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Abstract

The parent-progeny (adult fish–juvenile) relationship is central to understanding the
dynamics of fish populations. Management and harvest decisions are based on the
assumption of a stock-recruitment function that relates the number of adults to their
progeny. Multi-stage population dynamic models provide a modelling framework for
understanding this relationship, since they describe the dynamics of fish in several life
stages (such as adults, eggs, larvae, and juveniles). Biological processes at various life
stages usually evolve at distinct time scales.

This thesis contains three papers, which address challenges in modelling and pa-
rameter estimation for multiple time-scale dynamics of stage structured populations. A
major question is, whether a multi-stage population dynamic model supports the as-
sumption of a stock-recruitment function.

In the first paper, we address the parent-progeny relationship admitted by slow-fast
systems of differential equations that model the dynamics of a fish population with two
stages. We introduce a slow-fast population dynamic model which replicates several
well-known stock-recruitment functions.

Traditionally, the dynamics of fish populations are described by difference equa-
tions. In the second paper, discrete time models for several life stages are formulated.
We demonstrate that a multi-stage model may not admit a stock-recruitment function.
Sufficient conditions for the validity of two hypotheses about the existence and struc-
ture of a parent-progeny function are established.

Parameters in population dynamic models can be estimated by minimizing a func-
tion of the solution of the ordinary differential equations and available data. Efficient
and accurate methods for the solution of differential equations usually evaluate condi-
tional statements. In this case, the objective function may be noisy, instead of continu-
ously differentiable. Furthermore, an algorithm which is used to evaluate the objective
function may unexpectedly fail to return a (plausible) value. Then, the optimization
problem includes constraints which are only implicitly stated and hidden from the prob-
lem formulation.

We demonstrate that derivative-free optimization methods find sufficiently accurate
solutions for the challenging optimization problems. In the third paper, we compare the
performances of several derivative-free methods for a set of optimization problems. We
find that a derivative-free trust-region method is most robust to the choice of the initial
iterate, but is in general outperformed by direct search methods. Additional numerical
simulations in the thesis reveal that direct search methods which approximate a gradient
or Hessian find the most accurate solutions. We observe that the optimization problems
considered in this thesis are more challenging than a set of noisy benchmark problems.

The thesis includes scientific contributions in addition to the results from the
three papers.
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Chapter 1

Introduction

1.1 Stock-recruitment relationships

Parent-progeny (adult fish–juvenile) relationships are important for the management of
a fishery. Since the seminal paper by Hjort [74] in 1914, understanding the parent-
progeny relationship of fish populations has been an integral part of research on popu-
lation dynamics of fish. The life history of fish usually consists of several stages such
as eggs, larvae, juveniles, and adults, [122]. Following the transitions from one life
stage to the next, survival may be restricted by stage-specific factors such as canni-
balism, competition, and spread of disease. Time series of the number of fish often
show large temporal variations. As observed in [74], e.g. Ch. 6, the number of fish in
the youngest year-classes varies over time, and highly abundant year-classes may re-
main highly abundant through their lifetime. Hjort concluded that understanding the
variations in the number of fish in the youngest year-class is central to understanding
the fluctuations in the number of fish, a hypothesis which still has relevance, [129].
Functions that represent the parent-progeny relationship are commonly used to derive
target or limit values for the fishing mortality and for medium-term forecasts (5 to 10
years), [106].

Traditionally, the relationship between adult fish and juveniles is described by stock-
recruitment (SR) functions. The term recruitment refers to the introduction of young
fish to the population, for example, by becoming catchable or mature, or reaching a
certain age or length. The part of the stock that is mature enough to contribute to the
reproduction process is called the spawning stock. The spawning stock size, i.e., num-
ber or biomass of the reproductive part of the population (e.g. mature females), is often
obtained as a weighted sum of the number of adults in several adult age-classes, [70,
Ch. 10; 106]. In the following, we refer to any link between the time series of the num-
ber of adults in several age-classes and recruitment as the SR relationship – analogous
to a SR function.

The fisheries literature contains a wide spectrum of SR functions, [106; 116, Ch. 3].
Denote by S the spawning stock size. Let R>0 be the set of positive real numbers and
a,b,γ ∈ R>0. Two popular SR functions introduced by Ricker [119] and Beverton and
Holt [21] are described by (1.1)–(1.2), respectively. The Deriso (sometimes referred to
as Deriso–Schnute) model (1.3) corresponds to the Ricker model for γ → ∞ and to the
Beverton–Holt model for γ = 1. The Deriso model was first published by Deriso [52]
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and (1.3) corresponds to the version by Schnute [126].

Beverton–Holt: r(S) = aS · (1+bS)−1 , (1.1)

Ricker: r(S) = aS · e−bS , (1.2)
Deriso: r(S) = aS · (1+bS/γ)−γ . (1.3)

As described by Schnute [126], the Deriso function (1.3) is strictly increasing in S
for γ ≤ 1. For γ > 1, the SR function is dome-shaped, i.e., the function has exactly
one stationary point Sm ≥ 0, is strictly increasing for S < Sm and strictly decreasing
for S > Sm. The distinct types of asymptotic behaviour of a SR function as S → ∞
have in the fisheries literature been linked to food availability. For example, hybrid SR
functions, which are dome-shaped in case of low food supply and saturating otherwise,
have been proposed in [79, 109]. The Beverton–Holt, Ricker, and Deriso functions are
illustrated in Figure 1.1. The four curves share the same values for a and b.

Number of spawners

R
ec

ru
itm

en
t

 

 

Ricker

Deriso, γ=5

Deriso, γ=1.5

Beverton−Holt

Figure 1.1: Traditional stock-recruitment functions.

Often, a SR function may be chosen based on a visual investigation of the avail-
able SR data, [134]. The data is used to estimate the uncertain parameters (a, b) of
the chosen SR function. The estimation usually involves the task of minimizing a non-
linear function, for example, the least squares error between the SR function and the
data. Knowledge about the values of the parameters in the SR function is valuable for
fishery management. For example, parameters in a SR function may inform about the
resilience and productivity of a stock, [30] and references therein.

Hilborn and Walters [73, p. 241] note that the "most important and generally most
difficult problem in biological assessment of fisheries is the relationship between stock
and recruitment". Data for recruitment and the stock often show high variability, as
the estimates for recruitment and the spawning stock biomass of cod (Gadus morhua)
in the North Sea, the Skagerrak, and the eastern Channel from [78, Tables 14.9 and
14.11a] and illustrated in Figure 1.2. Establishing a functional relationship between the
mature stock and recruitment is nontrivial.

This is in part due to the high variability and uncertainty that characterize the data.
Myers and Barrowman [103] investigated more than 350 stock and recruitment data
sets to test the validity of the null hypothesis that recruitment is independent of the
spawning stock. That their conclusion has been a subject of discussion in several papers
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Figure 1.2: Data for recruitment and the spawning stock biomass
for North Sea cod (Gadus morhua). Here, recruitment is defined as
number of fish of age 1 and the spawning stock biomass is the total
weight of mature fish in tons.

(references can be found in [70, Ch. 10]) shows that determining a SR function based
solely on data is challenging. Furthermore, there is a drawback in specifying a SR
function based on visual observations of trends in the data, [134]. A framework suitable
for choosing a SR function is to define an infinite set of SR functions, which is adjusted
to SR data in such a way that a plausible solution is guaranteed without unnecessary
restrictions on the solution space, [134].

There are several other factors that can mask a SR function, or invalidate its ex-
istence. The link from the adult population to its progeny spans several life stages,
and may be affected by temporal variations in the stage composition of a population.
This motivates multi-stage population models which describe the evolution of fish from
stock to recruitment, [30, 104, 110, 122]. In the literature, the evolution from spawning
to recruitment including multiple early life stages has been considered for several fish
populations and species, such as Northeast Arctic cod and European plaice, [25, 105].

Population dynamic models describe the changes in number (or biomass) of indi-
viduals in a population over time. A system of ordinary differential equations (ODE’s)
may represent our understanding of births, mortality, and transitions from one life-
history stage to the next. For example, the average rate of deaths per individual and per
time unit (called mortality rate) may be assumed to be constant with respect to time.
Seen from a different angle, systems of difference equations may be considered for the
variations in the number of individuals in several life stages, [34].

A multi-stage population dynamic model describes multiple time scale dynamics.
The time scales and rates at which fish evolve and die are usually characteristic for the
life stage of fish. For example, average mortality rates per year of prerecruits (eggs, lar-
vae, and juveniles) may be several to several hundred times larger than for adults, [122,
Ch. 3; 131].

Multi-stage population dynamic models may be used to investigate the type of SR
relationship that evolves from a population consisting of several life stages. Recruit-
ment may not be uniquely determined by the spawning stock size, and a SR function
may not exist.

Touzeau and Gouzé [139] derive a system of differential equations with two time
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scales which describes the fast evolution of a class of prerecruits and the concurrent
dynamics of several adult age-classes. In general, the model describes a parent-progeny
relationship which is not a SR function, [139]. Using singular perturbation theory,
Touzeau and Gouzé prove that under suitable assumptions, trajectories of the slow-
fast system approach and stay close to a graph of a Beverton–Holt function or another
strictly increasing SR function. Two traditional sets of assumptions concerning the SR
function are that the function is strictly increasing, or the function is dome-shaped.
It is therefore surprising that all SR functions explained by the slow-fast population
dynamic model are monotonic.

The evolution of trajectories of the differential equation in a neighbourhood of the
graph of a SR function is no guarantee for the slow-fast population dynamic model to
admit a SR function. The methodology used in [139] is not suitable to decide whether
recruitment is uniquely determined given the spawning stock.

1.2 Parameter estimation for population dynamic models

The parameters in a population dynamic model for fish are generally highly uncertain
and are estimated based on available data, for example, measurements of numbers of
prerecruits and adults in several age-classes at several points in time. Following e.g. [6,
23, 29], we may consider an optimization problem that consists of finding a vector
of parameters which minimizes the nonlinear least squares error between the solution
of an initial value problem and the data points subject to bound constraints on the
parameters.

Nonlinear least squares problems with Lipschitz continuously differentiable objec-
tive function are traditionally solved using the Gauss–Newton method, but also the
Levenberg–Marquardt algorithm or sequential quadratic programming methods may
be employed, [125, Sect. 2.3]. Weighted nonlinear least squares problems may, for ex-
ample, be considered, when information about the variances of observational errors is
available. Optimization methods as described in [68] are suitable for weighted nonlin-
ear least squares problems with possibly large weights, and have been adapted for pa-
rameter estimation, [67], including for differential equations, [53]. Various approaches
exist for addressing optimization problems with constraints which are explicitly stated
in the problem formulation (e.g. [68, 108]).

A classical [18, Ch. 8; 121] and popular (e.g. [53, 125]) approach to formulating
the task of estimating parameters in a differential equation as an optimization problem
consists of reformulating it as a problem with only bound constraints. Every evaluation
of the objective function requires a solution of the initial value problem. The approach
has in the literature been referred to as initial value approach, [53], initial value problem
approach, [23], or solution-based approach, [29]. If the initial value problem can be
solved analytically, and the right-hand side of the differential equation is continuously
differentiable with respect to the parameters and the states, then the analytical solution
of the differential equation and the objective function are continuously differentiable
functions of the parameters, as described e.g. in [71, Sect. I.14].

However, in many cases, including the stiff differential equations considered in this
thesis, the initial value problems have to be solved numerically. The objective function
is a function of the numerical solution of the differential equation. The accuracy and
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smoothness of the objective function may vary with the algorithm used for the solution
of the initial value problem. Most methods for the solution of differential equations
adapt the step sizes dynamically, [92, Ch. 7]. The obtained approximation of the so-
lution of an initial value problem may not be a continuously differentiable function of
the parameters, [71, Sect. II.6]. In this case, the objective function is not Lipschitz
continuously differentiable.

The objective function of an example of the optimization problem addressing pa-
rameters of a system of differential equations is illustrated in Figure 1.3. Due to the
numerical solution of the differential equation by an algorithm with adaptive compo-
nents and with finite precision arithmetic, we obtain a noisy objective function. The
optimization problem and the stiff differential equation described in chapter 4 are ap-
proximated for 200 values of the parameter.

0.01 0.0105 0.011
289

289.5

290

290.5

291

291.5

Parameter

O
b

je
ct

iv
e

 f
u

n
ct

io
n

Figure 1.3: Example of a noisy objective function.

The solution of a differential equation may vary considerably with the values of
its parameters. In some cases, the numerical (or analytical) solution of a differential
equation is not defined for the entire time interval, [18, Ch. 8; 23]. Then, the objective
function as a function of the numerical solution of the initial value problem is not
defined for all parameters. The requirement that the objective function is defined is
sometimes called ’hidden constraint’, [38]. The latent constraint may only be detected
when, for instance, the algorithm used to evaluate the objective function returns an error
message. The feasible set of an optimization problem is unknown when constraints are
only implicitly included in the problem formulation. The unpredictability of the success
in evaluating the objective function is a challenge for optimization.

The properties of the differential equation and the method for the solution of ini-
tial value problems restrict the type of optimization method that can be employed for
estimating the parameters in stiff systems of differential equations.

1.3 Scope of the research

This thesis considers challenges in quantifying and understanding the multiple time
scale dynamics of multi-stage populations. We focus on issues related to fish popula-
tion dynamics. However, the mathematical models and related questions are broader
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in scope, and therefore applicable to other population systems, such as in terrestrial
ecology.

1.3.1 Stock-recruitment relationships emergent from stage structured population
models

We state conditions under which a SR function exists. Our approach consists of as-
suming the dynamics of a stage structured population to be described by a multi-stage
population dynamic model and investigating the properties of the emergent SR rela-
tionship.

The first class of multi-stage population dynamic models considered in this thesis
are systems of differential equations with two time scales such as the model by Touzeau
and Gouzé [139]. We use a more generic approach and design a slow-fast population
dynamic model that admits the Ricker, Beverton–Holt, and Deriso functions. We state
the assumptions of the new slow-fast population dynamic model and relate them to the
literature. To prove the existence of a SR function, we employ singular perturbation
theory and results due to Fenichel [54], which will be shortly described in chapter 2.

The second class of multi-stage population dynamic models is a set of difference
equations. We design a generic discrete-time population dynamic model that repre-
sents the dynamics of eggs, larvae, juveniles, and several adult age-classes. Our aim is
to establish sufficient conditions for the existence of two types of parent-progeny func-
tions, SR functions and recruitment as a function of the vector of the number of adults
in several age-classes, referred to as adult-recruitment function.

In this thesis, we investigate the parent-progeny relationship, which is important
from a management point of view. Recruitment may be affected by environmental and
physical factors such as temperature, food availability or wind direction and intensity,
as described in [73, Ch. 7; 110] and references therein. These mechanisms may act
at several distinct temporal scales and indirectly through the spawning stock, [135].
Understanding the impact of environmental or physical factors on the SR relationship
requires knowledge about the temporal variations in the parent-progeny relationship.

Deterministic models are suitable for addressing the SR relationship admitted by a
multi-stage model. Furthermore, ordinary differential equation models may, for large
populations such as fish, be justified from stochastic considerations, [101, Ch. 1]. The
state of the art and challenges in predicting the SR relationship are reviewed in [135].
The article considers statistical questions and includes a discussion of factors that may
influence the SR relationship.

