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In this article, a class of singularly perturbed time-delay two-parameter second-

order parabolic problems are considered. The presence of the two small

parameters attached to the derivatives causes the solution of the given problem to

exhibit boundary layer(s). We have developed a uniformly convergent nonstandard

fitted operator finite di�erence method (NSFOFDM) to solve the considered

problems. The Crank-Nicolson scheme with a uniform mesh is used for the

discretization of the time derivative, while for the spatial discretization, we have

applied a fitted operator finite di�erence method following the nonstandard

methodology of Mickens. Moreover, the solution bounds of the governing

equation are shown by asymptotic analysis. The convergence of the proposed

numerical scheme is investigated using truncation error and the barrier function

approach. The study shows that our proposed scheme is uniformly convergent

independent of the perturbation parameters, quadratically in time, and linearly in

space. Numerical experiments are carried out, and the results are presented in

tables and graphically.
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1. Introduction

Singular perturbation problems (SPPs) were first established as a research domain in the

early 1990’s [1] with the development of the boundary-layer idea in viscous flow [2] and has

flourished over the last few years. Despite the large amount of studies that have already been

done in this thematic area, more relevant and timely research is still ongoing.

Differential equations whose highest order derivative terms are attached with small

positive number(s) are called singularly perturbed problems (SPPs). Singularly perturbation

problems appearing with two small parameters are said to be two-parameter singularly

perturbed problems. A singularly perturbed delay differential equation (SPDDE) is a

differential equation in which the highest derivative is multiplied by a small parameter and

containing at least one delay term either at the space variable, time variable, or both.

A lot of real-life physical problems are represented by linear or nonlinear differential

models or by SPPs whose solution depends on the magnitude of the perturbation parameter.
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Singularly perturbed problems (SPPs) occur in the modeling of

fluid dynamics, elasticity theory, quantum mechanics, reaction

diffusion process, chemical reactor theory, plasma dynamics,

meteorology, diffraction theory, aerodynamics, modeling of

semi-conductors, hydrodynamics, and in several other applied

fields [3–6].

Two-parameter singularly perturbed parabolic differential

equations with time delay havemany applications in different fields,

for example, in engineering such as drift diffusion equation of semi

conductor modeling [7] and chemical reactor model [8] in fluid

dynamics [9].

Friedrichs and Wasow [10] were the first to use the term

singular perturbation problems in their seminar at New York. In

such problems, there are often narrow transition regions called

boundary layers. In these regions, the solution changes rapidly or

jumps abruptly and behaves regularly and slowly away from the

layers.

For the solution of singular perturbation problems, one

may apply the numerical approach or the asymptotic approach.

The asymptotic approach provides the qualitative behavior of

the problem and gives only a semi-quantitative information.

However, the numerical approach provides quantitative

information.

To solve singularly perturbed problems numerically (when

analytical solutions are not available or more complicated), one

can use finite difference methods, finite elements methods, spline

approximation methods, and others, but, unless very fine grids

are used, standard finite difference methods can not resolve the

layers(s) and may not provide a uniformly convergent solution

throughout the given domain.

The two non classical finite difference methods (FDMs)

used for solving SPPs are fitted mesh methods (FMFDMs) and

fitted operator methods (FOFDMs). In this article, we develop a

uniformly convergent and accurate non-standard fitted operator

finite difference method (NSFOFDM) based on the methodology

of Mickens [11].

As the parameters ε and µ in the problem (1) of section (2)

tend to zero, the solution will produce boundary layer(s) at x = 0

and x = 1. When µ = 1, problem (1) is convection- diffusion

problem [12–14], and in this case, a boundary layer(s) of widthO(ε)

will occur around the edge x = 0. Again, when µ = 0, we have a

parabolic reaction-diffusion problem [15] and thin boundary layers

of width O(
√
ε) appear near x = 0 and x = 1.

O’Malley [16] introduced singularly perturbed two-parameter

problems and examined asymptotic expansion for their solutions.

O’Malley [16, 17] identified that the nature of these problems

is quite affected by the choice of ratio of µ2 to ε. O’Malley

et al. developed numerical methods to improve the accuracy

of the asymptotic methods [16]. The class of time-dependent

SPPs of convection-diffusion types with two parameter were

studied in Munyakazi [18] using the classical finite difference

method. Recently, the numerical solution of second-order two-

parametric singularly perturbed ordinary differential equations

(ODEs) with smooth data [19–32] and non-smooth data [33, 34]

were considered.

Some uniformly convergent numerical methods for singularly

perturbed time dependent delay differential equations have been

developed in Bashier and Patidar, Kaushik et al., Kumar and Kumar,

Erdogan and Cen, Cen, Singh et al., Ansari et al., and Kumar and

Kumar [35–42].

In Govindarao et al. [43], a first-order uniformly convergent

method was developed for two-parameter time dependent SPPs

using an upwind finite difference scheme on Shishkin type

meshes.

Solving two-parameter SPPs analytically is either more difficult

task or the analytical solution does not exist. This is because

of the small parameters attached to the highest order terms of

the given problem. These attached small parameters exhibit a

layer behavior in the solutions. The classical finite difference

methods give unstable solution in the layer region. Moreover, the

convergence and stability of the solution in numerical part varies

according to the small parameters. From the existing literature we

have seen, developing a parameter uniformly convergent numerical

method for two-parameter singularly perturbed problems is still a

challenging task.

The objective of this study is to analyze the solution when

the delay is non-zero and the effect of the delay on the boundary

layer solution, as well as investigate problems (1)–(2) with smooth

data. We are inspired to develop a parameter uniformly convergent

numerical scheme to treat a class of second-order two-parameter

singularly perturbed time dependent problem (1)–(2). A non-

standard fitted operator finite difference method based on the

Crank-Nicolson discretization for time variable comprising a non-

standard fitted operator finite difference on uniform mesh for

spatial variable. The developed scheme is of second order in time

and first order in space but has been improved to second order in

both variables by using temporal mesh refinement in Section (5)

in Tables 4, 5. Moreover, the comparison of the developed scheme

with the existing scheme in Kumar and Kumar [44] is investigated

in Section (5) in Table 6. The comparison shows that the maximum

point-wise error of our scheme is less than the scheme in Kumar

and Kumar [44].

