17,504 research outputs found

    Skin Colour Detection Based On An Adaptive Multi-Thresholding Technique

    Get PDF
    Today, human region detection in complex scenes has received a great attention due to the wide use of websites and the considerable progress of the still and video images processing tasks. Skin detection or segmentation is a very popular and useful technique for detecting and tracking of human body parts, especially faces and hands. It is employed in tasks like face or hand detection and tracking, filtering of objectionable web images, people retrieval in databases and the Internet. This thesis aims to build a skin detection system that will discriminate between the skin and non-skin pixels in still coloured images. This is done by introducing a metric, which measures the distances of the pixel colour to skin tone. The need for a compact skin model representation stimulates the development of parametric skin distribution models which is used in this research.An adaptive skin colour detection model has been proposed in this thesis. The model is based on the bivariate normal distribution of the skin chromatic subspace. The model uses the 2D Single Gaussian model (SGM), and the 2D Gaussian mixture model (GMM) to represent the skin colour distribution. The model also based on the image segmentation using an automatic and adaptive multi-thresholding technique. This thesis shows that the Gaussian mixture model alone or the Gaussian single model does not improve the performance of the skin detection model due to the number of false detections for high correct classification. For this reason, a combination of SGM and GMM in the same model is proposed in this research. The results show that when processing images of different people taken in different imaging conditions, the use of only one single threshold value is not adapted, and since the proposed method is capable of adaptively adjusting its threshold values and effectively separating skin colour regions from non skin ones, it is applicable to images with various conditions. The experiment shows that the suggested algorithm achieves a noticeable performance improvement and offers a robust solution for skin detection under varying illumination. The results show that the average of the correct rate ā€œTrue Positiveā€ rate for the test images is equal to 94.064% while the False Positive average is equal to 13.166%

    Detector adaptation by maximising agreement between independent data sources

    Get PDF
    Traditional methods for creating classifiers have two main disadvantages. Firstly, it is time consuming to acquire, or manually annotate, the training collection. Secondly, the data on which the classifier is trained may be over-generalised or too specific. This paper presents our investigations into overcoming both of these drawbacks simultaneously, by providing example applications where two data sources train each other. This removes both the need for supervised annotation or feedback, and allows rapid adaptation of the classifier to different data. Two applications are presented: one using thermal infrared and visual imagery to robustly learn changing skin models, and another using changes in saturation and luminance to learn shadow appearance parameters

    Boosting minimalist classifiers for blemish detection in potatoes

    Get PDF
    This paper introduces novel methods for detecting blemishes in potatoes using machine vision. After segmentation of the potato from the background, a pixel-wise classifier is trained to detect blemishes using features extracted from the image. A very large set of candidate features, based on statistical information relating to the colour and texture of the region surrounding a given pixel, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is used to automatically select the best features for discriminating between blemishes and nonblemishes. With this approach, different features can be selected for different potato varieties, while also handling the natural variation in fresh produce due to different seasons, lighting conditions, etc. The results show that the method is able to build ā€œminimalistā€ classifiers that optimise detection performance at low computational cost. In experiments, minimalist blemish detectors were trained for both white and red potato varieties, achieving 89.6% and 89.5% accuracy respectively

    Visual detection of blemishes in potatoes using minimalist boosted classifiers

    Get PDF
    This paper introduces novel methods for detecting blemishes in potatoes using machine vision. After segmentation of the potato from the background, a pixel-wise classifier is trained to detect blemishes using features extracted from the image. A very large set of candidate features, based on statistical information relating to the colour and texture of the region surrounding a given pixel, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is used to automatically select the best features for discriminating between blemishes and non-blemishes. With this approach, different features can be selected for different potato varieties, while also handling the natural variation in fresh produce due to different seasons, lighting conditions, etc. The results show that the method is able to build ``minimalist'' classifiers that optimise detection performance at low computational cost. In experiments, blemish detectors were trained for both white and red potato varieties, achieving 89.6\% and 89.5\% accuracy, respectively

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201
    • ā€¦
    corecore