As in [134], we avoid an a priori choice of the SR function. The use of a B-spline
function in [134] may represent a broader range of SR functions than the SR function
admitted by the new slow-fast population dynamic model. In comparison, we obtain a
parent-progeny relationship, which may not be a SR function, from estimating param-
eters in a slow-fast population dynamic model.

1.3.2 Derivative-free optimization for population dynamic models

We also consider the task of estimating parameters for the new slow-fast population
dynamic model, which is represented by a stiff system of ODEs. Our aim is to identify
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optimization methods that are suitable for the nonlinear least squares problems with
latent constraints and a noisy objective function.

Some methods for estimation of parameters for differential equations utilize a
smooth (continuously differentiable) approximation of the objective function, as de-
scribed in [27, 53]. However, this comes at the cost of obtaining a less accurate ap-
proximation of the objective function. We argue for the use of a class of optimization
methods that is suitable for noisy problems with hidden constraints.

Derivative-free optimization methods have previously been suggested for noisy
problems in general, [45], and some of the techniques have been designed with the
aim of solving nonsmooth problems with hidden constraints, [10, 56]. We find that
derivative-free methods in general are suitable for problems with implicitly stated con-
straints and for parameter estimation for stiff differential equations.

Two derivative-free optimization methods, the simplex-based Nelder–Mead algo-
rithm [107] and the Hooke and Jeeves algorithm [76], have been employed for esti-
mation of parameters in (discrete-time) population dynamic models, [114, 140]. These
two optimization methods have also been used for parameter estimation in differential
equations, [6, 27], and delay differential equations, [17, 31]. We consider optimization
methods which have previously not been employed for parameter estimation for fish
population models. The focus is on the performance of several classes of derivative-
free optimization methods when estimating the parameters in a slow-fast population
dynamic model.

Following a benchmark process introduced by Moré and Wild [99], we design a
set of optimization problems and compare the performance of several derivative-free
optimization methods based on traditional criteria for the choice of methods and based
on criteria specific for parameter estimation for differential equations.

From the literature on derivative-free optimization, results of benchmark processes
are available for analytical functions with bound constraints, [120]. A class of standard
benchmark problems for derivative-free optimization contains a set of unconstrained
problems with deterministically perturbed nonlinear least squares functions, [99]. The
nonlinear least squares problems considered in this thesis have about the same dimen-
sion as the average dimension of the noisy benchmark problems. However, the evalua-
tion of the objective functions considered in this thesis is based on numerical solution
of differential equations. We evaluate the performance of a set of optimization meth-
ods for our time-dependent problems against results for the set of noisy benchmark
problems. The aim is to test whether the choice of a derivative-free method for estima-
tion of parameters in population dynamic models can rely on results from benchmark
processes from the literature.

1.4 Outline of the thesis

The thesis includes two main parts. In the first part, we establish the background for the
scientific research and the link between the interdisciplinary research problems. An aim
of part I is to put the methods of choice and the key findings from three publications (A–
C) into the context of the state of the art. The justification for the choice of methodology
is strengthened, and the literature review is extended. Additional research questions
that arise are answered in part I. The three publications, which contain new scientific
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results, constitute part II of the thesis.
In chapter 2 of part I, terminology and methods used in the following chapters are

introduced. The topics of the chapter are singular perturbation theory, models for age
or stage structured populations, derivative-free optimization and numerical solution of
stiff differential equations.

A framework for comparing general slow-fast population dynamic models to SR
relationships is presented in paper A and described in chapter 3. In this chapter, the
slow-fast population dynamic model introduced in paper A is derived from assump-
tions about the dynamics of prerecruits from the fisheries literature. We discuss the
assumptions and applicability of the slow-fast population dynamic model in compari-
son to SR functions and other continuous-time multi-stage models.

Chapter 4 considers estimation of the parameters in the new slow-fast population
dynamic model. We discuss several approaches to formulating the optimization prob-
lem addressing parameters of a system of differential equations. Formulation of the
optimization problem involves the choice of the method for the solution of the stiff dif-
ferential equations. We demonstrate that derivative-free optimization in combination
with an initial value approach is suitable for solving the noisy optimization problems
with latent constraints. A comparison of a set of derivative-free optimization methods
for a set of time-dependent problems can be found in paper C. In chapter 4, we review
the results from paper C, using a new set of numerical simulations. Furthermore, we
consider a new topic, the importance of hidden constraints for the performance of the
derivative-free optimization methods for parameter estimation for slow-fast population
dynamic models.

In chapter 5, we address whether a general discrete-time multi-stage population
model admits a SR function. Sufficient conditions for the existence of two parent-
progeny functions are stated in manuscript B. In chapter 5, we demonstrate that results
from manuscript B can be applied for a rich class of multi-stage models from the liter-
ature. Furthermore, we relate the results about emergent SR relationships from paper
A to the ones from manuscript B.

The last chapter in part I includes the main conclusions from the scientific results
and open questions for further research.
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Background

This chapter covers background material for the scientific contributions of this inter-
disciplinary thesis. Singular perturbation theory is introduced in section 2.1 as a tool
for investigation of the slow-fast dynamics of populations. In section 2.2.1, we con-
sider the assumptions underlying SR functions. Short introductions to discrete- and
continuous-time models traditionally used for age and stage structured populations of
fish can be found in sections 2.2.2 and 2.2.3, respectively. An example of a slow-fast
population dynamic model is the model by Touzeau and Gouzé [139], which we con-
sider in section 2.2.4.

The smoothness and accuracy of the objective functions of the optimization prob-
lems in this thesis depend on the numerical solution of the differential equation. Meth-
ods for the solution of stiff systems of ODEs are described in section 2.3. In section 2.4,
we shortly describe three classes of algorithms which are interesting for noisy optimiza-
tion problems, a simplex-based optimization method (in section 2.4.1), derivative-free
trust-region methods, which build an interpolation model (in section 2.4.2), and di-
rectional direct-search methods (in section 2.4.3). The use of the term ’hidden con-
straint’ in the derivative-free optimization literature is reviewed in section 2.4.4. In
section 2.4.5, we describe why hidden constraints are a challenge for optimization, and
consider derivative-free methods with convergence results for problems with hidden
constraints.

In the following, all norms are Euclidean norms.

2.1 Singularly perturbed differential equations

The following description of singularly perturbed differential equations is based on [80,
81]. Let k, l ∈N, f ,g :Rk+l+1 →R and 0< ε ≪ 1. For simplicity, we assume f , g to be
C∞ functions. The prime sign "′" denotes d/dT . LetHl = {(x1, . . . ,xl)∈Rl|xl ≥ 0} and
∂Hl its boundary. Following [81], we say that X ⊂Rk+l is aCr, l-dimensional manifold
with boundary if each point in X has a neighbourhoodU ∩X which isCr diffeomorphic
to V ∩Hl for some open set V in Rl . The subset of X that isCr diffeomorphic to ∂Hq is
the boundary ∂X of X .

We consider the singularly perturbed differential equation (Sε), which describes
slow and fast dynamics. Equation (Sε) is formulated in terms of the slow time t. For
ε > 0, (Sε) is equivalent to (Fε ) for fast time T = t/ε . The vector x∈Rk consists of fast
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variables and y ∈ Rl denotes the vector of variables that change at slow rates. Initial
conditions for the two ODEs have the form x(0) ∈ D⊂ Rk and y(0) ∈ G⊂ Rl .

In case of ε → 0, (Sε) becomes a differential algebraic equation (S0) with algebraic
constraint f (x(t),y(t),0) = 0. Equation (S0) with an initial condition of form x(0) ∈ D
is referred to as the reduced slow system. The limit of the system (Fε) in terms of fast
time T as ε → 0 is given by (F0). Here, y can be considered as a vector of constant
parameters and f (x(T ),y(T ),0) = 0 describes the set of fixed points (constant solu-
tions) of (F0). Assuming that the matrix D fx(x,y,0) has k eigenvalues with negative
real part, the fixed points are asymptotically stable fixed points of the differential equa-
tion x′(T ) = f (x(T ),y(T ),0).

ε .x(t) = f (x(t),y(t),ε) (Sε)
.y(t) = g(x(t),y(t),ε) .

0= f (x(t),y(t),0) (S0)
.y(t) = g(x(t),y(t),0) .

x′(T ) = f (x(T ),y(T ),ε) (Fε)
y′(T ) = εg(x(T ),y(T ),ε) .

x′(T ) = f (x(T ),y(T ),0) (F0)
y′(T ) = 0 .

Assume that there exists a continuous function h : Rl → Rk that defines isolated
roots h(y) of the equation f (x,y,0) = 0, for all y ∈ Rl . Then, the dynamics of the
reduced slow system are described by ODE (2.1) with l, rather than k+ l variables.

.y(t) = g(h(y(t)),y(t),0) . (2.1)

We follow [142, p. 28-29] and define an invariant set for a solution z(t,z0,0) of an
initial value problem (F0) with z(0) = z0. A set S is called invariant under (F0) if
z0 = (x0, y0) ∈ S implies z(t,z0,0) ∈ S for all t ∈ R. The set of zeros of function f
defines a l-dimensional manifold in Rl+k which is invariant under (F0).

Tikhonov’s theorem (see e.g. [141, Ch. 8.2]) states sufficient conditions for the con-
vergence of the solution of an in general nonautonomous singularly perturbed differ-
ential equation to the solution of the reduced slow system as ε → 0, in a bounded
time interval. For ε > 0 and sufficiently small, the solution of (Sε) may (possibly in a
bounded time interval) be approximated by the solution of (S0). Initially, the solution
of (Sε) may evolve very fast and the fast variables move considerably faster than the
slow variables.

Results by Fenichel [54] include sufficient conditions for the existence of an ana-
logue of the manifold invariant under (F0), but for the case ε > 0 and sufficiently small.
Solutions of (Fε) starting on a manifoldMε (possibly with boundary) that is locally in-
variant under the flow from (Fε), remain on the manifold unless they leave the manifold
via its boundary, [80]. Mε is called the slow manifold. Under suitable assumptions, the
slow manifold is the graph of a function hε , which gives the fast variables as a function
of the slow variables. Furthermore, the results by Fenichel may be used to show that
for ε > 0 and sufficiently small, solutions of the slow-fast system (Fε) with suitable
initial conditions, may converge exponentially towards the slow manifold.

Biological systems frequently evolve at two distinct time scales and singular per-
turbation theory may be applied for reduction of models in biology, [101]. As an
example, slow-fast systems describing populations with several interacting organiza-
tion levels (such as individual, population, ecosystem) have been approximated by the
lower-dimensional ODE (2.1), as described in [16].
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2.2 Models for the dynamics of stage structured populations

Characteristics of fish such as length, weight, mortality or fecundity may depend on
age and the age structure of fish populations may vary considerably with time. In the
following, the differences between fish of different age-classes and stages are assumed
to be more important than the differences between individuals. Depending on the as-
sumptions, the dynamics of age or stage structured populations may be described either
by continuous-time or discrete-time models, [34, Ch. 8].

2.2.1 Assumptions of stock-recruitment functions

Several well-known SR functions may be derived from assumptions about egg produc-
tion and mortality of prerecruits. Denote by N0(t) the number of prerecruits at time t.
Mortality of prerecruits is a continuous-time process and egg production at time t = 0
is assumed to be a constant times the spawning stock size S. We obtain an initial value
problem (2.2) with mortality rate m per individual.

.
N0(t) = −m(N0(t),S) · N0(t) , N0(0) = aS , a> 0 . (2.2)

By solving an initial value problem of the form (2.2) and by substituting R for N0(T ),
T > 0, a SR function may be derived. Assuming the mortality rate to be linear in N0(t),
the Beverton–Holt function is obtained, [21, Sect. II.6; 116, Ch. 3]. The Ricker function
is based on the assumption that m is linear in S, where S denotes the spawning stock
size at time of spawning, [116, Ch. 3; 119].

In general, a mortality rate that is a function of numbers of individuals is referred to
as density-dependent and may be described by a nonlinear function. The term ’density-
dependency’ is explained by the fact that ’number’ may stand for ’number per unit
area’, [22]. The Shepherd model (2.3) with a,b,c > 0 is a Beverton–Holt function in
case of c = 1 and a dome-shaped SR function for c > 1. The SR function assumes
mortality to be a power function of the number of eggs, [116, Ch. 3]. The general-
ized Ricker model (2.4) is obtained when assuming that the mortality rate is a power
function of the spawning stock size, [116, Ch. 3].

r(S) = aS/(1+bSc) . (2.3)

r(S) = aS · e−bSγ
. (2.4)

The generalized Ricker function has been introduced in [110] and [96].

2.2.2 Matrix models for stage structured populations

Matrix models are traditionally used to describe age structured and stage structured
populations of fish, [116, p. 292 and Ch. 9]. The population is assumed to consist of
discrete stages. Reproduction and transitions from a stage to the next are described as
discrete-time processes.

We denote by Ni,t the number of individuals in stage i= 1, . . . ,n at time t ∈ N0 and
by Nt the n-dimensional vector (N1,t , . . . ,Nn,t). A population model, which describes
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birth and death processes and stage transitions, is given by the matrix equation (2.5)
with suitable initial values N0 ∈ Rn

≥0.
N1,t
...

Nn−1,t
Nn,t

=


β1 . . . βn−1 βn
s1 0. . .

0 sn−1 0




N1,t−1
...

Nn−1,t−1
Nn,t−1

 . (2.5)

The model description (2.5) may, for example, represent the dynamics of a population
consisting of several age-classes projected from year t − 1 to year t. The parameters
βi ≥ 0 may denote the average number of eggs produced per spawner times the proba-
bility of surviving to reach age 1. The probability of surviving from age i to age i+ 1
is denoted by si ∈ (0,1]. The matrix in equation (2.5) with nonzero coefficients only in
the first row and first subdiagonal is called a Leslie matrix and the model (2.5) is often
referred to as Leslie matrix population model, after Leslie [91].

In general, all coefficients of the matrix in equation (2.5) may be non-zero and
functions of Nt or of time. The linear difference equations are referred to as matrix
population models. An introduction to matrix population models is given in [34].

As described in section 2.2.1, an assumption underlying several models for recruit-
ment is that mortality of prerecruits is density-dependent, i.e., a function of numbers
of individuals. In this case, survival s0 of prerecruits to age 1 is a function of Nt . Of-
ten, the coefficients of the population projection matrix are described as functions of a
weighted sum of the number of individuals in several age-classes, [34, Ch. 16]. An ex-
ample of a nonlinear matrix model is the population model described in [116, Ch. 7.4].
Survival of eggs to age-class 1 is assumed to be a function of egg production. Denote
by wk ≥ 0 the number of eggs laid by individuals of age-class k. The population model
described in [116, Ch. 7.4] is given by (2.6).

N1,t
...

Nn−1,t
Nn,t

=


β1(Nt) . . . βn−1(Nt) βn(Nt)
s1 0. . .

0 sn−1 0




N1,t−1
...