This article is organized as follows. We first discuss the

qualitative properties such as the bounds of the analytical solution

u(x, t) of problem (1–2) and its derivative bounds in Section (2).

The numerical scheme of the continuous problem is presented in

Section (3). In this section, we also discuss the time discretization,

the space discretization, the continuous problem discretization,

and bounds of the discrete solution. The stability and convergence

analysis of the scheme is presented in Section (4). In Section (5),

we provide numerical example to show uniformly convergence of

solution and its accuracy. We present the result and conclusions in

Section (6).

2. The continuous problem

We consider the following two families of two-parameter

singularly perturbed time-delay problem. Our domain D̄= D∪∂D,
where D = (0, 1) × (0,T] and ∂D = Ll ∪ Ld ∪ Lr with Ld =
[0, 1]×[−γ , 0](delay interval), Ll = {0}×(0,T](left side boundary)

and Lr = {1}×(0,T](right side boundary). The governing equation
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is as follows:

Lu(x, t)− ut(x, t) =− c(x, t)u(x, t − γ )+ f (x, t), (x, t) ∈ D, (1)

with u(x, t) =8d(x, t), (x, t) ∈ Ld,

u(0, t) =8l(t), u(1, t) = 8r(t), t ∈ [0,T],
(2)

where Lu(x, t) = εuxx(x, t) + µa(x, t)ux(x, t) − b(x, t)u(x, t), 0 <

ε ≤ 1 and 0 ≤ µ ≤ 1 are perturbation parameters and γ

is a delay parameter. In problem (1–2), we suppose that a(x, t),

b(x, t), c(x, t), f (x, t), 8l(t), 8r(t), and 8d(x, t) for (x, t) ∈ D are

sufficiently smooth functions such that a(x, t) ≥ α > 0, b(x, t) ≥
β > 0, and c(x, t) ≥ ϒ > 0, independent of the perturbation

parameters. At the corners, the regularity and compatibility

conditions are

u(0, 0) = 8l(0), u(1, 0) = 8r(0), u(0,−γ ) =
8l(γ ), u(1,−γ ) = 8r(−γ )
ε(8d)xx(0, 0)+ µa(0, 0)(8d)x(0, 0)− b(0, 0)(8d)(0, 0)−
(8b)t(0, 0) = −c(0, 0)(8d)(0,−γ )+ f (0, 0)

ε(8d)xx(1, 0)+ µa(1, 0)(8d)x(1, 0)− b(1, 0)(8d)(1, 0)−
(8d)t(1, 0)(1, 0)(8d)(1,−γ )+ f (1, 0)

forD = (0, 1)× (0,T], and so that8d(x, t) (initial-boundary data)

satisfies appropriate compatibility criteria at the two corners, (0, 0)

and (1, 0). Based on the above assumptions, the given problem in

(1) possesses a unique solution in the considered domain.

2.1. Some qualitative properties of the
continuous problem

In this section, we present some analytical properties of the

governing problem (1–2) in one space dimension and defined

domain D̄.

First, we will state and prove minimum principle and describe

derivative bounds for the solution.

Lemma 2.1. The minimum principle for the continuous SPP [44].

Let ϕ(x, t) ∈ C2,1D̄. If ϕ|∂D ≥ 0 and

(

Lε,µ −
∂

∂t

)

ϕ|D ≤ 0, then

ϕ|D̄ ≥ 0.

Proof. Let (x⋆, t⋆) be an arbitrary point in a plane, D = (0, 1) ×
(0,T) such that ϕ(x⋆, t⋆) = min{ϕ(x, t)}(x⋆ ,t⋆)∈D̄ and again suppose

that ϕ(x⋆, t⋆) < 0. Clearly, (x⋆, t⋆) /∈ {0, 1} × {0,T} and from

the definition of (x⋆, t⋆), we have ϕxx(x⋆, t⋆) ≥ 0, ∇ϕx(x⋆, t⋆) =
0, ∇ϕt(x⋆, t⋆) = 0 (applying first and second derivative test for

multi-variable functions). Now, we have

(

Lε,µ −
∂

∂t

)

ϕ|D = εϕxx(x
⋆, t⋆)

︸ ︷︷ ︸

≥0

+µa(x⋆, t⋆)∇xϕ(x
⋆, t⋆)

︸ ︷︷ ︸

=0

−b(x⋆, t⋆)ϕ(x⋆, t⋆)
︸ ︷︷ ︸

≥0

−∇tϕ(x
⋆, t⋆)

︸ ︷︷ ︸

=0

≥ 0.

This is a contradiction. So that our initial assumption ϕ(x⋆, t⋆) < 0

is wrong. Therefore, ϕ(x⋆, t⋆)|D̄ ≥ 0. Since (x⋆, t⋆) is arbitrary point,

we have ϕ(x, t) ≥ 0 for all (x, t) ∈ D̄.

Lemma 2.2. Bound of the continuous SPP and its derivatives.

