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Abstract

This paper introduces novel methods for detecting blemishes in potatoes
using machine vision. After segmentation of the potato from the background,
a pixel-wise classifier is trained to detect blemishes using features extracted
from the image. A very large set of candidate features, based on statistical
information relating to the colour and texture of the region surrounding a
given pixel, is first extracted. Then an adaptive boosting algorithm (Ad-
aBoost) is used to automatically select the best features for discriminating
between blemishes and non-blemishes. With this approach, different features
can be selected for different potato varieties, while also handling the natu-
ral variation in fresh produce due to different seasons, lighting conditions,
etc. The results show that the method is able to build “minimalist” clas-
sifiers that optimise detection performance at low computational cost. In
experiments, blemish detectors were trained for both white and red potato
varieties, achieving 89.6% and 89.5% accuracy, respectively.
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1. Introduction

Potatoes (Solanum tuberosum), with an estimated worldwide production
of over 300,000,000 tonnes in 2005 (Food and Agriculture Organisation,
2005), account for 70-80% of the carbohydrate consumed in the UK with
millions of tons harvested worldwide. For the fresh market the main fac-
tor affecting consumer preference is physical appearance and, to maximise
return, great effort is expended ensuring that the appearance best matches
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a particular market. There are no current legislation standards for tuber
blemishes but standards are driven by market forces, principally by the re-
quirements of the larger supermarkets’ customers. Most potatoes are still
sorted by hand. Problems with manual sorting include the subjectivity, fa-
tigue and high cost of human inspectors, while currently deployed artificial
vision systems require manual calibration and have limited accuracy. There
are a number of biological techniques used to identify potato diseases, includ-
ing microscopy and methods based on the recognition of proteins or DNA
of the pathogen, e.g. De Haan and van den Bovenkamp (2005). However,
although the methods are accurate and may be sensitive enough to detect
disease before symptoms develop, they are time-consuming and not suited
to the individual assessment of potatoes on a commercial scale. Thus there
is considerable motivation for automating visual inspection.

In typical machine vision systems for quality analysis of food products,
there are several major steps: after pre-processing (e.g. to segment the ob-
ject of interest from the background), image features are extracted that sum-
marise important qualities of the object, then a pattern recognition system
is used to categorise the input data. For example, Bolle et al. (1996) de-
veloped the VeggieVision system, using HSV-colour and texture histograms
to classify different types of fruit and vegetables, with application to a su-
permarket check-out for automatic produce recognition. Unay and Gosselin
(2006) developed methods to distinguish between blemishes in apples and
healthy apples with visible stem or calyx. Images were recorded using spe-
cial filters to restrict the observed light frequencies, then various features
including statistical moments and shape features were used for pattern recog-
nition. Jelinski et al. (2007) introduced visual inspection methods for pas-
teurised cheese. They also used thresholding to detect ingredients such as
chives, and developed methods to measure the distribution and quantity of
the detected ingredients. Munkevik et al. (2007) developed a machine vision
system for automatic descriptive sensory evaluation of meals, where a neural
network was trained to mimic the opinion of human experts in describing
the sensory attributes of a prototypical meal. Jarimopas and Jaisin (2008)
introduced a system for sorting sweet tamarind, by measuring the size and
shape of tamarind pods as well as detecting defects in the form of broken
pods. Thresholded intensity values were used to distinguish blemishes from
non-blemishes.