Nn−1,t−1
Nn,t−1

 . (2.6)

Here, βk(Nt) = wk s0(∑n
k=1wkNk,t) is the number of eggs spawned and surviving to age

1, per individual of age k.

2.2.3 Ordinary differential equation models for stage structured populations

The dynamics of age structured populations may be represented by ODEs, as described
e.g. in [33, 101]. We consider discrete age-classes i ∈ {1, . . . ,n}. Denote by Ni(t)
the number of individuals in age-class i at time t ∈ R≥0. N(t) is the n-dimensional
vector (N1(t), . . . ,Nn(t)). Mortality, recruitment and ageing are described in continuous
time. The coefficient βi ≥ 0 represents the rate of recruitment to the population per
individual in age-class i, such that

∫ t2
t1 ∑n

i=1βiNi(t)dt is the number of fish recruited to
the population in time interval [t1, t2]⊂R≥0. The mortality rate per individual in class i
is denoted by mi ≥ 0. The age progression rate per individual from class i−1 to class i
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N1 N2 N3 N4

α1 α2 α3

m1 m2 m3 m4

β4β3β2

Figure 2.1: A schematic diagram for a linear ODE model for a population with four age-classes.

is α ≥ 0. A linear age structured population dynamic model is given by (2.7) and (2.8)
for i= 2, . . . ,n and an initial condition of form N(0) ∈ Rn

≥0.

.
N1(t) =

n

∑
i=1

βiNi(t)−αN1(t)−m1N1(t) , (2.7)

.
Ni(t) = αNi−1(t)−αNi(t)−miNi(t) . (2.8)

The model (2.7)–(2.8) is illustrated in Figure 2.1.
The literature includes examples of nonlinear population dynamic models which

assume at least one the rates mi, α and βi to be a function of N(t). In the fisheries
literature, the parameters are usually assumed to be time-independent, [106]. However,
the mortality rates and egg production may vary inter-annually, [73, Ch. 7].

2.2.4 The slow-fast population dynamic model by Touzeau and Gouzé

Touzeau and Gouzé [139] introduced a system of differential equations which de-
scribes the dynamics of numbers of prerecruits N0(t) and adults Ni(t) of age-class
i = 1, . . . ,n. In the following, we denote by N(t) the (n+ 1)-dimensional vector
(N0(t),N1(t), . . . ,Nn(t)). The model by Touzeau and Gouzé is given by (2.9)–(2.10)
and (2.8) for i= 1, . . . ,n. In comparison to the population dynamic model (2.7)–(2.8),
the model by Touzeau and Gouzé includes the dynamics of prerecruits and describes
the mortality rate of prerecruits as function (m) of N(t).

.
N0(t) =

1
ε

n

∑
i=1

filiNi(t)−αN0(t)−
1
ε
m(N(t))N0(t) , (2.9)

m(N(t)) = m0+
n

∑
i=1

piNi(t)+ p0N0(t) . (2.10)

The rate of egg production at time t is ∑n
i=1 filiNi(t). Parameter fi ≥ 0 denotes the

fraction of spawners in age-class i (for i= 1, . . . ,n). A spawner in age-class i is assumed
to produce eggs at rate li ≥ 0. Parameters p0, pi ≥ 0 are coefficients for the degree of
density-dependence attributed to fish of age i.

The parameter 0< ε ≪ 1 represents the assumption that the rate of egg production
and the mortality rate per prerecruit are larger than the rate of ageing and the mortality
rate per adult. The model can be considered as an ODE which includes two distinct
time-scales, a fast time T and a slow time t = εT . The rates li, pi, p0 and m0 are
measured in the fast time-scale, while α and mi, i= 1, . . . ,n, are measured in terms of
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the slow time-scale t = εT . For example, assume that the mortality rates per prerecruit
and per day (m0) and the mortality rate per adult and per year (mi) are of order 10−1.
In this case, the mortality rate per prerecruit and per year (m0/ε) is approximately 36.

The function ATG : Rn+1 → R defined by (2.11) represents the fast processes.

ATG(N(t)) =
n

∑
i=1

filiNi(t)−

(
m0+

n

∑
i=1

piNi(t)+ p0N0(t)

)
N0(t) . (2.11)

The superscript refers to the fact that the function is linked to the model by Touzeau
and Gouzé.

As shown in [139], solutions of the initial value problem given by (2.8)–(2.10) and
an initial conditionN(0)∈Rn+1

≥0 are nonnegative and the ODE has a positive fixed point
under assumptions I and II, which are defined as follows:

Assumption I: αε +m0 < ∑n
i=1 fili · (∏i

j=1α/(α +m j)), i.e., the total rate of egg
production in the average life time of an adult is for some N ∈Rn+1

≥0 larger than the rate
of decrease of the number of prerecruits.

Assumption II: ∃i∗ ∈ {0, . . . ,n} s.t. pi∗ > 0, i.e., the mortality rate of prerecruits is
density-dependent.

By applying Tikhonov’s theorem, the dynamics of the model by Touzeau and Gouzé
are described as following in [139]. Solutions of the ODE are attracted to a neighbour-
hood of a surface inRn+1 which is described by ATG(N) = 0. The evolution towards the
neighbourhood is dominated by (2.9). In a neighbourhood of the set of zeros of ATG,
the solutions of the population dynamic system can be approximated by the reduced
slow system of (2.8)–(2.10).

The equation ATG(N) = 0 relates the number of prerecruits to the number of adults
and stock to recruitment, as described by Touzeau and Gouzé [139]. Equation (2.12)
defines the spawning stock size as the number of spawners, and recruitment as the
transition rate to the youngest adult age-class.

R(t) = αN0(t) and S(t) =
n

∑
i=1

fiNi(t) . (2.12)

In general, recruitment is not uniquely defined given the spawning stock size. However,
ATG(N(t)) = 0 is equivalent to,

0= lS(t)−N0(t)(m0+ pS(t)/ f + p0N0(t)) ,

if we assume:
Assumption 0: Let p ≥ 0, f , l > 0. For all i = 1, . . . ,n, either pi = p, fi = f and

li = l or pi = fi = li = 0. The class of adults consists of two homogeneous subclasses.
As shown in [139], solving the quadratic equation for N0(t) yields a strictly increas-

ing function for R(t) = αN0(t) given S(t). In case of p0 = 0, the SR function is given
by (2.13).

R(t) =
αlS(t)

m0+
p
f S(t)

. (2.13)

If we require α,m0, p> 0, we obtain a Beverton–Holt function as defined in section 1.1.
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Tikhonov’s theorem may explain that trajectories of the model by Touzeau and
Gouzé approach, and remain in a neighbourhood of the graph of a function that links
recruitment to numbers of adults. Recruitment may be approximated by a function of
the number of adults if ε is sufficiently small and t sufficiently large. A dome-shaped
SR function cannot be explained by the population dynamic model by Touzeau and
Gouzé, [139].

2.3 Numerical solution of stiff differential equations

Consider the initial value problem (2.14) with solution y :R→Rn. Let m,n,r ∈N. For
simplicity, we denote by g :Rn×Rm →Rn a function that is continuously differentiable
with respect to y(t) ∈ Rn and the parameters θ ∈ Rm.

.y(t) = g(y(t);θ) for t > 0 , y(0) = d0 . (2.14)

We consider stiff systems of differential equations with the property that slight per-
turbations of a solution of a differential equation at any time cause variations which are
considerably faster than the variations in the solution of the differential equation, [92,
p. 167]. A slow-fast differential equation with solutions that exponentially converge
towards a slow manifold is an example of a stiff differential equation. Stiffness of a
differential equation may be detected when the stiffness ratio is large. Following [115],
we define the stiffness ratio as the ratio between the smallest value of the real part of
a negative eigenvalue of the Jacobian ∂g(y(t);θ)/∂y and the largest value of the real
part of a negative eigenvalue of the Jacobian.

The description of numerical methods for problem (2.14) is based on [92] and [115].
In general, a numerical solution of an initial value problem (2.14) on interval [0,T ] is
approximated successively at times t j = t j−1+h j with step size h j > 0 for j = 1, . . . ,N
and such that t0 = 0 and tN = T . For reasons for simplicity, we consider h j = h, j =
1, . . . ,N. Denote by η j an approximation of the solution of the initial value problem at
t j, j = 1, . . . ,N.

Some numerical methods for solution of (2.14) require small step sizes for the
approximation of rapid transients and may involve large round-off errors and high
computational costs. A numerical method for approximation of the solution of the
test problem (2.15) is said to be absolutely stable for h > 0 and λ ∈ C if we have
limN→∞ |ηN | → 0, for the numerical solution {η j}0≤ j≤N of problem (2.15) obtained by
the numerical method using fixed step size h> 0.

.y(t) = λy(t) , t > 0 , y(0) = 1 . (2.15)

The region of absolute stability of a method is the set of z = hλ ∈ C for which the
method is absolutely stable. The one-step error is the difference between η j+1 and the
solution of the differential equation through η j and possibly further points η j−1, . . . ,
η j+1−r used for computation of η j+1. If a method is not absolutely stable for λ and
h, a one-step error introduced by a numerical method for solving (2.15) at step size h
may grow exponentially with the number of time steps, as explained e.g. in [92, Ch. 7].
If {z ∈ C \ {0} with |arg(−z)| < α} is contained in the region of absolute stability of
a method, the method is called A(α)-stable. In general, A(α)-stability is one charac-
teristic of methods that are suitable to solve stiff problems. Only implicit methods,
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which use an implicit formula to obtain the numerical solutions η j+1, are A(α)-stable.
For stiff differential equations, it is generally computationally more efficient to employ
implicit methods.

Examples of classes of implicit methods are implicit Runge–Kutta methods, lin-
early implicit methods, such as Rosenbrock and W-methods, and backward differentia-
tion formula (BDF) methods and the closely related family of numerical differentiation
formula (NDF) methods.

Implicit Runge–Kutta methods use evaluations of the function g at intermediate
steps between t j and t j+1 to obtain an approximation of the solution of the ODE at time
t j+1. An r-stage Runge–Kutta method is characterized by equations (2.16)–(2.17).

η j+1 = η j+h
r

∑
i=1

biki, (2.16)

with ki = g(η j+h
r

∑
l=1

ailkl) , i= 1, . . . ,r. (2.17)

A fully implicit Runge–Kutta method with ail ̸= 0 for all i = 1, . . . ,r, l = 1, . . . ,r, re-
quires solution of a system of rn nonlinear equations in every step. Stability properties
of implicit Runge–Kutta methods are e.g. topic of [72, Sect. IV.3].

For Rosenbrock methods, computation of η j+1 involves only solution of linear sys-
tems. Denote by I the identity matrix and by J j = ∂g(η j)/∂y a Jacobian matrix. An
r-stage Rosenbrock method as suggested in [145] is given by (2.16) with ki, i= 1, . . . ,r,
such that (2.18) holds.

(I−hdiiJ j)ki = g(η j+h
i−1

∑
l=1

ailkl+hJ j
i−1

∑
l=1

dilkl) . (2.18)

Rosenbrock methods require evaluations of the Jacobian at each step. Instead of the
Jacobian, W-methods [132] employ an arbitrary real square matrix A with the property
thatW (h,dii,A) = (I−hdiiA) is invertible.

Backward differentiation formulas (BDF) methods are linear multi-step methods.
As described e.g. in [71, Sect. III.1], using backward differences,

∇η j = η j−η j−1 , ∇i+1η j = ∇iη j−∇iη j−1 , i= 1, . . . ,r ,

the BDF formulas are given by (2.19) with κ = 0.

r

∑
i=1

1
i
∇iη j+1−κ∇r+1η j+1 = hg(η j+1) . (2.19)

Numerical differentiation formulas (NDF) methods have the form (2.19), where
1

r+1∇r+1η j+1 is an approximation for the leading term in the one-step error of a BDF
method. The value of κ can be chosen such that the accuracy of a NDF method is
improved in comparison to a BDF method, as shown by Shampine and Reichelt [128].

A linear r-step method computes η j+1 using η j, . . . , η j+1−r. Runge–Kutta meth-
ods, Rosenbrock methods, and W-methods are one-step methods, i.e., the integration
scheme for η j+1 only involves η j and no further previous values. One-step methods
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are self-starting, while a multi-step method needs to obtain the approximations of the
solution at times t1, . . . , tr−1 by some other numerical method. However, if the values
of function g at t j, . . . , t j−r are stored, they can be reused when approximating η j+1 by
a multi-step method. This means fewer function evaluations per step than for one-step
methods. In each step, implicit Runge–Kutta methods, BDF and NDF methods require
solutions of nonlinear equations.

Implementations of methods for the solution of ODEs may adapt the step size and
integration scheme to find a numerical solution for which an estimate e for the one-step
error is bounded from above by a given tolerance. As an example, several ODE solvers
implemented in MATLAB use inequality (2.20) for the i-th element of the vector e and
the i-th element of y(t j+1), i= 1, . . . ,n, [128].

|ei| ≤ tol|yi(t j+1)|+Toli . (2.20)

Here, tol> 0 and Toli> 0 denote a relative and an absolute error tolerance, respectively.
If inequality (2.20) fails to hold, a new approximation of y(t j+1) may be computed
using a reduced step size. Numerical methods such as BDF and NDF methods may
also vary r based on an estimate for the one-step error, [128]. For a method of order r,
the one-step error is O(hr+1).

Due to the error control, the step size and the order of a method vary nonsmoothly
with a parameter θ in the differential equation. In this case, the numerical solution of
the differential equation is a nonsmooth or discontinuous function of the parameter, [18,
Ch. 8; 63; 71, Sect. II.6].

2.4 Derivative-free optimization

We consider the optimization problem

min
x∈Rn

f (x) (2.21)

with f bounded from below in Rn and continuously differentiable with Lipschitz con-
tinuous gradient in an open set, which contains the level setL= {x∈Rn| f (x)≤ f (x0)}.
The aim is to find a local solution of a constrained optimization problem, a point x∗ ∈Rn

with a neighbourhood N such that f (x)≥ f (x∗) for all x ∈N.
In many cases, optimization problems are solved iteratively. Given an initial iterate

x0, an optimization method iteratively tries to replace the point xk in iteration k by a new
iterate with a smaller objective function value. The iterative search of derivative-free
optimization methods (as described e.g. in [45]) is guided by evaluations of the objec-
tive function at sets of sample points or by trust-region models obtained by evaluating
the objective function at sample points. Derivative-free methods control the geometry
of the trial points and require no knowledge about derivatives or estimate them explic-
itly, for example, by finite differences. Avoiding the use of derivatives comes at the cost
of often slower convergence compared to gradient-based optimization methods, [45].
An introduction to derivative-free methods is given in [45].

We refer to an optimization algorithm as globally convergent if it computes, for an
arbitrary starting point, a sequence of iterates that has a limiting point which fulfils
first-order necessary conditions for optimality. For the unconstrained problem, this
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means that the algorithm builds a sequence of iterates xk, k = 0,1,2, . . . such that a
subsequence K of iterations exists with limk∈K,k→∞∥∇ f (xk)∥= 0.

For simplicity, derivative-free methods are described for the unconstrained opti-
mization problem (2.21). For some methods, these assumptions are stronger than the
minimum requirements on the objective function needed to prove global convergence.

