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Abstract—This paper introduces novel methods for detecting
blemishes in potatoes using machine vision. After segmentation
of the potato from the background, a pixel-wise classifier is
trained to detect blemishes using features extracted from the
image. A very large set of candidate features, based on statistical
information relating to the colour and texture of the region
surrounding a given pixel, is first extracted. Then an adaptive
boosting algorithm (AdaBoost) is used to automatically select
the best features for discriminating between blemishes and non-
blemishes. With this approach, different features can be selected
for different potato varieties, while also handling the natural
variation in fresh produce due to different seasons, lighting
conditions, etc. The results show that the method is able to
build “minimalist” classifiers that optimise detection performance
at low computational cost. In experiments, minimalist blemish
detectors were trained for both white and red potato varieties,
achieving 89.6% and 89.5% accuracy respectively.

I. INTRODUCTION

Potatoes (Solanum sp. commonly S. tuberosum), with an

estimated worldwide production of over 300,000,000 tonnes in

2005 [1], account for 70-80% of the carbohydrate consumed

in the UK with millions of tons harvested worldwide. For the

fresh market the main factor affecting consumer preference

is physical appearance and, to maximise return, great effort

is expended ensuring that the appearance best matches a

particular market. Most potatoes are still sorted by hand. A

group of human potato graders will each process around 2

tonnes of potatoes per hour [2], so on average each human

decides whether to reject one medium baking potato every 0.45

seconds. Problems with manual sorting include the subjectiv-

ity, fatigue and high cost of human inspectors. Therefore there

is considerable motivation for a machine vision application

with both speed and accuracy considerations.

A. Potato blemishes

There are a number of diseases affecting potato tubers

that, although superficial and generally of little or no health

consequence to humans, strongly and negatively influence con-

sumer choice. These include black dot, silver scurf, powdery

scab, common scab, and skin spot. The fungal species of

Rhizoctonia Solani also causes significant skin blemish as

black scurf and elephant hide. Other forms of blemish include

physical damage, e.g. growth cracks, mechanical damage and

slug damage as well as physiological blemishes, e.g. greening

and sprouting.

These conditions present a variety of different coloured,

sized and textured symptoms on the skin surface. Such diverse

visual information provides us with a rich source of indicators

that can be used for training an automatic blemish detector.

B. Related work

In typical machine vision systems for quality analysis

of food products, there are several major steps: after pre-

processing (e.g. to segment the object of interest from the

background), image features are extracted that summarise

important qualities of the object, then a pattern recognition

system is used to categorise the input data. For example, [3]

introduced a system for sorting sweet tamarind, by measuring

the size and shape of tamarind pods as well as detecting defects

in the form of broken pods. Thresholded intensity values

were used to distinguish blemishes from non-blemishes. [4]

introduced visual inspection methods for pasteurised cheese.

They also used thresholding to detect ingredients such as

chives, and developed methods to measure the distribution and

quantity of the detected ingredients. [5] developed methods to

distinguish between blemishes in apples and healthy apples

with visible stem or calyx. Images were recorded using special

filters to restrict the observed light frequencies, then various

features including statistical moments and shape features were

used for pattern recognition. [6] developed the VeggieVision

system, using HSV-colour and texture histograms to classify

different types of fruit and vegetables, with application to a

supermarket check-out for automatic produce recognition. [7]

developed a machine vision system for automatic descriptive

sensory evaluation of meals, where a neural network was

trained to mimic the opinion of human experts in describing

the sensory attributes of a prototypical meal.

A limitation of typical systems is that the set of image

features for pattern recognition has to be designed by the

system engineer to work with a specific configuration of pro-

duce, imaging system and operating conditions. Such systems

typically do not generalise well to other configurations, where

the required image features may well differ from those used

to design the original system. The novelty of the approach

presented in this paper involves the use of an adaptive boosting

algorithm (AdaBoost [8]) to automatically select good features

for a particular pattern recognition task. A minimal set of

features is selected from a very large set of candidate features,

which measure statistical properties of the colour and texture

distribution of the image region surrounding a given pixel.

Thus the selected features used to build the final pattern

recognition system are optimised for a particular application
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by learning from examples, and the system can be retrained

to select a different set of features in order to accommodate

different varieties of produce, seasonal variations, etc.