Let u be the solution of problem (1)–(2) such that u = v+wL+wR,

where v is the regular component and wL and wR are the left

and right singular components, respectively [44], and let C be

sufficiently large constant which is independent of the perturbation

parameters. Then,

a. ‖u‖ ≤ C.

b. For all non- negative integers i and j (0 ≤ i + 2j ≤ 4), the

derivatives of the solution u of problem (1)–(2) satisfy

∥
∥
∥
∥

∂ i+ju

∂xi∂tj

∥
∥
∥
∥
≤











C
1

(
√
ε)i

, when αµ2 ≤ ηε

C
(µ

ε

)i
(
µ2

ε

)j

, when αµ2 ≥ ηε

c.
∣
∣wL(x, t)

∣
∣ ≤ Ce−θLx,

∣
∣wR(x, t)

∣
∣ ≤ Ce−θR(1−x)

where

θL =

{ √
ηα√
ε
, αµ2 ≤ ηε,

αµ
ε
, αµ2 ≥ ηε,

θR =

{ √
ηa

2
√
ε
, αµ2 ≤ ηε

η
2µ , αµ2 ≥ ηε.

Proof. One can get the proof in Kumar and Kumar and O’Riordan

et al. [44, 45].

The singular component and the regular component derivative

bounds are justified by the following theorem.

Theorem 2.1. For i, j ∈ W = {0, 1, 2, 3, ...}, satisfying 0 ≤ i + 2j ≤
4, derivative bounds for u are given by

∥
∥
∥
∥

∂ i+jv

∂xi∂tj

∥
∥
∥
∥
≤









C, when αµ2 ≤ ηε

C

(

1+
(
ε

µ

)3−i (
µ2

ε

)j
)

, when αµ2 ≥ ηε

Proof. The detail of the proof is in Kumar and Kumar and

O’Riordan et al. [44, 45].

3. The numerical scheme

Here, we develop the numerical scheme by discretizing the

temporal domain, the spatial domain, and the given singularly

perturbed problem in (1)–(2).

3.1. Semi-discrete scheme using temporal
discretization

For the discretization of the temporal domain, we divide the

given time domain [0, T] using a uniform mesh. We have chosen

γ in such a way that T = kγ for some positive integer k > 1.

Moreover, if the set DM is the collection of all mesh points in [0, T]

and if Dm
γ is all mesh points in [−γ , 0], then

DM = {tj = j△t, j = 0, 1, 2, ..., M, tM = T, △t =
T

M
} and

Dm
γ = {tj = j△t, j = 0, 1, 2, ..., m, tm = γ , △t =

γ

m
},
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respectively, whereM is the number of mesh points in time interval

[0, T] and m is the number of mesh points in [−γ , 0]. The

continuous problem is semi-discretized using the Crank-Nicolson

finite difference method in the temporal direction. The derivation

of Crank Niconson scheme for Ut(x, tj) at (x, j+ 1/2) time step is

by using Taylor’s series expansion for U j+1 and U j.

U j+1(x) = U j+1/2(x)+
1t

2

∂U j+1/2(x)

∂t
+

(
1t

2

)2 1

2!

∂2U j+1/2(x)

∂t2
+
(
1t

2

)3 1

3!

∂3U j+1/2(x)

∂t3
+ ... (3)

U j(x) = U j+1/2(x)−
1t

2

∂U j+1/2(x)

∂t
+

(
1t

2

)2 1

2!

∂2U j+1/2(x)

∂t2
−
(
1t

2

)3 1

3!

∂3U j+1/2(x)

∂t3
+ ... (4)

Now, if we subtract (4) from (3), then the term U j+1/2(x) is

eliminated and we obtain

U j+1(x)− U j(x)

1t
=
∂U j+1/2(x)

∂t
+ O(1t)3

and the local truncation error (Tj+1/2(x)) is

Tj+1/2(x) =
(1t)3

24

∂3U j+1/2(x)

∂t3
+H.O.Ts (higher order terms)

Rearranging the problem in (1) using the above discritizations, we

can write the semi-discretized scheme as

u
(

x, tj+1

)

− u
(

x, tj
)

1t
= εuxx

(

x, tj+1/2

)

+ µa(xi, tj+1/2)ux
(

x, tj+1/2

)

−b
(

x, tj+1/2

)

u
(

x, tj+1/2

)

− f
(

x, tj+1/2

)

+ O
(

(1t)3
)}

+













−c
(

x, tj+1/2

)

8d(x)

for j = 0, 1, · · · ,m
−c
(

x, tj+1/2

)

u
(

x, tj+1/2−m
)

for j = m+ 1, · · · ,M − 1

(5)

where

u
(

x, tj+1/2

)

=
u
(

x, tj+1

)

+ u
(

x, tj
)

2
+

O
(

(1t)3
)

and f
(

x, tj+1/2

)

=
f
(

x, tj+1

)

+ f
(

x, tj
)

2
+ O

(

(1t)3
)

Lemma 3.1. Semi-discrete minimum principle. Assume that
[

LMU(x)
]j+1

is the discrete operator given in (5) and ϕj+1(x) is any

mesh function satisfying ϕj+1(x)
∣
∣
∂D ≥ 0 and

[

LMϕ(x)j+1
]∣
∣
D ≤ 0

for 0 ≤ j ≤ M, then ϕj+1(x)
∣
∣
D̄ ≥ 0.

Proof. Let s⋆ ∈ D be any arbitrary point, such that ϕj+1(s⋆) =
minx∈D ϕj+1(x). Again, suppose ϕj+1(x) < 0. It is clear that

the set ((s⋆, tj+1) /∈ {(0, tj+1), (1, tj+1)}. By using the concept of

first test and second derivative test for multi-variable functions

of calculus, we have (ϕxx)
j+1(s⋆) ≥ 0, (ϕx)

j+1(s⋆) = 0.

This gives LMϕ(s⋆)j+1 > 0 which contradict to the fact that

LMϕ(x)j+1 ≤ 0. Therefore, ϕj+1(x)
∣
∣
D̄ ≥ 0 is our desire result.

