oX. is then equal to

E[Xe]:E[Z(g*e) k(@xb)] = » gk-itk-jE[abj].
Kl j
In order to evaluat&[gb;] we introduce the sé{e) of indicesi such thag # 0,
i.e. ( €l(e) < g #0). The summation ovey in the previous equality is split into
two terms depending o< I (e) or not:

E[Xe] = Z Ok—iOk—E[eibj] + gk iOk—jE[abj].
ki,j€l(e) ki, il (e
When j € I(e), b; becomes deterministic. In fact, becalse 2e is an admissible
bit sequence, the only possibility fdx;, whene; # O, is bj = —e;j. In this case
E[ebj] = —eej. However, when ¢l (e), it is easy to prove thdE[eb;] = 0 because
the data is assumed to be uncoded. It follows that

EXe]=— > Oitk-jae;.
k.i,j€l(e)

Becausej = Ofor j ¢l(e), the previous summation can be taken over all values
of j. Itis then straightforward to show that

E[XJ = — Z(g*e)k(q*e)k =-3.0, (2.20)

where the vectog is given by(q )k = (g €)x = (Wxhx€)i — (g e)k.
In a similar manner as we derived (2.20), one can proveBf¥ég] can be written
as follows:
E[X¢] = (829,)*+ & (M +Ru)3,, (2.21)

whereR,y is the autocorrelation matrix o and the matrixM€ is defined by:

Mk = Y Ok-jOk—j = (@*0 Dk — D OOk,
i¢l(e) j€l(e)
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whereq* is defined byg" = q-;.

Equations (2.20) and (2.21) give a closed form expressid&{Xf] andE[X2]. In
order to link these quantities to ACS error probabilities, let us assume that the dis-
tribution of Xe can be approximated by a Gaussian. This assumption is not valid in
general because of the data-dependent component of the error sigtédwever,
in the limiting case of a small amount of residual ISI, this approximation is accept-
able. Note that the approximation is only used at this part of this section to provide
more insights and that the other results of this chapter are more general. With this
assumption, one can write

T T
Pr(ACS errote) ~ Q %%+%% : (2.22)
8e (M®+Rw)8,

wherePr(ACS errofe) equals the average &f(ACS erroitb,e) over all possible bit
sequenceby such thab+ 2e is an admissible bit sequence.

The impact orPr(ACS errote) of the RISI differs significantly from the impact
of the channel noise. The RISI has basically two different impacts. First, compared
to the case ofj = 0, it induces a modification in the nominator of tlefunction
argument in (2.22). We name this nominator the effective Euclidian weight of the
bit-error sequence. The effective Euclidian weight can be either bigger or smaller
than§l§e (constructive or destructive ISl for the bit-error sequeagedepending
on the sign o@lge = —E[Xg]. Second, the denominator of the argument of@e
function in (2.22) is also modified. One can check that the mdfixs positive and
therefore the denominator increases wiyeA O compared tay = 0. The impact of
M€in (2.22) can be seen as an increase in effective channel noise power.

An expression of the effective predetection S} can be extracted from
(2.22):

58, + Oy
PvD = Min——— 2o (2.23)

° /38 (Me+Ry)3,
Note that if there is no residual ISl i.g.= 0, andv is white with a variance?,

- . . T
pvp boils down to the known expressi@yp = mine 53%.

Application to equalizer adaptatiorDesigning the equalizer response to mini-
mizeE[X2] (2.21) does not necessarily minimi2g ACS errote) because of two rea-
sons. First, the impact @lge on Pr(ACS errote) is different than that ob (M®+
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Rw)9d. as explained earlier. Thus minimizing (2.21) would not, in general, be optimal
because this does not provide the optimal trade-off bet@éggandQl(MenL Rw) Qe
Second, and more important, minimiziEgX2] does not provide any constraint on
the sign ofE[X¢], i.e. the opposite sign oﬁlge, whereas it has been shown that
this sign is of capital importance fé&r(ACS errofe). We conclude that minimiz-

ing E[X?], as suggested in [117], is not optimal in general. Simulation results of
Figure 2.12 confirm this conclusion.
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Chapter 3

Minimum Bit-Error Rate Target
Response Adaptation

In order to reduce the implementation complexity of maximum likelihood sequence
detectors, equalized maximum likelihood receivers are often used. This consists of
employing an equalizer to transform the channel response to a short target response
to which the Viterbi detector is matched. Existing equalizer and target adaptation
schemes are often based on the minimum mean-square error (MMSE) criterion which
is not always optimal in terms of detection bit-error rate at the Viterbi detector output.

In this chapter we consider minimum bit-error rate joint adaptation of equalizer and
target response and present a practical adaptation algorithm that achieves near mini-
mum bit-error rate performance. This chapter can be seen as a generalization of the
results of Chapter 2 to include target response adaptation. The proposed algorithm
extracts control information from within the Viterbi detector and focuses adaptation
on those bit sequences, bit-error events and noise realizations that lead to non-reliable
decisions in the Viterbi detector. Simulation results for an optical storage channel,
show that, compared to the MMSE-based adaptation methods, the new scheme allows
significant performance improvements especially for short target or equalizer lengths
or in the presence of channel nonlinearities and media noise. This is very promising
for high-density storage systems in terms of system complexity reduction or in terms
of fighting nonlinearities and media noise. Moreover, the proposed algorithm is no
more complex than the existing MMSE-based algorithms.
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3.1 Introduction

The optimal receiver for estimating a data sequence in the presence of intersymbol
interference (ISI) and additive Gaussian noise [41] can generally not be realized be-
cause of its excessive complexity. This fact has led to a development of a variety
of suboptimal and lower complexity receivers. In many practical systems, e.g. stor-
age systems, a combination of partial response equalization with Viterbi detection is
used to achieve a simplification of the optimal Maximum-Likelihood Sequence De-
tection (MLSD) [25, 27,29, 143]. This consists of using a linear equalizer to shape
the channel to a short target response, which allows for a practical use of the Viterbi
algorithm (VA), whose computational complexity increases exponentially with the
target response length.

In receivers for digital storage systems, equalizer and eventually target response
adaptation is usually employed because it presents particular advantages. First, con-
sidering that the channel response may be time varying and is not known until after
the entire storage device is manufactured, adaptive equalization and target response
design provide a better fitting and tracking of the channel response. Second, be-
cause the noise in high density storage systems depends on the medium and the data
throughput, e.g. this relates to the disc mastering quality and disc rotation speed for
optical storage systems, and thus an equalizer and target response that adaptively take
the noise characteristics into consideration is very desirable.

Because the target response plays a key role in system performance determina-
tion, several papers attempted to solve the target response design and adaptation prob-
lem. In [143], the target response was chosen as a truncated version of the channel re-
sponse and the equalizer was chosen to minimize the Mean Square Error (MSE). The
MSE-minimization problem was extended to the target response design and adapta-
tion in [29] and [27]. Because joint equalizer and target adaptation inevitably inherits
an issue of interaction between the two adaptation loops, several solutions were re-
ported in literature. In [29], a fixed energy constraint for the target response was used
while [27] used the monic constraint, i.e. the first nonzero term in the target response
is fixed to one. The latter corresponds to a minimum-phase target response that is op-
timum for decision feedback equalization [106]. The minimum MSE (MMSE) target
response design and adaptation problem was also discussed in [71] for a fixed energy
constraint and in [72] for a monic constraint.
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All existing target adaptation techniques are based on the MMSE criterion with
different constraints. Among the different constraints, the monic constraint was
shown to lead to very close to optimal performance, in the bit-error rate sense, for
a linear channel [78]. This is especially true if the target and the equalizer are long
enough to handle noise coloration. However, for short target or equalizer lengths, as
constrained by complexity limitations for example, residual ISI and remaining noise
coloration may hamper system performance severely.

Moreover, an important problem at high storage densities, either for optical or
magnetic storage systems, is the occurrence of nonlinear intersymbol interference
[22,120]. Applying noise whitening, via monic target adaptation, for such channels
will cause the nonlinear ISI after equalization to be spread over many symbols. This
causes a memory increase of the nonlinear ISI and leads overall performance degra-
dation. Furthermore, noise tends to become strongly data-dependent at high storage
densities. This makes specific bit patterns especially vulnerable to noise. These ar-
tifacts are neglected by the MMSE-based adaptation techniques because they do not
discriminate vulnerable bit patterns and bit-error events but consider an average MSE
over the different bit patterns.

In this chapter we present a new equalizer and target adaptation algorithm that
seeks to minimize bit-error rate (BER). The proposed algorithm incorporates a selec-
tion mechanism that focuses adaptation on those particular bit patterns and bit-error
events that are relevant in terms of predetection SNR or BER. Compared to existing
schemes, the new adaptation scheme shows an important performance improvement
for short target response and equalizer lengths and in the presence of channel non-
linearities and media noise. Moreover, from an implementation standpoint, the new
technique is not more complex than existing techniques.

The remainder of this chapter is organized as follows. Section 3.2 describes the
system model. Section 3.3 presents the adaptation criterion that will be used in Sec-
tion 3.4 to derive the new adaptation algorithm. Simulation results, presented in
Section 3.6, show the merits of our algorithm compared to existing ones.

3.2 System Model and Problem Definition

A discrete-time model of an Equalized Maximum Likelihood (EML) system is shown
in Figure 3.1. An NRZ sequends € {+1} is transmitted, at a rat&/T, over
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Figure 3.1: A discrete-time model of an adaptive equalized maximum likeli-
hood system.

a dispersive channel (linear or nonlinear) whose output at kinés denoted by

h(b)x = h(...,bx_1,bk,bk+1,...). In the case of a linear channel, the channel output
boils down toh(b)k = (hxb)y wherehy is the channel impulse response. The channel
output is corrupted by additive noisg which can be either white, colored or data-
dependent as caused by media noise, see Section 1.2.2 for explanation. The readback
signalry is the noisy channel output and is given by

re = h(b)k + nk.

Because the channel may be time-varying and its memory span is in general quite
long, adaptive Partial Response (PR) equalization [86] is used in order to shorten the
channel memory. Equalization can be either linear or nonlinear as it is the case for
Volterra filter-based equalization [26, 102]. For simplicity, we focus in the sequel on
linear equalization. The results of this chapter can be easily generalized to the case
of Volterra filter-based equalization.

The equalizer impulse respongg is optimized so that the overall impulse re-
sponse, at its output, is as close as possible to a short linear impulse response that
we refer to as the target responge The equalizer outputy serves as input to
a Viterbi detector (VD) that produces bit decisidns In the case of a nonlinear
channel, the VD employs pattern-dependent offsets in order to account for nonlinear
ISI[116]. These offsets are combined with the linear target values in order to produce
the branch metrics in the VD. The number of required offsets equals the number of
branches in the VD trellis; one offset is used for each branch. Training and adaptation
of the pattern-dependent offsets is also explained in [116].

Contrary to Partial Response Maximum Likelihood (PRML) systems [20] where
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the target response is considered to be fixed, EML systems optimize both the equal-
izer and the target response simultaneously in order to achieve better performance.
In [78], adaptive techniques are employed to simultaneously find the trget the
equalizer response by minimizing the Mean-Squared Error (MSEJe2] between

the equalizer outpug and the desired signéd=b)x, whereg, = xx — (g*b)x denotes

the error signal. In this case, a constraint must be applied to solve the interaction be-
tween the equalizer and target adaptation and prevent the system from reaching the
trivial solutiongy = wx = 0. The monic constraint on the target responsegge- 1,

was used in [78]. Applying the monic constraint to the target response and minimiz-
ing the MSE was shown to result in an equalizer that is equivalent to the forward
equalizer of the MMSE solution of Decision Feedback Equalization (DFE) [106].
This provides similar noise-whitening ability especially if the target and the equal-
izer are long enough to handle noise coloration and residual ISI. However, for a short
target or small equalizer lengths, minimizing the MSE with the monic constraint does
not guarantee the best tradeoff between noise coloration and residual ISI. This is il-
lustrated in Section 3.6.

Furthermore, although the MMSE target adaptation with monic constraint showed
very close to optimal performance, in the BER sense, for a linear channel and additive
noise [78], its robustness in the presence of channel nonlinearities was not considered
earlier. In fact, applying noise whitening in the presence of nonlinearities causes the
nonlinear ISI after equalization to be spread over many symbols, potentially caus-
ing its memory to increase beyond the span of the target response. This, obviously,
causes performance degradation as will be seen in Section 3.6. The choice of the
(linear) target response is thus still a key issue for high density storage systems with
nonlinear ISI.

This chapter presents a joint equalizer and target adaptation scheme that seeks to
minimize BER. The adaptation criterion and the corresponding near-minimum bit-
error rate (NMBER) equalizer adaptation for a fixed target were presented in Chap-
ter 2. Because the equalizer adaptation used in this chapter is similar to that in Chap-
ter 2, we focus in the sequel primarily on target adaptation. Moreover, we initially
omit the pattern-dependent offsets in the VD. These are considered in Section 3.6 to
account for channel nonlinearities.

Before proceeding with target adaptation, let us briefly recapitulate, in the next
section, the NMBER adaptation criterion. For mathematical convenience we omit
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the delays of the different modules and the latency of the bit detector. We use
the following notations: &, = [(g* Z)n,—1,---,(9* 2)o]" for any sequence and
€=[eEN—1,--- ,€0]T whereN, denotes the length of transmitted sequence.

3.3 The Minimum-BER Adaptation Criterion

The VD in Figure 3.1 operates on a trellis that is matched to the linear target response
Ok. Every path in this trellis corresponds to an admissible bit sequence. The detector
selects the sequence that leads to the smallest path metric in the trellis [41]. The per-
formance of the VD depends on the nature of the error signak. its coloration and

the amount of residual ISI. The probability of detection error is mainly determined
by the bit sequences for which the difference between the best and second best paths
in the VD trellis is small. Moreover, for a given bit sequerizeand an admissible
bit-error evente, i.e. an event for whiclok + 2e¢ is an admissible bit sequence,

the difference in path metrics between the paths correspondibg dad by + 2e,
depends on the Euclidian weight @f and on the orthogonal projection of the error
signal overd,. In Chapter 2, an analysis of the performance of the VD was presented
and a criterion, which was shown to be directly linked to the probability of detection
error, was highlighted. For a given bit sequebg@nd an admissible bit-error event

& this criterion was written as minimizing the following variable

!
—— (3.1)
Te
where . .
/ Xe:§e§ if §e§>Te,
= = 3.2
Xe xe]"[erT“‘} { 0 otherwise, (3.2)
and
Te= (1— )83 8, + tpe, (3.3)

wherepe = E[3. £] anda is a fixed value in the intervd0, 1.

The cost functior\e involves the variable&e = §lg = S«(g*e)kek, which reflects
the fact that, when considering the bit-error evanonly the projection of overd,
matters for detection. In other words, the difference in path metrics between the
sequenceby andby + 2e, depends on the error signal only via The denominator
of A relates to the Euclidian weight of the bit-error evegt.e. §l§e, (3.3). Itcan be
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seen already that optimization of the target response bastgwaitl tend to decrease
error signal coloration in the direction @ (noise whitening if one considers all
directionsd,) and increase the Euclidian weight of the bit-error ev&gnt

The thresholding in (3.2) expresses the focusing of adaptation on bit sequences,
bit-error events and noise realizations that correspond to the less reliable decisions in
the VD. In terms of path metrics in the VD trellis, the enabling conditia > Te}
can be expressed 494 (b+2e) — M (b) < 4(3; 8, — Te)}, whereM (b) = Ty (X —
(g*b)k)? denotes the path metric of the sequebgeTherefore, the thresholding in
(3.2) selects automatically the set of worst bit sequences and bit-error events which
are determinant for BER. For example, if we consider mis-equalization ISI then the
thresholding is equivalent to focusing the adaptation effort only on bit sequences and
bit-error events for which ISl is destructive, i.e. leads to degradation of predetection
SNR.

Example 3.1:

For the sake of illustration, let us consider a linear channel, neglect residual ISI at the
detector input and treat the error signgl as a zero-mean Gaussian noise signal and
denote its autocorrelation matrix y.. For a given bit-error eveng, the variable

1 & is then Gaussian with a meag = 0 and a variances? = 3] R.5,. The threshold

Te in (3.3) is then given by = (1— a)§£§e and one can easily show, in this case,
that (3.1) boils down to

1 1/Te\?
De=——exps —= | — .
Vg p{ 2<ce>}

Because the function— ;{exp{—%xz} for x> 0O'is a strictly decreasing function,

one concludes that minimiziny, is equivalent to maximizing the ratigi =(1-

503
6T

Thisféxéﬁ]ple illustrates clearly that designing a target response that minifkiies
equivalent to maximizing the effective SNR, i.e. minimizing BER.

a)

which is proportional to the root square of the effective SNR [41, 63, 77].

The dependence of the threshdidn | in (3.3) implies that in practice the vari-
ablesy for the different bit-error sequences must be estimated. However, because
at reasonable SNR§e = E[ng} < §l§e, one can simply neglect the dependency
of Te on pe. In the sequel, we fix a value of and consider the threshold to be
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equal to(1—a)3 3,. The cost functiom\e can then be rewritten, after omission of
the constant factarl — a) in the denominator which is independentgpf as

/
- @
—e=e
and the enabling condition can be simplified{@ (b+ 2e) — M (b) < 403} 3, }.

In order to minimize the overall BER, it was shown in Chapter 2 that the differ-
ent cost functionfe should be combined with different weights for different bit-error
events. The weight for a bit-error evestwas shown to be proportional to its Ham-
ming weightHy(e), i.e. the number of non-zeros &.

Extraction of the relevant bit-error sequences:

Because the cost function (3.4) involves knowledge of admissible bit-error events,
one needs to extract from the received signal information about the most likely bit-
error events. Instead of considering all minimum distance bit-error events, ending at
a particular time, one can consider at most one bit-error event at each time. This is
achieved by considering, at tinkd’, only the bit-error event that corresponds to the
second best path in the Viterbi trellis that merges with the best path ak@im€his
reduces significantly the computational complexity without sacrificing performance.