In the area of machine vision for potatoes, Tao et al. (1995b) used Fourier
harmonics to describe the shapes of potatoes, forming a metric based on the



first ten Fourier harmonics of the potato’s outline to develop a classification
method which agreed with human classification 89.2% of the time. Muir
et al. (1999) used custom lighting equipment to project light at a variety
of different wavelengths to demonstrate the different reflective properties of
specific blemishes at each wavelength. This work was commissioned in part
by R.J. Herbert Engineering for use in their Upgrader product line (R.J.
Herbert Engineering Ltd, 2008). Tao et al. (1995a) describes the use of the
HSI colour space for identifying greened potatoes as well as yellow and green
apples. This was done by use of histograms produced from each of the HSI
channels. It was noted that more bins in a histogram resulted in a higher
performance. Heinemann et al. (1996) graded potatoes by size and shape to
meet United States Department of Agriculture (USDA) standards. Size was
measured by the longest distance between two points on the boundary, while
the shape was determined using Fourier descriptors. The system achieved 97-
98% accurracy when classifying stationary potatoes but dropped to between
77% and 88% when tested on moving potatoes. Zhou et al. (1998) developed
a system using green levels to detect green defects (greening and sprouting)
in individual potatoes. They also classified potatoes in terms of shape by
comparison to an ellipse template, and in size and weight by measuring the
minor axis and area, respectively. These were compared to USDA standards
with an overall success rate of 86.5% with a false positive rate of 57.1%.
Without the blemish detection the results improved to 90% overall success
rate with 17% false positives. Guannan et al. (2009) detected misshapen
potatoes by comparing the local rate of change of the radius of a potato.
In addition they detected sprouting using a comparison of the green colour
channel with the intensity. This value at each pixel was compared to the
average value across the potato and if the difference was above a threshold
the pixel was determined to be part of a sprout. We have also investigated
the use of features that are summarised across the whole potato.

A limitation of typical machine vision systems is that the set of image
features for pattern recognition has to be designed by the system engineer
to work with a specific configuration of produce, imaging system and op-
erating conditions. Such systems typically do not generalise well to other
configurations, where the required image features may well differ from those
used to design the original system. The novelty of the approach presented
in this paper involves the use of an adaptive boosting algorithm called Ad-
aBoost (Freund and Schapire, 1999) to automatically select good features for
a particular pattern recognition task. A minimal set of features is selected



from a very large set of candidate features, which measure statistical proper-
ties of the colour and texture distribution of the image region surrounding a
given pixel. Thus the selected features used to build the final pattern recog-
nition system are optimised for a particular application by learning from
examples, and the system can be retrained to select a different set of features
in order to accommodate different varieties of produce, seasonal variations,
ete.

The objective of this research is to introduce an automatic method for de-
tecting blemishes in digital images of potatoes. The system developed should
be trainable, so that it can work with different varieties of potatoes and varia-
tions in seasons, lighting conditions, etc. A human expert is required to mark
up areas of blemishes and non-blemishes in a set of training images. After
training, the system should be able to classify individual pixels as blemishes
or non-blemishes with high accuracy. A further objective, with eventual de-
ployment in industrial settings in mind, is to enable real-time processing of
images (possibly in rapid succession) by building “minimalist” classifiers that
extract a minimal subset of all features that optimise detection performance
at the lowest possible computational cost. Finally the feature selection mech-
anism developed should be perspicuous to human users, allowing operators
to understand which features are important to distinguish blemishes from
non-blemishes for different potato varieties. The contribution of the paper
towards meeting these objectives is demonstrated in experiments by learn-
ing minimalist blemish detectors for both white and red potatoes, achieving
89.6% and 89.5% accuracy, respectively.

1.1. Potato Blemishes

There are a number of conditions affecting potato tubers that, although
superficial and of no health consequence to humans, strongly and negatively
influence consumer choice. These include black dot, silver scurf, powdery
scab, common scab and skin spot. The fungal species of Rhizoctonia solani
also causes significant skin blemish as black scurf and elephant hide. The
causes of blemishes are known. However, customer preference may be for
susceptible potato varieties, and different environmental and field conditions
during cultivation favour different diseases. These inevitably lead to some
crops being infected in a generally unpredictable fashion. Other forms of
blemish include physical damage, e.g. growth cracks, mechanical damage
and slug damage, as well as physiological effects, e.g. greening and sprout-
ing. Figure 1 shows examples of several common blemishes. Potatoes and
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their tubers are also susceptible to more significant diseases, in particular
blight, and other fungal and bacterial rots that are outside the scope of
the work presented here. Blemish conditions present a variety of different
coloured, sized and textured symptoms on the skin surface. Such diverse
visual information provides us with a rich source of indicators that can be
used for training an automatic blemish detector. In this paper, our collected
image data contained the following subset of these potato blemishes: black
dot, silver scurf, common scab, slug damage, greening, powdery scab, ele-
phant hide, sprouting and growth cracks. These were the blemishes present
in the potato samples collected from the Spring 2008 harvest at the Sutton
Bridge Experimental Unit of the Potato Council Limited, UK. In this article
our research focus is on detection of blemish versus non-blemish.