�

Lemma 3.2. Estimate of local error. Suppose that ‖
∂ku(x, t)

∂tk
‖ ≤

C, (x, t) ∈ D, k = 0, 1, 2. The error estimate in temporal direction

ej+1 = U j+1(x)− u(x, tj+1) for sufficiently large constant C is

∥
∥ej+1

∥
∥ ≤ C(1t)3

Proof. From the Crank-Nicholson finite difference method of

temporal discritization, the fourth order Taylor’s series expansion,

we have

U j+1(x)− U j(x)

1t
=
∂U j+1/2(x)

∂t
+ O((1t)3) (6)

Using Equation 6 into (1)–(2), we get

Lε,µu
j+1(x) = u

j+1
t (x)+ O((1t)3).

Again, we apply the semi-discrete minimum operator for ek+1, and

then we have

LMε,µe
j+1(x) = O((1t)3)

Then, by lemma (3.1) the local error is bounded and given as

∥
∥ej+1

∥
∥ ≤ C(1t)3

Lemma 3.3. Estimate of global error. The global error, Ej =
U j(x)− u(x, tj of the time discretization satisfies

∥
∥Ej
∥
∥
∞ ≤ C(1t)2

where C is a constant independent of ε, µ, and1t.

Proof. By using the estimation of local errors, the global error at

j+ 1 nodal points is given as

∥
∥Ej+1

∥
∥ =

∥
∥
∥
∥
∥
∥

j
∑

ι=1

eι

∥
∥
∥
∥
∥
∥

, j(1t) ≤ T

=
∥
∥e1 + e2 + e3 + e4 + ...+ ej

∥
∥

≤ ‖e1‖ + ‖e2‖ + ‖e3‖ + ‖e4‖ + ...+
∥
∥ej
∥
∥

≤ C1(1t)3 + C2(1t)3 + C3(1t)3 + C4(1t)3 + ...+ Cj(1t)3

≤ C′(j)(1t)3

≤ C′ T

1t
(1t)3 = C′T(1t)2, because j ≤

T

1t

≤ C(1t)2, where, C = C′T

Thus, the semi-discrete scheme is convergent of order two in time.

Lemma 3.4. Let U j(x) be the semi-discrete solution of (1)–(2). For

a certain order of derivative q that depends on the smoothness of

data, U j(x) satisfies the following bound following bound:

∣
∣
∣
∣

dξU j(x)

dxξ

∣
∣
∣
∣
≤ C

(

1+2ξ1e
−p21x +2ξ2e

−p22(1−x)
)

‖, for 0 ≤ ξ ≤ q

where p is any real constant such that 0 < p < 1.

Proof. This lemma was proved in Kadalbajoo and Yadaw [46].
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3.2. Full-discrete scheme using spatial
discretization

To discritize the spatial domain, we consider D̄N that denotes

the interval [0, 1] and then divide it into N sub-intervals such that

x0 = 0, x1 = x0 + i = h, x2 = x1 + h = 2h, · · · xN = Nh = 1.

Then, the discretization of the rectangular domain is D̄N,M =
(D̄N×D̄M)∪(D̄N×D̄m), and also the discretization of the boundary

data and boundary conditions is ∂DN,M = LN, Md ∪ LN,Ml ∪ LN,Mr ,

where LN,Md = D̄N × D̄m, LN,M
l = D̄N ∩ Ll and LN,Mr = D̄N ∩ Lr .

D̄m denotes the uniform temporal meshes in [−γ , 0]. Again, using
the space discretization and the semi-discrete in (5), we can write
the full-discrete scheme as

[

LN,MU
]j
i ≡

u
(

xi, tj+1
)

− u
(

xi, tj
)

1t
= εuxx

(

xi, tj+1/2
)

+
µa(xi, tj+1/2)ux

(

xi, tj+1/2
)

−b
(

xi, tj+1/2
)

u
(

xi, tj+1/2
)

− f
(

xi, tj+1/2
)

+ O
(

(1t)3
)}

+











−c
(

xi, tj+1/2
)

8d(xi)
for i = 0, 1, · · · ,N, j = 0, 1, · · · ,m
−c
(

xi, tj+1/2
)

u
(

xi, tj+1/2−m
)

for i = 0, 1, · · · ,N, j = m+ 1, · · · ,M − 1

(7)

Next, the resulting discretized equation in (7) can be rearranged
using a non-standard fitted operator finite difference method
following the steps in Mickens [11].

[

LN,MU
]j

i
≡

1

2

[

εδ2xU
j+1
i + µaij+1D+

x U
j+1
i − b

j+1
i U

j+1
i + εδ2xU

j
i + µai

jD+
x U

j
i − b

j
iU

j
i

]

− DtU
j+1/2
i = F

j
i i = 0, 1, 2, · · · ,N − 1, j = 0, 1, 2, · · · ,M − 1

(8)

where

D+
x U

j
i =

U
j
i+1 − U

j
i

hx
,

DtU
j+1/2
i =

U
j+1
i − U

j
i

1t
δ2xU

j
i =




U
j
i+1 − 2U

j
i + u

j
i−1

φ2i





D+
x U

j+1
i =

U
j+1
i+1 − U

j+1
i

hx
, δ2xU

j+1
i =




U
j+1
i+1 − 2U

j+1
i + u

j+1
i−1

φ2i





and

F
j
i =







1
2

[

−c
j+1
i ψbi

j+1 − c
j
iψbi

j + f
j+1
i + f

j
i

]

, for j = 0, 1, · · · ,m
1
2

[

−c
j+1
i U

j−m+1
i − c

j
iU

j−m
i + f

j+1
i + f

j
i

]

, for j = m+ 1, · · · ,M − 1

(9)

Again, fromMunyakazi [18], the denominator function φ2i is given

by

φ2i (h, ε,µ) ≡ φ2i =
hε

µa (xi)

(

exp

(
µa (xi) h

ε

)

− 1

)

Equation 8 can be written in compact form as

[

LN,MU
]j

i ≡ δ+U
j+1
i+1 + δ

cU
j+1
i + δ−U j+1

i−1 + δ
+
1 U

j
i+1 + δ

c
1U

j
i+

δ−1 U
j
i−1 = F

j
i (10)

where

δ+ =
(

ε

2φ(i)2
+
µa

j+1
i

2h

)

, δ+1 =

(

ε

2φ(i)2
+
µa

j
i

2h

)

,

δc =

(

−ε
φ(i)2

−
µa

j+1
i

2h
−

b
j+1
i

2
−

1

1t

)

δc1 =

(

−ε
φ(i)2

−
µa

j
i

2h
−

b
j
i

2
−

1

1t

)

, δ− = δ−1 =
ε

2φ(i)2

4. Discrete stability and uniform
convergence analysis

In this section, we investigate the stability and uniform

convergence of the developed scheme.