2.4.1 A simplex-based optimization method

The Nelder–Mead algorithm [107] iteratively improves a simplex. Let λ (i) ∈ R, i =
0, . . . ,n. A set of points y0, . . . ,yn ∈Rn is affinely independent if the system of equations
∑n
i=0λ (i)yi = 0, ∑n

i=0λ (i) = 0 has a unique solution λ (i) = 0, i= 0, . . . ,n. The smallest
convex set containing n+1 affinely independent vectors y0, . . . ,yn ∈Rn is a simplex of
dimension n.

The vertices y0, . . . ,yn of the simplex are points in Rn at which the objective func-
tion has been evaluated. In each iteration, the vertices y0, . . . ,yn of the simplex are
ordered such that f (y0)≤ f (y1)≤ ·· · ≤ f (yn). The algorithm tries to replace the point
with the highest objective function value by a point y = yn + δ (yc − yn) on the line
through yn and the centroid yc = ∑n

i=1 y
i/n of y1, . . . ,yn. The parameter δ takes one of

the values −1 < δ ic < 0 < δ oc < δ r < δ e, which correspond to an inside or outside
contraction, reflection or expansion of the simplex. If neither a reflection nor a contrac-
tion of the simplex gives a point with lower objective function value than yn, a shrink
of the simplex is performed. In this case, the shape of the simplex remains unchanged,
but its volume is decreased. All vertices yi of the simplex except for y0 are replaced by
y0+ γs(yi−y0), where γs ∈ (0,1). A simplex and the simplex operations are illustrated
in Figure 2.2.

yr
yoc

ye

yc

y0

yic
y2

y1

Figure 2.2: A simplex with vertices y0, y1, y2 and its reflection (with vertex yr), expansion (with vertex ye), inside
contraction (with vertex yic) and outside contraction (with vertex yoc). The pink simplex is a shrink of the original
simplex. Here, we follow the standard choice δ ic =− 1

2 ,δ
oc = 1

2 ,δ
r = 1, δ e = 2 and γ = 1

2 .

The simplices generated by a Nelder–Mead algorithm can capture local curvature
information of the objective function, e.g. [45, Ch. 8]. Characteristic for the Nelder–
Mead simplex method is its ability to often reduce objective functions well within
few function evaluations, albeit global convergence is not guaranteed in general, since
the simplices may become arbitrarily flat, [146]. The Nelder–Mead algorithm is the
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most popular simplicial direct search method and references to further simplicial direct
search methods can, for example, be found in [45, Ch. 8; 146].

2.4.2 Model-based derivative-free methods

A further class of derivative-free methods are trust-region methods that build a model
function by evaluating the objective function at several sufficiently scattered sample
points. The model function mk : Rn → R approximates the objective function in the
trust-region

B(xk,∆k) = {x ∈ Rn|∥x− xk∥ ≤ ∆k} ,

with the trust-region radius ∆k > 0. The new iterate xk + s is defined by a (possibly
approximate) solution of the subproblem

min
s∈B(0,∆k)

mk(xk+ s) .

Global convergence to points that fulfil first- or second-order necessary conditions
for optimality can be ensured by the frameworks introduced by Conn, Scheinberg, and
Vicente [44; 45, Ch. 10]. Lipschitz continuously differentiable model functions that
satisfy (2.22) for positive constants κ1,κ2 and for all s ∈ B(0,∆), are called fully lin-
ear [42] and approximate the objective function sufficiently well for first-order global
convergence, [40].

∥ f (x+ s)−m(x+ s)∥ ≤ κ1∆2 , ∥∇ f (x+ s)−∇m(x+ s)∥ ≤ κ2∆ . (2.22)

The quality of the model function is ensured by control of the geometry (in the sense
of well-poisedness, [42, 43]) of the sample points used to build a model.

An example of model functions are quadratic models of the form (2.23), where
ck ∈ R, gk ∈ Rn and Hk ∈ Rn×n.

mk(x) = ck+gTk x+
1
2
xTHkx . (2.23)

In order to obtain a full quadratic model with symmetric matrix Hk by interpolation,
the objective function is evaluated at (n+ 1)(n+ 2)/2 points. The quality of the ap-
proximation of the objective function by the model function depends on the Lipschitz
constant of ∇ f , the number and the geometrical properties of the interpolation points
and the largest distance of two points in the interpolation set, [42, 43].

Powell’s methods [111–113] are examples of derivative-free trust-region methods
based on quadratic interpolation models. Per default, 2n+ 1 interpolation points are
utilized to obtain ck, gk and the diagonal elements of Hk. Models are built by mini-
mization of the Frobenius norm of the difference between the Hessian matrix Hk in the
new model and the Hessian matrix in the previous model. If f is quadratic, then the
norm of the difference between Hk and the Hessian of f is nonincreasing with updates
of the Hessian, [112]. Powell’s method NEWUOA has been designed to be efficient
in the number of function evaluations and in routine work necessary for updating the
model function, [113].
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By controlling the geometry of the sample points, polynomial models can be guar-
anteed to be fully linear and globally convergent derivative-free trust-region methods
may be designed, [45]. For global convergence, the model is not required to be fully
linear in every iteration, but when the gradient of the model function is small, [124].
Depending on the number p of sample points used, quadratic models may be obtained
from a sample set of trial points by interpolation (for p = q = (n+ 1)(n+ 2)/2), re-
gression (for p > q) or minimum norm interpolation (for p < q). For suitably chosen
interpolation sets, an upper bound for the error between the gradient of f and the gra-
dient gk of an underdetermined quadratic model function is linear in the norm of the
Hessian Hk, [45, Theorem 5.4]. For minimum Frobenius norm models [41], the Frobe-
nius norm of matrix Hk is as small as possible.

A further example of model functions are radial basis functions, possibly with poly-
nomial tail p : Rn → R, given by (2.24), where ϕ : R≥0 → R, λi ∈ R, i= 0, . . . , p. The
model function interpolates y0, . . . ,yp ∈ Rn.

mk(xk+ s) =
p

∑
i=0

λiϕ(∥s− yi∥)+ p(s) . (2.24)

An example of a radial basis function is the cubic function ϕ(r) = r3. Radial ba-
sis functions can capture curvature information of the objective function and are suit-
able for the approximation of nonconvex objective functions, since they may be multi-
modal, [143, 144]. Radial basis functions can be built using at least n+ 1 sample
points compared to (n+2)(n+1)/2 function evaluations necessary to interpolate a full
quadratic model, [143]. The number of sample points interpolated is flexible and up to
3n sample points may be utilized, [143]. The global convergence of optimization by
radial basis functions in trust-regions has been shown by Wild and Shoemaker [144].

2.4.3 Directional direct search methods

Frameworks for globally convergent directional direct search methods have been devel-
oped by Conn, Scheinberg and Vicente [45, Ch. 7] and Kolda, Lewis and Torczon [86].
Section 2.4.3 is based on [45].

Directional direct search methods are based on search along descent directions for
the objective function at the current iterate. Following [45, p. 15], we say that a descent
direction for f at x is a direction d ∈Rn such that there exists an ᾱ > 0 with f (x+αd)<
f (x) for all α ∈ (0, ᾱ ]. A vector d with −∇ f (x)Td > 0 is a descent direction of f at
x, e.g. [108, Ch. 2]. In comparison to traditional line search methods, directional direct
search methods employ sets of directions, which are positive spanning sets.

Let λ (1), . . . ,λ (p) ≥ 0. A set D = {d(1), . . . ,d(p)} of p ≥ n+ 1 vectors in Rn is
called a positive spanning set or generating set in Rn if every v ∈ Rn can be writ-
ten as positive combination v = ∑p

i=1λ (i)d(i) of vectors in D. A positive basis is
a positive spanning set for which no proper subset positively spans Rn. The sets
D⊕ = {(1,0),(−1,0),(0,1),(0,−1)} and D1 = {(1,0),(−1,0),(−1,−1)} are exam-
ples of a positive basis in R2. An approach for the generation of positive bases relies
on the fact that given a positive basis D= {d(1), . . . ,d(p)} in Rn and a nonsingular ma-
trixW ∈Rn×n, the set {Wd(1), . . . ,Wd(p)} is a positive basis (a proof can e.g. be found
in [45, Ch. 2.1]). Three examples of positive spanning sets are illustrated in Figure 2.3.
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(a) Positive basis D⊕. (b) A positive basis obtained from multipli-
cation of the vectors in D1 with a nonsingu-
lar matrix.

(c) A positive spanning set, which is not a
positive basis.

Figure 2.3: Three examples of a positive spanning set.

The following property of positive spanning sets is central to convergence theory
of directional direct search methods. Let D = {d(1), . . . ,d(p)}, with d(i) ̸= 0 for i =
1, . . . , p, be a positive spanning set in Rn. Then, for every nonzero vector w ∈Rn, there
exists d ∈ D s.t. wTd > 0. A proof can be found in [45, Ch. 2.2]. Consequently, for
the continuously differentiable function f and x ∈ Rn with ∇ f (x) ̸= 0, every positive
spanning set D contains d ∈ Rn such that −∇ f (x)Td > 0.

Directional direct search methods iteratively try to find a new incumbent xk+1 with
smaller objective function value than the current iterate xk by evaluation of the objective
function at the set of poll points (2.25) defined by a positive spanning set Dk in Rn.

Pk = {xk+αkdk|dk ∈ Dk} . (2.25)

The step length is controlled by step size parameter αk > 0. Unless ∇ f (xk) = 0, the
set Dk contains at least one descent direction, and for a sufficiently small step size,
the algorithm finds a point with lower objective function value than the current iterate.
A poll point with (sufficiently) smaller objective function value than f (xk) may be
accepted. In this case, xk+1 = xk+αkdk and the step size parameter might be increased.
If the decrease condition is not satisfied at any of the poll points, then αk is decreased.

Every iteration of a directional direct–search method may consist of two phases, a
search step and a poll step, [26]. The search step is optional and consists of evaluations
of the objective function at a finite number of sample points. Clever choices of the
directions in this step may speed up convergence. If the search step is unsuccessful,
the poll step is performed. It ensures global convergence and is the main subject of the
following paragraphs.

Generalized pattern search methods [9, 138] accept new steps if a simple decrease
condition f (xk+1) < f (xk) is satisfied. These methods build trial points on integer
lattices translated by x0. Denote by D ∈ Rn×nD a matrix whose column vectors are the
vectors in a finite set of nD poll directions. Poll and search points in iteration k are in
the conceptual mesh Mk given by (2.26).

Mk = {xk+αkDz|z ∈ NnD} . (2.26)

For generalized pattern search methods, every positive spanning set utilized is a subset
of the finite set of column vectors of D.
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Generating set search [86] is a class of directional direct search methods. It includes
generalized pattern search methods and algorithms introduced in [62, 95], which re-
quire that a sufficient decrease condition holds for new iterates. Generating set search
methods can utilize an infinite set of positive spanning sets if the positive bases are such
that the cosine measure κ(Dk), the angle between any v ∈Rn and the vector in Dk with
the smallest angle to v, is bounded away from zero and βmax ≥ ∥dk∥ for βmax > 0, for
all dk ∈ Dk and k ≥ 0, [86].

We made two simplifications in the discussion. Stronger convergence results are
available for subsets of the directional direct search methods, [1, 4, 9, 10, 138] and
the assumptions about function f may be weakened for some of the directional direct
search methods, [9; 10; 45, Ch. 7; 86].

Mesh adaptive direct search

Mesh adaptive direct search methods, introduced by Audet and Dennis [10], are direct
search methods which evaluate the objective function on a mesh (2.26) defined by the
finite set D and mesh size parameter αm

k . In comparison to generalized pattern search
methods, the set of normalized poll directions is allowed to become asymptotically
dense in the unit sphere. To achieve this, the sets of poll directions and the lengths of
poll steps may be chosen more freely than for generalized pattern search methods. The
length of a step is bounded from above by the poll size parameter α p

k ≥ αm
k such that

αm
k ∥dk∥ ≤ α p

k maxd∈D∥d∥ for all poll directions dk and iterations k.
For mesh adaptive direct search methods, convergence results for nonsmooth func-

tions exist, [10]. Furthermore, convergence of a subsequence of iterates to points that
fulfil second-order necessary conditions for optimality, under suitable assumptions, has
been shown, [1].

Figure 2.4 presents three examples of a mesh generated by D⊕ and sets of poll
directions used by the mesh adaptive direct search algorithm described in [13]. In
Figure 2.4 (a), the poll size parameter is equal to the mesh size parameter and the poll
points could also have been generated by a pattern search method. The poll directions
in Figures 2.4 (b) and (c) are generated by mesh adaptive direct search. The number of
possible poll directions increases with increasing ratio between poll size parameter and
mesh size parameter.

Efficiency

In the following, we consider several strategies for choices of the search step, the choice
of the positive bases and the ordering of the poll steps, which may speed up convergence
of directional direct search methods.

In the search step, model functions, which approximate the objective function, may
be minimized in a trust-region, [46]. The approach described by Custódio, Rocha and
Vicente [46] consists of computing a quadratic (minimum Frobenius norm or regres-
sion) model when the objective function value at more than n+ 1 sample points is
available from previous function evaluations. In comparison to derivative-free trust-
region methods, the convergence of the directional direct search method does not rely
on the accuracy of the model function, and it is not necessary to control the geometry
of the sample points, [46]. However, the trial points obtained from minimization of the
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(a) For αm
k = α p

k . (b) For αm
k = 1

2α p
k . (c) For αm

k = 1
16α p

k .

Figure 2.4: Three examples of a mesh (the intersection of black, dashed lines) and poll directions (in colour) as
used by mesh adaptive direct search. Poll points have to lie on the mesh and within the square indicated by black
solid lines.

subproblem need to be projected to the mesh, [39]. A search step based on minimiza-
tion of quadratic model functions and ordering of the poll points of a directional direct
search methods by the value of the model function may speed up convergence, [39, 46].

Custódio and Vicente [48] suggested an efficient generalized pattern search al-
gorithm that utilizes simplex derivatives, which are defined as follows. Let Y =
{y0, . . . ,yn} be a set of n+ 1 affinely independent vectors. The simplex gradient is
the vector g ∈ Rn for which the linear model m(x) = f (y0)+ gTx interpolates f at the
points in Y . Denote by H ∈ Rn×n a symmetric matrix. If the set Y = {y0, . . . ,yp} for
p= (n+1)(n+2)/2−1 is such that the quadratic model

m(x) = f (y0)+gTx+
1
2
xTHx

which interpolates Y is uniquely defined, the simplex Hessian of f at y0 is the matrix
H. The simplex gradient and Hessian may also be defined based on a set of p ̸= n and
p ̸= (n+ 1)(n+ 2)/2− 1 sample points, [48]. At least after every unsuccessful itera-
tion, a generalized pattern search method is guaranteed to have a suitable sample set
for computing a simplex gradient without additional function evaluations, [48]. Con-
sidering the poll directions in the order of their angle to the negative of the simplex
gradient, starting with the smallest angle, the number of function evaluations used by a
generalized pattern search method may be considerably reduced, [48].