The dominant bit-error event is extracted as follows. At every Add Compare
Select (ACS) operation in the VD, a bit-error event is derived as the bitwise difference
between the two sequences corresponding to the selected and discarded paths. For
every state the corresponding bit-error event is stored in memory. At the decoding
state, i.e. the state used to output the detected data, the corresponding bit-error event
is extracted and is input to the equalizer and target adaptation loops.

We should point out that knowledge about the dominant bit-error events is not
only needed for adaptation but can also be used to improve system performance at a
moderate cost via employing a reduced complexity post-processor, e.g. [98].

3.4 Target Response Adaptation

The basic idea of the Near Minimum-BER (NMBER) adaptation is to minimize the
cost functionAe for all relevant bit-error sequences. The different functidagor
the different bit-error sequences are combined with different weights so as to achieve
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the best overall BER. For clarity, let us first focus on a given bit-error sequ&nce
and develop an adaptive target response scheme that minimizes (3.4). The different
functionsA¢ for different bit-error events are subsequently weighted such that the
overall BER is optimized.

For a given bit-error sequeneg a target adaptation scheme that minimizes (3.4)
can be based on the steepest descent algorithm. This consists of following at each
iteration the opposite direction of the gradientafwith respect to the target coeffi-
cients. The adaptation of th@¥" target tap can be written as follows:

0Ae

— , (3.5
d9p g=g®¥

g =0p —n'(e
whereg%k) is the p" target tap at tim&T. The coefficient)’(e) denotes the target
adaptation constant and is ideally proportional to the Hamming weight of the bit-error
evente, i.e.n’(e) = noHw(e) whereng is a positive constant value, see Chapter 2.

It should be noted that using the steepest decent algorithm can cause the target
adaptation scheme of (3.5) to converge to a local minimum, especially if the initial
target response is far off. This is inherent in the BER minimization problem because
one can check that BER as a function of the target response is non-convex and can
have several local minima. One possible way to find a global minimum is via the
use of simulated annealing techniques [104] or genetic algorithms [48]. However,
the complexity of these algorithms restricts their use for a real time adaptation of the
target response. In this chapter we simply stick to the steepest decent algorithm for
its simplicity and assume that the initial target respagiSeis well chosen, e.g. by
settingg© to be equal to the MMSE solution [78].

Upon replacing the expectation Xf in (3.4) by its instantaneous realization and
taking its gradient with respect to th" target tap, an expression of the adaptation
rule (3.5) can be derived. This can be written as

k+1) K (k)l
_ _n(err 3.6
gp Op r]( ) p {%>(170)} (50)
5
rl — {e{_ps —5Zbk—p_21?6l-a<—p}’ (3.7)
e e
wheren (e) = ﬂo%?’ By—p = [Ok—p: Bi—p-1,-- |, & p = [B—p,@p-1,-. ] aNdE =

[ek,sk_l,...].
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The termgg in the right hand expression of (3.7) can be interpreted as a weigh-

“e=e

ing factor in the maximization of the Euclidian distar@@e with respect to the
minimization of§g§. In order to simplify (3.7), this term can be simply fixed to a
valuef3 that meets the enabling condition, if#> 1—a. This is taken to be equal
to 1 in the sequel. From our simulations, no noticeable degradation was observed
with this approximation. Moreover, depending on the dominant bit-error events, the
ratio :"5(6‘? in the expression of the adaptation consta(#) can be assumed to be
approximately independent ef. This would further simplify (3.6).

Using the above mentioned approximations and expressing the enabling condi-

tion in terms of the VD path metrics, (3.6) and (3.7) can be rewritten as

(1) _ (k) G
% © =8 —n(erp L1201 <aoiten (3.8)
o) =€l e (b p+28 p)-

The overall target adaptation can be explained as follows. At every clock cycle, an
ACS operation is employed at every state. At the decoding state, two quantities are
derived. First, the difference in path metrics between the selected and the discarded
paths is taken. Second, a bit-error sequendg derived as the bitwise difference be-
tween the two sequences corresponding to the discarded and the selected paths. This
derivation of the bit-error sequence reflects the Decision Directed (DD) mode where
the transmitted data is not known to the receiver. In the Data Aided (DA) mode where
the transmitted data is available to the receiver as a known preamble, the derivation
of the bit-error event is simpler because the state that corresponds to the transmitted
data is known at every clock cycle. In this case, the bit-error sequence corresponds
to the discarded path by the ACS operation if the ACS decision is correct and to the
selected path otherwise.

The bit-error sequena is used to compute the vectdr = [(g*€)k, ...(g* €)k_L]",

where the integer valuk depends on the maximum length of relevant bit-error se-
quences. In the sequel, we simply fixto the backtracking depth of the VD. The
target adaptation is enabled only when the difference in path metrics is smaller than
40(§l§e. When the adaptation is enabled, the expresﬁfé)nin (3.8) is evaluated,
scaled with—n(e) and then passed to an ideal discrete-time integrator that produces
the updatedb™ target tap value. One should note that evaluatioﬁgﬁ?f does not
require real multiplications.
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Remark :

Storage systems usually employ parity-check (PC) and error correction codes (ECC)
in order to tackle the remaining bit-errors at the VD output. The performance of these
codes depends on the dominant bit-error events after the VD. Therefore, to optimize
sector error rate (SER) after PC and ECC decoding, the adaptation cons{éets

can be better chosen such that the target and equalizer adaptation focuses primarily
on the error events that are not covered or ‘less covered’ by the PC and ECC. In
other words, the scheme presented in this chapter can be generalized to achieve SER
minimization through optimization of the adaptation constay{ts.

Example 3.2:

In order to illustrate the way NMBER target adaptation works, let us consider a sim-
ple case where only two bitg andb; are transmitted over a linear channie{D) =

1+ h;D with additive Gaussian noise, assume that the equalizer is fixe(DQp= 1

and consider only target responses of the fgfD) = 1+ yD whereD denotes the

unit delay operator. Let us also focus only on the single bit-error event on the,bit
i.e. eg = 0ande; = —b;. Because the equalizer is fixed, designing a target response
in this case is equivalent to defining a constellation of four points corresponding to
the four possible bit sequencg®,b;) € {(+1,+1),(+1,-1),(-1,+1),(-1,-1)}.

The NMBER adaptation of is given by (3.8). It can be shown easily that the
NMBER enabling condition is written dgx; < a + ybgb; and thatl'; = bgb;. For
example ifbgp = by = 1, the enabling condition becomes < a + y which means
that the NMBER algorithm focuses adaptation on realizationg ttat are close to
the decision boundary given liyx; = ybgb1. An example of how the constellation
changes in such case is shown in Figure 3.2. The constellation points change so that
the detector input vectoris farther from the new decision boundary.

When the adaptation is enabled, th¢k) = K —n(e)bob;. Therefore, when
enabled, the NMBER algorithm increasgs bgbh; = —1 and decreases it with the
same absolute value ihb; = 1. For simplicity, let us consider only the two upper
points of the constellation correspondingdg= 1 andb; = +1. One can check that
the convergence is reached when

Pr(x1 <y+alby =1) =Pr(x; >y—a|by = -1). (3.9)

Becausdyy = 1, we havex; = by + h; +n; wheren; denotes the noise component
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Figure 3.2: An example of adaptation gffor a transmitted sequend® =
b; = 1 and a detector input vectotr. The gray constellation
points correspond t§'® = 0 and the black ones correspond to

yY =-n(e).

of x;. The MMSE solution foy is given byWmmse= h1. The NMBER solution ofis
given by (3.9) which can be written 8(n; <y+oa—-1—h;)=Prinp>y—a+1—

h1). One can easily show that this is equivalenytoa —1—h; = —(y—a+1—hy)
which leads to/nmber= h1. Therefore, in this case the MMSE and NMBER solutions
are identical, i.€ Yamber= Ymmse<$

Example 3.3:
Let us consider in this example the same scenario of Example 3.2 at the exception
of the channel. The channel outpytfor b; = 1 is assumed to take in the absence
of noise two possible valuegi = 1—v or x; = 1+ v with equal probabilities. The
channel output in the absence of noiselipe= —1is x; = —1. This can be a result of
nonlinear ISI for example or can be seen as a simple model of media noise in optical
storage channels, where the ones on the disc are either a bit oversized or undersized.
In this case, it is easy to prove that the MMSE target response is givephy= 0.

The derivations provided in Example 3.2 of the steady state NMBER equation
apply also to this case. The NMBER solutigner can be derived from (3.9) and
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can be written as the solution of
1
Pring>y—a+1)= é[Pr(nl <y+a—-v—-1)+Prnm <y+a+uv—1)]

It can be shown after some algebraic manipulations $hgber™ =* # Ymmse
For a giveny, the BER is given by

BER(y) = ;Q<1+y> +%Q <1_y_u> +%Q (1_y+u> :

On On On

whereo, denotes the variance of,. Figure 3.3 shows the BER of the NMBER and
MMSE targets as a function offor differentSNR= 1/02 values. It is apparent that

the NMBER target has a superior BER performance than the MMSE one. Moreover,
the gain in BER increases withand decreases with SN(R.

—— MMSE, SNR=13dB
—— NMBER, SNR=13dB
_s| == MMSE, SNR=14dB
10 "| -~ NMBER, SNR=14dB
- - MMSE, SNR=15dB
- NMBER, SNR=15dB

10
s PR
10_7 .,’: L <
s
— - (4 -
10 8 - i i i i 4
0 0.1 0.2 0.3 0.4 0.5

Figure 3.3: BER versu® for differentSNRvalues.

3.4.1 interaction between the equalizer and target adaptation

The BER of the EML system of Figure 3.1 does not change if the equalizer and target
responses are scaled with the same factor. This interaction can cause the equalizer
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and target energy to drift to big values or decrease to very small values which leads
to saturation or quantization problems in fixed-point implementations. A simple way
to solve this interaction problem is to fix the energy of the target response. The target
adaptation rule (3.8) is then modified so that after every adaptation the target is scaled
to have a unit energy.

Another interaction problem arises from the fact that, for a linear channel and
long equalizer, BER is independent of the phase response of the target response.
Contrary to the minimum phase target response that arises from MMSE adaptation
with a monic constraint, the simplest practical choice of the target response phase for
storage channels is linear phase. In fact, a linear phase target presents the following
advantages:

Because both magnetic and optical storage channels have nominally a linear
phase, a linear phase target implies that no phase equalization is required, i.e.
the nominal equalizer needs only to handle amplitude channel distortions. This

relaxes the requirement on the equalizer complexity.

It avoids automatically the interaction problem that arises between the target
adaptation and the timing recovery loop.

It allows simplifications of the VD without loss in BER because the total num-
ber of branch metrics that need to be computed at every clock cycle is roughly
halved. Complexity reduction can also be obtained by folding the VD trel-
lis [69].

Only half of the total number of target taps needs to be adapted. This halves the
target adaptation complexity and improves its tracking capabilities compared to
a situation where all the target taps need to be adapted. In fact, for a symmetric
target response of lenghtly, the adaptation rule (3.8) can be written as

vp,o<p<Nl p_N—1-p

I"p(k) = (& p +§Kf|d)T§—§l (Be-p+ B+ 28 p+8cp))

(k+1) _ (k) K
ob =" @Y Darp 20 - <aastsy
(k+1) _ (k+1)
9 =9 -

A similar adaptation rule can be derived for antisymmetric target responses.
This boils down to replacing in the above equatiogs,, + &,y andb,_,+
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by bye_,—8&_yandb,_,—b., respectively and changing the last equa-
k+1)  (k+1)

tion to g(, =—0p
We make a distinction between optical and magnetic storage channels. For optical
channels and perpendicular magnetic storage channels, the target is constrained to be
symmetric and its energy is fixed to 1. For longitudinal magnetic storage channels,
the target is constrained to be antisymmetric with a unit energy.

3.5 Stability Analysis of the NMBER target adaptation

In order to derive stability conditions of the NMBER adaptation, let us for the sake
of simplicity assume that the equalizer is fixed and focus only on the NMBER target
adaptation. Let us also consider only one bit sequénpcand a given admissible
bit-error sequencex. Let us consider first the case where channel noise is absent. A
discussion on the impact of noise is provided afterwards.

The NMBER target adaptation was given in (3.8). One can rewrite this adaptation
rule using the vectog = [go, . .- ,gNg_l]T, whereNg denotes the target length, as

g(k+1) _ g(k) —n(e)(M b7eg(k) + Qb,e) 1

3.10
= 139 Mbeg® +¢5,gM >0} ( )

Where(gb,e)p = g[[_px, X = [Xic, Xk—1, - - .]T, and the symmetric matriM p, ¢ is given by

(M b,e) pa *91-— pbk—q - 91<——qpk— p— 291—— pgx—q~ (3.11)

As mentioned earlier, the NMBER algorithm can converge to a local minimum
because of the non-convex nature of the cost function that it minimizes, i.e. the non-
convex nature of BER as a function of the target coefficients. The possible existence
of local minima can also be seen by the fact that the maii is not necessarily
positive definite for all bit sequencbg. In fact, if we consider single bit-error events,
it can be easily shown th&[Mp ¢] = 0, where the expectation is taken over all pos-
sible bit sequences. This means that there exist at least one bit sepusnca that
the matrixMy e is not positive.

We will qualify then the NMBER algorithm of being stable if and onlygit)
converges to a finite targgt™ regardless of the initialization poigt?.

Before deriving the condition for stability of (3.10), let us first rewrite (3.10) in
a simpler form. Let us introduce the vecty, such thaMpeCp, o = C, . Using the
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vectorg, , one can prove that (3.10) can be rewritten as:

(3.12)

[}

k+1) _ Ak ~(K

(k+1) — 9( ) _ r](e)M b,eg( )1{g(k)TMbAeg(k> >§g‘eM b,e@b.ey
whereg® = g +¢&, .. In order to derive stability conditions of (3.10) or equiva-
lently (3.12), let us start by considering an eigenvaluef My e and initializeg to a
corresponding eigenvectgy, i.e. §% = v,. Generalization to any initial vectgf®

is discussed afterwards. With this initialization, the adaptation rule (3.12) becomes
gk = g% —Aneghl .- .

= = = TG g9>E] Mbebne)

If A > 0 and initially the enabling condition is met, then one can show that
the only case the algorithm diverges is whén- An(e)| < 1. In fact, when|1 —

An(e)| < 1 then it is easy to show that the enabling condition is always met be-
causevk g(k)Tg(k) > Q(O)Tg(o). In such case, the adaptation rule becong#s:!) =
(1-An(e))§™® which does not converge whéh—An(e)| < 1.

If A < 0then it can be shown that the algorithm will always converge. In fact,
instability can only occur if the enabling condition is always met. The algorithm
freezes as soon as the enabling condition is not met. If one supposes that the enabling
condition is always met, thegf*t? = (1—An(e))§ will diverge becausa < 0.

We would have thefimy_.., Q(k>Tg(k) — +o0 which is contradictory to the fact that the
enabling condition met, i.e\g(k)Tg(") > & Mp.eCp e, becausa < 0. Therefore, the
enabling condition is not always met and the algorithm does not diverge in this case.

In the case\ = 0 it is trivial that there is no divergence problem. Therefore the

stability condition can be written
VA > 0 eigenvalue oMy e, [1—An(e)| < 1. (3.13)

Now, considering any initialization vectgﬁo), it can be easily shown by decom-
posingg(o) on the basis of eigenvectors bfy ¢ that (4.21) is a sufficient condition
for stability. The demonstration follows the same reasoning as that presented above.

Impact of noise:

In the noiseless case, the NMBER algorithm freezes as soon as the enabling con-
dition is met. In the presence of noise, the enabling condition in (3.10) becomes
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dependent on noise realizations. This can be equivalently seen as changing the adap-
tation loop gain which becomes proportional to the enabling rate of the NMBER
algorithmEnR=E |:1{AMbﬁe§4a§1:§e}i| — Pr(3ae > (1—a)d%3,). The impact of noise

on stability can be derived from the noiseless case by replagiegwith n(e)EnR

The stability condition of (4.21) is then written as

VA > 0 eigenvalue oMy e, |1—-An(e)EnR < 1. (3.14)

Becausé€EnR < 1 then the stability condition in the noiseless case (4.21) becomes a
sufficient condition for stability in the noisy case.

3.6 Simulation Results

By way of illustration we consider an idealized optical storage channel according to
the Braat-Hopkins model [42], see Chapter 1,

2T sin(mQ) 19 Q _ ()2
H(Q){n 1 (cos 12|~ &,/1-(2)7). |l <.

0, Q| > Q..

whereQ. denotes the normalized optical cut-off frequency. We consider a capacity
of 30 GB on a single layer 12 cm disc. The corresponding channel bit-length is
Teit = 62 nm and the resulting normalized cut-off frequency, giverty= %Tbit,
equalsQ; = 0.26.

The channel output is corrupted by two different noise components. The first one
is data-dependent noise media naigand the second one is additive white Gaussian
electronics noisg, with zero mean and varian(é. We recall the two SNR measures
defined in Chapter 1: a signal to media noise ratio (SMNR) and a signal to additive

noise ratio (SANR) given by

2 Sk
SMNR= - [dB] and SANR=2*[dB].
C)-l.al 02

3.6.1 Impact of channel nonlinearities

At high storage densities, the optical channel exhibits bilinear ISI as shown in [22].
In order to mimic the bilinear ISl in the channel we introduce bilinear ISI components
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caused by the central it and its two neighboring bitg, 1 andby_1, i.e. the replay
signal is written as

e = (hxb) + y(bkbk—1 + biby 1 + bk 1biy 1) + me+

wherey denotes the bilinear ISI parameter. Throughout the simulations, thdydata
is taken to be run-length-limited with run-length parametdrk) = (1, 7).