2. Materials and methods

2.1. Image Acquisition

The experimental data for this system, consisting of images of potatoes,
were acquired using a colour camera (Sony DSLR-A350K) fixed above the
tubers, which in turn were placed on a white board. The camera was set
to autofocus at a distance of 60cm from the camera objective to the base
on which the subjects were placed, with a focal length of 70 mm and an
aperture setting of F22. The resolution of the images was 1536 x1024 pixels.
In industrial settings a different camera might be used, but due to the use
of machine learning classifiers in our approach, the system should work with
any similar colour imaging device. A pixel in such an image covers an area
of around 0.02 mm?. To reduce the effects of shadows and changing light
conditions the potatoes were placed inside a white cylinder with daylight
bulbs placed around the top. The equipment used to capture these images
is shown in Figure 2.

2.2. Data Sets and Ground Truth Information

There were two sets of data collected for white and red potatoes, respec-
tively, including potatoes affected by different blemishes. The white potato
data set consisted of 102 images including 19 images containing a single blem-
ish type, 39 images with two distinct blemish types, 38 images with three
blemish types and 6 images containing more than three blemish types. The
most common blemishes were black dot and silver scurf, appearing in 69 and
53 images, respectively, while the rarest were powdery scab, elephant hide



and growth cracks, with no more than 3 images of each. The red potato data
set consisted of 22 images with the most common blemishes again being black
dot and silver scurf, appearing in 13 and 6 images, respectively, as well as
common scab, appearing in 12 cases. 10 red potato images had 2 different
blemish types, 3 images had 3 types, 1 image had 4 types, and the remaining
8 images had only one blemish type.

To train the classifiers and test their performance, the images need to
be marked up by hand to provide the “ground truth” information indicating
the correct class of each pixel. The mark up process begins with a semi-
automatic method for background removal, using the Magic Wand tool in
Adobe Photoshop to label the image region surrounding the potato. The
potato area is then hand labelled by an industry expert into regions corre-
sponding to blemish and non-blemish. It is not necessary to label all pixels in
an image: some areas of high uncertainty or ambiguity were left unmarked in
our experiments, and these pixels are ignored during training of the classifier.
Background pixels are also omitted from the subsequent calculations.

Some examples of the obtained ground truth images can be seen in the
left column of Figure 7.

2.8. Feature extraction

The first step of the procedure is to extract different image features that
should indicate the presence or absence of blemishes in a potato image. The
features include statistical summaries of the whole potato and local regions
centred on each pixel as well as the data of the pixel itself. The statistics
used were the mean, variance and skew of various image properties listed
below. Other systems have used only the mean of the region such as Tsai
and Tsai (2002) or histograms as in Bolle et al. (1996). The proposed system
uses the RGB colour space, the original colour format of the camera out-
put. An alternative solution would be to use the HSI colour space but this
would create an additional processing overhead including colour conversion
and calculation of circular statistics. Other systems use more complex hard-
ware set-ups such as customised lighting, as is an option for the Maf-Roda
Agrobotic (Maf Roda Group, 2008) or using specific colour filters as in Unay
and Gosselin (2006). The code for the system software was implemented in
MATLAB.