The objective of this paper is to introduce an automatic

method for detecting blemishes in digital images of potatoes.

The system developed should be trainable, so that it can work

with different varieties of potatoes and variations in seasons,

lighting conditions, etc. A human expert is required to mark

up areas of blemishes and non-blemishes in a set of training

images. After training, the system should be able to classify

individual pixels as blemishes or non-blemishes with high

accuracy. A further objective, with eventual deployment in

industrial settings in mind, is to enable real-time processing of

images (possibly in rapid succession) by building “minimalist”

classifiers that extract a minimal subset of all features that

optimise detection performance at the lowest possible compu-

tational cost. Finally the feature selection mechanism devel-

oped should be perspicuous to human users, allowing operators

to understand which features are important to distinguish

blemishes from non-blemishes for different potato varieties.

The contribution of this paper towards meeting these objectives

is demonstrated in experiments by learning minimalist blemish

detectors for both white and red potatoes, achieving 89.6% and

89.5% accuracy respectively.

II. MATERIALS AND METHODS

A. Image acquisition

The experimental data for this system, consisting of images

of potatoes, was acquired using a colour camera (Sony DSLR-

A350K) fixed above the tubers which in turn were placed on

a white board. The camera was set at a distance of 60cm from

the camera objective to the base on which the subjects were

placed, with a focal length of 70mm and an aperture setting of

F22. The resolution of the images was 1536×1024 pixels. To

reduce the effects of shadows and changing light conditions

the potatoes were placed inside a white cylinder with daylight

bulbs placed around the top. The equipment used to capture

these images is shown in Fig. 1.

Fig. 1. The camera setup for photographing the training data at a constant
distance with all-around lighting.

B. Ground truth

There were two sets of data collected for white and red

potatoes respectively, including potatoes affected by different

blemishes. The white potato data set consisted of 102 images

including 19 images containing a single blemish type, 39

images with two distinct blemish types, 38 images with three

blemish types and 6 images containing more than three blem-

ish types. The most common blemishes were black dot and

silver scurf, appearing in 69 and 53 images respectively, while

the rarest were powdery scab, elephant hide and growth cracks,

with no more than 3 images of each. The red potato data set

consisted of 22 images with the most common blemishes again

being black dot and silver scurf appearing in 13 and 6 images

respectively as well as common scab, appearing in 12 cases.

10 red potato images had 2 different blemish types, 3 images

had 3 types, 1 image had 4 types, and the remaining 8 images

had only one blemish type.

To train the classifiers and test their performance, the images

need to be marked up by hand to provide the “ground truth”

information indicating the correct class of each pixel. The

mark up process begins with a semi-automatic method for

background removal, using the Magic Wand tool in Photoshop

to label the image region surrounding the potato. The potato

area is then hand labelled by an industry expert into regions

corresponding to blemish and non-blemish. It is not necessary

to label all pixels in an image: some areas of high uncertainty

or ambiguity are left unmarked, and these pixels are ignored

during training of the classifier. Background pixels are also

omitted from the subsequent calculations.

C. Feature extraction

The first step of the procedure is to extract different image

features that should indicate the presence or absence of blem-

ishes in a potato image. The features include statistical sum-

maries of the whole potato and local regions centred on each

pixel as well as the data of the pixel itself. The statistics used

were the mean, variance and skew. Other systems have used

only the mean of the region such as [9] or histograms as in [6].

The proposed system uses the RGB colour space - the original

colour format of the camera output. An alternative solution

would be to use the HSV colour space but this would create

an additional processing overhead including colour conversion

and calculation of circular statistics. Other systems use more

complex hardware set-ups such as customised lighting, as is

an option for the Maf-Roda Agrobotic [10] or using specific

colour filters like in [5]. The code for the system software was

implemented in MATLAB.

The image regions used in our experiments were squares of

size 33×33, 65×65, 97×97, 129×129 and 161×161, plus

the whole potato, giving 6 regions in total.