A generalized set search method introduced in [60] collects average curvature infor-
mation in form of finite differences. Let h,k > 0. The matrix R ∈ Rn×n with elements
Ri, j, i, j = 1, . . . ,n, given by,

Ri, j =
f (x+hqi+ kq j)− f (x+hqi)− f (x+ kq j)+ f (x)

kh
,

is an approximation of a Hessian with respect to the coordinate system rotated by an
orthogonal matrix Q= [q1, . . . ,qn] ∈ Rn×n. The algorithms by Frimannslund and Stei-
haug [60, 61] compute the matrix R using information from several iterations. The poll
directions are ordered with the aim of calculating the curvature information based on
few functional evaluations additional to the previously evaluated points. The curva-
ture information is utilized to define sets of poll directions of the form [V −V ], for a
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nonsingular and orthogonal matrix V ∈ Rn×n that contains the eigenvectors of the ap-
proximation QRQT of the Hessian matrix. The use of average curvature information
is suitable for noisy objective functions, [60]. Due to the choice of poll directions,
the efficiency of a direct search method may be improved, [60], and, under suitable
assumptions, convergence to points which satisfy second-order necessary optimality
conditions may be guaranteed, [4].

2.4.4 Hidden constraints

The use of the term hidden constraint in the literature of derivative-free optimization
is sometimes attributed to Choi and Kelley [38], who call "the requirement that the
objective be defined a ’hidden constraint’, because there is no a priori way to tell if a
point is feasible without attempting to evaluate the function". Such a constraint may
also be called virtual constraint, [41].

Hidden constraints may be considered as examples of unrelaxable constraints
(which have to be satisfied by all iterates, for example, since the user requires
it), [11, 45]. Conn, Scheinberg and Vicente [45, p. 242] define hidden constraints as
unrelaxable constraints, which "are not part of the problem specification/formulation,
and their manifestation comes in the form of some indication that the objective function
could not be evaluated".

The term hidden constraint often refers to the case that the computer code used
to evaluate the objective function fails to return a value, e.g. [36, 37, 55, 56, 77; 82,
Ch. 4]. An internal iteration may fail to converge, as, for example, for the problems
considered in [7, 8, 26, 41]. An iterative method applied to numerically solve PDEs
fails to converge for a problem studied in [26, 41], and hidden constraints are violated
for up to 60% of the function evaluations, [26]. Furthermore, an internal computation
may fail, as e.g. in [32], evaluation of the objective function may be impossible with
the given computational budget or available storage, [56], or the optimization algorithm
may ask to evaluate the objective function at points for which the function is not defined
(such as the logarithm of a negative number), [90].

An objective function may also be designed to return no value, when it detects
violation of a constraint which is not explicitly computable, [36]. For a problem on
water resource policies, constraints were imposed on functions of random variables
sampled as a part of the evaluation of the objective function, [35; 82, Ch. 10; 85].
Constraints without explicit representation in the problem formulation, which were
tested within the objective function evaluation, have also been reported for a hydraulic
capture problem, [11; 82, Ch. 9].

The requirement that the algorithm used to evaluate the objective function returns
a value is sometimes considered as an example of hidden constraints, [32, 83]. The
feasibility of an implicitly stated constraint, which is either satisfied or not, may also
be tested by a separate computation, [83]. For a constrained optimization problem, the
term hidden constraint may refer to the case that an evaluation of a constraint fails, [11].

As remarked in [36], in some cases, constraints which could be represented by
inequalities may be handled as if they were hidden constraints, i.e., the explicit rep-
resentation of the constraint is not used. As an example, the formulation as a hidden
constraint may be preferred when using an optimization method which has convergence
theory for hidden constraints, as for the well problem considered in [11].
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In this thesis, the objective functions are functions of a numerical solution of a
differential equation, and we find in general two types of hidden constraints. Firstly,
the (analytic) solution of the differential equation may not be defined. Secondly, an
integrator may return an error message instead of a numerical solution for a differential
equation. In comparison to the definition of hidden constraints in the taxonomy for
constraints in simulation-based optimization [90], this includes cases for which the
reason for the infeasibility is known.

2.4.5 Optimization with hidden constraints

In this section, we consider the constrained optimization problem

min
x∈Ω

f (x) (2.27)

with hidden constraints. The feasible set Ω ⊂Rn is a proper subset of the known set of
constraints Θ ⊂ Rn. A local solution of the problem (2.27) is a feasible point x∗ ∈ Ω
with a neighbourhood N such that f (x)≥ f (x∗) for all x ∈N∩Ω.

For a moment, let Ω = Rn. For continuously differentiable functions, Taylor’s the-
orem can be used to approximate the objective function in a neighbourhood of a point
and to find new iterates. As an example, due to Taylor’s theorem, we know that by
searching for a new iterate xk+αkdk in a descent direction dk ∈ Rn, an improved esti-
mate for the local minimizer of an unconstrained optimization problem can be found for
sufficiently small αk > 0, unless the current iterate is a stationary point, [108, Ch. 2].
For a twice continuously differentiable function f , Taylor’s theorem tells us that the
quadratic model function mk defined by (2.28) with an arbitrary symmetric matrix Hk
has approximation error O(∆2

k), as shown e.g. in [108, Ch. 4].

mk(s) = f (xk)+∇ f (xk)T s+
1
2
sTHks, with a symmetric matrix Hk ∈ Rn×n . (2.28)

The model function mk may be employed in a trust-region framework. With the knowl-
edge about the objective function and the gradient at the current iterate, the behaviour
of the continuously differentiable function can be predicted in a neighbourhood of the
current point. Globally convergent line search methods and trust-region methods ex-
ploit the local information about the objective function.

We consider now a problem with hidden constraints. An optimization algorithm
that aims at solving the problem with feasible set Ω ⊂ Θ may try to evaluate the ob-
jective function at points for which the function is not defined. Heuristics for handling
this challenge exist and are, for example, described in [18, Ch. 8; 58]. However, if the
evaluation of the objective function fails, the behaviour of the objective function can
no longer be predicted in a neighbourhood of the current iterate based on knowledge
about the objective function and the gradient at the current iterate. As an example, a
descent direction may not be feasible with respect to the hidden constraints. To ensure
that an optimization algorithm computes a subsequence of iterates that converges to a
stationary point becomes a challenge. If the feasible set could be defined by inequal-
ities and equalities, traditional approaches for handling constrained problems such as
penalty, barrier, augmented Lagrangian methods and sequential quadratic programming
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(described e.g. in [108]) could be employed. However, these optimization techniques
require an explicit formulation of the feasible set.

A strategy to ensure global convergence for optimization problems with hidden con-
straints consists of producing trial points which form an asymptotically dense subset of
Θ. This implies that for all x ∈ Θ and for all δ > 0, the algorithm tries to evaluate the
objective function at a point xk with ∥x−xk∥≤ δ . This strategy is, for example, utilized
by the optimization methods SNOBFIT [77] and DIRECT [55].

Directional direct search methods with global convergence results for problems with
hidden constraints optimize the barrier function fΩ defined by (2.29), or assign NaN or
an arbitrary value larger than the objective function value at the current iterate to the
objective function if a hidden constraint is violated, [56].

fΩ(x) =
{

f (x), x ∈ Ω
∞ , else. (2.29)

Global convergence results for problems with hidden constraints exist for mesh adap-
tive direct search, as shown in [10], and in general for directional direct search methods
which evaluate the objective function value at a set of poll points (2.25), reduce the step
length if a step is not successful, and build a set of poll directions that is asymptotically
dense in the unit sphere, possibly after normalization, [56].

Denote by Vk the set of normalized poll directions in iteration k. Following [82,
Ch. 5], a sequence V = {Vk}∞

k=1 is called rich if for all unit vectors v ∈ Rm and any
subsequence {Wk j}∞

j=1 of V, we have that liminf j→∞minw∈Wk j
∥v−w∥ = 0. That the

sequence of sets of search directions is rich and any of its subsets becomes arbitrarily
close to every vector in the unknown tangent cone to Ω at a limit point of unsuccessful
iterations, is important for global convergence results, [10, 56]. For mesh adaptive
direct search, strategies for the generation of sequences of sets of poll directions have
been designed, [3, 13]. Furthermore, by including a finite number of random directions
to the set of poll directions, rich sequences of sets of directions can be obtained almost
surely, [82].
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Chapter 3

Slow-fast population dynamic models for fish

3.1 Introduction

In the following, we consider a continuous-time model for numbers of prerecruits N0(t)
and adults Ni(t) of age i = 1, . . . ,n. Denote by N(t) the (n+ 1)-dimensional vector
(N0(t),N1(t), . . . ,Nn(t)). We use bold symbols to represent vectors. The general slow-
fast population dynamic (SFPD) model is defined by (3.1)–(3.2) with initial condition
N(0) ∈ Rn+1

≥0 .

.
N0(t) = −αN0(t)+

1
ε
A(N0(t),N1(t), . . . ,Nn(t)) , (3.1)

.
Ni(t) = αNi−1(t)−αNi(t)−miNi(t), i= 1, . . . ,n . (3.2)

The model describes the processes of egg production, mortality and ageing. Equa-
tion (3.2) is identical to (2.8) from section 2.2.3. Parameter mi ≥ 0 is the mortality
rate of fish at age i = 0, . . . ,n and α > 0 is the progression rate from stage i− 1 to i.
Following [139], we assume that the mortality rate per prerecruit and the rate of egg
production are considerably larger than the progression and mortality rates per adult.
The function A describes the fast processes. The differential equation includes two dis-
tinct time-scales, a fast time T and a slow time t = εT . In the remainder of chapter 3,
we assume the ratio ε between slow and fast time to be positive and small. Touzeau and
Gouzé [139] assumed A to be quadratic. We are interested in a more generic approach.

We use the definitions for recruitment and the spawning stock size from [139],
which we restate by (3.3).

R(t) = αN0(t) and S(t) =
n

∑
i=1

fiNi(t) . (3.3)

Recruitment is the progression rate of prerecruits to the youngest adult age-class and
the spawning stock size is the sum of fecund fish. Parameter fi ≥ 0 denotes the fraction
of spawners in age-class i.

The aim of this chapter is two-fold. Firstly, we give conditions under which a gen-
eral SFPD model describes recruitment as a function of the number of adults in several
age-classes. Next, we investigate which A would admit a class of SR functions that
includes the Ricker and the Beverton–Holt functions.
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Section 3.2 is based on paper A and describes a framework for the SR relationship
derived from a general SFPD model. We apply the results by Fenichel [54] and prove
the existence of a function that links recruitment to numbers of adults. Instead of the
results by Fenichel, the reduction theorem from [16] could be applied if A had a root
for all (N1, . . . ,Nn) ∈ Rn. However, this assumption may not always be satisfied. A
framework for the investigation of the parent-progeny relationship of a general slow-
fast population dynamic model is important for fisheries science, since the literature
includes several examples of assumptions about the dynamics of prerecruits.

In section 3.3.1, we derive an SFPD model from ecological considerations about the
dynamics of prerecruits. This is the parametrized SFPD model introduced in paper A.
A rich class of SR functions, including the Ricker and Beverton–Holt functions, de-
fines locally invariant manifolds of the new model. A second SFPD model is shown
to be linked to the Shepherd SR function. Based on paper A, we describe fixed points,
the slow-fast dynamics and nonnegativity of the variables of the parametrized SFPD
model in section 3.3.2. In section 3.3.3, we re-formulate the parametrized SFPD model
in terms of a smaller set of parameters. Concluding remarks regarding the assump-
tions underlying the general SFPD model are offered in section 3.4. The approach of
using model (3.1)–(3.2) is compared to the traditional SR functions. Furthermore, the
parametrized SFPD model is compared to the model in [139].

3.2 Geometric singular perturbation theory for slow-fast population
dynamic models

The application of geometric singular perturbation theory in this chapter is based on
terminology introduced in section 2.1. We consider the general SFPDmodel and obtain
the system of differential equations (3.4) by multiplication with ε > 0. In case of small
ε , we have a singularly perturbed differential equation expressed in terms of the slow
time. The variable N0 changes at fast rates, while N1, . . . ,Nn are slow variables.

ε
.
N0(t) = − εαN0(t)+A(N0(t),N1(t), . . . ,Nn(t)) , (3.4)
.
Ni(t) = αNi−1(t)−αNi(t)−miNi(t), i= 1, . . . ,n .

N′
0(T ) = − εαN0(T )+A(N0(T ),N1(T ), . . . ,Nn(T )) , (3.5)

N′
i (T ) = ε (αNi−1(T )−αNi(T )−miNi(T )) , i= 1, . . . ,n .

The algebraic constraint of the reduced slow system (the case ε → 0 of (3.4)) is
A(N(t)) = 0. The set of zeros of A consists of fixed points of the reduced slow sys-
tem, which are invariant under the reduced slow system.

Consider now the general SFPD model (3.5) expressed in terms of fast time T . We
consider the solutions of the ODE in a domain of interest R× [0, S̄]n with S̄ > 0 and
state the following hypotheses about the general SFPD model.

(h1) The set K̂ ⊂ Rn is open and A : R× K̂ → R is a C∞ function.

(h2) The set K̂ contains [0, S̄]n.
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(h3) M0= {N∈R×K̂|A(N0,N1, . . . ,Nn)= 0} is the graph of aC∞ function h0 : K̂→R.

(h4) It holds that ∂A(N0,N1, . . . ,Nn)/∂N0|M0
< 0, the derivative of A with respect to

N0 on M0 is negative.

In paper A, the results by Fenichel (see [80]) for compact manifolds (possibly with
boundary) are applied to the general SFPD model under assumptions (h1)–(h4) and the
following is proven. If h0 is defined on a suitable compact set K with [0, S̄]n ⊂ K ⊂ K̂
(as defined in paper A), then the graph of h0 on K is a compact manifold with boundary.
Hypotheses (h1)–(h3) imply that h0 can be defined on such a suitable set K, as shown
in Section 2.4. of paper A. For ε > 0 sufficiently small and under hypotheses (h1)–
(h4), there exists a function hε : K → R, which is arbitrarily many times continuously
differentiable, jointly in N1, . . . ,Nn and ε , such that the manifold with boundary given
by (3.6) and denoted by Mε is locally invariant under (3.5).

Mε = {(N0,N1, . . . ,Nn) ∈ Rn+1|N0 = hε(N1, . . . ,Nn), (N1, . . . ,Nn) ∈ K} . (3.6)

Furthermore, there exists a manifold Ws(Mε) locally invariant under (3.5) with the
property that solutions of the differential equation (3.5) which start in Ws(Mε) and
remain in a neighbourhood ofMε converge exponentially toMε . The manifoldWs(Mε)
is an O(ε)-perturbation of, and diffeomorphic to R×K =Ws(M0).

Denote by N(t) a solution of (3.5). Local invariance of a manifold with bound-
ary under (3.5) implies the following. If N0(t̄) = hε(N1(t̄), . . . ,Nn(t̄)) for some
(N1(t̄), . . . ,Nn(t̄)) ∈ [0, S̄]n and t̄ ≥ 0, then for all t ≥ 0, (N1(t), . . . ,Nn(t)) ∈ [0, S̄] im-
plies N0(t) = hε(N1(t), . . . ,Nn(t)). The result is obtained from the fact that local invari-
ance of a manifold with boundary means that N(t) can only leave the manifold with
boundary through its boundary in the slow directions, from K ⊃ [0, S̄]n, and (3.7).

