243 research outputs found

    On supraconvergence phenomenon for second order centered finite differences on non-uniform grids

    Full text link
    In the present study we consider an example of a boundary value problem for a simple second order ordinary differential equation, which may exhibit a boundary layer phenomenon. We show that usual central finite differences, which are second order accurate on a uniform grid, can be substantially upgraded to the fourth order by a suitable choice of the underlying non-uniform grid. This example is quite pedagogical and may give some ideas for more complex problems.Comment: 26 pages, 2 figures, 2 tables, 37 references. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Robust Numerical Methods for Singularly Perturbed Differential Equations--Supplements

    Full text link
    The second edition of the book "Roos, Stynes, Tobiska -- Robust Numerical Methods for Singularly Perturbed Differential Equations" appeared many years ago and was for many years a reliable guide into the world of numerical methods for singularly perturbed problems. Since then many new results came into the game, we present some selected ones and the related sources.Comment: arXiv admin note: text overlap with arXiv:1909.0827

    Sixth-order adaptive non-uniform grids for singularly perturbed boundary value problems

    Get PDF
    In this paper, a sixth order adaptive non-uniform grid has been developed for solving a singularly perturbed boundary-value problem (SPBVP) with boundary layers. For this SPBVP with a small parameter in the leading derivative, an adaptive finite difference method based on the equidistribution principle, is adopted to establish 6th order of convergence. To achieve this supra-convergence, we study the truncation error of the discretized system and obtain an optimal adaptive non-uniform grid. Considering a second order three-point central finite-difference scheme, we develop sixth order approximations by a suitable choice of the underlying optimal adaptive grid. Further, we apply this optimal adaptive grid to nonlinear SPBVPs, by using an extra approximations of the nonlinear term and we obtain almost 6th order of convergence. Unlike other adaptive non-uniform grids, our strategy uses no pre-knowledge of the location and width of the layers. We also show that other choices of the grid distributions lead to a substantial degradation of the accuracy. Numerical results illustrate the effectiveness of the proposed higher order adaptive numerical strategy for both linear and nonlinear SPBVPs

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups

    The Investigation of Efficiency of Physical Phenomena Modelling Using Differential Equations on Distributed Systems

    Get PDF
    This work is dedicated to development of mathematical modelling software. In this dissertation numerical methods and algorithms are investigated in software making context. While applying a numerical method it is important to take into account the limited computer resources, the architecture of these resources and how do methods affect software robustness. Three main aspects of this investigation are that software implementation must be efficient, robust and be able to utilize specific hardware resources. The hardware specificity in this work is related to distributed computations of different types: single CPU with multiple cores, multiple CPUs with multiple cores and highly parallel multithreaded GPU device. The investigation is done in three directions: GPU usage for 3D FDTD calculations, FVM method usage to implement efficient calculations of a very specific heat transferring problem, and development of special techniques for software for specific bacteria self organization problem when the results are sensitive to numerical methods, initial data and even computer round-off errors. All these directions are dedicated to create correct technological components that make a software implementation robust and efficient. The time prediction model for 3D FDTD calculations is proposed, which lets to evaluate the efficiency of different GPUs. A reasonable speedup with GPU comparing to CPU is obtained. For FVM implementation the OpenFOAM open source software is selected as a basis for implementation of calculations and a few algorithms and their modifications to solve efficiency issues are proposed. The FVM parallel solver is implemented and analyzed, it is adapted to heterogeneous cluster Vilkas. To create robust software for simulation of bacteria self organization mathematically robust methods are applied and results are analyzed, the algorithm is modified for parallel computations

    A nonstandard fitted operator finite difference method for two-parameter singularly perturbed time-delay parabolic problems

    Get PDF
    In this article, a class of singularly perturbed time-delay two-parameter second-order parabolic problems are considered. The presence of the two small parameters attached to the derivatives causes the solution of the given problem to exhibit boundary layer(s). We have developed a uniformly convergent nonstandard fitted operator finite difference method (NSFOFDM) to solve the considered problems. The Crank-Nicolson scheme with a uniform mesh is used for the discretization of the time derivative, while for the spatial discretization, we have applied a fitted operator finite difference method following the nonstandard methodology of Mickens. Moreover, the solution bounds of the governing equation are shown by asymptotic analysis. The convergence of the proposed numerical scheme is investigated using truncation error and the barrier function approach. The study shows that our proposed scheme is uniformly convergent independent of the perturbation parameters, quadratically in time, and linearly in space. Numerical experiments are carried out, and the results are presented in tables and graphically

    Multiple time–scale dynamics of stage structured populations and derivative–free optimization

    Get PDF
    The parent-progeny (adult fish–juvenile) relationship is central to understanding the dynamics of fish populations. Management and harvest decisions are based on the assumption of a stock-recruitment function that relates the number of adults to their progeny. Multi-stage population dynamic models provide a modelling framework for understanding this relationship, since they describe the dynamics of fish in several life stages (such as adults, eggs, larvae, and juveniles). Biological processes at various life stages usually evolve at distinct time scales. This thesis contains three papers, which address challenges in modelling and parameter estimation for multiple time-scale dynamics of stage structured populations. A major question is, whether a multi-stage population dynamic model supports the assumption of a stock-recruitment function. In the first paper, we address the parent-progeny relationship admitted by slow-fast systems of differential equations that model the dynamics of a fish population with two stages. We introduce a slow-fast population dynamic model which replicates several well-known stock-recruitment functions. Traditionally, the dynamics of fish populations are described by difference equations. In the second paper, discrete time models for several life stages are formulated. We demonstrate that a multi-stage model may not admit a stock-recruitment function. Sufficient conditions for the validity of two hypotheses about the existence and structure of a parent-progeny function are established. Parameters in population dynamic models can be estimated by minimizing a function of the solution of the ordinary differential equations and available data. Efficient and accurate methods for the solution of differential equations usually evaluate conditional statements. In this case, the objective function may be noisy, instead of continuously differentiable. Furthermore, an algorithm which is used to evaluate the objective function may unexpectedly fail to return a (plausible) value. Then, the optimization problem includes constraints which are only implicitly stated and hidden from the problem formulation. We demonstrate that derivative-free optimization methods find sufficiently accurate solutions for the challenging optimization problems. In the third paper, we compare the performances of several derivative-free methods for a set of optimization problems. We find that a derivative-free trust-region method is most robust to the choice of the initial iterate, but is in general outperformed by direct search methods. Additional numerical simulations in the thesis reveal that direct search methods which approximate a gradient or Hessian find the most accurate solutions. We observe that the optimization problems considered in this thesis are more challenging than a set of noisy benchmark problems. The thesis includes scientific contributions in addition to the results from the three papers

    Robust computational methods to simulate slow-fast dynamical systems governed by predator-prey models

    Get PDF
    Philosophiae Doctor - PhDNumerical approximations of multiscale problems of important applications in ecology are investigated. One of the class of models considered in this work are singularly perturbed (slow-fast) predator-prey systems which are characterized by the presence of a very small positive parameter representing the separation of time-scales between the fast and slow dynamics. Solution of such problems involve multiple scale phenomenon characterized by repeated switching of slow and fast motions, referred to as relaxationoscillations, which are typically challenging to approximate numerically. Granted with a priori knowledge, various time-stepping methods are developed within the framework of partitioning the full problem into fast and slow components, and then numerically treating each component differently according to their time-scales. Nonlinearities that arise as a result of the application of the implicit parts of such schemes are treated by using iterative algorithms, which are known for their superlinear convergence, such as the Jacobian-Free Newton-Krylov (JFNK) and the Anderson’s Acceleration (AA) fixed point methods
    corecore