Our system uses seven colour channels; raw RGB, nor-

malised RGB and the intensity channel. From these channels

we consider the following image properties:

a) Colour: Intensity is especially of relevance for dark

blemishes, e.g. black scurf or skin spot, while the most obvious

blemish to be detected by other colour channels would be

greening. The three statistical moments collected from the

seven colour channels represent the first 21 features for each
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region. Seven additional features describe the colour properties

of the pixel itself.

b) Edges: An edge detector determines the rate of

change of pixel values in a given neighbourhood in a specific

direction. Some blemishes tend to coincide with high rates of

change, such as powdery scab when the skin splits. The Sobel

edge detector was used in this case with a standard 3×3 kernel

size. The edge detector was run on the same seven colour

channels listed above. These statistics provide 21 features for

each region and seven for the pixel itself.

c) Range: The range filter determines the maximum

difference between pixel values in a given neighbourhood

indicating the roughness of the texture. Higher values tend

to correspond to rougher, potentially damaged areas of the

image. The range filter was run on the same seven channels

with a 5 × 5 neighbourhood. The three statistical moments

collected from the resulting range information provide another

21 features for each region. Seven additional features describe

the range properties of the pixel itself.

In summary there are 7 colour channels × 3 feature types ×
3 statistical moments making 63 features for each region and

7 × 3 = 21 features for the pixel itself. All these features are

used as the candidate feature set. Since there are 6 different

regions, this gives 63×6 = 378 features which, with additional

21 features for the pixel itself, gives us Fc = 399 candidate

features in total. These features were used as the training input

to our classifier.

D. AdaBoost

The AdaBoost algorithm [8] is used to build a classifier,

which combines results from so-called “weak” classifiers (each

constructed using one of the candidate features) into one

“strong” classifier that performs better than any of the weak

classifiers alone. It has been used previously in the classi-

fication of apples to avoid falsely classifying apple features

as blemishes [5]. The high performance of the final strong

classifier is due to the emphasis put on the training examples

which are most difficult to classify during the learning process.

This method is called boosting. During training AdaBoost

makes a number of passes, called rounds or iterations, through

the training data. Each time it finds the next best feature to

improve the number of correctly classified examples, priori-

tising those examples which were misclassified previously. In

each pass one feature is selected and assigned a weight and a

threshold to create a new weak classifier. The weak classifiers

are then combined into a strong classifier wherein each weak

classifier is given a weighted vote in the classification of a

given example.

Real AdaBoost [11] is a generalisation of this algorithm

that provides a lower error rate by allowing weak classifiers

to vote by their individual degree of certainty instead of simply

voting “yes” or “no”. It is the version used in our experiments,

hereafter referred to simply as AdaBoost.

AdaBoost has been implemented on a range of tasks,

including face detection [12] but also in food quality control

systems, such as [5].

1) Minimalist AdaBoost: The AdaBoost classifier selects a

set of the most useful features from all candidate features.

If the training data is not normally distributed, AdaBoost

will often choose the same feature for more than one weak

classifier. Therefore it is of interest to see how much the

classification success rate would be affected by the original

candidate feature set being restricted to a subset of features,

selected by AdaBoost itself. By doing so the total number

of unique features required to be extracted for classification

will be reduced and therefore less computational time will be

required by the feature extraction stage. We refer to this subset

of features as “selected features”.

Our minimalist classifier will consist of two stages both

incorporating the AdaBoost algorithm: the first stage selects

a feature set that will be used to train an AdaBoost classifier

in the second stage. Algorithm 1 presents the Real AdaBoost

algorithm as described in [13], applied with our addition of

step 4, in order to limit the number of unique features used in

the final classifier to a smaller number than the total number

of weak classifiers allowed.

Using MATLAB we have extended the AdaBoost imple-

mentation within the GML AdaBoost Toolbox [14], to build

the minimalist classifier.

III. RESULTS AND DISCUSSION

A. Training and testing

When training, the minimalist classifier first chooses a

number of “selected features” (Fs). To investigate the impact

of this parameter on the classification rate we used Fs = 1, 2, 5
and 10. For comparison we also used Fs = Fc, the equivalent

of a non-minimalist system. The number of AdaBoost rounds

in the second stage was set to T = 40.