∂Mε = {(N0,N1, . . . ,Nn) ∈ Rn+1|N0 = hε(N1, . . . ,Nn), (N1, . . . ,Nn) ∈ ∂K} . (3.7)

Here, ∂K denotes the boundary of set K.
Function hε describes the number of prerecruits as a function of numbers of adults.

A SR relationship may be derived from hε by using (3.3).

3.3 A parametrized slow-fast population dynamic model

In this section, we consider examples of the general SFPD model (3.1)–(3.2). For the
remainder of chapter 3, let li, pi, mi ≥ 0 and for reasons of simplicity fi, m0, α > 0
for i = 1, . . . ,n. The parameters represent properties of the population dynamics, as
described in chapter 2 and in Table 3.1 at the end of this chapter. Based on [139], we
use the following assumptions.

Assumption I: αε +m0 < ∑n
i=1 fili · (∏i

j=1α/(α +m j)).
Assumption II: ∃i∗ ∈ {1, . . . ,n} s.t. pi∗ > 0.
Assumptions I and II are re-stated from section 2.2.4. Additionally, we use the

following assumption from paper A.
Assumption III: The parameters li = l > 0, fi = f > 0, pi = p > 0 are age-

independent and positive for all i= 1, . . . ,n.
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3.3.1 Deriving a slow-fast population dynamic model

We now derive a new SFPD model from the following assumptions. The population
dynamic model is a general SFPD model. We follow the standard assumption in the
fisheries literature that the rate of egg production at time t is the sum of rates of egg
production of spawners in age-classes i = 1, . . . ,n, [73, Ch. 3]. Let m0, c, γ > 0. We
denote by pi ≥ 0 the coefficient for the degree of density-dependence attributed to fish
of age i, for i = 1, . . . ,n, and define K̂c = {(N1, . . . ,Nn) ∈ Rn|∑n

i=1 piNi(t) ≥ 0} and
K̂γ = {(N1, . . . ,Nn) ∈Rn|1+(∑n

i=1 piNi)/(γm0)> 0}. The mortality rate of prerecruits
is assumed to be mc : K̂c → R>0 defined by (3.8) or mγ : K̂γ → R>0 defined by (3.9).

mc(N1(t), . . . ,Nn(t)) = m0+

(
n

∑
i=1

piNi(t)

)c

, (3.8)

mγ(N1(t), . . . ,Nn(t)) = m0

(
1+

n

∑
i=1

pi
γm0

Ni(t)

)γ

. (3.9)

The definition of the mortality rate of prerecruits is motivated by assumptions of the
generalized Ricker model, as described in the following.

The generalized Ricker model is derived from the assumption that the mortality rate
per prerecruit is m(S) = m0+ bSc, with b > 0, as described in [116, Ch. 3]. Assume
now that the coefficient b for the degree of density-dependence is a function of age.
With (3.3), we obtain function mc for the mortality rate of prerecruits. In case of c= 1,
the function mc is equal to mγ with γ = 1. The functions mc and mγ are positive and
represent the following assumptions. For i= 1, . . . ,n, the rate of mortality of prerecruits
increases strictly with Ni(t) > 0 if pi > 0. The density-independent mortality rate is
m(0) = m0 > 0.

From the above assumptions, we obtain two functions for the fast processes egg
production and mortality of prerecruits, function Ac : R× K̂c → R given by (3.10) and
Aγ : R× K̂γ → R given by (3.11).

Ac(N(t)) =
n

∑
i=1

li fiNi(t)−

(
m0+(

n

∑
i=1

piNi(t))c
)
N0(t) , (3.10)

Aγ(N(t)) =
n

∑
i=1

li fiNi(t)−m0

(
1+

n

∑
i=1

pi
γm0

Ni(t)

)γ

N0(t) . (3.11)

Summarizing, we obtain two SFPD models defined by (3.1)–(3.2) and either (3.10)
or (3.11).

Consider the SFPD model with the fast dynamics described by Ac. The function
mc is positive on K̂c, and the set of zeros of Ac is the graph of h0c : K̂c → R≥0 defined
by (3.12).

N0(t) =
∑n
i=1 li fiNi(t)

m0+(∑n
i=1 piNi(t))c

. (3.12)

Under Assumption III, the function h0c is a Shepherd function (2.3). To see this, multi-
ply (3.12) with α . With Assumption III, we have p, l, f , α , m0 > 0 and we can define
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a = αl/m0 > 0 and b = pc/( f cm0) > 0. With the definition of R(t) and S(t) by (3.3),
we obtain a Shepherd function (3.13).

R(t) =
(αl/m0)S(t)

1+ pc/( f cm0)S(t)c
. (3.13)

The Shepherd function is the Beverton–Holt function in case of c = 1, and a dome-
shaped function in case of c > 1. In comparison to the Deriso function, the Shepherd
function can only approximate the Ricker function.

We consider now Aγ . The limit of the right-hand side of equation (3.11) as γ → ∞
defines A∞ : Rn+1 → R. The SFPD model with Aγ and A∞ is given by (3.14)–(3.16),
where (3.16) is identical to (3.2).
.
N0(t) = −αN0(t)

+
1
ε

[
−m0N0(t)

(
1+

1
γm0

n

∑
i=1

piNi(t)

)γ

+
n

∑
i=1

li fiNi(t)

]
︸ ︷︷ ︸

=Aγ (N(t))

, case γ > 0, (3.14)

.
N0(t) = −αN0(t)

+
1
ε

[
−m0N0(t) · exp

(
1
m0

n

∑
i=1

piNi(t)

)
+

n

∑
i=1

li fiNi(t)

]
︸ ︷︷ ︸

=A∞(N(t))

, case γ → ∞, (3.15)

.
Ni(t) = αNi−1(t)−αNi(t)−miNi(t), i= 1, . . . ,n. (3.16)

This model is the parametrized SFPD model introduced in paper A.
As described in paper A, the model describes the following parent-progeny relation-

ships. The set of zeros of Aγ : R× K̂γ → R is equivalent to the graph of h0γ : K̂γ → R≥0

with h0γ(N1(t), . . . ,Nn(t)) = N0(t) given by (3.17). The graph of the parent-progeny
function h0∞ : Rn → R≥0 defined by (3.18) is the set of zeros of A∞.

R(t) = αN0(t) = α(
n

∑
i=1

li fi
m0

Ni(t))

(
1+

n

∑
i=1

pi
γm0

Ni(t)

)−γ

, (3.17)

R(t) =
α
m0

(
n

∑
i=1

li fiNi(t)) · exp

(
− 1
m0

n

∑
i=1

piNi(t)

)
. (3.18)

Under Assumption III, we obtain the SR function (3.19) for the case γ > 0. The SR
function is the Deriso model (1.3) with a = αl/m0 and b = p/(m0 f ). For the case
γ → ∞, the parent-progeny function (3.18) is a Ricker function (3.20) if Assumption III
holds.

R(t) =
αl
m0

S(t)
(
1+

p
γm0 f

S(t)
)−γ

, case γ > 0, (3.19)

R(t) =
αl
m0

S(t) · exp
(
− p
m0 f

S(t)
)
, case γ → ∞. (3.20)

For γ = 1, the SR function (3.19) is the Beverton–Holt function (2.13) explained by the
model in [139].
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3.3.2 Properties of the parametrized population dynamic model

The solution for an initial value problem (3.14)–(3.16) with initial condition N(0) ∈
Rn+1
≥0 is nonnegative assuming α , m0 > 0 and fi > 0, for i= 1, . . . ,n, as shown in paper

A. Nonnegative solutions of the parametrized SFPD model are important, since the
differential equation represents changes in the number of individuals.

In paper A, it is proven that 0 is a fixed point of (3.14)–(3.16), and the parametrized
SFPD model has a positive fixed point if assumptions I and II hold and li, pi, mi ≥ 0
and fi, m0, α > 0 for i = 1, . . . ,n. A population may under suitable assumptions exist
for an infinite time.

The function Aγ is defined on a proper subset of Rn. The results by Fenichel
(see [80]) are suitable to describe the slow-fast dynamics. As shown in paper A, hy-
potheses (h1)–(h4) hold for the parametrized SFPD model and the geometric approach
to singular perturbation theory as described in section 3.2 can be utilized. Thus, for
ε > 0 and sufficiently small, there exists a slow manifold Mε and a manifold Ws(Mε)
for the parametrized SFPD model (3.14)–(3.16) with the following properties. Solu-
tions of (3.14)–(3.16) which start in Ws(Mε) and remain in a neighbourhood of Mε ,
converge exponentially to Mε . The slow manifold is locally invariant under (3.14)–
(3.16) and the graph of a function hε defined on a suitable set K ⊂ K̂γ , which can be
chosen such that K ⊃ [0, S̄]n for any S̄ > 0. The function hε is an O(ε)-perturbation of
h0γ or h

0
∞. Under Assumption III, the function h0γ defines a Deriso function (3.19) and h

0
∞

defines a Ricker function (3.20). The slow manifold Mε is given by (3.6), and we have
Ws(M0) = R×K (with the same set K).

We extend the results as follows, using the description of local invariance of a mani-
fold with boundary from section 3.2 and nonnegativity of the solution of (3.14)–(3.16).
For all t ≥ 0, assume that N(t) satisfies (3.14)–(3.16) with N(0) ∈ Rn+1

≥0 and Ni(t)≤ S̄
for some S̄ > 0 and for all i = 1, . . . ,n. Then, for ε sufficiently small, there exists a
function hε defined on a suitable K ⊃ [0, S̄]n such that N0(0) = hε(N1(0), . . . ,Nn(0)) for
some (N1(0), . . . ,Nn(0)) ∈ [0, S̄]n implies N0(t) = hε(N1(t), . . . ,Nn(t)) for all t ≥ 0.

We consider an example of the parametrized SFPD model. The parameter values
are such that Assumptions I, II and III hold and the ODE has a positive fixed point.
Recruitment and spawning stock size are obtained from (3.3) and numerical solution
of (3.14)–(3.16) at t ∈ {0,0.005,0.01, . . . ,10}. We use the same parameter values and
method for numerical solution of the ODE as in paper A.

Figure 3.1 shows recruitment and the spawning stock size as functions of time for
the parametrized SFPD model with γ = 1.5. A point illustrates a numerical solution
of the ODE at t ∈ {0,0.005,0.01, . . . ,10}. The trajectories k = 1, . . . ,30 represent the
solution of an initial value problem with initial condition N(0) ∈ [0,60]× [0.9k,2+
0.9k] drawn from a uniform distribution. In a short first phase, recruitment may change
considerably faster than the spawning stock size. All solutions of the initial value
problems considered here are attracted to the graph of a SR function, and approach
a positive fixed point.

The SR relationships of the parametrized SFPD model and the fast dynamics of
recruitment in the four cases γ ∈ {1,1.5,5} and γ → ∞ are illustrated in Figure 3.2. For
our choice of initial conditions, all trajectories converge to the graph of a SR function.
The parent-progeny relationships approximate a Deriso function and a Beverton–Holt
(γ = 1) or Ricker function (γ → ∞) shown in Figure 1.1.
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Figure 3.1: Simulation of recruitment and the spawning stock size as described by the SFPD model (3.14)
and (3.16) with γ = 1.5. The solutions of the 30 initial value problems approach the graph of a SR function that
approximates a Deriso function with γ = 1.5.
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Figure 3.2: The SR relationships admitted by numerical solutions of the parametrized SFPD model (3.14)–
(3.16). All trajectories approach the graph of a SR function, which can be approximated by the Deriso function.
(From paper A.)
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3.3.3 Dimensional analysis for the slow-fast population dynamic model

The aim of this section is to redefine the parametrized SFPD model in terms of dimen-
sionless variables and parameters for simulation and parameter estimation, i.e., nondi-
mensionalization of the ODE as described in [101, Sect. 2.1.2.8]. An introduction to
dimensional analysis can be found in [94, Ch. 6]. The dimensions of the parameters of
the parametrized SFPD model are given in Table 3.1.

The product tα is dimensionless and describes the time in which one individual
progresses from age-class i to i+1, for i= 0, . . . ,n−1. Denote by c> 0 a natural scale
of N. We substitute the time t̃ = tα and Ñ = N/c into (3.14)–(3.16) and obtain the
ODEs (3.21)–(3.23).

d
dt̃
Ñ0(t̃) = − Ñ0(t̃)+

1
εcα

Aγ(cÑ(t̃)) , case γ > 0 , (3.21)

d
dt̃
Ñ0(t̃) = − Ñ0(t̃)+

1
εcα

A∞(cÑ(t̃)) , case γ → ∞ , (3.22)

d
dt̃
Ñi(t̃) = Ñi−1(t̃)− Ñi(t̃)−

mi

α
Ñi(t̃), i= 1,2, . . . ,n . (3.23)

From Eq. (3.17), we see that the following products of the parameters in the
parametrized SFPD model fully describe the relationship between the numbers of
adults and recruitment: α , γ , li fi/m0 and pi/m0, for i = 1, . . . ,n. This motivates the
definition of the dimensionless parameters θi, θn+i and θ2n+i ≥ 0, with i= 1, . . . ,n, and
ε∗ > 0 by (3.24).

θi =
li fi
m0

, θn+i = c
pi
m0

, θ2n+i = 1+
mi

α
, ε∗ =

εα
m0

. (3.24)

We substitute the dimensionless parameters given by (3.24) into the parametrized
SFPD model and obtain (3.25)–(3.26). The number of parameters has been reduced
from 4n+4 to 3n+2.

d
dt̃
Ñ0(t̃) = − Ñ0(t̃)+

1
ε∗

n

∑
i=1

θiÑi(t̃)

−

{
1
ε∗ Ñ0(t̃)

(
1+ 1

γ ∑n
i=1θn+iÑi(t̃)

)γ
, case γ > 0 ,

1
ε∗ Ñ0(t̃) · exp

(
∑n
i=1θn+iÑi(t̃)

)
, case γ → ∞ ,

(3.25)

d
dt̃
Ñi(t̃) = Ñi−1(t̃)−θ2n+iÑi(t̃), i= 1, . . . ,n . (3.26)

The new formulation does not change the fact that the model describes slow-fast dy-
namics. As an example, assuming as in [139] that α = 0.8, m0 = 0.5 and ε = 0.01, we
have ε∗ = 1.6ε = 0.016.

The dimensionless parameters represent quantities of interest from a biological
point of view. Parameters θi, with i = 1, . . . ,n, describe the largest possible contribu-
tion fili/m0 of age-class i to recruitment (the case pi = 0). Parameter θn+i is a relative
degree of density-dependence attributed to fish of age i. If N∗ is a fixed point of (3.25)–
(3.26), then θ2n+iN∗

i = N∗
i−1 for i= 1, . . . ,n, and the age distribution is characterized by

θ2n+1, . . . , θ3n.
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Assumptions I, II and III in terms of the new parameters are, respectively:
Assumption I∗: (ε∗+1) · ∏n

j=1θ2n+ j < ∑n
i=1θi · ∏n

j=i+1θ2n+ j.
Assumption II∗: ∃i∗ ∈ {1, . . . ,n} s.t. θn+i∗ > 0.
Assumption III∗: θi = θ1 > 0 and θn+i = θn+1 > 0 for all i= 1, . . . ,n.
If Assumption III is satisfied, we obtain from (3.17) recruitment as a function of

S̃(t) = ∑n
i=1 Ñi(t). The parent-progeny function is given by (3.27) and a Deriso function

with a= αθ1 and b= θn+1.