The image regions used for feature extraction in our experiments were
squares of size 33 x 33, 65 x 65, 97 x 97, 129 x 129, and 161 x 161 pixels,
plus the whole potato, giving 6 regions in total. Our system uses seven
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colour channels; raw RGB, normalised RGB and the intensity channel I =
%(R+G+B ). From these channels we consider the following image properties:

Colour. Intensity is especially of relevance for dark blemishes, e.g. black scurf
or skin spot, while the most obvious blemish to be detected by other colour
channels would be greening. The three statistical moments collected from the
seven colour channels represent the first 21 features for each region. Seven
additional features describe the colour properties of the pixel itself.

Edges. An edge detector determines the rate of change of pixel values in a
given neighbourhood in a specific direction. Some blemishes tend to coincide
with high rates of change, such as powdery scab when the skin splits. The
Sobel edge detector was used in this case with a standard 3 x 3 kernel size.
The edge detector was run on the same seven colour channels listed above.
These statistics provide 21 features for each region and seven for the pixel
itself.

Range. The range filter determines the maximum difference between pixel
values in a given neighbourhood indicating the roughness of the texture.
Higher values tend to correspond to rougher, potentially damaged areas of
the potato. The range filter was run on the same seven channels with a
5 x 5 neighbourhood. The three statistical moments collected from the re-
sulting range information provide another 21 features for each region. Seven
additional features describe range properties of the pixel itself.

In summary there are 7 colour channels x 3 feature types x 3 statistical
moments, making 63 features for each region and 7 x 3 = 21 features for the
pixel itself. All these features are used as the candidate feature set. Since
there are 63 different features that can be extracted from each region, this
gives 63 x 6 = 378 features which, with additional 21 features for the pixel
itself, gives us F. = 399 candidate features in total. These features were used
as the training input to our classifier.

2.4. Classification

The AdaBoost algorithm (Freund and Schapire, 1999) is used to build
a classifier, which combines results from so-called “weak” classifiers (each
constructed using one of the candidate features) into one “strong” classifier
that performs better than any of the weak classifiers alone. It has been used
previously in the classification of apples to avoid falsely classifying apple
features as blemishes (Unay and Gosselin, 2006). The high performance of
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the final strong classifier is due to the emphasis put on the training examples
which are most difficult to classify during the learning process. This method
is called boosting. During training AdaBoost makes a number of passes,
called rounds or iterations, through the training data. Each time it finds
the next best feature to improve the number of correctly classified examples,
prioritising those examples which were misclassified previously. In each pass
one feature is selected and assigned a weight and a threshold to create a new
weak classifier. The weak classifiers are then combined into a strong classifier
wherein each weak classifier is given a weighted vote in the classification of
a given example.

The Real AdaBoost algorithm proposed by Schapire and Singer (1998) is
a generalisation of this algorithm that provides a lower error rate by allowing
weak classifiers to vote by their individual degree of certainty instead of
simply voting yes or no. It is the version used in our experiments, hereafter
referred to simply as AdaBoost.

In our system the AdaBoost algorithm is used to classify individual pix-
els of potato images into two categories: blemished potato and good potato
based on features defined in Section 2.3. The reduced set of selected weak
classifiers allows for preprocessing only the most useful features, saving con-
siderable computation time.

2.4.1. Minimalist classifier

The AdaBoost classifier selects a set of the most useful features from
all candidate features. If the training data is not normally distributed, Ad-
aBoost will often choose the same feature for more than one weak classifier.
Therefore it is of interest to see how much the classification success rate would
be affected by the original candidate feature set being restricted to a sub-
set of features, selected by AdaBoost itself. By doing so the total number of
unique features required to be extracted for classification will be reduced and
therefore less computational time will be required by the feature extraction
stage. We refer to this subset of features as the “selected features”.