Tests were carried out using the training data on a hold-one-

out basis whereby one of the 102 images is removed from the

training data and used as test data instead. The testing was

carried out for every image in this manner with each being

tested on a classifier trained on the other 101. On average, the

training data for each such experiment consisted of 8792 pixels

of good potato and 8461 pixels of blemish. The success rates

of the minimalist classifier for different potato colours and

different values of Fs are presented in Table I. In addition, the

performance of the classifier using ROC curves is presented

in Fig. 2 for white potatoes and in Fig. 3 for red potatoes

respectively. To determine the importance of different feature

categories (i.e. colour, edge and range), the tests were carried

out for different subsets of these categories. The results are

presented as ROC curves in Fig. 4 for white potatoes and in

Fig. 5 for red potatoes respectively.

Fig. 6 shows the output of the classifier compared to the

ground truth information. Some of the disparity between the

classifier output and ground truth is due to human inaccuracy

at the markup stage which can be seen more clearly in Fig. 7.

B. Success rates

Results presented in Table I for different numbers of se-

lected features indicate that using Fs = 10 features does not
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Algorithm 1 Our implementation of the Real AdaBoost

learning algorithm. [8], [11]

Given a dataset S = {(x1, y1), ...(xm, ym)} where xi ∈ X and yi ∈
{−1, +1}, the weak classifier pool K, containing all possible weak classifiers from
Fc candidate features, a specific number of weak classifiers to be chosen T and a
maximum number of unique features to be used to choose these weak classifiers Fs.
Initialise the sample distribution D1(i) = 1/m
For t = 1, ...T

1. For each weak classifier h in K do:
a. Partition X into several disjoint blocks X1, ..., Xn

b. Using the weights in distribution Dt calculate

W
j
l

= P (xi ∈ Xj , yi = l) =
∑

i:xi∈Xj,yi=l

Dt(i)

Where l = ±1
c. Set the output of h on each Xj as

∀x ∈ Xj , h(x) =
1

2
ln

(
W j

+1 + ε

W j
−1 + ε

)

d. Calculate the normalisation factor

Z = 2
∑

j

√
W j

+1W j
−1

2. Select the ht Minimising Z i.e.

Zt = min
h∈K

Z

ht = arg min
h∈K

Z

3. Update the sample distribution

Dt+1(i) = Dt(i)exp [−yiht(xi)]

and normalise Dt+1 to give a probability distribution function.
4. Count the number of unique features used by all weak classifiers. If the

total equals Fs then update K to only contain weak classifiers which use
already selected features.

The final strong classifier H is

H(x) = sign

[
T∑

t=1

ht(x) − b

]

The confidence of H is defined as

ConfH(x) =

[
T∑

t+1

ht(x) − b

]

negatively impact the performance of the classifier resulting

in success rates of 89.6% and 89.5% for white and red

potatoes respectively. In our tests the minimalist classifier

provided comparable results to the non-minimalist classifier

(i.e. Fs = Fc) for both white and red potatoes, even slightly

outperforming it. This may be due to overfitting [15]. Further

reducing Fs to 5 still gives satisfactory results but the perfor-

mance drops noticeably below that number. The difference in

performance between classifiers using different values of Fs

can also be seen clearly in the ROC curves (Figs. 2 and 3).

The results of using different subsets of feature categories

are shown in Table II. Using only colour gives a result of

86.3% accuracy for white potatoes and 81.3% for red potatoes.

Adding edge features gives an increase of classification rate

up to 88.4% and 86.8% for white and red potatoes respec-

tively. On the other hand range features give an increase of

classification rate up to 90.1% and 86.4% for white and red

potatoes respectively. This indicates that range features provide

more relevant information than edges. Including all features

does not greatly affect the classification rates resulting in

89.6% and 89.5% for white and red potatoes respectively. The

difference in performance between classifiers using different

feature categories can also be seen clearly in the ROC curves

(Figs. 4 and 5).

Features
Success Rate

White Potato Red Potato
Fs = 1 82.7% 84.8%
Fs = 2 87.6% 84.5%
Fs = 5 89.8% 88.7%
Fs = 10 89.6% 89.5%
Fs = Fc 89.7% 88.7%

TABLE I
SUCCESS RATES FOR DIFFERENT NUMBERS OF SELECTED FEATURES Fs .