In this subsection, the length of the target response is fixed to 5-taps which cor-
responds to a 10-state VD and the equalizer length is fixed to 11. Throughout the
simulation results the value of the parametdor the NMBER adaptation is fixed to
o =0.25

In order to assess the performance of the NMBER target adaptation, we consider,
for comparison, the MMSE target adaptation with the monic and energy constraints.
All adaptation algorithms are run in the data-aided mode where thdodetaised in
the different adaptation loops.

By way of comparison, let us first consider the case where only the additive elec-
tronic noise is present, i.e. no media noise. Figure 3.4 and Figure 3.5 show simulated
BER as function of SANR foy = 0 andy = 0.1, respectively. In the absence of
nonlinearities, the different target adaptation schemes yield a similar performance
because noise is white. However, they behave differently in the presence of channel
nonlinearities. For clarity, we distinguish here between the first case where the branch
metrics in the VD are based only on the linear target and the second case where also
the pattern-dependent offsets (PD-offsets) are employed as in [116].

¢ In the first case, it is apparent from Figure 3.5 that MMSE adaptation with the
monic constraint behaves slightly better than that with the energy constraint.
The NMBER adaptation allows, however, an important gain in SANR of 1.8
dB with respect to MMSE adaptation with the monic constraint.

e When the PD-offsets are employed in the VD, the performance of MMSE adap-
tation with the energy constraint outperforms that with the monic constraint.
NMBER adaptation still outperforms MMSE adaptation with both constraints.
The gain in SANR of the NMBER adaptation with respect to the MMSE adap-
tation with energy constraint is about 0.7 dB. In order to understand the behav-
ior of the monic constraint and the relatively poor performance in the presence
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of nonlinearities, Figure 3.6 shows the bilinear RISI components at the de-
tector input. The first bilinear RISI component results from the ISI terms of
the formbybyx_; and the second bilinear RISI results from the ISI terms of the
form bybx_». Figure 3.6 shows clearly that, because of the phase equalization
involved, the monic constraint causes a spreading of the nonlinear ISI. This
spreading causes the nonlinear ISI component to span bits that are outside the
linear target response span (VD span). However, the energy constraint and
the NMBER adaptation keep most nonlinear components within the VD span
which allows a performance improvement using the PD-offsets in the VD.

all additive noise

= MMSE; Engy Cst.
-6~ MMSE; Monic Cst.

\ NMBER.
. o ,

BER

SI

IS
/

11 12 13 14 15 16
SANR [dB]

Figure 3.4: Simulated BER vs SANR in the absence of media noige-féx

In the case where only the media noise is present, i.e. no electronic noise, Figure
3.7 and Figure 3.8 show BER as function of SMNR. In the absence of nonlinearities
(Figure 3.7), MMSE adaptation with the monic constraint allows similar performance
as the NMBER adaptation because of its known noise whitening abilities. The energy
constraint has, however, a penalty of 0.9 dB in SMNR compared to the monic con-
straint. In the presence of nonlinearitigss 0.1 in Figure 3.8, the monic constraint
suffers from spreading the nonlinearities similarly to Figure 3.5 and Figure 3.6. The
NMBER adaptation in this case allows a gain of around 1.3 dB in SMNR with respect
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Figure 3.5: Simulated BER vs SANR in the absence of media noige=for
0.1.

to MMSE adaptation with the monic constraint. As far as the gap in SMNR between
the monic and energy constraint is concerned, this depends on the amount of me-
dia noise with respect to channel nonlinearities. As shown in Figure 3.8, the monic
constraint allows a better performance in the presence of media noise and the energy
constraint is superior in the presence of nonlinearities as shown in Figure 3.5. As the
amount of channel nonlinearity increases, the gap between the monic and energy con-
straints becomes bigger. Figure 3.9 shows BER as function of SMNR=f00.15.
Because of the spreading of nonlinearities, the monic constraint performs very poorly
in this case and is outperformed by the energy constraint. The NMBER adaptation
in this case allows an important improvement of around 2.8 dB with respect to the
energy constraint.

3.6.2 NMBER adaptation performance as function of the equalizer and
target lengths

In Section 3.6.1 the length of the target response was fixed to 5 and that of the equal-
izer to 11. We observed that in the absence of nonlinear ISI, the MMSE target adap-
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Figure 3.6: Bi-linear RISI at the detector input for the MMSE adaptation
with the monic constraint and NMBER adaptation yet 0.1.

tation with the monic constraint provided a similar performance than the NMBER
target adaptation. As the equalizer and target lengths decrease the two schemes be-
have differently. Figure 3.10 shows BER as a function of the equalizer length in the
absence of nonlinearities. In the presence of media noise the monic target requires
the use of relatively longer equalizers than the NMBER target because of the noise
whitening. Contrary to the monic target adaptation, the NMBER adaptation is quite
robust to equalizer length reduction. This implies an important reduction in equalizer
implementation complexity. Similar observations hold in the presence of additive
noise although the reduction of equalizer length is smaller than in the presence of
media noise. This is mainly because only little equalization is required with a 5-tap
target and additive white noise.

As the length of the target decreases, the amount of residual ISI at the detector
input becomes more pronounced. Figure 3.11 shows BER versus SMNR for a 2 and
3 tap target in the absence of channel nonlinearities. The performance of a 3-tap
target in this case is very close to that of a 5-tap target. This is not surprising as
the noise spectrum in the media noise environment follows the signal spectrum very
closely and there is no noise enhancement penalty of one target relative to the other.
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Figure 3.7: Simulated BER vs SMNR at the absence of electronic noise for
y=0.

Figure 3.11 shows that the NMBER adaptation outperforms the monic constraint for
a 2-tap target. Figure 3.10 shows also the robustness of the NMBER against target
length reduction.

3.6.3 Convergence Behavior of NMBER adaptation scheme

Because of the highly nonlinear nature of the NMBER adaptation, a full theoreti-
cal analysis of the convergence behavior of the equalizer and target adaptation is not
straightforward. A typical convergence behavior of the NMBER target adaptation
algorithm is captured in Figure 3.12 at SANR=14 dB and in the absence of media
noise and channel nonlinearities. The upper plot in Figure 3.12 shows the conver-
gence of the first tap of the targes for different values of the adaptation constant

No. The lower plot shows the adaptation enabling Et& for ng = 4 x 10~ where

it is apparent that at the start of adaptation, EnR is high and that the closer the target
gets to its steady state solution, the smaller EnR becomes. Because the adaptation
loop gain is proportional to EnR, the NMBER adaptation presents the advantage that
its adaptation gain is high at the start of adaptation, or if the channel changes, which
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Figure 3.8: Simulated BER vs SMNR at the absence of electronic noise for
y=0.1L

allows a fast adaptation and becomes smaller as the target gets close to its steady state

which in turn allows a fine tracking of small channel variations. The MMSE-based

adaptation algorithms do not share this property as their loop gain is fixed over time.
Another appealing property of tHenR = Pr(dle > (1— a)3.8,) is its direct

relation to BER. In fact, using the Gaussian approximation of the error signal at the

steady state target, one can write

.
EnR=0Q | (1- )22 (3.15)

\/ 8 Rede

whereR; denotes the autocorrelation matrix of the error signal. The argument of
the Q-function in (3.15) is proportional to that in the expression of bit-error rate

given byBER O Q <\/%>. Therefore, measuringnR, which comes for free

with the NMBER algorithm, provides a direct and quick indication of BER. Whereas
measuring BER is usually time consuming, measulndR can be fast and is very
straightforward. ObservingnRis thus a simple mean for system performance eval-
uation. This is similar to the sequence amplitude margin method presented in [118]
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Figure 3.9: Simulated BER vs SMNR at the absence of electronic noise for
the 30GB Blu-ray channel ang= 0.15.

but however comes for free with the NMBER target adaptation.

Remark :

The simulation results presented in this chapter relate to optical storage channels,
however the result of this chapter carry over directly to longitudinal and perpen-

dicular magnetic storage channels. The generalization to perpendicular magnetic
storage channels is more straightforward because of their similarities to optical stor-
age channels.

3.6.4 Discussion on gradient noise

Because the NMBER algorithm attempts to minimize BER, it will also minimize the
EnR because this latter is a monotonous function of BER (3.15). Therefore, because
the gradient of EnR is zero at steady state, a first order approximation of the target
adaptation rule (3.10) near steady state can be written as

9(k+1) _ g(k) —n(e)(M b,eg(k) +gb7e)EnR(g°°).
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Figure 3.10: BER vs the equalizer length at the absence of nonlinearities,
i.e.y=0, for the all media noise case at SMNR=13 dB (upper
plot) and all additive noise case at SANR=14 dB (lower plot).

Therefore the NMBER target adaptation behaves asymptotically as a linear first
order adaptation loop. Therefore, by analogy to a linear first order loop [86] the total

loop gain of the NMBER adaptation is proportionalf(e)EnR(g”) and the adapta-
tion gradient noise is also proportionalriée) EnR(g™), i.e. o [ n(e)EnR(g™).
Because EnR is also a function of the gradient n0i§e1nd thus ofn(e), the
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Figure 3.11: Simulated BER vs SMNR for different target lengths at the ab-
sence of channel nonlinearities and electronic noise.

gradient noise in the NMBER adaptation is not a linear function (@ as it is the
case for a linear first order loop. This could also be seen from Figure 3.12 where
multiplying n(e) by a factor 2 leads to an increase in gradient noise by a facto higher
than two.

However, similarly to a linear first order loop, the efficiency of the NMBER adap-
tation scheme, which is, roughly speaking, defined as the ratio between gradient noise
and total loop gain, is independent on the adaptation congfeht

3.7 Conclusions

In this chapter a new equalizer and target adaptation scheme has been proposed for
equalized maximum likelihood systems. This new scheme seeks to minimize di-
rectly the bit-error rate. The proposed scheme incorporates a selection mechanism
that enables equalizer and target adaptation only if the difference in path metrics,
between the selected and discarded paths from the Viterbi trellis, is smaller than a
prescribed threshold. The new adaptation scheme is not more complex than MMSE-
based schemes. Simulation results for an optical storage system showed that our
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Figure 3.12: The NMBER target convergence behavior and the correspond-
ing enabling rate fomo = 4 x 10~* computed over the last

1000 samples.

scheme outperforms significantly the existing scheme especially for short target or
equalizer lengths or in the presence of media noise and channel nonlinearities.
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Chapter 4

Asynchronous Adaptive Equalization

Advanced data receivers for storage systems often operate at a sampliyJsavat

is asynchronous to the baud rdtél. A digital equalizer will then also operate in

the asynchronous clock domain. The adaptation of this equalizer is based on an error
signalgy that is produced in the synchronous clock domain. Existing adaptation tech-
niques, derived from LMS, require the use of a complex sampling rate converter or
inverse sampling rate converter in the adaptation path. The objective of this chapter
is to analyze and design an alternative topology that is simpler from an implemen-
tation standpoint and still close to optimal. Whereas this chapter focuses on LMS
adaptation for simplicity, its main results generalize to other adaptation techniques,
e.g. NMBER adaptation of Chapter 2. The proposed asynchronous LMS topology is
comparable to its synchronous counterpart in terms of complexity. Numerical results
are provided for an idealized optical channel. They show the merits of our scheme
compared to the state of the art.

4.1 Introduction

Most modern data receivers for storage and transmission systems operate in the digi-
tal domain in order to profit from advanced digital signal processing techniques. An
adaptive equalizer is commonly used in these systems as a key part of the receiver.
In early transmission systems, symbol-spaced equalization, in the form of a transver-
sal filter with variable tap gains and tap spacing equal to the symbol spacings

used. For automatic adjustment of the tap gains in an adaptive manner during the en-
tire period of transmission, the least mean-square (LMS) error algorithm has become
a standard method, e.g. [133].
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Already in early telephone line modems, equalizers with tap spacing that is less
than the symbol interval were suggested. These Fractionally Spaced Equalizers (FSE)
[103], [43], [144] offered many improvements over symbol-spaced equalizers in
terms of performance insensitivity to sampling phase and ability to compensate for
more severe delay and amplitude distortions with less noise enhancement [144].

A different equalization trend arises from receivers for digital storage systems.
In these systems, symbol-spaced equalization was first employed and applied to the
digitized and synchronized analog replay signal [20]. This requires the analog signal
to be first sampled at the baud rdtér prior to equalization, where the sampling in-
stants are defined by a timing-recovery circuit. A major drawback of symbol-spaced
equalization is that the equalizer is inside the timing-recovery loop. This causes the
equalizer latency to contribute to the timing-recovery loop delay which has a signifi-
cantimpact on its stability margin and convergence speed [85]. This can be especially
dramatic for systems where fast timing variations occur, e.g. for high-density optical
storage systems. In order to reduce loop delay, the digital equalizer is shifted out of
the timing-recovery loop [21], [112], [35]. A common baseband topology is depicted
in Figure 4.1.

free-runing v v Error
clock Equalizer Timing Signal
T, Adaptation | | Recovery &,
Received  / ] Bit
Signal A ] Decisions
r(t)—> LPF (D: Equalizer | SRC (- Detector —»

«— UT > «— UT, — > «—— 1T —>

Figure 4.1: Baseband receiver with asynchronous equalizer. Asynchronous
and synchronous clock domains are indicated with the symbols
1/Tsand1/T, respectively.

The replay signai(t) is filtered with an analog low-pass filter (LPF) which sup-
presses out of band noise. The LPF output is then digitized by an analog to digital
converter (ADC) which is operating at a free-running frequebcys that is asyn-
chronous to the baud rafe@'T, wherel/Ts is chosen to be high enough to prevent
aliasing. The ADC output is applied to an equalizer which controls intersymbol inter-
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ference (ISI) and noise. This equalization is called asynchronous because it operates
on samples that are asynchronous to the bit clock in both frequency and phase. A
sampling rate converter (SRC) [40] [86], re-samples the equalizer output signal at the
correct rate and phase. The SRC is controlled by an all digital timing-recovery circuit
that defines the re-sampling instants. The re-sampled sequence serves as input to a bit
detector that produces bit decisions and an error siggndlhis error signal serves as

a basis to adjust the equalizer taps and the re-sampling instants of the timing-recovery
as we will see in Chapter 5.

Although an asynchronous equalizer and a FSE look similar, there are two funda-
mental differences that have significant impacts on adaptation. First, synchronization
in systems employing FSEs is normally achieved at the front-end of the receiver by
controlling the sampling phase and frequency of the ADC. This makes the FSE adap-
tation quite simple because alignment (in phase and frequency) of the error and the
equalizer input signal is straightforward in contrast to asynchronous equalization as
we will see in the continuation of this chapter. However, this causes the FSE to
be part of the timing-recovery loop and thus affecting its stability margin and con-
vergence speed as mentioned earlier. Second, whereas FSEs are normally used for
channels with positive excess bandwidth, i.e. the channel cut-off frequency
bigger than the Nyquist frequendy 2T, asynchronous equalization is usually ap-
plied to channels with negative excess bandwidth, £g.< 1/2T, where timing-
recovery becomes critical for system performance as it is the case for high-density
optical storage systems [86]. Besides, in asynchronous equalization, the sampling
ratel/Ts may be lower thard/T in the case of a negative excess bandwidth channel,
i.e. Qc <1/2Ts < 1/2T. This allows the asynchronous equalizer to have fewer taps
than its synchronous counterpart without any loss in performance.

To achieve the advantages of asynchronous equalization, it is necessary to de-
velop an asynchronous adaptation scheme that can achieve near optimal performance
while being realizable by means of simple circuits. These advantages have motivated
several research activities.

In [35] an equalizer adaptation scheme that is based on the synchronous error
signal gx was proposed. The error signal is converted to the asynchronous clock
domain via an inverse sampling rate converter (ISRC) before cross-correlation with
a delayed equalizer input. This conversion is meant to align the error signal and the
equalizer input both in sampling rate and phase.
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In [28] the equalizer adaptation was obtained by converting the equalizer input to
the synchronous clock domain via an auxiliary sampling rate converter (SRC) and a
fractional shift register (FSR) prior to cross-correlation with the error signal.

Because the first scheme [35] is quite complex and the second [28] can only han-
dle a limited range of oversampling ratidgTs, this chapter focuses on developing
an alternative adaptation topology that overcomes these two disadvantages while af-
fording near-optimum performance.

The basic idea compared to [28] is that the combination of the auxiliary SRC and
the FSR is replaced by a very simple form of interpolation to re-sample the equalizer
tap signals at the correct instants. The re-sampling instants are determined by the
timing-recovery circuit.

The remainder of this chapter is organized as follows. Section 4.2 describes the
system model and nomenclature. Section 4.3 presents analytical results for asyn-
chronous MMSE equalization and Sections 4.4 and 4.5 analyze the problem of adap-
tive asynchronous equalization. A simple solution is then presented in Section 4.6.
Section 4.7 provides numerical results that illustrate the performance of the proposed
adaptation scheme for an idealized optical storage system.

4.2 System Model and Nomenclature

In Figure 4.2, a binary data sequergef baud ratel/T is applied to a linear disper-
sive channel with symbol responkg) and additive noise(t) with power spectral
density equal tdNp. In this chapter we consider channels without excess bandwidth,
i.e. channels that have no transfer beyond the Nyquist frequitady.

free-running PLL
clock

I

DET

q—» h(t)

4— 1T, —»4— UT —»

Figure 4.2: The system model. Timing-recovery loop is not shown.
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The output of the channel is a continuous-time signal
r(t) = Z bkh(t — KT) + z(t).

This output is applied to an ideal low-pass filter (LPF) to prevent aliasing and then
digitized via an ADC at a free-running frequentyTs. We denote by, the ADC
output at the sampling instatit= nTs. This output may be written

M= Z beh(tS —kT) + 2, (4.1)

wherez, is pre-filtered and sampled noise. For simplicity, the noise in this chapter is
assumed to be uncorrelated and to have a variafeeNy/Ts which corresponds to
considering only electronics noise in an optical storage channels.