R(t) =αθ1S̃(t)
(
1+

1
γ

θn+1S̃(t)
)−γ

. (3.27)

Instead of α > 0, mi ≥ 0, for i = 1, . . . ,n, we could assume θ2n+i ≥ 0, i = 1, . . . ,n.
The existence of a locally invariant manifold and its representation as a graph rely on
assumptions about Aγ and not on assumptions about θ2n+i, i = 1, . . . ,n. The proof of
nonnegativity of the solution of the initial value problem (3.25)–(3.26) with Ñ(0)∈Rn

≥0
and θk ≥ 0, k = 1, . . . ,3n, can be done analogously to that for model (3.14)–(3.16) in
paper A.

Furthermore, if θ ∈R3n
≥0, then the right-hand side of equations (3.25)–(3.26) is con-

tinuously differentiable with respect to Ñ and θ in a neighbourhood of Ñ ∈ Rn
≥0. This

follows from 1+∑n
i=1(θn+i/γ)Ñi > 0 for Ñ ∈ Rn

≥0.

3.4 Discussion

In the following, we compare the assumptions of the parametrized slow-fast population
dynamic model to further models for recruitment and numbers of adults, including the
model by Touzeau and Gouzé.

In case of γ = 1, the parametrized SFPD model (3.14)–(3.16) is the model by
Touzeau and Gouzé with p0 = 0. The parametrized SFPD model with 0 < γ ̸= 1 de-
scribes the processes egg production, ageing and mortality of adults in the same way
as the model by Touzeau and Gouzé, but the mortality rate of prerecruits as a nonlin-
ear function of numbers of adults. The model in [139] and the new SFPD model have
nonnegative variables if all parameters are nonnegative, and have positive fixed points
if Assumptions I and II hold, as shown in [139] and paper A, respectively.

In [139], it is shown that if ε is sufficiently small, then solutions of the parametrized
SFPD model with γ = 1 can for sufficiently large t be approximated by a function
of the number of adults, which is the Beverton–Holt function if Assumption 0 holds.
Assumption 0 is restated from section 2.2.4.

Assumption 0: Let p ≥ 0, f , l > 0. For all i = 1, . . . ,n, either pi = p, fi = f and
li = l or pi = fi = li = 0.

Assumption 0 with f = l = 0 would imply that h0γ is the constant zero function and
R(t) = 0 for all t ≥ 0. Assumption III considered in paper A implies Assumption 0.
Assumption 0 is sufficient, but not necessary, for the set of zeros of Aγ and A∞ to be the
graph of a SR function. Assume more generally that Assumption 0b holds.

Assumption 0b: For all i = 1, . . . ,n, either pi = c fi and li = l, for c ≥ 0, l > 0, or
pi = fi = li = 0.
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Under Assumption 0b, we have ∑n
i=1 li fiNi(t) = lS(t) and ∑n

i=1 piNi(t) = cS(t). In
this case, equations (3.17) and (3.18) define R(t) as a function of S(t). Assumption
0b could, for example, represent the case that fecundity and the degree of density-
dependence attributed to fish of age i increase with age.

The general SFPDmodels are examples of continuous-time models with two stages,
prerecruits and adults. The dynamics of stage structured populations may also be de-
scribed by delay differential equations, [69; 102, Ch. 5]. An example of a delay differ-
ential equation is the two-stage model (3.28) for the number of juveniles N0(t) and the
number of adults N1(t).

.
N0(t) = βN1(t)−m0N0(t)−βN1(t− τ0) · exp(−m0τ0)︸ ︷︷ ︸

MJ(t)

,

.
N1(t) = βN1(t− τ0)exp(−m0τ0)−m1N1(t) . (3.28)

We use the notation for the parameters introduced in section 2.2.3. The duration of the
juvenile stage is denoted by τ0 ≥ 0. The rate MJ(t) of maturation of juveniles to the
adult stage at time t is assumed to be the product of the rate βN1(t−τ0) of transition to
the juvenile stage at time t− τ0 and survival exp(−m0τ0) from time t− τ0 to t.

In comparison to this assumption, the linear ODE model given by (2.7) (or (3.14)
and (3.16) with pi = 0, for all i = 1, . . . ,n, and ε = 1) describes a constant stage pro-
gression rate per individual (α ≥ 0). The delay differential equation (3.28) can be
derived from a partial differential equation that models the dynamics of a population
with continuous age structure, the McKendrick–Von Foerster equation. To this aim,
the mortality rates and the rate of recruitment to the juvenile stage are assumed to be
step functions of age, [69]. The linear ODE model (2.7) can also be derived from the
McKendrick–Von Foerster equation, assuming that mortality, recruitment, and matura-
tion rates are constant with respect to time and within age-classes, [33].

The parametrized SFPD model may explain stock and recruitment data which fol-
lows a Deriso, Beverton–Holt function or Ricker function. However, the SR functions
and the SFPD models represent distinct assumptions about the mortality of prerecruits.
Traditionally, SR functions are derived from the assumption that the mortality rate of
prerecruits at time t is a function of the spawning stock size at the time of egg pro-
duction (as described in section 2.2.1), but not at time t. Ricker [119] assumes that
the mortality rate due to cannibalism is a function of the spawning stock size and
that the spawning stock size can be measured by the number of eggs produced. The
parametrized SFPD model admits a Ricker SR function and is based on the assump-
tion that the mortality rate at time t is a function of the spawning stock size at time t.
The assumption is suitable for populations with cannibalism in the time interval from
spawning to recruitment. As an example, for Northeast Arctic cod, mortality of pre-
recruits of ages 0 to 3 may be due to cannibalism, [24, 25]. The general SFPD model
describes spawning and recruitment as continuous processes. The timing of spawning
(throughout all year, or in regular time intervals) may depend on the species (e.g. [139]
and references therein). When recruitment can be assigned to a single spawning sea-
son, it might be suitable to describe recruitment as a discrete-time process. In many
other cases, a continuous-time model might be preferred.

The SFPD models describe the dynamics of an age structured class of adults as a
function of the number of prerecruits and vice versa. This two-sided relationship may
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also be described by the reduced slow system of the parametrized SFPDmodel obtained
from (3.17) and (3.2). The model is given by (3.29)–(3.31).

R(t) = α(
n

∑
i=1

li fi
m0

Ni(t))

(
1+

n

∑
i=1

pi
γm0

Ni(t)

)−γ

, (3.29)

.
N1(t) = R(t)−αN1(t)−m1N1(t), (3.30)
.
Ni(t) = αNi−1(t)−αNi(t)−miNi(t), i= 2, . . . ,n . (3.31)

For ε sufficiently small, the solutions of the reduced slow system approximate the evo-
lution of trajectories of the parametrized SFPD model on a slow manifold. The reduced
slow system is based on the assumption that the ratio between the slow and the fast time
scale ε is zero. The parametrized SFPD model describes, in addition to the reduced
slow system, the fast initial evolution of prerecruits. The fast processes are important
for the aim of studying the dynamics of prerecruits. Furthermore, the model (3.14)–
(3.16) would also be applicable if ε was not (sufficiently) small.

α > 0 transition rate; measured in numbers per individual and time unit t
fi > 0 fecundity of fish of age i ∈ {1, . . . ,n}; dimensionless
li ≥ 0 rate of eggs produced per fish of age i; measured in numbers per adult of age i

and per time unit t
pi ≥ 0 degree of density-dependence attributed to fish of age i; measured in numbers

per prerecruit, per adult of age i and per time unit t
mi ≥ 0 rate of density-independent mortality of age-class i; measured in numbers per

individual and time unit t
m0 > 0 rate of density-independent mortality of prerecruits; measured in numbers per

prerecruit and time unit t
γ > 0 parameter that determines the asymptotic behaviour of the SRR; dimensionless

Table 3.1: Nomenclature for the parameters in the parametrized SFPD model.
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Chapter 4

Derivative-free estimation of parameters in
slow-fast population dynamic models

4.1 Introduction

We consider the problem of estimating parameters for a slow-fast differential equation,
which describes the dynamics of a fish population. Let n,r ∈N, m= 3n and 0< ε < 1.
The vector N(t) = (N0(t), . . . ,Nn(t)) ∈ Rn+1 represents the numbers of fish in n+ 1
classes at time t ∈ R. The aim is to find the vector θ ∈ Θ ⊂ Rm

≥0 that minimizes
a nonlinear least squares error (4.1) between a numerical solution of an initial value
problem (4.2) and a set of r data points d(t j) ∈ Rn+1, j = 1, . . . ,r.

min
θ∈Θ

f (θ) =
r

∑
j=1

∥N(t j;θ)−d(t j)∥22 (4.1)

s.t.
.
N0(t) =−N0(t)+

1
ε

n

∑
i=1

θiNi(t) (4.2)

−

{
1
εN0(t)

(
1+ 1

γ ∑n
i=1θn+iNi(t)

)γ
, case γ > 0 ,

1
εN0(t) · exp(∑n

i=1θn+iNi(t)) , case γ → ∞ ,
.
Ni(t) = Ni−1(t)−θ2n+iNi(t), i= 1, . . . ,n ,
N(t1) = d0 .

The data consists of measurements of fish at time t j ≥ 0, j = 1, . . . ,r. The slow-fast
population dynamic model (4.2) is derived and described in section 3.3.3. When we
wish to highlight the fact that the solution of initial value problem (4.2) is a function of
θ , we denote it by N(t;θ). The numerical solution of a differential equation may not
be defined, and the objective function (4.1) may be noisy due to the adaptive strategies
of methods for the solution of differential equations.

The problem of estimating parameters in differential equations can be formulated
in several ways, and overviews of the approaches are e.g. given in [18, Ch. 8; 29, 53].
We employ the initial value approach and reformulate the problem (4.1)–(4.2) as a
problem with constraints θ ∈ Θ, for which every evaluation of the objective function
requires numerical solution of the initial value problem (4.2) on [t0, tr]. This choice of
methodology is motivated as follows.
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By choosing a different approach for the formulation of the optimization prob-
lem than the initial value approach, we might obtain a problem without hidden con-
straints, [23], or a smooth objective function, [137]. As described in [27], there are
generally two strategies for optimization problems with noisy objective functions. The
first strategy is to use a smooth approximation of the objective function or to try to
avoid discontinuities. The sequence of step sizes and order of methods for the solution
of differential equations may be fixed or the step size may vary smoothly, [63]. The
same sequence of step sizes may be employed for several initial value problems, [53].
However, the adaptively chosen sequence of step sizes varies, in general, even with
small perturbations of the parameters in the differential equation, [18, Ch. 8]. Accu-
rate solution of the differential equation may require an adaptive choice of step sizes,
particularly when the initial iterate is far from a local minimum, [53].

The second strategy consists of employing optimization methods which are suitable
for noisy objective functions. Problems formulated using the initial value approach
can be addressed by means of optimization methods which can handle noisy functions
and hidden constraints. In this case, efficient methods for the accurate solution of
differential equations with adaptive strategies can be employed. Furthermore, the initial
value approach uses few variables in comparison to other approaches, and a solution of
a differential equation, which is continuous in t, is obtained in every iteration.

In this chapter, we employ derivative-free optimization for the noisy problems with
hidden constraints. A mesh adaptive direct search method, two of the efficient direc-
tional direct search methods described in section 2.4.3, a model-based derivative-free
method, and the simplex-based Nelder–Mead algorithm are considered. We are in-
terested in the ability of the derivative-free optimization methods to reduce the value
of the objective function for a set of problems of form (4.1)–(4.2) that has been intro-
duced in paper C. Our aim is to test whether the set of solvers finds sufficiently accurate
solutions for the noisy optimization problems with hidden constraints, which are for-
mulated using the initial value approach. Furthermore, we investigate the importance
of hidden constraints for the performance of the derivative-free methods.

We employ a benchmark procedure due to Moré and Wild [99], which compares
the ability of several derivative-free methods to reduce the objective function value as a
function of the computational budget. In this chapter, the robustness of the algorithms
to the initial iterate and the nonlinearity of the differential equation are examined.

Furthermore, we evaluate the performance of the derivative-free optimization meth-
ods for the problems from paper C against the performance for a set of unconstrained
noisy benchmark problems introduced in [99]. The objective functions (4.3) are pertur-
bations of nonlinear least squares functions from the CUTEr collection [65]. Function
ϕ : Rm → [−1,1] represents deterministic noise and εg > 0 a level of noise.

g(θ) = (1+ εgϕ(θ))
K

∑
k=1

gk(θ)2 . (4.3)

In [46, 99], the performance of several derivative-free optimization methods has been
tested based on the noisy benchmark problems. The benchmark set contains 53 prob-
lems with median dimension 7, and all functions gk : Rm → R appear at most six times
in the set. The time-dependent problems of form (4.1)–(4.2) from paper C are simi-
lar to the standard benchmark problems in the sense that they have dimension 6, each
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objective function appears four times and is a function distorted by numerical noise
arising from numerical solution of the differential equation with finite precision arith-
metic. The question thus arises, whether we can expect derivative-free optimization
methods to behave similarly for the set of noisy benchmark problems and the set of
time-dependent problems.

A comparison of the relative performances of derivative-free optimization methods
for the time-dependent problems can also be found in paper C. However, a comparison
of several derivative-free methods may be implemented in many different ways. The
numerical simulations in this chapter aim at verifying that the results from paper C
remain valid when we consider a new set of optimization methods for a modified set of
time-dependent problems.

4.1.1 Outline

Parameter estimation for stiff differential equations is topic of section 4.2. We demon-
strate that objective functions which are functions of the numerical solution of an ar-
bitrary differential equation may, for several reasons, be noisy and have hidden con-
straints. This leads us to argue for derivative-free estimation of parameters in stiff
differential equations. Our choice of methodology is based on the review of algorithms
with convergence theory for problems with hidden constraints in section 2.4.5. In sec-
tions 4.2.4–4.2.6, we consider the time-dependent problems from paper C as an exam-
ple of the optimization problem addressing parameters of stiff differential equations.
We motivate our choice of numerical method for solution of the ODEs. An example of
problem (4.1)–(4.2) is used to illustrate numerical noise and hidden constraints of the
optimization problems.

The numerical simulations are described in section 4.3 and the results in section 4.4.
The results from paper C and from the new numerical simulations in this chapter are
compared, and the performance of the derivative-free optimization methods is dis-
cussed in the context of the derivative-free optimization literature in section 4.5. Con-
cluding remarks about the numerical simulations are given in section 4.6. Here, we
mention further open problems in the field of parameter estimation for population dy-
namic models, which might be addressed using derivative-free optimization.