Our approach involves two stages, both incorporating the AdaBoost al-
gorithm: the first stage selects a feature set that will be used to train an
AdaBoost classifier in the second stage. Algorithm 1 presents the Real Ad-
aBoost algorithm as described in Huang et al. (2005), applied with our ad-
dition of step 4, in order to limit the number of unique features used in the
final classifier to a smaller number than the total number of weak classifiers
allowed. Using MATLAB we have extended the AdaBoost implementation



within the GML AdaBoost Toolbox (Vezhnevets, 2006), to build the mini-
malist classifier.

2.5. Evaluation metrics

The output of the classifier is a binary image with pixels indicating good
potato or blemish. The performance of the system can be measured by
comparing the output image to the ground truth information. The following
statistics were collected for each output image:

e TP - true positive, number of pixels that were classified as blemish and
matched ground truth;

e F'P - false positive, number of pixels that were classified as blemish but
did not match ground truth;

e TN - true negative, number of pixels that were classified as good potato
and matched ground truth;

e FN - false negative, number of pixels that were classified as good potato
but did not match ground truth.

From these statistics we could calculate the two following metrics:

e sensitivity = 77
e specificity = %.

We represent the performance of our binary classifier using the most common
method based on ROC curves, which provide detailed information about the
relationship between these two metrics with respect to different parameter
settings of the system.

3. Results and discussion

3.1. Training and testing

When training, the minimalist classifier first chooses a number of “se-
lected features” (Fy). To investigate the impact of this parameter on the
classification rate we used Fs; = 1,2,5 and 10. For comparison we also used
F, = F_, the equivalent of a non-minimalist method. The number of Ad-
aBoost rounds in the second stage was set to T" = 40.



Tests were carried out using the training data on a hold-one-out basis
whereby one of the images is removed from the training data and used as
test data instead. The testing is carried out for every image in this manner
with each image being tested by a classifier trained on every thousandth
pixel from the other images. The success rates of the minimalist classifier for
different potato colours and different values of Fy are presented in Table 1.
In addition, the performance of the classifier using ROC curves is presented
in Figure 3 for white potatoes and in Figure 4 for red potatoes.

To determine the importance of different feature categories (i.e. colour,
edge and range), the tests were carried out for different subsets of these
categories. The results are presented as ROC curves in Figure 5 for white
potatoes and in Figure 6 for red potatoes.

Figure 7 shows the output of the classifier compared to the ground truth
information. Some of the disparity between the classifier output and ground
truth could be due to human inaccuracy at the markup stage which can be
seen more clearly in Figure 8.

3.2. Preferred features

The top ten chosen features for white potatoes can be found in Table 3
and for red potatoes in Table 4. In the top 5 features chosen by the minimalist
classifier for both white and red potatoes the most prominent features were
based on the edge detector and range filter run on the red channel followed
by features based on intensity. The preferred regions were the pixel itself and
the smallest region of size 33 x 33 pixels.

3.3. Success rates

Results presented in Table 1 for different number of selected features indi-
cate that using F; = 10 features does not negatively impact the performance
of the classifier, resulting in success rates of 89.6% and 89.5% for white and
red potatoes, respectively. In our tests the minimalist classifier came very
close to or even slightly outperformed the non-minimalist classifier. Further
reducing F, to 5 still gives satisfactory results but the performance drops
noticeably below that number. The difference in performance between clas-
sifiers using different values of F§ can also be seen clearly in ROC curves
(Figures 3 and 4).

The results of using different subsets of feature categories are shown in
Table 2. Using only colour gives a result of 86.9% accuracy for white potatoes
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and 82.2% for red potatoes. Adding edge features gives an increase of classi-
fication rate up to 87.5% and 88.2% for white and red potatoes, respectively.
On the other hand range features give an increase of classification rate up
to 90.2% and 88.0% for white and red potatoes, respectively. This indicates
that range features provide more relevant information than edges. Including
all features does not greatly affect the classification rates, resulting in 89.7%
and 88.7% accuracy for white and red potatoes, respectively. The difference
in performance between classifiers using different feature categories can also
be seen clearly in the ROC curves (Figure 5 and Figure 6).