Lemma 4.1. Discrete minimum principle.

Assume that
[

LN,MU
]j+1

i is the discrete operator given in (10)

and ϕ
j+1
i is any mesh function satisfying ϕ

j+1
i

∣
∣
∣
∂DN,M

≥ 0 and
[

LN,Mϕ
]j+1

i

∣
∣
∣
DN,M

≤ 0 for 0 ≤ i ≤ N, 0 ≤ j ≤ M and then

ϕ
j+1
i

∣
∣
∣
D̄N,M

≥ 0.

Proof. Let s and l be indices such that ϕl+1
s = min(i,j) ϕ

j+1
i for

ϕ
j+1
i ∈ D̄N,M . Again, assume that ϕl+1

s < 0. It is clear to see

that (s, l) /∈ {0,N} × {0,M} because ϕl+1
s ≥ 0. It follows that

ϕl+1
s+1 − ϕl+1

s > 0 and ϕl+1
s − ϕl+1

s−1 < 0.

LN,Mϕl+1
s = ε

(

ϕl+1
s+1 − 2ϕl+1

s + ϕl+1
s−1

φ2s

)

+

µal+1
s

(

ϕls+1 + ϕl+1
s

hs

)

− bl+1
s ϕl+1

s

= ε




ϕl+1
s+1 − ϕl+1

s + ϕl+1
s−1 − ϕ

l+1
s+1

hε
µa(xs)

(

exp
(
µa(xs)h
ε

)

− 1
)



+

µal+1
s

(

ϕl+1
s+1 + ϕl+1

s

hs

)

− bl+1
s ϕl+1

s > 0

which is a contradiction to the fact that LN,Mϕl+1
s ≤ 0. Therefore,

ϕl+1
s ≥ 0. The indices s and l being arbitrary, we obtain ϕ

j+1
i ≥ 0 in

D̄N,M . �

The immediate consequence of the above lemma is the following

lemma which is about a uniform stability estimate.

Lemma 4.2. Uniform stability estimate.

At any time level tj, if Z
j+1
i is any mesh function such that

Z
j+1
0 = Z

j+1
N = 0, then

∣
∣
∣Z

j+1
i

∣
∣
∣ ≤

1

℘
max

1≤i≤N−1

∣
∣
∣LN,MZ

j+1
i

∣
∣
∣ , for 0 < j < M
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Proof. To prove this lemma, we use the concept of barrier functions
(

ϕ±
)j
i and the above discrete minimum principle. Therefore, we

define the two barrier functions as

(

ϕ±
)j+1

i = R± Z
j+1
i

where

R =
1

℘
max

1≤i≤N−1

∣
∣
∣LN,MZ

j+1
i

∣
∣
∣ .

LN,M (

ϕ±
)j+1
0 =

1

℘
max

1≤i≤N−1

∣
∣
∣

(

εδ2xU
j+1
i + µaij+1D+

x U
+1
i − b

j+1
i U

j+1
i

)∣
∣
∣ , 1 ≤ j ≤ M − 1

=
1

℘
max

1≤i≤N−1

∣
∣
∣
∣
∣
ε

(

ϕ
j+1
0 − 2ϕ

j+1
0 + ϕj+1

0

φ2i

)

+ µaj+1
i

(

ϕ
j+1
0 + ϕj+1

0

hi

)

− b
j+1
i ϕ

j+1
0

(

ψ±)j+1
0

∣
∣
∣
∣
∣
± Z

j+1
0 ≥ 0

and

LN,M (

ϕ±
)j+1
N =

1

℘
max

1≤i≤N−1

∣
∣
∣
∣
∣
∣

ε




ϕ
j+1
N − 2ϕ

j+1
N + ϕj+1

N

φ2i



+ µaj+1
i




ϕ
j+1
N + ϕj+1

N

hi



− b
j+1
i ϕ

j+1
N

(

ψ±)j+1
N

∣
∣
∣
∣
∣
∣

± Z
j+1
N ≥ 0

Because a(x, t) ≥ α > 0 and b(x, t) ≥ β > 0, for 1 ≤ j ≤ M − 1, we have

LN,M (

ϕ±
)j+1
N =

1

℘
max

1≤i≤N−1

∣
∣
∣
∣
∣
∣

ε




ϕ
j+1
i − 2ϕ

j+1
i + ϕj+1

i

φ2i



+ µaji




ϕ
j+1
i + ϕj+1

i

hi



− b
j+1
i ϕ

j+1
i

∣
∣
∣
∣
∣
∣

± Z
j+1
i ≤ 0

⇒ LN,K
(

ϕ±
)j+1

i ≤ 0. Therefore, by lemma (4.1) above, we

obtain
(

ϕ±
)j+1

i ≥ 0. �

This lemma shows the uniform stability of the operator LN,M . In the

following two lemmas, we analyze the convergence of scheme in (8)

using bounds of the truncation error in both variables.

Theorem 4.1. Error estimate in the spatial discretization.

Let U j+1(xi) and U
j+1
i are the solution Equations 5, 8, respectively.

If N and C are mesh number and sufficiently large constant, then

the following error bound holds.