The sequence, is applied to a transversal equalizer with coefficiengs p €
{0,...,Nyw — 1}, whereN,, is the length of the equalizer. The equalizer output=
(r «w)n, wherex denotes discrete convolution, is used as input of an SRC that serves
to re-samples the asynchronous sigyiaht the correct frequency and phase. The
SRC is part of a timing-recovery loop [40], [112], [86]. Throughout the chapter
we assume that the timing-recovery is ideal and denote the re-sampling instants by
ty =ty + KT wheret] denotes the time instant at which the SRC output sample with
index O becomes available. For simplicity we et 0. The SRC output may be
written as

n

wherec(t) is the equivalent continuous-time symbol response of the SRC. Following
[40], we expresd; as a sum of an integer multiple and a fractionTefi.e. t; =
(Mg + ) Ts wheremy = [ty /Ts] andpy =ty /Ts—my. Clearly0 < p < 1. We will

refer tomy andp as the basepoint index and the fractional interval respectively. It is
easy to recast, in terms ofmy andpy, which gives = 3, Ym.—nC((N+ ) Ts). This

can be written as a discrete time convolution

X = (CHxY)m, (4.2)

wherech = c((n+ )Ts) is the discrete version of the SRC symbol response, sam-
pled with the fractional delayTs. The SRC is driven by a phase-locked loop (PLL),
that is part of the timing-recovery circuit, and that provides at each synchronous clock
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cycle the values ofne andpk. The SRC outpuxy is fed to a bit detector (DET) that
produces bit decisiorﬁ;(. For mathematical convenience we neglect the delays of the
different modules and the latency of the bit detector and assumbythaly.

4.3 Asynchronous MMSE Equalization

The task of the Minimum Mean Square Error (MMSE) equalizer in the system model
of Figure 4.2 is to minimize the power of the error signal at the bit detector input. The
error signal is derived as the mismatch between the actual detectorxinaod the

ideal input for bit detection called reference signal. In the case of a partial-response
maximume-likelihood (PRML) receiver [20], see Chapter 1, the detector has a pre-
scribed target respongg, and all the signal processing modules act to make the
detector input look as much as possible similar to the corresponding reference sig-
nal. This reference signak, as function of the target responge can be written

dq = (g*b)k. The error signaty is then given byex = xx — (g* b)x. Replacingy, by
(Wxr)nin (4.2) yields

No—1
& = Z Wp (¥ T )m —p— (g*b)k. (4.3)
p=0

The MMSE coefficientsv, are obtained by minimizing the cost functidn=
E[eZ], whereE[.] denotes the expectation operation. This problem has been stud-
ied in [114]. It has been shown in particular that the MMSE equalizer tap vector
W = [Wo,...,Wn,_1]T, Where[-]T denotes matrix transposition, is characterized by
the following linear system:

(FRoF™+ CR,CT)w = FRyg, (4.4)

where the matri¥- has entrief,q = S,c(nTs— pTs)h(qT — nTg), C is given by
Cp.q=Cc(—pTs—QTs) and the autocorrelation matrices of the input data and noise are
denoted byRp andR; respectively. The vectay = [0o,01,...]” contains the target
response coefficients.

Due to the presence of the anti-aliasing filter and the low pass natu)of
the system (4.4) may not be well defined, i.e. the matfiR,F'+ CR,C") can
be singular. This can occur in particular if the oversampling r%ids high and
the equalizer is long. A near-optimal solution to this problem has been proposed
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in [114] and consists of introducing a small correction term to regularize the MMSE
equation (4.4). This is achieved by replacing the matfR,F™+ CR,C") in (4.4)

by (FRpFT+ CR,CT 4 €l ) wherel is the identity matrix and is a small non-negative
value. In the sequel we will take this regularized solution as a basis of reference.

4.4 Adaptive Asynchronous Equalization

In the previous section we assumed prior knowledge of the channel and reported the
closed form solution of the MMSE asynchronous equalization problem. In practical
systems the channel is subject to parameter variations, e.g. due to tilt in optical
storage systems. Therefore equalization should be made adaptive.

The equalizer adaptation scheme studied in this chapter makes use of the LMS
technique that consists of minimizing the instantaneous power of the error. LMS
equalizer adaptation consists of adding to the equalizer taps, at each iteration, a
change proportional to the negative gradient of the instantaneous squared error. The
equalizer adaptation is then written as follows:

02
W(pk—&-l) _ WE)k) 1 og 7
2 aWp W:ﬂ/(k)

Wherewg‘) is the pi" tap of the equalizer at timeT. The coefficienty denotes the
equalizer adaptation constant. The expression of the error signal as a function of the
equalizer taps has been given in equation (4.3). Using expression (4.3) to calculate
the above partial derivatives leads to the following adaptation equation:

wh ™ = wh — e (¢ < 1)m_p. (4.5)

This equation describes the asynchronous LMS adaptation rule and suggests that
LMS adaptation may be based on correlating the error signal with a synchronous ver-
sion of the equalizer input. This version is obtained using an auxiliary sampling rate
converter in the adaptation loop. For clarity of the sequel and in order to make a clear
distinction with the main SRC, we designate this auxiliary sampling rate converter
SRC2 and denote its symbol responsef(y). Equation (4.5) is then re-written as

(k+1)

K
wh ™ = wh — e (@ k1) mp. (4.6)



108 Asynchronous Adaptive Equalization

The LMS adaptation scheme is depicted in Figure 4.3. The auxiliary sampling
rate converter SRC2 aligns, both in frequency and phase, the error signal and the
equalizer input. In particular the overall delay from the point denétedFigure 4.3
to pointB, through SRC2, should match the delay frérto C through the equalizer
and the main SRC. The result of correlation between the error signal and the re-
sampled equalizer input is first scaled with the adaptation congtamdl then passed
to a digital integrator. Since this integrator produces an output at the synchronous
clock rate and the equalizer operates in the asynchronous clock domain, a form of
inverse sampling rate conversion is needed. Moreover, since equalizer tap values
change only slowly with respect to both sampling rates, this inverse sampling rate
conversion can be achieved in the simplest conceivable manner, namely via a bank of
latches (or, equivalently zeroth-order interpolation).

e e
| Yy
—»{ SRC2
| B c
T AV
A
- T/
T n &k
T
A
r i - Cb
-« 1T, > UT ——— »

Figure 4.3: The LMS adaptation of the" equalizer tap.

A direct implementation of this scheme is, however, quite complex for practi-
cal systems. In fact, equation (4.6) requires us to compute all the gradient signals
(¢ Im_pfor pe {0...Ny— 1}, i.e. the re-sampled signaht the instantt, — pTs.
Therefore, in order to adapt all the equalizer taps at the%atdw duplications of
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SRC2 would in principle be needed.

A solution to this problem has been proposed in [28]. It consists of using one
auxiliary SRC2, identical to the main SRC, to re-sample the equalizer input at the
instantt;. This is followed by a set of linear interpolators, in the synchronous do-
main, to produce the gradient signals. Explicitly, it consists of linearly interpo-
lating between the samplésh* « r)m =~ r(tf) = r(kT) to build approximations of
(% m_p =tk — pTs) = r(KT — pTs). However, this solution is still complex in
that it requires an additional sampling rate converter and more importantly it has been
shown to be applicable to only limited ranges of oversampling ratios.

In the following section we first analyze the impact of SRC2 on the equalizer
adaptation, derive a set of criteria to des@g(t) and describe a very simple choice
that achieves close to MMSE performance. This simple choice renders the topology
of Figure 4.3 practical while being applicable to a wide range of oversampling ratios.

4.5 Effect of The Auxiliary SRC on LMS Adaptation

The proper design of,(t) is a key element in the realization of the asynchronous
LMS adaptation scheme. A straightforward choice;ig&) = c(t). However, in this
section we will highlight a set of degrees of freedom for the desigep@j. Such
degrees of freedom will be exploited to simplify the asynchronous LMS adaptation
scheme. In the first two subsections we consider the case where SRC2 does not
introduce aliasing. In the third subsection, we will focus on the effect of aliasing in
SRC2 on the equalizer adaptation.

4.5.1 Effect of the auxiliary SRC on the steady-state solution

A theoretical analysis of the behavior of the LMS adaptation scheme, for an aliasing-
free SRC2, is presented in Appendix A. It reveals that the average update signal for
the adaptation of the™ equalizer tapAE = sk(cgk *I')m—p (See Figure 4.3), can be
written as

1 tel1 (|H? .

EAP] = 7/ 1 (HE +No | CW —H*G| C;e/?™ERdQ, (4.7)

TsJ-w [T\ T
where we have suppressed all dependencig? for notational convenience. In this
expressiorH is the channel transfer functiow/(e/2™%) andG(e/2™T) denote the
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discrete Fourier transforms @f, and gy respectively. The notatioX* denotes the
complex conjugate of the transfer functidn The expectation operation in (4.7) is
taken over all data and noise realizations.

The equalizer steady-state response is characterized by the set of eqﬁmﬁ}ﬁs
0, Vp < Ny. In order to understand the impact®f{t) on this steady-state response,
let us first consider the case where the equalizer is infinitely long. In this case, the
steady-state response is obtained when the integrand in the right hand side of (4.7) is
zero at all frequencies, i.e.

[1/Ts (|H[?/T +No) CW—H*G]| C; = 0. (4.8)

The latter expression shows thaCif(Qo) = 0, for Qg within the channel pass-band,
the steady-state equalizer transfer function is ill-define@ at Qo. If, however,C,
has no spectral nulls within the channel pass-band, the steadyAsiatenambigu-
ously defined byH, G andC and is independent &,. Conversely, spectral nulls that
are outside the channel pass-band do not alter equalizer steady-state solution.

As the length of the equalizer decreases, (4.8) can be met at an increasingly lim-
ited set of frequencies. As a result the degeneracy problem becomes smaller.

We may conclude that, i€,(Q) # 0 for each frequency in the channel pass-
band, the equalizer steady-state solution is not affected by the amplitude and phase
responses of,(t). However, the impact of,(t) on loop stability still needs to be
explored. The following subsection deals with this issue.

4.5.2 Stability analysis

Stability analysis of the equalizer adaptation loop is presented in Appendix B. It is
found that, for long equalizer lengths, the loop is stable if and only if the following
condition is met:

vese nl (M n) SR 2cosge, @) - go@). @9
S S

whereBg is the pass-band @(Q) (i.e. VQ ¢ Bc C(Q) = 0), anddc(Q) anddc, (Q)

denote the phase responseg(®j andc;(t) respectively. Equation (4.9) provides a

condition that links the adaptation constgnthe amplitude respon$€,(Q)| and the

phase mismatclc,(Q) — ¢c(Q) in order to ensure stability. In particular, it shows

that by fixingn and|C,(Q)|, a range of phase mismatches betwegh) andc(t) can
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be tolerated. Similarly, fixingy anddc,(Q) defines a range of acceptable amplitude
responses that ensure stability.

As the length of the equalizer decreases, inequality (4.9) becomes a sufficient
condition for stability as will be seen from simulations.

In many practical systems, equalizer adaptation is often designed to be slow, i.e.
n < 1. The left hand side of (4.9) is then close to zero. This implies that the phases of
C2(t) andc(t) must be withing throughoutBc. In other words, a necessary condition
for loop stability is that the phase mismatch betweg) andc(t) is smaller than
11/2 throughoutBc.

Example 4.1:
Let us consider a channel with a cut-off frequefzy< 1/(2T). In order to suppress
out-of-band noise, the transfer function of the ideal SRC is zero outside the interval
[—Q¢, Qc]. Assume that there is a delay mismatch séconds between the two SRCs,
i.e. thatdc(Q) — dc, (Q) = 2mdQ. A necessary condition ahto ensure stability is
that 2rdQ| < 11/2 V|Q| < Q¢. The maximum tolerable delay mismaghhy is thus
given by

N

C

The closer the delay mismatodlgets todmax, the slower the loop must be in order to
guarantee stability.

4.5.3 Effect of aliasing in the auxiliary SRC

The impact of aliasing, introduced by SRC2, is a key potential issue in the design of
practical asynchronous LMS equalizer adaptation. Actually, it is still not clear from
the previous subsections how the equalizer adaptation behavescwhedoes not
reject out-of-band frequencies. We will prove, in particular that aliasing in SRC2
does not hamper the LMS adaptation for channels without excess bandwidth. In this
case, following similar steps as in Appendix A, one can show that the average update
signal for a general symbol resporct) is given by

1 /71 [(H? i
E[y] = i/ [Ts <‘T’ +No) W= H*G} G5(Q)e”™tdQ,  (4.10)
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where the expectation operation is taken over all data and noise realizations, and
where

Ts
Equation (4.10) is analog to (4.7) where the fac@(Q) is replaced by its aliased
versionCy(Q). This aliased version is now time dependent, more precisely it depends
on the re-sampling instatff. This implies that the adaptation loop gain [86] is now
time-varying and depends on the sampling instahitsThe same reasoning as in
Section 4.5.1 holds here if one can ensure that, in average overGjt®) does
not have zeros within the channel pass-band and that the phase mismatch relative to
C(Q) of the averag€,(Q) obeys (4.9). In that case the steady-state equalizer will
not depend o (t) and the adaptation loop will be stable.
Now replacing in (4.11) the re-sampling instant by its expresgiea (m + ) Ts
leads to

Ch(Q) = Ze*ﬂm%cz(g_ﬂ). (4.11)

i n
Co(Q) =Y e MGy (Q - -
n S

The fractional intervaly (€ [0,1]) depends on the oversampling ratio and on the
channel delay that can vary randomly. As a consequence we can aggtionbe
uniformly distributed in[0,1[. In this case it can be proven thag e~ 2] = &,
whered, denotes the Kronecker delta function. Therefore the average over all the
sampling instant, of the functionCy(Q) is simply given by

Ey[Co(Q)] = C2(Q). (4.12)

From (4.10) it can be seen that the influence of aliasing on the LMS adapta-
tion manifests itself as a time-varying loop gain per frequency that is proportional to
C;(Q). From (4.12) it is apparent that the loop gain, in average over time, is not in-
fluenced by aliasing. More precisely, in average over time, the LMS adaptation loop
gain at frequency2 = Qq is proportional taC;(Qo). An intermediate consequence of
the above reasoning is that a spectral nulC#Q) in the channel pass-band cannot
be tolerated.

From (4.12) one can also see that the phase of the average over {p&f
is equal to the phase @h(Q). Therefore stability is ensured if the phase®afQ)
satisfies (4.9) within the channel pass-band.

The above considerations suggest that the symbol respa(t$eneeds only to
meet (4.9) and to have no spectral nulls in the channel pass-band. In this case the
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steady-state equalizer will not be altered by aliasing and the adaptation loop will be
stable.

4.6 Simplified Asynchronous LMS Adaptation

In the previous section the relationship between SRC2 and the equalizer adaptation
has been discussed. First, we showed that amplitude distortions in SRC2 do not
alter equalizer steady-state solutiorCif(Q) has no zeros within the channel pass-
band. Second, adaptation stability is preserved as long as the phase mismatch be-
tweenC,(Q) andC(Q) is kept below a defined stability bound. Finally, it has been
shown that aliasing in SRC2 does not hamper equalizer adaptation. A summary of
design criteria for SRC2 can now be presented as follows:

1. The transfer functiol®;(Q) must not have any spectral zeros within the pass-
band of the channel.

2. The phase mismatch betweeiit) andc(t) must be kept as small as possible
according to (4.9).

The design of SRC2 is now made simpler. This can be used to simplify the complete
asynchronous LMS adaptation. In order to meet the second design criterion, the
simplest possible choice is to consider a symmetric respos{sg with the same
symmetry point ag(t). The first criterion is also met with very simple waveforms.
For example, a rectangular function on the intefvals/2, Ts/2], i.e.

17 |t| < TS/Za
co(t) = 4.13
2(t) { 0, otherwise, ( )

satisfies both conditions. Its transfer funct@s(Q) = TssindTQTs) has a first spec-

tral null atQ = 1/Tsthat is always outside the channel pass-b&hd< 1/Ts). This
choice ofc,(t) corresponds to an implementation of SRC2 via nearest neighbor in-
terpolation 0" order interpolation). The suppdrt Ts/2, Ts/2] is the shortest interval

that permits adaptation at every synchronous clock cycle independent of the value of
L. In fact, if the support ot,(t) has a shorter length thag thencgfn is zero for a
range of fractional intervaly, which implies that the equalizer is not adapted at these
instants.
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With the mentioned choice ob(t), the equalizer adaptation (4.6) can be rewritten
as
k+1 k
W(p - WEJ) — N&kI'm+|+0.5)—p> (4.14)
where
Mme—p if i < 0.5,

) (4.15)
rrrk+]_7p |f l..lk Z 05

Fme+|w+0.5/—p = {
This adaptation rule leads to the simplified scheme presented in Figure 4.4.
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Figure 4.4: The simplified adaptation of th#" equalizer tap.

At each asynchronous clock cycle, a value of the equalizer tap signais fed
into a shift register (SHR). At each synchronous clock cycle, the PLL produces the
basepoint indery and the fractional interval. The latter serves to select the sample
'm—p Of 'm—p+1 @ccording to (4.15). The selected sample is correlated with the error
signal, scaled by and passed to an integrator. With the proposed simplified asyn-
chronous LMS scheme, the auxiliary SRC reduces to a very simple sample selector.
This makes the proposed scheme no more complex than a completely synchronous
LMS adaptation scheme while allowing the benefits of asynchronous equalization as
mentioned in the introduction.
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4.7 Simulation Results

By way of illustration we consider in this section an idealized optical storage chan-
nel according to the Braat-Hopkins model as presented in Chapter 1. In terms of
normalized frequencies to the baud rafd, the channel transfer function is given

by

Hi) - L 7 (cos 1= 81 (§7). el <,
0, Q> Qc

where the normalized optical cut-off frequeryis fixed atl/3in this section. Data

by is taken to be run-length-limited with run-length parametet&) = (1,7). The

target response has 5 tags- [0.17,0.5,0.67,0.5,0.17]. These choices reflect the

system described in [115]. We consider here only electronics noise and fix channel

SANR (defined as in Chapter 1) at the value of 15 dB. Similar conclusions can be

drawn in the presence of media noise.