The reduced performance when using only colour for the red potatoes
may be related to the importance of the red colour channel in white potatoes.
Since red potatoes have a smaller dynamic range in this colour channel the
classifier may need to rely on other features. To ensure this was not simply
due to the smaller number of training examples, the test was re-run on white
potatoes using only 21 images, every fifth image. This resulted in similar
results to before, with colour-only classification rates only dropping from
86.9% to 86.3%, which would tend to confirm the above hypothesis.

4. Conclusions and Further Work

The presented results show that an AdaBoost based system is able to
build minimalist classifiers that optimise detection performance at low com-
putational cost. A minimalist classifier using only ten selected features
achieves success rates of 89.6% for white potatoes and 89.5% for red pota-
toes. The use of AdaBoost in this minimalist form provides a comparable and
sometimes slightly better result than simply providing the whole feature set.
This may be related to AdaBoost’s vulnerability to overfitting (Ratsch et al.,
1998), meaning that the learned statistical model describes random error or
noise in the training data instead of the underlying relationship between the
classifier inputs and outputs.

A number of disagreements between ground truth and classification re-
sults were located on the edges of ground-truthed blemishes, visible in Figure
7. Many of these disagreements may be due to human error in the markup
stage, which can be seen as symptomatic of the problem which this research
sets out to solve, that of human assessment of blemishes being subjective and
prone to error. A machine vision system is likely to be more accurate than
the human who produces the ground truth. This is especially noticeable in
Figure 8 where a larger area has been marked in the ground truth as being
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affected by black dot than detected by the classifier. The errors are due to
the ground truth including an area marked as black dot, which is actually
good potato skin speckled with black dot blemish. The classifier is able to
detect the blemish pixel by pixel, so a portion of the reported error seems to
be caused by inaccurate ground-truthing rather than misclassification.

The issue of human ground-truth inaccuracy might also be addressed by a
semi-automatic method, e.g. by using an unsupervised method which would
cluster similar potato features and allow the human to select clusters and
specify what they represent.

There are a number of possible improvements to the image processing
method used in our system. Some initial research has suggested it might
be possible to replace the fixed square regions used in our experiments with
regions from segmentation algorithms, e.g. normalised cuts (Mori, 2005).
Also the use of textons (Varma and Zisserman, 2005) to provide additional
texture information might improve results. However the processing time
needed to follow the method used in Varma and Zisserman (2005) made it
unappealing to pursue. Further tests have yet to confirm a possible gain in
accuracy or speed of these approaches. Other features that might be involved
would include shape features, if the boundaries of individual blemishes can
be located, and Fourier harmonics as in Tao et al. (1995b).

The proposed system estimates blemished areas of potatoes in 2D images,
while a real world scenario we would have to consider the entire surface area
of a 3D tuber. The question has been already addressed in industry, for
example, with the Herbert Upgrader (R.J. Herbert Engineering Ltd, 2008)
which takes a selection of images of a rolling potato and averages the area
of each. Alternatively, the Hiquip system (Noordam et al., 2000), developed
in the Netherlands, uses a single camera to take photographs of potatoes
passing a series of mirrors to ensure full coverage.

It has been shown that the smaller dataset for red potatoes does not cause
a large reduction in the classifier’s performance compared to the 102 images
used for white potatoes. Given that the minimalist classifier was intended to
reduce the amount of data required to classify a potato, the question remains
of how small a selection of white potatoes would be necessary to still achieve
a satisfactory classification rate.