∣
∣
∣LN,M
ε,µ

(

U j+1(xi)− U
j+1
i

)∣
∣
∣ ≤

C

N
(11)

Proof. To prove this theorem, we use the differential and difference
equation, and then define the error as follows:

LN,M
ε,µ

(

U(xi, tj+1)− U
j+1
i

)

= LN,M
ε,µ

(

U(xi, tj+1)
)

− LN,M
ε,µ

(

U
j+1
i

)

=ε
d2Uj+1(xi)

dx2
+ µaj+1(xi)

dUj+1(xi)

dx
− bj+1(xi)−

[

εδ2x + µaj+1(xi)D
+
x − bj+1(xi)

]

=ε
d2Uj+1(xi)

dx2
+ µaj+1(xi)

dUj+1(xi)

dx
− bj+1(xi)

−

[

ε

φ2i

(

U
j+1
i+1 − 2U

j+1
i + u

j+1
i−1

)

+
µaj+1(xi)

h

(

U
j+1
i+1 − U

j+1
I

)

−

bj+1(xi)
]

(12)

Now, the Taylor’s series expansion of U
j+1
i+1 , U

j+1
i−1 and

1

φ2i
are

U
j+1
i+1 = U

j+1
i + h

dU j+1(xi)

dx
+

h2

2!

d2U j+1(xi)

dx2
+

h3

3!

d3U j+1(xi)

dx3
+

h4

4!

d4U j+1(ξi)

dx4
, ξ ∈ (xi−1, xi+1)

U
j+1
i−1 = U

j+1
i − h

dU j+1(xi)

dx
+

h2

2!

d2U j+1(xi)

dx2
−

h3

3!

d3U j+1(xi)

dx3
+

h4

4!

d4U j+1(ξi)

dx4
, ξ ∈ (xi−1, xi+1)

1

φ2i
=

1

hε
µa(xi)

(

exp
(
µa(xi)h
ε

)

− 1
) =

1

h2
−
µaj+1(xi)

2εh
+

(µaj+1(xi))2

12ε2

Using these substitutions in (12) and applying some simplification

gives

(

µaj+1(xi)
d2U j+1(xi)

dx2
−
µaj+1(xi)

2

d2U j+1(xi)

dx2

)

h+
(
(µaj+1(xi))2

12ε2
d2U j+1(xi)

dx2
−
µaj+1(xi)

6

d3U j+1(xi)

dx3

)

h2 + O(h3)

(13)

Again, using the bounds of the derivatives in lemma (2.2), we can

describe the bound of the error below:
∣
∣
∣LN,M
ε,µ

(

U(xi, tj+1)− U
j+1
i

)∣
∣
∣ =

∣
∣
∣LN,M
ε,µ

(

U(xi, tj+1)
)

− LN,M
ε,µ

(

U
j+1
i

)∣
∣
∣

≤ C1h+ C2h
2 + ...

≤ Ch =
C

N
(14)

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1222162
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Mohye et al. 10.3389/fams.2023.1222162

Combining lemma (3.3) and theorem (4.1), we can state the

following theorem as main results.

Theorem 4.2. The main result.

Let u(x, t) be the exact solution of (1)–(2) andU
j+1
i is its numerical

approximation obtained using (8). Then, there exists a constant C

independent of ε,µ, h, and1t such that

max
0≤i≤N,0≤j≤M

∣
∣
∣u(xi, tj+1)− U

j+1
i

∣
∣
∣ ≤ C(1t)2 + h). (15)

Proof. To prove this theorem, we take the left side of (15), then
applying triangular inequality by using the semi-discrete solution,

U j+1(xi) as follows:

max
0≤i≤N,0≤j≤M

∣
∣
∣u(xi, tj+1)− U

j+1
i

∣
∣
∣ =

max
0≤i≤N,0≤j≤M

∣
∣
∣u(xi, tj+1)− Uj+1(xi)+ Uj+1(xi)− U

j+1
i

∣
∣
∣

max
0≤i≤N,0≤j≤M

∣
∣
∣u(xi, tj+1)− Uj+1(xi)

∣
∣
∣+ max

0≤i≤N,0≤j≤M

∣
∣
∣Uj+1(xi)− U

j+1
i

∣
∣
∣

(16)

Using the error bounds of lemma (3.3) and Theorem (4.1) for the result in

16, we get

max
0≤i≤N,0≤j≤M

∣
∣u(xi, tj+1)− U j+1(x)

∣
∣+

max
0≤i≤N,0≤j≤M

∣
∣
∣U j+1(x)− U

j+1
i

∣
∣
∣ ≤ C(1t)2 + Ch

≤ C
(

(1t)2 + h
)

Hence,

max
0≤i≤N,0≤j≤M

∣
∣
∣u(xi, tj+1)− U

j+1
i

∣
∣
∣ ≤ C((1t)2 + h).

5. Numerical results and discussion

The following example is implemented to demonstrate the

applicability of the proposed scheme in (8). Here, maximum

absolute errors (point-wise error) and numerical rate of

convergence are calculated on the considered meshes (Shishkin

mesh type, [47]) using the double mesh principle given in Doolan

et al. [48] as follows.

EN,M
rr = max

0≤i,j≤N,M
∣
∣UN,M(xi, tj)− U2N,2M(x2i, t2j)

∣
∣ (maximum absolute errors)

RocN,M = log2

(
EN,M
rr

E2N,2M
rr

)

(rate of convergence)

Example 5.1. Consider the following time-delay problem [44]:












εuxx(x, t)+ µ(1+ x)ux(x, t)− u(x, t)− ut(x, t) =
−u(x, t − τ )+ 16x2(1− x)2, (x, t) ∈ (0, 1)× (0, 2]

u(x, t) = 0, (x, t) ∈ [0, 1]× [−τ , 0]
u(0, t) = 0, u(1, t) = 0, t ∈ [0, 2].

TABLE 1 Maximum errors ErrN,M
ε,µ and rates of convergence Roc

N,M
ε,µ using scheme (8) for example (5.1) with µ = 10−3 and di�erent values of ε.