Amplitude response df(t) andgy are depicted in Figure 4.5. The target response
approximates the in-band characteristics and cut-off frequency of the channel quite
well. However, because of its finite length it has some transfer above the cut-off
frequency.

Since the channel passes no normalized frequencies dli8yeve can choose
1/Ts as low as2/(3T) without any loss of information. The upper limit &fTs is
set to2/T in the sequel. The SRC is implemented via a six-tap Lagrange interpo-
lator [110]. At the SRC output, beyond the cut-off frequeiyalmost no spectral
components are present. The error signal in this band will be negligible irrespective
of the equalizer transfer function. As a result, the equalizer steady-state solution tends
to become ill-defined, and regularization will be needed. For this purpose we incor-
porate tap leakage [46] into the equalizer adaptation. Equation (4.6) is then written
as

wh ™ = (1— a)wlf — ne( @« Nmp (4.16)

wherea is a small and positive tap leakage factor.

To illustrate the impact of tap leakage we consider the ca$glgf= 1.25/T. The
amplitude response of various equalizers of leiNjih= 15are depicted in Figure 4.6.
The amplitude response of the theoretical regularized MMSE solution, described in
Section 4.3, is plotted together with the simulated equalizer transfer function in the
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Figure 4.5: Amplitude-frequency characteristics of idealized optical chan-
nel having a normalized cut-ofi. = 1/3 (solid) and 5-tap tar-
get responseg = [0.17,0.5,0.67,0.5,0.17] (dashed).

absence and presence of leakage. This figure shows that tap leakage is needed to
regularize the equalizer transfer function in the out of band region. Besides, the
steady-state solution of the simplified LMS scheme is indiscernible, in the in-band
region, from the theoretical MMSE solution.

To highlight the merit of the simplified LMS scheme compared to MMSE, Figure
4.7 shows the normalized MSE, i.e. the MSE divided by the average power of the
reference signal, as a function of the oversampling i@ for an equalizer length
Nw = 15. This proves that the simplified scheme is on the one hand equivalent to the
full LMS adaptation scheme from MSE point of view and on the other hand leads to
close to MMSE performance over the complete range of oversampling ratios. The
penalty in MSE with respect to MMSE is less than 0.08 dB.

LMS equalizers tend to be, in general, quite insensitive to variations of the sam-
pling phase. The proposed simplified LMS scheme is no exception. Normalized
MSE of the simplified LMS as a function of sampling phase variations is shown in
Figure 4.8.

In order to illustrate the impact of a delay mismatch between SRC2 and SRC
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Figure 4.6: Amplitude response of various equalizersfor= 122, @) simu-
lated LMS, no tap leakage (dashed); b) (regularized) theoretical
MMSE solution (solid); ¢) The simplified LMS with tap leakage

(dotted).

on the equalizer adaptation, and validate the theoretical analysis of Section 4.5.2,
we measured simulated MSE as a function of the délédgtweenc,(t) andc(t)

for different values oN,,.. For every value ofN,, the equalizer adaptation constant

is tuned to have optimum MSE at= 0 and then fixed for other values &f The
simulation result is shown in Figure 4.9.

According to the theoretical analysis of Section 4.5.2, the maximum tolerable
delay forQ; = 1/(3T) is given bydmax = 4—3% = %T. This gives a limit that is in
particular valid for a very slow adaptation and a very long equalizer. Figure 4.9 shows
that, especially for a bityl,, the adaptation is unstabledf> dmax= 0.75T. However,
and more importantly, the equalizer adaptation is not affected Wwhe®.6T. For
this range oD, the steady-state equalizer responses are also not affected.
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Figure 4.7: Normalized MSE as a function of oversampling ratio iy =
15: a) Simulated full asynchronous LMS, i.ex = c; b) Simu-
lated simplified LMS; c) Theoretical MMSE (4.4).

4.8 Conclusions

Design and implementation considerations may favor digital equalization to be per-
formed in a clock domain that is asynchronous to the baudlrafe Such a con-
sideration arises, for example, in systems where asynchronous equalization has to
be employed to minimize the delay inside the timing-recovery loop. In this chapter
we have studied the asynchronous LMS adaptation and provided its stability analysis.
We highlighted a set of interesting degrees of freedom for the design of asynchronous
equalizer adaptation. These allowed us to propose a simple asynchronous adaptation
scheme that is comparable from a complexity standpoint to the synchronous LMS
algorithm. Indeed, compared with the latter, our method requires no true extra com-
plexity apart from a sample selection mechanism.

Simulation results for an idealized optical storage system showed that, on the
one hand, the proposed algorithm leads very close to MMSE performance. On the
other hand, it is applicable to a wide range of oversampling ratios and is insensitive
to sampling phase variations.
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Figure 4.8: Simulated mean-square error of the simplified LMS scheme as a
function of sampling phase variations, Bt Ts = 1 andN,, = 15.

Appendix A: Derivation of equality (4.7)

The expression of the average update signal expressed in (4.7) holds for uncoded
binary data. A similar expression applies in the case of coded data by simply replac-
ing in (4.7)|H|? by Ry|H|? andHG* by P,HG* whereP, denotes the power spectral
density of the input data. However because the conclusions of Section 4.5 are inde-
pendent of the power spectral density of the data, we will, for simplicity, analyze the
average update signal for uncoded data.

The update signal, for thg" equalizer tapAf is given by AP = g (ch * I)m—p.

Taking into account (4.3) we can write

Nw—1

ElA] = ; WQE[(C* *Mm—q(C5 *Nm—p] — E[(G ¥ Nmp(g*b)].  (4.17)
=
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Figure 4.9: Simulated MSE as a function of the delay mismatch between
c2(t) andc(t) for different values o, The oversampling ratio
isT/Ts=1.

Let us first simplify the expression & = E[(C* * I)m _q(CY * m.p]. Upon re-
placingr with (4.1) we get:

E, = E[Comy—p-nChe _q_yN(NTs—mMT)(NTs — T )by

n,mn’,m
+ z E[CZ#.(— p—ncm_q—n’zf"z:'\]'
n,n
In view of the fact that the noise is assumed to be white and the data is uncoded, we
may express the last equality as

Ei= Y Elcoh—p-nC_q nh(NTs=mMTh(WTs—mT)]+0Z 5 E[caly _p nChy—q-nl-

n,m,n’ n
By changing the order of summations, the last equality can be rewritten as
Ei1=

SmE[ZnC2((Mc+He — N = p)Ts)h(NTs—mT) 3y c((Mk+ i — ' — ) Ts)(n' Ts—mT)]
+32 S nEfC2((Me+ 1) Ts— (N+ P)To) (M + i) Ts— (N+ Q) To)]
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where we used? = [ andch = c((n+ W) Ts).
Now the remaining steps in this proof use the following equalities derived from the
Poisson summation formula:

3 x(t, ~nTh(tz +nTe) = 1 3 e 12 / X(Q - D)H(Q)e?Mu+24q (4.18)
n TS n TS

and

3 %1t~ NToxe(tz — NT) = Ti 5 et / xl(Tﬂ —0)%(Q)eiZ1%40 (4.19)
n S

S™n

whereX(Q) is the Fourier transform of(t). By substituting(t) for x(t) on one hand
andcy(t) on the other hand, the argument of the right hand summation in equation
(4.18) is non-zero only fan= 0. This is justified by the fact thatandc, are designed
such that no aliasing occurs. It follows that

Sim = ; C2((Mk + L) Ts— (N+ p) Ts)h(NTs —mT)
_ Tls / Co(Q)H (Q) a2 (M50 TsPTo) - 20T )
and
Sm = Z c((Me+ M) Ts— (N +0) T)h(n Te—mT)
_ EL / C(Q)H (Q)e MM Ts—T) g i2mmaT oy
s
Using the integration Fubini rule we can be write:
Y Stz = Tls2 [ cl@uH(@yes -y 0y () T

% Z e—jZTIm(Ql-i-Qz)T dQlsz
m

Now if we make use of e 2™+ R)T = 1 v 5Q; +Q,— 1) we get after
removing the aliasing terms, which are filtered outd{f2) andC,(Q)

SmSimSem = & [ H@Lc(Q)cs(Q)elzP-aTadQ.

Now replacing in equation (4.1%) = ¢, andx,; = ¢ and using the fact that the
argument of the right hand summation in (4.19) is non-zero oniyn fel0 due to the
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absence of aliasing, one can show that

InE[C((Me+ o) Ts — (n+ P) Ts) (M + ) Ts — (N +) Ts)
= £ [C(Q)C5(Q)el2mMP-aT2dQ,

Grouping these last two equations together leads to

HEQP N .
1= 3 [ (T No)C()C3 (@) ™%,
In a similar way one can show that
E[(c**1)m,—p(gb)W / H*(Q)G(e72)C5(Q)e Prl(Me /B TlglZwTa o,

The last step that remains at this poin{iig, + ) Ts = t; = kT. Now plugging the
last three equalities into (4.17) leads to (4.7).



123

Appendix B: Stability Analysis of the Asynchronous
Equalizer Adaptation

Ensuring stability of an adaptation loop is very crucial for its proper functioning. This
appendix provides stability conditions of the asynchronous equalizer adaptation loop
as function of the adaptation constaptthe SRC2 amplitude and phase responses
and the oversampling ratib/Ts. For simplicity of the analysis of this appendix we
make the assumption of a big equalizer length. When the length of the equalizer is
small, our stability conditions become sufficient conditions for stability.

In order to derive the stability condition, let us first rewrite equation (4.7) using
matrix notations as follows:

A=M(w—W),

wherew is the equalizer steady-state vector solutins [y, ...,An,—1]" and the
matrix M is given by

Mpg=% | (45 +No)C(QIC3Q)eP-9TdQ 0< p.g< Ny (4.20)

f —

Figure 4.10: Equivalent equalizer adaptation. Gradient noise is neglected.

The equivalent equalizer adaptation is shown in Figure 4.10. This adaptation is

stable if and only if
lim (I —nM)k=0. (4.21)

K— 400
where the convergence to zero is taken in the Frobenius norm senBei.e;. ||| —
nMK||r = 0. In such a case the equalizer misadjustment error will be always brought



124 Asynchronous Adaptive Equalization

to zero by the adaptation loop. Equation (4.21) gives a constraint on the rivhtrix
and the adaptation constamtto ensure stability. In order to express the stability
condition (4.21) as a function &5 (Q) few steps are needed.

Let us denote bi the matrixl —nM. One can easily show that

1/2T, 5

~1/2Ts
= / X(Q)ej 2r(p-a)TsQqQ

whereX(Q) =Ts—n& <¢ + No) C(Q)C3(Q).

In order to express the stability condition in terms>fQ) we need to compute
NX and check when it converges to zero kogoing to infinity. For that let us first
computeN?. We have

Néq = ZNPJNLQ: Z/ X(Ql)ejZTI(p—UTsle(Qz) j2m(l— TSQZdQlsz
= / X(Q1)X eJZH(stQl quQz)ZeijTdTS(Ql—Qz)dQ:LdQZ.
Now if we make use of | e 121(@1=2)Ts ~ 2 5, §(Q; — Q, — 1) (this approximation

isan equallty ifNy is infinite) and take |nto account the fact that the suppoK @)
isin [ AR ZT] we can write, removing the aliasing terms, 1.e% 0,

NZg =~ = // X (Q1)X(Q,)elZMPR-aE2) 50, — 0,)dQ;dQ;
S

= = [ X3(Qq)elZP-a)TsiqQ), .
Ts/ Qe .

Following a similar computation one can prove that kfepower of the matrix
N is given by

1 .
k 21(p—q) TsQ
Np’q_TSk_l Q)elZMP-aTgQ).

Now one can see thimy_. ; N'qu =0Vp,qis equivalent td%?” < 1VvQ. This

is equivalent to
|H|? C(Q)C5(Q)
’1 r]< T +No 2 <1 (4.22)
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By taking the square of the left hand side and subtracting 1 from both sides, one can
prove that the following inequality

2
T ('HT +N0> COICD] - 2c080c,@) ~ de(@)].

holds on the bandwidth af that we denotd®c and define asvQ ¢ Bc C(Q) = 0).
The phase responsesagf) andc,(t) are denoted bgc(Q) anddc,(Q) respectively.
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Chapter 5

Timing Recovery For Data-Dependent
Noise Channels

In high density data storage systems, noise becomes highly correlated and data-
dependent as a result of media noise and channel nonlinearities. In such environ-
ments, conventional timing recovery schemes will exhibit large residual timing jitter
and especially data-dependent timing jitter. This chapter presents a new data-aided
timing recovery algorithm for data storage systems with data-dependent noise. Based
on a data-dependent Gauss-Markov model of the noise, a maximum-likelihood tim-
ing recovery scheme is derived. The proposed timing recovery algorithm incorporates
data-dependent noise prediction parameters in the form of linear prediction filters and
prediction error variances. Moreover, because noise can be nonstationary in practice,
an adaptive algorithm is proposed in order to estimate and track the noise prediction
parameters. Simulation results, for an idealized optical storage channel incorporating
media noise, illustrate the merits of the proposed algorithm.

5.1 Introduction

Timing recovery is one of the critical functions for reliable data detection in digital
storage systems. The key problem in timing recovery is the determination of time
instants at which the replay signal should be sampled for reliable data recovery. This
problem has been a subject of investigation for many decades. Among the existing
solutions [86], data-aided (DA) timing recovery schemes, e.g. [20, 88,91, 127], are
known to be more powerful. DA schemes use the transmitted data sequence as side
information to facilitate timing recovery. This information is available to the receiver
either in the form of a known preamble pattern preceding the user data, or as decisions
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taken from the bit detector.

Timing recovery becomes more critical as storage density increases because of in-
creasing system performance sensitivity to timing jitter on the one hand and increas-
ing bandwidth limitations, signal to noise ratio (SNR) degradation, noise nonstation-
arity and data-dependency on the other hand. Although the problem of data detection
in such noise environments has received considerable attention, e.g. see [7] [6], much
less attention has been devoted to the problem of timing recovery. Conventional tim-
ing recovery schemes assume that the noise at their input is stationary and that noise
statistics are independent of the transmitted data. However, in high density storage
systems, noise becomes colored and data-dependent [5] [81]. This data-dependent
nature of the noise significantly deteriorates the performance of timing recovery. It
increases timing jitter, i.e. the difference between the ideal and the estimated sam-
pling instants, for a given bandwidth of the timing recovery loop. Large timing jitter
leads to an increased bit-error rate and possibly even to loss of lock.

A simple form of timing recovery for data-dependent noise was reported in lit-
erature for optical communication channels where noise was modelled as additive
white and Gaussian (AWG) with a noise variance dependent on the transmitted sym-
bol [2]. This algorithm is not based on an optimal timing function but is derived as a
modification of the well-known Mueller and Mler algorithm [91].

In this chapter we derive an optimal timing recovery algorithm for data-dependent
correlated noise. The key to the new timing recovery approach is the modelling
of noise as a data-dependent finite-order Markov process [5]. Based on this model
Maximume-Likelihood (ML) timing recovery is addressed. The resulting structure is a
timing recovery scheme with a new timing error detector (TED) that incorporates, on
the one hand, data-dependent noise prediction and on the other hand a data-dependent
weighing that depends on the remaining unpredictable noise variance. Moreover,
because in practice noise can be nonstationary, an adaptation algorithm that estimates
and tracks noise model parameters is proposed. This estimation algorithm is simpler
than that presented in [5].

Although this chapter assumes that the transmitted data is known to the timing
recovery scheme, its results can be easily extended to the case where soft information
is available [64] and in the context of iterative timing recovery [12] [84] where an
iterative soft decoder is used. In fact, this would boil down to simply substituting the
TEDs in [64] and [12] with the one presented in this chapter.
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The remainder of this chapter is organized as follows. Section 5.2 describes the
system model and nomenclature. Section 5.3 presents the ML timing recovery for
data-dependent noise. Efficiency analysis of the ML timing recovery is addressed in
Section 5.4. Section 5.5 presents a simple sample by sample based adaptation of the
data-dependent noise parameters. Simulation results for a partial response maximum-
likelihood (PRML) system are presented in Section 5.7 and show the important merits
of the new scheme of this chapter.

5.2 System Model and Problem Definition

TED %kk

detector ——»

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5.1: system model

In Figure 5.1, a zero-mean data sequengce {+1} of lengthN, i.e. by,by,.. by,
of data ratel /T is applied to a channel with symbol respohég, additive noisen(t)
and an a priori unknown and possibly time varying defgyn bit intervalsT). Prior
to detection, the receiver performs prefiltering that serves to suppress noise and may
also condition intersymbol interference (ISl). The prefilter output is first sampled and
then passed to a detector that produces bit decisions. For clarity of this chapter, we
assume that excess bandwidth at the prefilter output is negligible and consider only
baud-rate sampling. The results of this chapter can be easily extended to the over-
sampled case. The sampling instants are expresskd=a&k + Q)T wherey is a
sampling phase (normalized in un3. Based on the sampled sequengethe re-
ceiver produces bit decisiolfig as well as a clock signal that indicates the sampling
instantdy. In order for the detector to operate properly, a timing recovery subsystem
ensures that the sampling phgselosely approacheg The timing recovery subsys-
tem takes the form of a phase-locked loop (PLL) with a timing-error detector (TED),
loop filter (LF), and a voltage controlled oscillator (VCO). The TED produces an esti-
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mateyy of the sampling-phase errr= @— . In this chapter we restrict attention to
data-aided (DA) TEDs whellg is assumed to be available to the receiver in the form
of a known preamble, or as decisions, taken from the detector, when bit-error rates
are small. PLL behavior depends also on the LF and VCO. A detailed description of
this dependence can be found in [45].