An overall aim of our work is to provide improved management and con-
trol strategies for the individual blemish diseases. Further research is directed
at distinguishing between blemish types, which will provide a significant tool
to investigate, for example, trends in individual diseases across time, geo-
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graphic areas or weather.
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Algorithm 1 Our implementation of the Real AdaBoost learning algorithm.
Freund and Schapire (1999); Schapire and Singer (1998)

Given a dataset S = {(z1,y1),...(®m,yYm)} where z; € X and y; € {—1,+1}, the weak classifier
pool K, containing all possible weak classifiers from F. candidate features, a specific number of weak
classifiers to be chosen T and a maximum number of unique features to be used to choose these weak
classifiers Fs.
Initialise the sample distribution D1 (i) = 1/m
Fort=1,..T
1.  For each weak classifier h in K do:
a. Partition X into several disjoint blocks X1, ..., Xy,
b.  Using the weights in distribution D; calculate

Wi = P(x; € Xj,y: =1) = > Dy (1)
ixy €Xj,y;=1

Where | = £1
c.  Set the output of h on each X; as

1 (Wi +
Vz € X;,h(z) = iln ({4;16)
+e€
1

d.  Calculate the normalisation factor

zZ=2)%" \/Wilwil
j

2. Select the hy Minimising Z i.e.
Zy = min Z
heK

ht = arg min Z
heK
3. Update the sample distribution

Dyy1(i) = De(i)exp [—yihe(2:)]

and normalise D;41 to give a probability distribution function.
4.  Count the number of unique features used by all weak classifiers. If the total equals Fs then
update K to only contain weak classifiers pertaining to already selected features.
The final strong classifier H is

T
H(z) = sign Z he(z) —b
Lt=1

The confidence of H is defined as

[T
Confp(x) = Y hi(z) = b

t+1
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(a) A potato blemished by black dot. (b) A potato blemished by silver scurf.

(c) Potatoes blemished by common scab.  (d) Potato blemished by powdery scab.

(e) Potato affected by skin spot. (f) Physiological greening of the skin of
a potato.

Figure 1: Examples of potato blemishes
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Figure 2: The camera setup for photographing the training data at a constant distance
with all-around lighting.
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Featires Success Rate

White Potato | Red Potato
F,=1 82.7% 84.8%
F,=2 87.6% 84.5%
F,=5 89.8% 88.7%
F, =10 89.6% 89.5%
F, =F, 89.7% 88.7%

Table 1: Success rates for different numbers of selected features F

Foatures Success Rate

White Potato | Red Potato
colour only 86.9% 82.2%
colour and edges 87.5% 88.2%
colour and range 90.2% 88.0%
colour, range and edges 89.7% 88.7%

Table 2: Success rates for different subsets of feature categories (Fs = F)
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Rank | Region Feature Type Statistical Moment
1 33 x 33 edge red var

2 pixel red -

3 33 x 33 range normalised red | skew
4 pixel range red -

D 161 x 161 | range red skew
6 33 x 33 range blue skew
7 97 x 97 range red mean
8 33 x 33 range green skew
9 whole edge normalised blue | var
10 whole edge normalised red | var

Table 3: The first ten selected features for a minimalist classifier using white potatoes.

Rank | Region Feature Type Statistical Moment
1 65 x 65 edge red var

2 65 x 65 normalised blue mean
3 33 x 33 range red mean
4 33 x 33 range intensity skew
5 whole edge normalised green | var

6 pixel red -

7 161 x 161 | edge normalised green | var

8 whole normalised red var

9 pixel range red -

10 129 x 129 | range blue skew

Table 4: The first ten selected features for a minimalist classifier using red potatoes.
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Figure 3: ROC curves for different numbers of selected features F; tested on white pota-
toes.
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Figure 4: ROC curves for different numbers of selected features F tested on red potatoes.
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Figure 5: ROC curves for different subsets of feature categories tested on white potatoes.
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Figure 6: ROC curves for different subsets of feature categories tested on red potatoes.
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Figure 7: Example images (left to right): first an original photograph, then a ground
truthed image, then an error image, showing false positive results in red and false negative
results in green, for the detection of blemish. The final image is from the processing of
the entire original image without reference to ground truth, blemishes in black and good
potato in white. Most disagreements between ground truth and classification results can
be seen to be around the edges of blemishes where ground-truthing is less accurate.
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Figure 8: Zoomed-in view of the middle of the first image set in Figure 7 clearly showing
that errors are being caused by imprecise markup.
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