µ = 10−3 N = 32 64 128 256 512

ε ↓ M = 8 16 32 64 128

100 1.8562e− 03 9.5156e− 04 4.8194e− 04 2.4254e− 04 1.2167e− 04

0.9640 0.9814 0.9906 0.9952 -

10−2 1.9408e− 03 9.7348e− 04 4.8751e− 04 2.4395e− 04 1.2202e− 04

0.9954 0.9977 0.9988 0.9995 -

10−4 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

0.9958 0.9979 0.9990 0.9994 -

10−6 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

0.9958 0.9979 0.9990 0.9994 -

10−8 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

0.9958 0.9979 0.9990 0.9994 -

10−10 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

0.9958 0.9979 0.9990 0.9994 -

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−20 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

0.9958 0.9979 0.9990 0.9994 -

ErrN,M
ε,µ 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

RocN,M
ε,µ 0.9958 0.9979 0.9990 0.9994 -
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TABLE 2 Maximum errors ErrN,M
ε,µ and rates of convergence Roc

N,M
ε,µ using scheme (8) for example (5.1) with ε = 10−3 and di�erent values of µ.

ε = 10−3 N = 32 64 128 256 512

µ ↓ M = 8 16 32 64 128

100 1.9389e− 03 9.7334e− 04 4.8752e− 04 2.4395e− 04 1.2203e− 04

0.9942 0.9975 0.9989 0.9993 -

10−2 1.9417e− 03 9.7369e− 04 4.8756e− 04 2.4396e− 04 1.2203e− 04

0.9958 0.9979 0.9989 0.9994 -

10−4 1.9416e− 03 9.7369e− 04 4.8756e− 04 2.4396e− 04 1.2203e− 04

0.9957 0.9979 0.9989 0.9994 -

10−6 1.9416e− 03 9.7369e− 04 4.8756e− 04 2.4396e− 04 1.2203e− 04

0.9957 0.9979 0.9989 0.9994 -

10−8 1.9416e− 03 9.7369e− 04 4.8756e− 04 2.4396e− 04 1.2203e− 04

0.9957 0.9979 0.9989 0.9994 -

10−10 1.9416e− 03 9.7369e− 04 4.8756e− 04 2.4396e− 04 1.2203e− 04

0.9957 0.9979 0.9989 0.9994 -

10−20 1.9416e− 03 9.7369e− 04 4.8756e− 04 2.4396e− 04 1.2203e− 04

0.9957 0.9979 0.9989 0.9994 -

ErrN,M
ε,µ 1.9416e− 03 9.7369e− 04 4.8756e− 04 2.4396e− 04 1.2203e− 04

RocN,M
ε,µ 0.9957 0.9979 0.9989 0.9994 -

TABLE 3 Maximum errors ErrN,M
ε,µ and rates of convergence Roc

N,M
ε,µ using scheme (8) for example (5.1) with µ = 10−3 and di�erent values of ε.

µ = 10−3 N = 8 32 128 512

ε ↓ M = 8 16 32 64

10−2 ErrN,M
ε,µ 7.6192e-03 3.8573e-03 1.9408e-03 9.7348e-04

RocN,M
ε,µ 0.9820 0.9909 0.9954 -

10−4 ErrN,M
ε,µ 7.6325e-03 3.8609e-03 1.9417e-03 9.7371e-04

RocN,M
ε,µ 0.9832 0.9916 0.9958 -

10−6 ErrN,M
ε,µ 7.6325e-03 3.8609e-03 1.9417e-03 9.7371e-04

RocN,M
ε,µ 0.9832 0.9916 0.9958 -

10−8 ErrN,M
ε,µ 7.6325e-03 3.8609e-03 1.9417e-03 9.7371e-04

RocN,M
ε,µ 0.9832 0.9916 0.9958 -

10−10 ErrN,M
ε,µ 7.6325e-03 3.8609e-03 1.9417e-03 9.7371e-04

RocN,M
ε,µ 0.9832 0.9916 0.9958 -

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−20 ErrN,M
ε,µ 7.6325e-03 3.8609e-03 1.9417e-03 9.7371e-04

RocN,M
ε,µ 0.9832 0.9916 0.9958 -

ErrN,M
ε,µ → 7.6325e-03 3.8609e-03 1.9417e-03 9.7371e-04

RocN,M
ε,µ → 0.9832 0.9916 0.9958 -

In Tables 1, 2, we computed the maximum pointwise errors

and the corresponding rates of convergence for the developed

numerical scheme for example (5.1). Thus, the results are presented

using µ = 10−3 and different values of ε as shown in

Table 1, and using ε = 10−3 and different values of µ as

shown in Table 2 with the discretization parameters N and

M varying with the same ratio (N and M both multiplied

by 2). Here, we see that the rate of convergence of the

developed fitted operator finite difference scheme is very close

to one(confirm the spatial order). Again, the result in Table 3

is computed using µ = 10−3 and different values of ε with

the discretization parameters N and M varying with the ratios
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TABLE 4 Maximum errors ErrN,M
ε,µ and rates of convergence Roc

N,M
ε,µ using scheme (8) for example (5.1) with µ = 10−3 and di�erent values of ε.