To simplify the forthcoming analysis we assume, first, that the timing recovery
loop has a sufficiently high bandwidth to enable the variationg tdf be tracked.
This means that we can talgto be fixed. Second, the sampling-phase erfoase
restricted to a fraction of a symbol intervial(this reflects the situation when the PLL
is in lock; PLL acquisition properties are beyond the scope of this chapter). In this
case, the equivalent discrete impulse respmﬁsm‘ the system up until the detector
input can be linearized ag ~ q(k’+Aq|’<, whereq, is the derivative ot with respect
to A atA = 0. Both responseg’ andg, are assumed to be known to the receiver. The
detector input sequence can be written as

X = (0% D)+ A(q * bk + i, (5.1)

where *” denotes linear convolution ang is the equivalent noise sequence at the
detector input, i.eng = xx — (g° * b)k. Unless specified otherwise, we assume ttﬁat
corresponds to the ideal ISI structure assumed by the detector. Any misequalization
ISI (linear or nonlinear) at ideal sampling phase, i.e. due to a mismatch beqﬁleen
and the ideal detector response, is embedded in the ngisEhe noiseny includes

also channel noise that may be linearly or nonlinearly data-dependent. The key to the
new timing recovery approach is the modelling of the noise as proposed in [5]. We
recapitulate the assumptions on the properties of the mias follows:

1. Finite correlation length The noiseny is assumed to be independent of past
samples before some lendth> 0 (finite Markov memory length). This inde-
pendence implies that

P(Nk|Nk_1, .-, N, b)) = p(n|nk_1, .., Nk, BY) (5.2)

where p(.) denotes the probability density function (pdf) mf conditioned
on the past noise samples and on the @@‘tavherepti = by, b 41, -, bi, ]

for ko > k1. The conditioning orp’{' is meant to take into account the data-
dependent correlation of the noisg
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2. Finite data-dependent spaihe noisen, depends only on its firég€-neighbor
symbols, i.e.p::fﬁi, that we call symbol cluster, wheke= K; + K>+ 1. The
conditioned noise pdf given in Eq. (5.2) becomes

PO M1, - e, BY ) = (MM, o, L, B P ) (5.3)
3. Joint Gaussian pdfisThe joint pdfp(nk,nk,l,...,nk,L\p::fEZ_Kl), conditioned

on the data sequence, is Gaussian with a covariance mmﬁ:xC(Q'lﬁffiKl)

of size(L+1) x (L+1), i.e.

exp—NJC IN,]

Nk, -, ML |BRTR2 ) = Kk K

p(Nk kLB k) (2rL+ L detCy

where[.]" denotes the transpose operation and(the- 1) x 1 vector N, =

[nk, ey nk_L]T.

(5.4)

It is implicitly assumed here that, given the data sequence, the npis#s zero
mean. This assumption is not entirely true in general, e.g. in the presence of channel
nonlinearities, see [65] and Chapter 1, or in the presence of mis-equalization linear
ISI. In such case the vectdly throughout the chapter has to be replaced \nith-
E[N /b ] For clarity, we omit the mean o in the sequel.

5.3 Maximume-Likelihood Timing-Error Detector

Data-aided ML timing recovery is optimum when no prior statistical knowledge
about the phase-errdris available. Before developing the DA ML-TED for sample-
by-sample timing recovery, let us first derive the one-shot ML estimator of the phase-
error A based on the observation of the overall detector input sequencey. To

this aim, we assume in this section that noise statistics are known and fixed during
the transmission of thi symbolsb)'. The DA ML estimate of the phase-errfris
obtained by maximizing the likelihood function, i.e.

M = argmaxp(xy, .., xn|bY A = 3), (5.5)

over all possible phase-erros where the likelihood functiom(xy, ..., xn|0), 8) is
the joint probability density function of the received sampigs. xy conditioned on
the transmitted symbols) and on the phase-errr= 5.
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If prior knowledge on the probability density function of the phase-efyis
available, than the optimal estimation technique is based on the maximum a posteriori
(MAP) criterion. This boils down to replacing the maximization argument in (5.5)
by p(xa,...,x|bY,A = 8)p(A = &). For simplicity we assume that no such prior
information is available, or equivalently, thathas a uniform distribution.

In order to derive a practical criterion from (5.5) a few classical steps are needed.
We first apply Bayes rule and obtain

p(X1, - xn[0Y,8) = pOxnIXN-1, -, X1, BY, 8) pxy-1, ..., xa|bY',B)
N
= rlp(xklxkfl,--.,xl,b?,é). (5.6)
k=

Then upon invoking (5.1) and tHmite correlation lengthproperty of the noise, i.e.
(5.2), (5.6) can be written as

N
p(xla~-~>XN|b]’\_156) - |_| p(Xk|Xk—1a---,Xk—L,D'£|a6)v
k=1

which leads by using thienite data-dependent spamoperty, i.e. (5.3), to

N
PO, - X DY, 8) = [ POKIX-1, -+ XL, BT, B).

Applying Bayes rule once again, (5.6) can then be factorized into

N k+Ko
P(Xi, Xk—1, -, XL | B ,0)
p(X1, ..., Xn|bY', &) kazL Sy (5.7)
k= pXk 1y ey Xk— L‘bk L— K176)
The right-hand factors in (5.7) can be rewritten using (5.4) as:
P, - X L0 21 8) expl— (Ex — 8S)TCy H(Ex — 8Sy)] 5.9

P 1 X LB 2y 8)  expl—(8—38)Te (8 — 38

where the. x L matrix ¢y is the lower principal submatrix &y, i.e.

Ok VI]

Ve G

Ck=

and where the column vectoEs, g, S, ands, are given, as function of the error
signalex = x« — (q° x b)x and the so called signature sigsal= (¢ bk, by
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Ei = [&k, - &k-t]T, 8= [€k1, - Ek-L] T,
§( = [S(; "'794(7L]T and§k = [3(717 ...,Ska]T_

The proportionality factor in (5.8) equa{?% which is independent of
0 and thus can be simply ignored. It follows, by taking the logarithm of (5.7) and in-
voking (5.8), that ML phase-error estimation is obtained by minimizing the following
cost function:

N
A(®) =y (Ex—3S) C "(Ex—8S) — (8 — 85 "¢ (8 — 8- (5.9)
K=1
This expression of\(d) is still quite complex in that it involves inversions of the
matricesCy andcy for all possible symbol clustetjjffiKl. A simplified expression
of A(d) can be derived via the matrix inversion Iem_ma [108]. In fact using this
Oy !I

Ve Ck

1 T
0O O 1 1 1
cl= e .
“ [ 0 gt ] O — VGV [ GV | [ —C M ]

This leads to the following simplified version 6{d)

lemma, one can prove that the inverseCef= [ simplifies as

N1
Z p (Wi (Ex—3S,))3, (5.10)
k=1 Ok
1 .. 2
where the(L + 1) x 1 vectorw, = kKo and the positive scalar; are
- %k,)
given by
k+K: _ 1
p(zbk L2 K]_) - Ck !kT . (511)
O = Ok—V, G Vi

The complexity to comput@(d) is brought down taO(N(L + 1)) in (5.10) in-
stead ofO(N(L 4 1)?) in (5.9). The vectorsp(b‘lj*f2 k,) can be interpreted as data-
dependent noise predictors and the valu%as noise-prediction variances. In fact,
for a given symbol clusteb"[?, , wy = w(b"?, ) acts to whiten the noisey
by substracting fronmy the predicted component from the past noise samples. The

variance of the whitened noise, i.e.\WgfN,, equalso?.
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The ML one-shot phase-error estimaf®- can be easily derived from (5.10) and

is given by
ot s Laiewls) (5.12)
25:10%(!"1§<)2 &ox

The ML phase-error estimate (5.12) can be seen as a normalized average of an instan-
taneous timing error function given b(%(w[ﬁk)(wlg). Because, in a PLL based
timing recovery scheme, the averaging operation is ensured by the loop filter, the ML
timing error detector (ML-TED) can be simply written as

Xk = O:%(WIEk)(WISK)v (5.13)

where the vectom, = w(b"1? . ) and the scalas? = 0?(b{" [ ) correspond to the

k+Ka
clusterb, " 2 .

Equation (5.13) presents two interesting properties.

e First, the division witha? provides a weighing for every cluster of symbols
b:f_rfz_Kl. The weight of a given cluster is inversely proportionabfo More
reliable symbol clusters that have smaller ‘unpredictable’ noise variance will
be attributed higher gains in the extraction of timing information than noisy

clusters and vice versa.

e Second, the ‘predictable’ componentmf from ng_1,...Nx_ iS removed via
the scalar product withy,, thus allowing less noise power to be sensed by
the timing recovery subsystem. For example, in the extreme case whisre
a deterministic linear combination of_1,...N«_., the filtered noiseLvIuk is
simply zero.

These two properties together make up the strength of the proposed TED.

A block diagram of the ML-TED is shown in Figure 5.2. This TED has attractive
practical properties. First, from an implementation standpoint, the proposed TED
is quite simple in that it requires only two additional FIR filters of lengtht 1)
and one division. Second, the causal and minimum phase structwgecaiises the
latency of the ML-TED to be small. This limits the increase in the overall delay of
the timing recovery loop due to the ML-TED. This property is very crucial in view
of the impact of the overall delay of the timing-recovery loop on its stability margin
and convergence speed [85].



135

» Ok k
Ek-L
Ok " S
- s
Bericp §
Lol 7 R W |
3 . _ 2 !
i Q(—L—Kj_* (V_V10 O-IE §

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5.2: The ML-TED. The vecto, and the variance? are varied as
function of the symbol clustéf?, .

Example 5.1:
In the case of zero-mean additive white and data-independent noise with a variance
02, we havel. = 0, o2 = 02 andw, = 1. Equation (5.10) boils down to

1 XN : )
A(d) = gk;(sk—&q *b)i)*,

whereg, = x¢ — (Q° * b)x.
The optimum TED in this case is the Zero-Forcing (ZF) TED [86]. Its output, multi-
plied bya?, is given by

XET = k(g *b)k. (5.14)

Because the ZF-TED achieves maximum-likelihood when noise is data-independent
AWGN, we consider, throughout this chapter, the ZF-TED as baseline of compagrison.

Example 5.2:
As explained in Chapter 1, media noise is one of the most important disturbances in
optical storage. This is modelled for rewritable systems as a data-dependent AWGN
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noise processy that is injected at the channel input. The variancergf denoted
by a2,(by), is dependent on the Hi.

At ideal sampling the noise componegiof (5.1) equalsy = (° * m),. Assum-
ing that the channel is invertible, i.e. thq& does not have spectral nulls, and has a
minimum phase, it can be easily shown thgtis data independent and is given by
(wx %)k = & wheredy denotes the Kronecker delta function. The variance of the
whitened noiséw x n), equalso?,(by). The ML-TED (5.13) simplifies in this case to

((wxX)k — by)(c*b)k
0z (bx) ’

ML
Xk =

wherecy is the impulse response of the discrete derivative cce- (*—k”k fork=£0
andcg = 0. The filtering withwy achieves full equalization of the channel and the
factors1/aZ (bx) makes the loop gain higher for the less noisy Kits.

5.4 Efficiency of Data-Dependent Timing Recovery

The objective of any timing error detector is to provide an indication of the phase-
error present at the detector input. The capability of the timing recovery loop to track
fast timing variations depends heavily on how much timing information the TED can
extract from the incoming signal, while rejecting the noise as much as possible. Good
noise suppression requires the loop bandwidth to be as small as possible, whereas
a wide bandwidth is required in order to track fast timing variations. In order to
quantify this trade-off, a measure of efficiency was introduced in [87]. The efficiency
of a TED was defined as the amount of the timing information that the TED is able to
extract from the incoming signal per unit of time and SNR. In this section we extend
the efficiency analysis of [87] to the ML-TED and show that this efficiency exceeds
that of the ZF-TED.

The ML-TED (5.12) can be linearized as indicated in Figure 5.3 where

_ (w(b)TS(h))?
Ka(b) = BZORE

denotes the TED gain ang(b) is the TED additive noise which induces jitter in the
PLL. Both quantities are symbol cluster dependent. The TED noise and average gain
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Figure 5.3: Phase-domain model of the ML-TED. The TED g&in(b)

and additive noise(b) are dependent on the symbol cluster

_ KKK
b =Db %,

can be written as (oS0
W
o =5 [ o) }
(5.15)

(Wi So) (WE Ny)

Vk — O-E

whereEy|[.] denotes averaging over all possible symbol clusterdengthK; + K, +

L+ 1 and where, for clarity, the two equivalent notatin@tffiKl) andX, are used.
The efficiency of a TED was defined in [87] as

1K

- SNRY(0)’

where?/(0) is the power spectral density @f at DC. Invoking (5.15) and remarking

thatwf N, is white with varianceo?, the expression of the ML-TED efficiency can

be simplified as ; ,

M= Sl%lREQ {(W(t;)z(i()b)) ] . (5.16)
This efficiency does not only include a measure of the high frequency spectrum of

the transmitted data, i.€[s2] = [(2mQ)?|Q(e12™?)|24(el?™)dQ whereQ denotes

the Fourier transform oqg and 4 is the data power spectral density, but does also

include a measure of how noisy every symbol cluster is. The efficigiieycan be

seen as the average of a per-cluster efficigyiby = S—,{IR% Good symbol

clusters for timing recovery are clustds$or which y(b) is maximized. This result

can be exploited to design optimal preamble patterns. This must be subject to max-

imizing the average per-cluster efficiency over all possible clusters in the preamble

pattern, i.e EpcpreambidY(D)].

Y

Example 5.3:
For the sake of comparison between the ZF-TED and the ML-TED, let us consider
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the case when the noisg is white, i.e.L = 0, but with a data-dependent variance
0?(b). The ML-TED efficiency simplifies then to

Wt — 1 %

SNR™ | 32(b)

The ZF-TED has a gailyg = Eg[ﬁ] and noisevk = s¢nk. Its efficiency in this
case can be written as

yZF _ 1 EQ[Si]Z
SNREp[s;0?(b)]
Now using the Cauchy-Schwarz inequality, it is easy to prove that
Yt > v

with equality only when the noise variance is data-independeng?(&) = CS.

For the sake of illustration, let us consider, in this example, the simplifying case
where the data is uncoded and the noise variance of the symbol cbﬁéﬁéiris only
dependent on the central Hit, i.e. oz(g'lﬁfﬁi) = a?(hy).

The efficiency of the ML-TED simplifies in this case = <izEp[sZ|Ep [ﬁ]
becauses, is independent df due to the fact thatyy = 0. Similarly, the ZF-TED
efficiency can be written agF = <& _Eolsd . The gain in efficiency brought by

SNREp[0%(by)]
the ML-TED over the ZF-TED can be expressed as functifn-ot?(—1)/0?(1) as

follows
Yt 1

yZF (B) = E [1/0(bx)] E[0®(bx)] = 2 <2+ B+ é) :

Figure 5.4 shows this gain as function @f It shows in particular that fof3 >> 1
or B << 1 a substantial improvement in efficiency is obtained using the ML-TED
compared to the ZF-TED. F >> 1 we havey% OBandYy O % for << 1.

5.5 Adaptive Data-Dependent Noise Characterization

In the previous section, we assumed Bﬂ@tffi,( ) ando?(b <2 k,) are known for

all symbol clusters. However, the statistics of the noise are not known in practice
and need to be estimated from the received signal. Moreover, tracking these statistics
adaptively is preferable in many applications because the noise may be nonstationary.
This section presents an estimation scheme of the noise model parameters.
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Figure 5.4: The gain in efficiency of the ML-TED over the ZF-TED as func-
tion of B = 0%(—1)/0?(1), for the case that data is uncoded
andL = K; = Ky = 0 as considered in the illustration dxam-
ple 5.3

] 1
The noise model parametevg(bi"(?, ) = [ B ) ] anda?(bi %, ),
P\Xk—L—-K;

are given by equation (5.11) for every cluster of sym@ﬁ[{iKl. This can be written

as
ok Vb 1 | | of
Vi Gk —Py 0

wheregk = B(jfEiKl). Which is interpreted as the data-dependent version of the
well known Yule-Walker equations encountered in autoregressive modelling prob-
lems [5, 136]. The estimation of the noise model parameters can be based on first
estimating, for all symbol clustels the covariance matric&3(b) and then deriving
the vectorsv(b) and the variances?(b) via solving the different Yule-Walker equa-
tions for the different data clusters [5]. This means that at every estimation of one
w(b) a covariance matrix needs to be inverted which can be prohibitively complex
especially for high values df.

A simpler alternative that does not involve estimating and inverting the covariance

matrices can be proposed. In fact, as mentioned in Section 5.3, the scalar product with
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1 . , ,
W(pthiKl) = kKo is meant to whiten the noise sampigs..ng_, for
P %k,)
the symbol clustep'lﬁffiKl, andoz(g'ljffiKl) is the variance of the whitened noise.

Thus a scheme to estimate and track the prediction v@gﬁfifz_m) can be sim-

ply based on minimizinge[(w] N, )?]. It is a simple exercise to prove that this es-
timation is unbiased. In order to minimiZg{(wg Ny)?] = E[(n« — p/ )%, where

n = [M_1,...,nk_]", a least mean square (LMS) type of algorithm can be adopted.
This consists of updating, in the opposite direction of the gradient Bf(wi Ny )?]

and replacing the expectation @Iﬂk)z by its instantaneous realization. The vari-
ancea? is then simply the variance of the whitened noise, @@= E[(Wf N, )?] =
E[(wg Ny) (n« — pn)], which can be written as

ok = E[(WENi)ng

because the estimation pf acts to forceE[(wINk)(BI n,)] to zero.