Features
Success Rate

White Potato Red Potato
colour only 86.3% 81.3%
colour and edges 88.4% 86.8%
colour and range 90.1% 86.4%
colour, range and edges 89.6% 89.5%

TABLE II
SUCCESS RATES FOR DIFFERENT SUBSETS OF FEATURE CATEGORIES

(Fs = 10).

Fig. 2. ROC curves for different numbers of selected features Fs tested on
white potatoes.

C. Preferred features

The minimalist classifier selects different features for red

potatoes to those selected for whites, as seen in Tables III

and IV. For white potatoes the classifier selects more features

pertaining to the red colour channels. Both classifiers select

more texture than colour features and select the output of the

edge detector on the raw red colour channel as the first feature.
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Fig. 3. ROC curves for different numbers of selected features Fs tested on
red potatoes.

Fig. 4. ROC curves for different subsets of feature categories tested on white
potatoes.

D. Classifier output

Figs. 6 and 7 give good examples of the output of the

classifier when run on an individual potato image. A number of

disagreements between ground truth and classification results

were located on the edges of ground-truthed blemishes, visible

Rank Region Feature Type Statistical Moment

1 33 × 33 edge red var
2 pixel red -
3 33 × 33 range normalised red skew
4 pixel range red -
5 161 × 161 range red skew
6 33 × 33 range blue skew
7 97 × 97 range red mean
8 33 × 33 range green skew
9 whole edge normalised blue var
10 whole edge normalised red var

TABLE III
THE FIRST TEN SELECTED FEATURES FOR A MINIMALIST CLASSIFIER

USING WHITE POTATOES.

Fig. 5. ROC curves for different subsets of feature categories tested on red
potatoes.

Rank Region Feature Type Statistical Moment

1 65 × 65 edge red var
2 65 × 65 normalised blue mean
3 33 × 33 range red mean
4 33 × 33 range intensity skew
5 whole edge normalised green var
6 pixel red -
7 161 × 161 edge normalised green var
8 whole normalised red var
9 pixel range red -
10 129 × 129 range blue skew

TABLE IV
THE FIRST TEN SELECTED FEATURES FOR A MINIMALIST CLASSIFIER

USING RED POTATOES.

in Fig. 6. Many of these may be due to human error in

the markup stage, which can be seen as symptomatic of the

problem which this research sets out to solve, that of human

assessment of blemishes being subjective and prone to error.

A machine vision system is likely to be more accurate than

the human who produces the ground truth. This is especially

noticeable in Fig. 7 where an area has been marked in the

ground truth as being affected by black dot. The errors are due

to the ground truth covering the whole area which is speckled

with black dot blemish, while the classifier is able to detect

the blemish pixel by pixel. Therefore a portion of the reported

error rates is caused by inaccurate ground-truthing rather than

misclassification.

IV. CONCLUSIONS AND FURTHER WORK

The presented results show that an AdaBoost based system

is able to build minimalist classifiers that optimise detection

performance at low computational cost. A minimalist classifier

using only ten selected features achieves success rates of

89.6% for whites and 89.5% for red potatoes. The use of

AdaBoost to build minimalist classifiers provides comparable

and sometimes slightly better results than simply providing the

whole feature set. It is possible that this latter fact is related

to AdaBoost’s vulnerability to overfitting [15].
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Fig. 6. Example images (clockwise from top left): first an original
photograph, then a ground truthed image, then a binary image showing the
classifier’s view of the potato, showing pixels classified as blemish in black
and good potato in white. Finally an error image, showing false positive results
in red and false negative results in green.

Fig. 7. Zoomed-in view of the middle of the images in Fig. 6 showing that
some errors are being caused by imprecise ground truth markup.

Some initial research has suggested it might be possible

to replace the fixed square regions used in our experiments

with regions from segmentation algorithms (e.g. normalised

cuts [16]). Also the use of textons [17] as additional texture

information might improve results. However the processing

time needed to follow the method used in [17] made it

unappealing to pursue for this time-critical application. Further

tests have yet to confirm a possible gain in accuracy or speed

of these approaches.

The next stage in this research involves the identification

of specific blemishes rather than just a binary classification

of blemish versus non-blemish, and investigating solutions to

human inaccuracy in ground-truthing.
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