µ = 10−3 N =32 64 128 256

ε ↓ M =16 64 256 1,024

10−2 ErrN,M
ε,µ 1.1476e− 02 2.9143e− 03 7.3146e− 04 1.8305e− 04

RocN,M
ε,µ 1.9774 1.9943 1.9985 -

10−4 ErrN,M
ε,µ 1.1493e− 02 2.9154e− 03 7.3153e− 04 1.8305e− 04

RocN,M
ε,µ 1.9790 1.9947 1.9987 -

10−6 ErrN,M
ε,µ 1.1494e− 02 2.9154e− 03 7.3153e− 04 1.8305e− 04

RocN,M
ε,µ 1.9791 1.9947 1.9987 -

10−8 ErrN,M
ε,µ 1.1494e− 02 2.9154e− 03 7.3153e− 04 1.8305e− 04

RocN,M
ε,µ 1.9791 1.9947 1.9987 -

10−10 ErrN,M
ε,µ 1.1494e− 02 2.9154e− 03 7.3153e− 04 1.8305e− 04

RocN,M
ε,µ 1.9791 1.9947 1.9987 -

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−20 ErrN,M
ε,µ 1.1494e− 02 2.9154e− 03 7.3153e− 04 1.8305e− 04

RocN,M
ε,µ 1.9791 1.9947 1.9987 -

ErrN,M
ε,µ → 1.1494e− 02 2.9154e− 03 7.3153e− 04 1.8305e− 04

RocN,M
ε,µ → 1.9791 1.9947 1.9987 -

TABLE 5 Maximum errors ErrN,M
ε,µ and rates of convergence Roc

N,M
ε,µ using scheme (8) for example (5.1) with ε = 10−3 and di�erent values of µ.

ε = 10−3 N =32 64 128 256

µ ↓ M =16 64 256 1,024

10−2 ErrN,M
ε,µ 1.1492e-02 2.9154e-03 7.3152e-04 1.8305e-04

RocN,M
ε,µ 1.9789 1.9947 1.9987 -

10−4 ErrN,M
ε,µ 1.1492e-02 2.9153e-03 7.3152e-04 1.8305e-04

RocN,M
ε,µ 1.9789 1.9947 1.9987 -

10−6 ErrN,M
ε,µ 1.1492e-02 2.9153e-03 7.3152e-04 1.8305e-04

RocN,M
ε,µ 1.9789 1.9947 1.9987 -

10−8 ErrN,M
ε,µ 1.1492e-02 2.9153e-03 7.3152e-04 1.8305e-04

RocN,M
ε,µ 1.9789 1.9947 1.9987 -

10−10 ErrN,M
ε,µ 1.1492e-02 2.9153e-03 7.3152e-04 1.8305e-04

RocN,M
ε,µ 1.9789 1.9947 1.9987 -

10−20 ErrN,M
ε,µ 1.1492e-02 2.9153e-03 7.3152e-04 1.8305e-04

RocN,M
ε,µ 1.9789 1.9947 1.9987 -

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ErrN,M
ε,µ → 1.1492e-02 2.9153e-03 7.3152e-04 1.8305e-04

RocN,M
ε,µ → 1.9789 1.9947 1.9987 -

of 4 and 2, respectively, and the rate of convergence is still the

first order.

In Tables 4, 5, we computed the maximum pointwise errors and

the corresponding rates of convergence for the numerical solution

of example (5.1) using scheme (8). Thus, the results are presented

by taking the values of µ and and ε as we have done for Tables 1,

2 and also using the discretization parameters N and M varying

with the ratios of 2 and 4, respectively. Here, we show that the

rate of convergence of the developed fitted operator finite difference

scheme is almost two(confirm temporal order).
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TABLE 6 Comparison of ErrN,M
ε,µ of our scheme in (8) with an existing schemes in Kumar and Kumar [44] using example (5.1).

µ = 10−3 N = 32 N = 64 N = 128 N = 256 N = 512

ε ↓ M = 8 M = 16 M = 32 M = 64 M = 128

Proposed method

10−4 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

10−6 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

10−8 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

10−10 1.9417e− 03 9.7371e− 04 4.8757e− 04 2.4396e− 04 1.2203e− 04

Scheme in Kumar and Kumar [44]

10−4 4.3705e− 2 1.6704e− 2 7.3802e− 3 3.7406e− 3 1.8967e− 3

10−6 4.3471e− 2 1.6596e− 2 7.3290e− 3 3.7218e− 3 1.8873e− 3

10−8 4.3429e− 2 1.6573e− 2 7.3303e− 3 3.7211e− 3 1.8870e− 3

10−10 4.4343e− 2 1.6572e− 2 7.3303e− 3 3.7211e− 3 1.8870e− 3

FIGURE 1

Numerical solution of example (5.1) for µ = 10−10 and ε = 10−3

taking N = 128 and M = 64.

Table 6 shows the comparison of our scheme with the reference

cited in Kumar and Kumar [44]. The comparison confirms that

the maximum point-wise error, ErrN,M
ε,µ obtained by our scheme

is less than the error obtained by the scheme in Kumar and

Kumar [44].

For the given example (5.1) the plotted Figures 1, 2 exhibit that

the boundary layer behavior in the solution of the given problem.

Again, the log-log plot in Figure 3 supports our theoretical error

estimates.

6. Conclusion

We have developed a non-standard fitted operator finite

difference method (NSFOFDM) for solving singularly perturbed

time-delay partial differential equation with two perturbation

parameters. In this study, uniform meshes have been considered in

FIGURE 2

Numerical solution of example (5.1) for µ = 10−3 and ε = 10−10

taking N = 128 and M = 64.

both space and time directions. The discretization was by using the

implicit Crank-Nicolson finite difference method for time variable

and a non-standard fitted operator finite difference(NSFOFDM)

for space variable. The proposed numerical method is uniformly

convergent independent of both the perturbation parameters, ε

and µ. The scheme is shown to be first order in space and

second order in time theoretically, but, we improved the order

of convergence to the second order in both variables using

temporal mesh refinement as shown in Tables 4, 5. To confirm the

theoretical convergence results and to demonstrate the applicability

of the proposed method, an example has been provided and

results are presented in tables and graphs using Matlab software.

The numerical example confirms the theoretical analyses. In

our study, we considered two-parameter time-delay problem in

one space dimensional. Future researches can be done in two

space dimension.
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FIGURE 3

Log-Log plot N vs. maximum absolute errors for example (5.1).
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