The overall estimation scheme is shown in Figure 5.5. At every clock cycle, one
prediction vectoE(p'lﬁffi k,) and one variancez(gtﬂfiKl) are adapted. The adapta-
tion of the prediction vector is based on the LMS technique as explained earlier. The

adaptation op(bi"{?, ) and estimation ob?(bi{"{?, ) are given by:

PO = p(b)™+ (W (b) Ny 5.17)
O?(D)"™W = (1 po2)0%(D)% + oo (WU (D) "Ny, '

wherel, and,. denote the adaptation constants for the adaptatiqg‘(tgif_*fiKl)
and estimation o62(b" 1 ), ny = [N, ..., N andb = b2, .

In practice ng is not available to the receiver and the adaptation of the prediction
parameters has to be based on the error sigpaln this case, one would like to
ensure a proper dimensioning of the timing recovery loop. In fact, in order to ensure
that average TED gain is well defined, one must include in the characterization of the
prediction parameters, used by the ML-TED, a constraint on the average TED gain.

A simple solution to this issue is presented in Section 5.6.

5.6 Dimensioning of the ML timing recovery loop

We described in Section 5.3 the ML-TED (5.13). This TED uses knowledge about

noise in the form of a data-dependent whitening vesfor WT(QEffiKl) and whitened
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Figure 5.5 Adaptation ofp(bf'|? ) and estimation 062(bi' (%, ). The
averaging(.) is symbol cluster dependent.

noise variancez(bff2 k,)- The characterization of the whitening vector and whitened

noise variance was presented in Section 5.5. This characterization does not involve
any constraint on the TED gain and thus the overall gain of the timing recovery loop
is ‘ill-defined’. However, for proper dimensioning of the timing recovery loop, one
would like to have a controlled TED gain. This section describes how noise charac-
terization (5.17) can be modified to include a constraint on the TED gain.

Figure 5.3 describes the phase-domain model of the TED of (5.13) where the
TED gain is given by

kit ) — (WO)TS(D))?

k)T )

and the TED noisei (b ? ¢ ) is given by

(B ) = (w(b) "Ny ) (w(b)"S(b))

k—L—K1/ — Gz(b)

The average TED gaiKy is defined as the average kf(b) over all possible
symbol clusters, i.e.

Kai = Ypp(b)Ka(b)

(w(b) S(b))° ) S(b))?
Z p(b) (b) )

wherep(b) is the probability of occurrence of the symbol cludteihis probability
depends only on the coding scheme and is assumed to be known a priori.

In order to constrain the average TED gain (5.18) to a fixed value, e.g. 1, while
characterizing the data-dependent noise, the variaoiés for all symbol clusters
b must be scaled with the same value such &at= 1. The adaptation op(b)

(5.18)
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(equivalentlyw(b)) is unchanged and is given by (5.17). The estimatiog?gb) is
modified to

\Nold b/ T bl 2

A= Sye PO S

new old - T (5.19)
0?™(b) = (1-pe2)0® " (B) + KA (WP(D) Ny,

where we introduced the data-independent varialiteorder to forceKy to 1.

In order to reduce implementation complexity, the variablean be computed
on a subselt of symbol clusters (not necessary all symbol clusters). In this pdsne
must be normalized such thgi,, p(b') = 1. The variable\ needs to be updated
only if the prediction parameters of one of the symbol clustetsi®lipdated.

In practice the seft may be chosen to contain few symbol clusters. A particular
case id = {b,}, where the TED gain is then constrained to be unity for the symbol
clusterby. This is of interest when the symbol clustay is often present in the
transmitted data, e.g. part of a preamble sequence. In this)caseomputed as

| (w(by)TS(by))?
0?(byo)

and needs to be recomputed onlwit,) or 62(b,) are changed. Note thatby) "S(b,)
is computed in the TED (5.13) and thus does not require any extra circuitry.

5.7 Simulation Results For a PRML System

Receivers for PRML systems typically use a linear equalizer followed by a Viterbi
detector (VD), see Chapter 1. The equalizer aims at shaping the channel response
hg to an acceptably shorter target respoggsén order to limit the implementation
complexity of the detector. A discrete-time model of a PRML system is shown in
Figure 5.6.

By way of illustration we consider run-length-limited data with run-length param-
eters(d,k) = (1,7) transmitted over an idealized optical storage channel according
to the Braat-Hopkins model [42]

2T sin(mQ) 19, Q _ (822
H(Q){" ™ (CO§|QC‘ Qcm)a Q| < Qc,

0, Q| > Q..
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Figure 5.6: A discrete-time model of a PRML system including a data-
dependent noise generator.

where Q. denotes the optical cut-off frequency normalized to the baud frequency,
fixed at1/3 in the sequel. These choices reflect the system described in [115]. The
channel output is corrupted by two different noise components. The first one is data-
dependent noisey (media noise) and the second noise component is additive white
Gaussian noisg (electronic noise) with zero mean and variaw2e As explained

in Chapter 1, media noise can be equivalently seen as if the pits on the disc represent
fuzzy ones, i.e. values of the forfr4- ux. The lands, representingl on the disc,

are not hampered by media noise. The data-dependentmgissults then from a
noise sourcey that is injected at the channel input, ira = (h=u)x. The noisal is
modelled as additive white Gaussian noise with a variance that depends onldhe bit
051 =0for by = —1andaf = o7 ; # O for by = 1. Two SNR measures are defined:

a signal to media noise ratio (SMNR) and a signal to additive noise ratio (SANR)
given by

h?
SMNR= 2 and SANR= 2Kk
0-U 0-Z

The channel output is subject to a detags shown in Figure 5.6. The channel
outputry is first filtered by the equalizer and then interpolated at a del@iywhere
U is provided by the timing recovery subsystem. The interpolator is implemented via
a six-tap Lagrange filter [110]. The equalized and interpolated signsisubtracted
from a reference signdl = b)y to produce an error signak wheregy denotes the
detector target response. This error signal is used by the timing recovery subsystem to
adjust the interpolation phase and by the noise characterization block to estimate the
noise prediction parameters. The 5-tap target respgrs.17,0.5,0.67,0.5,0.17|
and a 9-tap equalizer are used. Bit detection is implemented via a Viterbi detector.
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Because of the d=1 constraint, the number of states in the Viterbi trellis reduces to 10
which is standard for nowadays optical storage systems.

Before comparing the new timing recovery algorithm with the ZF algorithm, a
few steps are needed. First, the equalizer taps are trained using the LMS algorithm
at@= | = 0 and noise characterization is achieved as explained in Section 5.5. The
noise characterization parameters are fixetl te 3 andK; = K, = 1. Second, a
calibration process is used in order to ensure that both the ZF-TED and the ML-TED
have the same open-loop gain. To this aim, wegfit a given value and normalize
the ML-TED and the ZF-TED such that their open-loop average output efjuals

The open-loop characteristics of both the ZF and the ML TEDs after calibration
are shown in Figure 5.7 for the case where media noise is dominant, e.g. SMNR=12 dB
and SANR=16 dB. The left plot shows the average of the open-loop TED oxtput
where it is apparent that after calibration, both ZF and ML TEDs have the same gain
especially neaf = 0. However, as shown in the right plot of Figure 5.7, the variance
of xx for the ZF-TED is always higher than that of the ML-TED. The reduction in
the variance of the open-loop TED output amounts in this case to around 2.5 dB at
A = 0. One should recall that in closed-loop and when the PLL is in tracking mode,
only the TED behavior foA ~ 0 matters. The increase in the open-loop noise vari-
ance around = 0.5 can be explained by the fact that the first order approximation
of x¢ as function ofA given in (5.1) holds only foA ~ 0.

The gain in the open-loop TED variance depends obviously on SANR and SMNR.
This gain as function of SANR and SMNR follows the same trend as the gain in tim-
ing jitter in closed-loop simulations. This is the subject of the next paragraph.

In order to assess the performance gain of the ML-TED over the ZF-TED in
closed-loop as function of SMNR and SANR, we force the del&ybe a step func-
tion of time, i.e.q = 0 for k < kg and@ = 0.1 for k > ko where the timing recovery
loop is closed ak = kg. The loop filter parameters, i.e. natural frequemgyand
damping factor, are optimized in order to achieve the best BER. This optimiza-
tion was carried out at SANR=SMNR=16 dB. The optimal BER was achieved for
w, = 0.03and{ = 2. Because optimization of the loop filter parameters at different
values of SANR and SMNR did not show any important performance improvement,
we simply fix the loop filter parameters throughout the simulations.

A first measure to estimate the performance of a timing recovery scheme is the
timing jitter defined as the interpolation phase-error variancegfe= E[(¢— W)?].
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Figure 5.7: Open-loop characteristics of the ZF and ML TEDs at
SMNR=12 dB and SANR=16 dB.

Figure 5.8 shows timing jitter as function of SMNR for different values of SANR
for the ZF and the ML timing recovery schemes. First, it is apparent that the ML
timing recovery is always superior to the ZF timing recovery. Second, the gain of
the new scheme over the ZF scheme is highly dependent on the ratio of SMNR and
SANR. For a given SANR, the gain is higher at low SMNR and vice versa. This gain
goes from 0.3 dB at SANR=10 dB and SMNR=22 dB to around 2.5 dB for SANR=16
dB and SMNR=12 dB. This is in accordance with the open-loop gain in TED output
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Figure 5.8: Timing jitter as function of SMNR for different values of SANR.

variance around = 0 shown in Figure 5.7.
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Figure 5.9: Simulated BER as function of SMNR for different values of
SANR.

In terms of BER, Figure 5.9 shows simulated BER as function of SMNR for
different values of SANR. At low SANR values, e.g. SANR=10 dB, the BER curve
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is not a steep function of SMNR and thus a little gain in timing jitter translates into
a big gain in SMNR, e.g. 6 dB gain &R = 103, At high SANR values, e.g.
SANR=16 dB, the BER is mainly determined by the data-dependent media noise.
For this reason, a substantial gain in timing jitter does not translate directly into a
relatively big gain in BER. Still, a gain of more than 1 dB in SMNR is achieved
atBER = 10"2. At higher SMNR values the impact of timing jitter is much more
visible and the new timing recovery scheme allows a gain of 2 dB in SMNR.

5.8 Conclusions

In this chapter a new timing recovery algorithm for storage channels with data-
dependent noise was presented. Based on a Gauss-Markov correlated noise model, a
maximume-likelihood timing recovery algorithm was derived and analyzed. The new
algorithm incorporates, on the one hand, data-dependent noise prediction and on the
other hand a data-dependent weighing. The noise prediction aims at whitening the
data-dependent noise and the weighing makes the gain of the timing error detector
data-dependent, i.e. smaller gain for noisier data patterns and vice versa. More-
over, because in practice noise can be nonstationary, a simple adaptation scheme is
proposed to estimate and track the noise prediction parameters. Simulation results
for a partial response maximume-likelihood system show that the proposed algorithm
allows significant improvements in performance in the presence of data-dependent
noise.
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Chapter 6

Equalizing Sampling Rate Converter

Data receivers for storage systems normally operate at a fixed samplint/Tate

that is asynchronous to the baud rafd. A sampling-rate converter (SRC) serves

to convert the incoming signal from the asynchronous to the synchronous clock do-
main. These receivers also contain an equalizer that serves to suppress or condition
intersymbol interference and noise. To limit receiver complexity, the equalization
burden can be shifted partially towards the SRC. This possibility is not exploited in
any existing SRC. This chapter presents SRC design methods that combine group
delay flatness and out-of-band rejection criteria with the minimum mean square error
equalization criterion. Numerical examples for an idealized optical storage channel
validate the design methods.

6.1 Introduction

Receivers for data storage systems are often realized with the aid of digital IC tech-
nology. To profit optimally from the rapid advances of this technology, analog-to-
digital conversion is ideally performed early on in the receiver. A common baseband
topology for existing storage systems is depicted in Figure 6.1. A replay sign
applied to an analog low-pass filter (LPF) which suppresses out-of-band noise. The
LPF output is digitized by an analog-to-digital converter (ADC) which operates at a
crystal-controlled free-running frequentyTs that is high enough to prevent alias-
ing. The ADC output is applied to an equalizer (EQ) which conditions intersymbol
interference (ISI) and noise. The equalizer operates at the samplingj/fte.e
asynchronously to the baud ratgT [21]. It is controlled by an adaptation scheme
that is not depicted for simplicity. Asynchronous equalizer adaptation is treated in
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Figure 6.1: Baseband receiver with asynchronous equalizer. Asynchronous
and synchronous clock domains are indicated with the symbols
1/Tsand1/T, respectively.

Chapter 4. A sampling-rate converter (SRC) [86], which forms part of a timing-
recovery loop, produces an equivalent synchronous output which serves as the input
of a bit detector (DET). Rather than placing the equalizer before the SRC, it would
be possible to reverse their order. That would, however, cause the latency of the
equalizer to contribute to the overall delay of the timing-recovery loop, thus signif-
icantly lowering its stability margin and attainable acquisition speed [85]. Also, the
sampling ratel/Ts can be lower than the baud rat@¢T whenever the channel has
negative excess bandwidth. This is so, for example, in existing optical storage sys-
tems, e.g. DVD, Blu-Ray Disc. In such cases the asynchronous equalizer can have
fewer taps and a lower operating speed than its synchronous counterpart, thereby
lowering complexity and power dissipation.

At the heart of the SRC is an interpolation filter that mimics fractional delays, i.e.
delays of a fractionu of the sampling intervals. A shift register that precedes the
interpolation filter produces an additional integer det@yand the overall delay =
(m+p)Tsis re-determined at every symbol interval by the timing-recovery subsystem
[86].

Design of the interpolator filter is a compromise between complexity and interpo-
lation accuracy. Conventionally, this accuracy has two complementary aspects. First,
the filter should mimic a fractional delay, i.e. its group delay characteristics should
be almost flat. Second, the filter should introduce as little amplitude distortion as
possible. This generally requires a long filter. These requirements only pertain to
the pass-band of the storage channel, i.e. the range of frequencies in which actual
data information is received. Outside that range the interpolator filter should ideally
exhibit a large attenuation, and its group delay characteristics become irrelevant.

The equalizer (EQ) in Figure 6.1 is complementary to the SRC in that it is con-
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ventionally meant to counteract all amplitude distortion as well as all phase distortion
except for pure delays. In practice, digital storage channels have a nominal behavior
that is relatively well known [86]. For this reason it is, in principle, possible to com-
pensate for the nominal channel characteristics (amplitude as well as phase) within
the SRC. This would relieve, and thereby simplify, the equalizer in that it would now
only have to deal with variations of the actual channel characteristics relative to the
nominal ones. Moreover, it should also simplify the interpolator filter in that it no
longer requires a very flat amplitude characteristic and a steep transition between
pass-band and stop-band. Hence, by shifting a part of the burden of the equalizer
towards the SRC both blocks will be made simpler.

Because interpolation filters and anti-aliasing filters constitute the heart of any
practical SRC, the remainder of this chapter is divided into two main sections. Sec-
tion 6.2 describes the design of equalizing interpolators. Section 6.3 treats the prob-
lem of designing equalizing anti-aliasing filters.

6.2 Equalizing Interpolator

In order to explain the principle and the design of an equalizing interpolation filter,
let us first consider, in this section, the case where the ADC frequefigys equal

to the baud rate, i.eR= T /Ts = 1. The replay signal, in Figure 6.1, can be written
as

r(t)= Y bih(t—iT) +n(t),

|
whereb; denotes channel datia(t) is the continuous-time channel symbol response
andn(t) is additive noise. We denote Iy the ADC output at the sampling instant
te = (k+ W) T wherepT denotes the sampling phase, i.e.

re = (b)) + ny,

wherehi = h((k+ W) T) andn is pre-filtered and sampled noise. The signais
applied to a FIR filtecc" of lengthL., which we call equalizing interpolator, that is
principally meant to compensate for the sampling phpdsand secondarily to equal-

ize the channel impulse resporh{?towards a target responsgg of lengthL,, see
Figure 6.2. The following subsections present two design methods for the equalizing
interpolatorcH.
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Figure 6.2: Discrete-time system model fofTs=1/T.
6.2.1 MMSE equalizing interpolator

For a given sampling phagethe first design method of the equalizing interpolator

is based on the minimum mean square error (MMSE) criterion. This method consists
of optimizing the taps of* to minimize the mean square error (MSE), iE[e?],
wheregy denotes the error signal (see Figure 6.2) given by

& = X« — (9% b)k_p.
For a given equalizing interpolato¥, the MSE can be written as
E[ef] = ¢TQc* — 2¢v+ E[(g* b){ o), (6.1)

where the matriXQ is given byQ; ; = E[rk_irk—j] and the vectorg" andv are given

by (cH)k = c‘k1 and(v); = E[rx_i(g*b)k_p], respectively. In case the noisgis zero-
mean and white with a varian@g and the data is uncoded, it can be easily shown
that

Qij= <Zh%h%+i—j> +058(i — ),
m
and

(V)i = z h%gi—km—D
m

whered(.) denotes the delta Kronecker function.
The MMSE equalizing interpolator can be derived by setting the gradient of (6.1)
with respect ta* to zero. This yields

9L|\l/|MSE = Q71L/- (6-2)
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Numerical Example :

By way of illustration we consider an idealized optical storage channel accord-
ing to the Braat-Hopkins model [42], see Chapter 1, where the normalized opti-
cal channel cut-off frequency ©; = 1/3. The target response has 5 tags=
[0.17,0.5,0.67,0.5,0.17]. The noise is taken to be white and the signal to noise
ratio, as defined in Chapter 1, is fixed to 15 dB. Figure 6.3 shows the amplitude and
group delay of a 7-tap MMSE equalizing interpolator foe 0.3. The error in group
delay inside the channel pass-band is around 5% of the bit length.

The previous example illustrates that the MMSE designh method does not lead to
a flat group delay and that a method that constrains the group delay is needed. This
is presented in the next subsection.

34
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Figure 6.3: group delay (left plot) and amplitude response (right plot) of the
7-tap MMSE equalizing interpolator far= 0.3.

6.2.2 Group delay constrained equalizing interpolator

The group delay of the interpolation filtef must be as close as possible(i;ez‘—1 +
WT at all frequencies inside the channel pass-band,|©¢.< Q. whereQ. is the
channel cut-off frequency. Upon writing the frequency respons%arﬁcu(ejznm) =
A(Q)e 12®(Q) whereA(Q) andd(Q) denote the amplitude and phase respons of
respectively, it can be easily shown that the group dela;k‘ ahtisfies

1 Im(CHCH)

¢/(Q) = —E[W,
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whereC* andC** denote the derivative and the conjugat€tfel2™ ) respectively
andIm(.) is the imaginary part. This expression can be simplified into

_ HTG(Q)AH

'(Q) = OTG(Q) (6.3)

whereG(Q) = veV{ + VsV, given by
Ve = [1,c092mQT),...,coq2m(L. — 1)QT)]" and
Vs = [0,sin(2mQT), ..., sin(2m(Lc — 1)QT)]". The matrixA is diagonal and its diag-
onal is equal td0, 1,...,Lc — 1].

The mismatch in group delay o{f with respect to its ideal value, |(5% +WT,
needs in practice to stays below a predefined maxginvheredy depends on system
sensitivity to phase errors. In other words, the interpolation filter needs to meet

T <¢(Q) <12 V|QI<Qc (6.4)
wheret; = (51 + )T — 8T andtz = (52 + )T + 8 T. We introduce a finite
frequency gric; € [0,Q¢|, i = 1...N;, and define the corresponding constraints sets
as .

¢ G(Qi)Ac
i=1Ci1<———-—"——X . .
S={em<"rgmne < (6.5)

The problem of equalizing interpolation boils down to designing the ﬁﬁaf
Si, Vi, while achieving amplitude equalization. Amplitude equalization is achieved
by the MMSE technique, i.e. via minimization of

J(c") = E[ef] = ¢*TQc* — 2¢*Tv+ g"Rug, (6.6)

wherec! = [cy,...,c_;]", 9=90,...,0L,-1]", Q = HRpH™+Ry andv = HRpg

where the matriXH has entriedH, 4 = h((q— p+W)T) andRp andR, denote the
autocorrelation matrices of the input data and noise respectively. The design of the
equalizing interpolator can now be formulated as

ct=arg min J(c). (6.7)
QEﬂ!\‘:ClSi
It should be noted that the group delay of (6.3) is related to the filter coefficients in
a nonconvex rational manner, hence the constraintsSsate nonconvex in general.
It follows that standard optimization techniques that hold for convex constraints sets
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do not apply to our problem (6.7). However, we will show that, modulo a linear
transformation, (6.7) is equivalent to finding the orthogonal projection of the MMSE
solution, i.e. the minima of (6.6), over an intersection of nonconvex sets. The vector
space projection method (VSPM) [141] extended to nhonconvex sets [126] can then
be applied. The VSPM deals with the problem of finding an optimal point in a vector
space that satisfies multiple constraints. The theory of VSPM was initially developed
for intersecting convex constraints sets in [109] and [107]. In recent years the the-
ory was extended to non-convex, non-intersecting sets in [126]. In [126] a parallel
projection algorithm, also known in literature as the Parallel Generalized Projection
Algorithm (PGPA), was shown to ensure weak convergence even if the constraint sets
are non-intersecting. As an example, this theorem was used in [97] to design allpass
filters under group delay constraints.

Via decomposing the positive definite mat@xinto I''I", wherel is positive
definite, one can show that (6.7) yields

=rd'=arg min ||/~ ol (6.8)

Gnl 15|

where ||| denotes thé.,-norm andc, = Qv is the MMSE solution. The def-
inition of the new constraints set§ is similar to (6.5) by replacings(Q;) with
G/(Qi) =TT 'G(Q)r 1 andA with A = TAr -1 Accordlng to (6.8)["c* can be in-
terpreted as the orthogonal pro;ectlori'm% overﬂ 15 The setsS’ can be written
ass/ =S NS'2wherest = {¢/: 11 < ddfem} and.S"2 —{c¢:¢ m <12}

The solution of (6.8) can then be based on the PGPA theorem which consists of it-
eratively applying a weighted sum of the orthogonal prOJectIqu%overS’ilz. For

the sake of conciseness, we refer to [97] where a very similar derivati@,ﬁzod:an

be found. The algorithm of designing an equalizing interpolator can be summarized
as follows:

Step 1 we initially setcy = Icy.

Step2¥n>0,¢,,, =52, 5 WR/c,.

If cpq € ﬂ 15/ then go to step 3 otherwise repeat step 2.

Step 3 after convergence! = ~1c/..

The weightswij must satisfyzi’jwij = 1. An obvious choice isvij :2—,{10. However, in
our application it was observed that a much faster convergence is obtained by choos-



156 Equalizing Sampling Rate Converter

ing ‘
i e —PRle?
" Zimllen —Pelf?

Numerical Example :

Using the same channel as in the numerical example of Section 6.2.1, Figures 6.4 and
6.5 show the amplitude and group delay of a 7-tap and 9-tap group delay constrained
equalizing interpolator foru = 0.3 and 8y = 0.003 i.e. 0.3% of the bit interval.

The signal to noise ratio is fixed to 15 dB. Compared to a 7-tap MMSE equalizer
together with a 6-tap Lagrange interpolation [110], the equalizing interpolator has

a negligible loss in MSE of onl§.05dB. This means that the equalizer of Figure 6.1
becomes superfluous.
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Figure 6.4: left plot: group delay of the 7-tap group delay constrained
equalizing interpolator fop = 0.3 and 8y = 0.0003(solid) and
the 7-tap MMSE equalizing interpolator (dashed). The crosses
denote the frequenci€y. right plot: amplitude responses of the
two equalizers.

6.3 Equalizing anti-aliasing filters

In many practical systems, the SRC filters are split into two filters, see Figure 6.6. A
first anti-aliasing filterp,, of lengthL, rejects a specific frequency band in order to
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Figure 6.5: left plot: group delay of the 9-tap group delay constrained
equalizing interpolator foin = 0.3 and &g = 0.003 (solid) and
the 9-tap MMSE equalizing interpolator (dashed). The crosses
denote the frequenci€. right plot: amplitude responses of the
two equalizers.

prevent noise and data aliasing. A second fitfethat depends ot} resamples the
filtered signal at the sampling instatfsprovided by the timing-recovery subsystem.
Such a structure allows a relaxation on the stop-band constraifts @his simpli-

fies greatly the SRC. It is important to mention here that depending on the channel
cut-off frequency and the oversampling r&te- T /T, c can precede the filtgp.

The results of this section can be easily translated to this case. The SRE@ilter

is implemented via a sample selector and an interpolation filter [86]. The interpola-
tion filter can be designed as explained in the previous section. Thediltgrould

then tackle all phase distortions and the remaining amplitude distortions, left by the
equalizing interpolator, while providing enough attenuation at the stop-band.

—E—— e e —_ —a

Figure 6.6: a practical implementation of the SRC.
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The MSE of a system employing the SRC architecture of Figure 6.6 can be found
in [114]. Itis given by

J(p) = p"QrP—2p" Vg + 9" Rog, (6.9)

wherep = [po, ..., pr,l]T, the matrixQr and the vectovg depend on the oversam-
pling rateR and are given by

Qr = FRpFT+CR\CT; vir=FRyg,

where the matrix has entriedq = S,¢(nTs — pTs)h(gT — nTs), C is given by
Cp.q=Cc(—pTs—QTs) and the autocorrelation matrices of the input data and noise are
denoted byRy andRy respectively. The symbol response of the SRC interpolation
filter is denoted by(t). Similarly to Section 6.2, we introduce a finite frequency grid
Q;, i = 1...N; in the stop-band, and constrain the filgrto meet

|P(e/Z™4Ts)12 < 5y, i =1..Ng

whereP(el2Ts) = 5 5 ,e-12M% and10l0g(,) is the desired stop-band attenu-
ation. This amplitude constraint can be Writte@g\m'*g < 85 Where

m = [1,e 12T e i2MLy-1OT]T gnd[.]H denotes transpose conjugate. The op-
timization problem related tp can be formulated as

— in J 6.10
p=arg FTF'))”SO (p), (6.10)

whereF;(p) = ETEHE#E— 0a. The equalizing anti-aliasing filters problem can now
be stated in terms of minimizing the quadratic functiop) subject to the inequalities
constraintds (p) < 0whereF;(p) are real differentiable and convex functions because
the real matricesnm!! are positive. Because the functidqp) is also convex, we
know that if a solution of (6.10) exists then it is unique and it is characterized by
the Kuhn-Tucker (KT) conditions [39]. However, solving the KT conditions can be
quite complex in general. For this purpose we propose to use the Uzawa algorithm
[90] which is an iterative method allowing one to solve an inequality constrained
minimization problem, of a structure as in (6.10) by replacing it with a sequence

of unconstrained minimization problems. If we denote the LagrangigmA) =
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J(p) + e iR (p), the Uzawa algorithm in our context is written as:

L(E(n)’

>

My = mpinL(E,A(”)) (6.11)

Vi AP = maxo, A" +nR(p™)), (6.12)

wheren > 0 is a fixed adaptation constant and the supers¢ripindicates then
iteration. Equation (6.12) ensures that the Lagrange multipliers are always positive.
The unconstrained minimization in (6.11) yields a simple linear system. In fact, it
can be easily shown that (6.11) is equivalent to

1
Ne
p" = (QR+_ZA§”)mm”) V. (6.13)
i=

Initially we set\¥ =0 andp® = Qg'vg (the MMSE equalizer). At every iteration,
we apply (6.13) and (6.12) and checIFit9<”)) <0, Vi. The algorithm is stopped if
this latter condition is met.

=
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Figure 6.7: The Amplitude response of the 9-tap filfwr (solid) and the 9-
tap MMSE equalizer (dashed).

Numerical Example :

Using the same channel as in the example of Section 6.2 at an oversampling rate
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R=1.25, Figure 6.7 shows the amplitude response of a 9-tap filidor an attenu-
ation of -35 dB in[0.3/Ts,0.5/Ts]. The MSE difference between the filgrand the
MMSE equalizer is less than 0.1 dB. This shows that the equalization burden can be
shifted towards the SRC which means that the equalizer of Figure 6.1 can be omitted.

6.4 Conclusions

For all-digital timing-recovery loops, design of efficient sampling-rate converter fil-
ters is very important for performance optimization and complexity limitation. In
fact, to limit the overall receiver complexity, sampling-rate converter filters can be
designed to also perform channel equalization. This presents a two-fold attractive
feature. First, it helps to reduce complexity by shifting a big part of channel equal-
ization towards the SRC filters and thus shortens significantly the equalizer length for
the same performance. Second, for systems employing a digital synchronous equal-
izer, shortening the equalizer length limits the delay inside the timing-recovery loop
which is crucial for its proper functioning.

This chapter presents design methods that combine group delay flathess and out-
of-band rejection criteria, required for sampling-rate converter filters, together with
minimum mean square error equalization. This approach and the corresponding de-
sigh methods are validated for an idealized optical storage system.
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Chapter 7

Summary and Conclusions

The objectives of this thesis are the study and development of adaptive equalization
and timing recovery technigues that meet the key future challenges in high-density
optical storage systems. These challenges stem from the increase in linear and non-
linear intersymbol interference, the nature of noise and fast channel variations. In
this thesis we study issues related to equalization and timing recovery and present
practical schemes that are of potential interest for future systems.

The work in this thesis should open new doors for research in the field of adaptive
equalization and timing recovery for optical storage systems. In fact, as most of the
adaptation techniques used in todays optical storage systems do not fully exploit the
nature of the optical storage channel in terms of noise and nonlinearities, the different
adaptation schemes proposed in this thesis, and in particular the selective equalizer
adaptation and the data-dependent timing-recovery, can be an important contribution
to the state of the art.

This chapter summarizes the thesis work and provides suggestions for future re-
search. This thesis contains seven chapters. Chapter 1 gives an introduction to optical
storage technology and a review of signal processing techniques for read channels.
It presents the main challenges in terms of linear and nonlinear ISI, noise and fast
channel variations for future high-density optical storage systems. Then it points out
the implications of these challenges for equalization and timing recovery.

In Chapter 2 we introduce a new adaptive equalization technique that seeks to
minimize detection bit-error rate (BER). The proposed algorithm incorporates a se-
lection mechanism that enables equalizer adaptation only when bit-detection be-
comes not reliable. Compared to existing equalization schemes, the proposed algo-
rithm provides an important performance improvement, with no increment of com-
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plexity. The superiority of the proposed algorithm is demonstrated analytically and
verified based on computer simulations.

Chapter 3 can be seen as an extension of Chapter 2 in the sense that it covers the
problem of joint equalizer and target response adaptation. We generalize and apply
the near minimum-BER adaptation technique to joint target response and equalizer
adaptation. This is achieved by focusing target-response adaptation on the most likely
bit-error events and acting towards decreasing their probability of occurrence. Rel-
ative to existing adaptation methods, the near minimum-BER scheme is comparable
in terms of implementation complexity. However, in terms of performance, it al-
lows significant improvements especially for short target or equalizer lengths or in
the presence of channel nonlinearities and media noise. This can be important for
high-density storage systems in terms of system complexity reduction, by allowing
the use of a short target response without significant performance degradation, or in
terms of mitigating nonlinearities and media noise.

Chapter 4 tackles the problem of minimizing latencies inside the timing-recovery
loop by shifting the equalizer to the asynchronous clock domain. This involves an
equalizer that operates at a sampling-rate asynchronous to the data rate. Chapter 4
explains, first, the implication of this scheme for equalizer adaptation and then pro-
poses a highly simple yet efficient method for asynchronous equalizer adaptation.
Although Chapter 4 focuses on LMS adaptation for simplicity, its results carry over
to other adaptation criteria as well, e.g. the minimum-BER criterion proposed in
Chapter 2. The main result of this chapter is that asynchronous equalization is now
made as simple as its synchronous counterpart.

With respect to the objective of strengthening the timing-recovery loop, Chap-
ter 5 focuses on designing an optimal timing-recovery scheme for channels with
data-dependent noise. This chapter presents a new data-aided timing recovery al-
gorithm based on a data-dependent Gauss-Markov model of the noise. The proposed
timing recovery algorithm incorporates data-dependent noise prediction parameters
in the form of linear prediction filters and prediction error variances. Compared to
the state of the art, the proposed scheme allows an important performance gain in the
presence of media noise.

As recently all-digital timing recovery is often employed, design of efficient
sampling-rate converter (SRC) digital filters is very important for performance op-
timization and complexity limitation. More precisely, design of SRC filters that also
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realize channel equalization presents attractive features. First, it helps to reduce com-
plexity by shifting a big part of channel equalization towards the SRC filters and thus
shortens significantly the equalizer length for the same performance. Second, for sys-
tems employing a digital synchronous equalizer, shortening the equalizer length lim-
its the delay inside the timing-recovery loop which is crucial for its proper function-
ing. Chapter 6 explains first the problem of equalizing SRC filters and then presents
algorithms for designing such filters.

7.1 Future Research

With respect to the objective of improving the signal-processing part of future optical
storage systems, we can distinguish between two steps. First, improvement of the
write subsystem via development of accurate write-strategy optimization. Second,
amelioration of the read channel which requires dealing with linear and nonlinear ISl
and strengthening the adaptive equalization and timing recovery loop.

Regarding the second step, a possible future research work can aim at enhanc-
ing the performance of the different equalization and timing recovery algorithms
proposed in this thesis. In particular, tailoring the near-minimum BER adaptation
algorithms to decision-directed mode and combining the different algorithms with
soft-decision and iterative techniques could provide some interesting performance
improvements. Also, combination of the near-minimum BER adaptation with post-
processing detection techniques, which focus on the dominant bit-error events pro-
vided by the equalization algorithm, should be investigated. Moreover, extension of
the different algorithms to two-dimensional systems can be a good topic for future
work.

An other topic of future research can be the investigation of nonlinear equaliza-
tion methods to deal with nonlinear ISI. This should also include a generalization
of the selective adaptation criterion of Chapters 2 and 3. Also nonlinearity compen-
sation in combination with a linear or nonlinear equalizer needs to be thoroughly
investigated.

In order to further strengthen the timing recovery loop at low signal to noise
ratios, a possible future work consists of incorporating in our timing error detector
knowledge of the timing errors models. This involves developing proper timing er-
ror models by taking into account the different timing uncertainty sources and then
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designing the corresponding optimal timing error detectors.

An other topic of future work might be the investigation of the interaction prob-
lem between the equalizer adaptation and the timing recovery loop. This is caused
by the fact that a linear phase distortion in the channel can be either compensated
by timing recovery or by the adaptive equalizer. This makes the phase response of
the equalizer ill-defined and causes a degradation of system performance. Although
there exist some constraint-based interaction mitigation algorithms, e.g. [50, 128],
they mainly try, with more or less success, to patch up the problem instead of pre-
venting the source of interaction by decreasing the receiver degrees of freedom. This
subject still needs to be fully explored especially in the case of selective equalizer
adaptation that we developed in Chapters 2 and 3.

Although this thesis focused on optical storage systems, the applicability of the
main results extends well beyond optical storage. A first possible extension of this
thesis, is thus the application of its main results in the field of equalization and tim-
ing recovery to other communication and storage systems. In particular, the near-
minimum BER adaptation scheme developed in Chapters 2,3 and the new timing
recovery scheme of Chapter 5 can be of great interest for high-density magnetic stor-
age systems as these suffer from similar artifacts as optical storage systems. Also,
with modest changes, the new ideas of this thesis might be applicable, among other
systems, to wireless and optical communication systems.
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