4.1.2 Related topics

Derivative-free optimization has been applied for several problems that involve systems
of ODEs, [37, 50, 51, 57]. However, the fisheries literature includes few examples of
the application of derivative-free optimization methods. In [114], a nondifferentiable
objective function has been considered, and the pattern search method of Hooke and
Jeeves [76] and the Nelder–Mead algorithm [107] are applied. The software Gadget
(Globally applicable Area Disaggregated General Ecosystem Toolbox) [19, 20] is a tool
for the design of stock assessment models. The toolbox includes a parallel implemen-
tation of the Hooke and Jeeves algorithm and has been applied for several stocks, [140].
However, only a hybrid approach using simulated annealing in a first phase and the pat-
tern search method in a second phase has been tested, [140]. It would be interesting
to test the performance of several derivative-free optimization methods, including the
efficient and robust methods described in section 2.4.
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The derivative-free optimization methods considered in this chapter aim at finding
a local solution of the optimization problem (4.1)–(4.2). In general, strategies for iden-
tification of a good local solution of the optimization problem can be incorporated in
the search step of directional direct search methods. As an example, a hybrid strategy
for optimization, which is based on mesh adaptive direct search, has been suggested
in [8]. A two-phase approach that combines an intelligent Monte-Carlo algorithm with
a globally convergent local search and its application for estimation of parameters in
population dynamic models has been presented in [136].

4.2 Estimation of parameters in stiff differential equations

We consider the optimization problem (4.1)–(4.2). From section 3.3.3, we know that
N(t) ≥ 0 for θ ∈ Rm

≥0 and N(t1) ∈ Rn
≥0. The function g defined by the right-hand

side of (4.2) is continuously differentiable with respect to θ ∈ Rm
≥0 and N in a neigh-

bourhood of N ∈ Rn
≥0. If the initial value problem (4.2) could be solved analytically,

the objective function (4.1) would be continuously differentiable. Let I = 0, . . . ,n and
J = 1, . . . ,m. By [66], the derivatives D= (∂Ni(t;θ)/∂θk)k∈J,i∈I of the solution N(t;θ)
of (4.2) with respect to θ ∈Θ exist, are continuous and solutions of the sensitivity equa-
tions (4.4). In this case, the objective function (4.1), which is a quadratic function of
the solution of (4.2), is a continuously differentiable function of θ ∈ Θ.

.
D(t) = D(t)

(
∂

∂Ni
g j(N(t;θ),θ)

)
j∈I,i∈I

+

(
∂

∂θk
g j(N(t;θ),θ)

)
k∈J, j∈I

, (4.4)

D(t1) = 0 .

The objective function of problem (4.1)–(4.2) is a function of the numerical solution
of (4.2). Depending on the approach for numerical solution of the ODE, the function f
could be distorted by numerical noise, but it has an underlying smooth function.

More generally, we formulate an optimization problem with objective function (4.1)
and constraint (4.5), where g̃ : Rn+1×Rm → Rn+1 is continuously differentiable with
respect to N(t) ∈ Rn+1 and θ ∈ Rm. Equation (4.5) represents an arbitrary stiff differ-
ential equation that is solved numerically.

.
N(t) = g̃(N(t); θ) for t > t1 , N(t1) = d0 . (4.5)

In sections 4.2.1–4.2.3, we consider the generic problem. The specific ODE (4.2) is
topic of sections 4.2.4–4.2.6.

4.2.1 Hidden constraints

An example of hidden constraints, which is relevant for parameter estimation for ODEs,
is the case that the algorithm used to evaluate the objective function fails unexpectedly.
As an example, a method for the solution of differential equations with adaptive step
size control returns an error message if a required tolerance for the one-step error can-
not be achieved without decreasing the step size below its lower bound, [71, Sect.
II.4; 115]. This type of hidden constraint has been observed for a parameter estima-
tion problem described in [37, 50, 51]. For some values of the parameters, the ODE
considered is stiff and its numerical solution using an explicit method fails, [50, 83].
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As an example in [23] shows, small variations of a parameter in a differential equa-
tion may considerably affect the asymptotic behaviour of the solution of a differential
equation and may imply that it is impossible to obtain a numerical solution of the
differential equation for all t ∈ [t1, t f ]. In this case, the objective function is not de-
fined, [23]. Defining explicit constraints which ensure stability of the solution of a
differential equation is in general not a straightforward task, [18, Ch. 8].

From section 2.4.4, we know that hidden constraints may arise when the algorithm
used to evaluate the objective function tests feasibility of constraints that cannot be ex-
plicitly computed. A numerical method for the solution of initial value problems may
not always display an error message when the solution is not sufficiently accurate. As
an example, in paper A, numerical solutions of the ODE (3.14)–(3.16) are reported to
become negative for some t ∈ [0,10]. The analytical solutions of the initial value prob-
lems are nonnegative, as shown in paper A. Negative numerical solutions of the ODE
can only be explained by an inaccurate numerical solution of the ODE. The algorithm
used to evaluate the objective function could be designed to return an error message
when the numerical solution of the differential equation is negative. We would obtain
an optimization problem with hidden constraints.

Additionally, the optimization problems described by (4.1) and (4.5) have hidden
constraints if the analytical solution of the differential equation is not defined for all
t ∈ [t1, tr]. An example of this type of hidden constraints has been described in [23].

4.2.2 Computational noise

Efficient methods for the solution of differential equations adapt the step size, often
based on whether an approximation of the one-step error is smaller than a given tol-
erance, [71, Sect. II.4; 115]. Some algorithms, as an example the ones described
in [127, 128], select the order of the method based on evaluation of conditional state-
ments. In these cases, the numerical solution of a differential equation is a nonsmooth
function of θ , [63; 71, Sect. II.6], and the objective function is nonsmooth, [27, 53].

Methods for the solution of stiff differential equations typically employ adaptive
strategies additional to the choice of the step size or the order of the method. In
each step, implicit methods require the solution of a system of (non)linear equations.
The matrix defining the linear system may be updated dynamically. The number of
iterations utilized by an iterative method for the approximation of a solution of the
(non)linear equation may vary with the differential equation. The adaptive strategies
explain discontinuities of the numerical solution of the differential equation, as de-
scribed for BDF methods in [5]. If the algorithm used to obtain a numerical solution
of a differential equation varies nonsmoothly with θ , computational noise (as defined
in [100]) is introduced in the objective function.

Gear and Vu [63] found that the numerical solution of a differential equation ob-
tained using a fixed step size and order varies smoothly with a parameter if the method
is absolutely stable. A method which is not absolutely stable for a step size and ODE
may amplify the one-step error with each step, [92, Ch. 7]. If a small variation in θ
coincides with a loss of absolute stability of an integrator, we might observe a con-
siderable jump in the numerical solution of the differential equation and the objective
function. Computational noise may arise or be amplified.
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4.2.3 Choice of the optimization methods

The optimization problems given by (4.1) and (4.5) may, for several reasons, have
implicitly stated constraints or noisy objective functions. Optimization problems with
hidden constraints may be challenging for some optimization methods, as described in
section 2.4.5.

One of the challenges of noisy objective functions is that finite differences approxi-
mations of the derivatives of the objective function may be inaccurate. Hairer, Nørsett
and Wanner [71, Sect. II.6.] give the approximation O(

√
Tol) for the error of a finite

difference as approximation of the derivative of a numerical solution of a differential
equation with error tolerance Tol. As illustrated in [27], finite differences may have
the opposite sign as the gradients when the absolute tolerance for the one-step error is
10−6. For the problems considered in [27], an accurate approximation of the deriva-
tives by finite differences is only obtained when a very small tolerance (10−9) is used.
The numerical solution of the differential equation is costly and round-off errors may
become important if a very small tolerance is required, e.g. [125, Sect. 2.4].

For the general problem (4.1) with constraint (4.5), which is solved numerically,
the derivatives of the solution of the ODE with respect to the parameters may be ap-
proximated by finite differences, by numerical solution of the sensitivity equations or
by differentiation of the scheme used in numerical solution of the differential equation,
while keeping all adaptive components fixed. Differentiation of the scheme may be
combined with automatic differentiation. No matter which of the approaches described
e.g. in [18, Ch. 8; 125, Sect. 2.4; 71, Sect. II.6] is used, exact derivatives are in general
not easily obtained.

The noisy objective function (4.1) can be described as the sum of a smooth function
fs : Rm → R and small-amplitude noise ϕ : Rm → R, [37]. In this case, we have,

f (θ) = fs(θ)+ϕ(θ) .

For problems given by (4.1) and (4.5), the level of noise of the objective function and
the underlying smooth objective function are in general unknown. The noisy objective
functions may have local minima, which are nonstationary points of the underlying
smooth function, and optimization methods may converge to local minima of the noisy
objective function, [38, 133].

Gradient-based methods may in many cases be preferred to derivative-free opti-
mization methods. Bard [18, Ch. 4] stated his view of direct search methods in 1974 as
follows. "Our own experience, however, has been disappointing; gradient methods,
even using finite difference approximations, have outperformed direct search meth-
ods on all but the most trivial parameter estimation problems, both in reliability and
speed of convergence." In general, gradient-based methods are still more efficient than
derivative-free optimization methods, e.g. [45, Ch. 1].

However, a strength of derivative-free optimization methods lies in the fact that
they are suitable for problems with noisy or nonsmooth objective function and in cases
when the computation of the derivatives is either not possible or considered to be too
costly, [45, Ch. 1]. Derivative-free optimization methods that use average gradient
information in form of simplex gradients may avoid being trapped in the local minima
that are due to computational noise, [38, 47, 133]. Approximations of the Hessian
utilized by some derivative-free methods represent average curvature information, [60].
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Further results for derivative-free optimization in case of noisy problems with an upper
bound for the level of noise or stochastic noise exist, and an overview can be found
in [47].

Today, several classes of derivative-free optimization methods, for example, mesh
adaptive direct search methods, have convergence theory for optimization problems
with hidden constraints or nonsmooth objective functions, [10, 55, 56, 77]. These meth-
ods have been successfully employed for several problems with hidden constraints, as
described in [83]. Global convergence for problems with hidden constraints can, as
we saw in chapter 2, be achieved by building either a set of trial points that is asymp-
totically dense in the feasible set or an asymptotically dense set of poll directions.
Derivative-free methods have been applied to problems with hidden constraints even
before convergence results had been published, e.g. [26].

Model-based derivative-free methods might terminate at nonstationary points, but
are for the following reasons suitable for problems with hidden constraints, as described
in [41]. The optimization methods aim at evaluating the objective function at a set of
trial points which are at least sufficiently affinely independent. Function evaluations at
a finite set of several well-scattered points might be a good strategy to finding an im-
proved iterate. Model-based derivative-free methods have been successfully employed
for problems with hidden constraints, [41, 118].

For directional direct search methods, there is no guarantee that a limit point of a
subsequence of iterates is a local solution of a problem with hidden constraints unless
the sequence of poll directions is rich, [83]. However, the chance of finding a feasible
descent direction might increase with the number of directions tested. In an unsuccess-
ful iteration, a gradient-based line search method tests one direction in the half-space
of descent directions, while a directional direct search method tests on average at least
(m+ 1)/2 directions per iteration in the same half-space. An additional advantage of
directional direct search methods is that variations of the set of poll directions (though
with the requirements described in section 2.4.3) are possible. The use of multiple di-
rections can be useful in case of hidden constraints. A similar argument is used in [86]
to describe why multiple directions are useful in the case of nonsmooth objective
functions.

Heuristic approaches such as simulated annealing [84] or genetic algorithms [117],
have no (deterministic) convergence results (see e.g. [12, Ch. 5]). Model-based
derivative-free methods and directional direct search methods are globally convergent
and the trust-region radius and the step size parameter are reliable indicators of station-
arity, [12, 45].

We have now shown that there are several reasons for derivative-free optimiza-
tion, including methods without convergence theory in case of hidden constraints, to
be suitable for the noisy optimization problem with hidden constraints given by (4.1)
and (4.5).

4.2.4 A set of optimization problems

The following set of time-dependent problems of form (4.1)–(4.2) is introduced in pa-
per C with the aim of testing the performance of several derivative-free optimization
methods for estimation of parameters in a population dynamic model.
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Thirty-six distinct data sets, which are designed as described in paper C, are given in
Appendix A. Each data set consists of 10 values for d(t j) at time t j = (4/9)( j−1), for
j = 1, . . . ,10. Thirty-six optimization problems of form (4.1)–(4.2) are based on these
data sets. Variations of the optimization problems are obtained by variations of the data
and the three cases γ = 1, γ = 2 and γ → ∞. For each of the 36 optimization problems,
we consider the four distinct values for the initial iterate θ (0) given in Table 4.1. For θ ,
the upper index refers to the iteration number.

The problems with m= 6 unknown parameters have bound constraints of the form
θ ∈ Θ = [0, b] ⊂ Rm for b = (100,100,2,2,5,5). For all problems, parameters are
linearly transformed by a mapping which assigns any value in [0, b] to a value in [0,1]m.

In the following, we refer to the problems from Tables A.1, A.7, A.13, A.19, A.25
and A.31, which represent undistorted measurements, as Problem 1 to 6. Let θ̃ =
(6,8,c,c,2,1.5) with c= 0.05 in case of γ → ∞ and c= 0.2 otherwise. The parameter
θ̃ ∈ Θ with f (θ̃) ∈ [10−5,0.75] is an a priori guess for a local solution of Problems 1
to 6. The exact values for f (θ̃) for the undistorted problems are given in Table 4.2 in
section 4.4.1.

In the remainder of this chapter, we denote by g : Rn+1
≥0 ×Θ → Rn+1

≥0 the function
defined by the right-hand side of the differential equation (4.2). The value of γ indicates
the degree of nonlinearity of the differential equation.

4.2.5 Numerical solution of the slow-fast differential equations

In the following, we motivate our choice of method for numerical solution of (4.2).
This is important, since the smoothness and accuracy of the objective function may
depend on the numerical solution of the initial value problem. Let Re(z) be the real
part of z ∈ C. We denote by λi, j eigenvalue i= 0,1,2 of the Jacobian ∂g(d(t j);θ)/∂d
for t j = (4/9)( j− 1) and j = 1, . . . ,10. In this section, we consider the set of 24
differential equations from Problems 1 to 6 with the four values for θ from Table 4.1.

We compute the stiffness ratio for the set of 24 differential equations at d(t j),
j = 1, . . . ,10. All stiffness ratios are larger than 80 (rounded to two significant num-
bers) and smaller than 5.6 · 1038. The median value of the 240 stiffness ratios is 1200
and indicates stiffness of the differential equations. For all differential equations con-
sidered, for all i= 0,1,2, and all j = 1, . . . ,10, we have |λi, j| ≥ 0.02.

For small ε , the differential equation (4.2) is singularly perturbed. As described in
chapter 3, for ε sufficiently small, there exists an n-dimensional manifold with bound-
ary, such that trajectories with initial value not on the manifold with boundary and
solutions that are slightly perturbed at any time, may converge exponentially to the
manifold with boundary. The differential equation has the properties of a stiff differen-
tial equation as described e.g. in [92, p. 167].

For solving the initial value problem (4.2), we consider using one of the following
two implementations of implicit methods for solution of ODEs described in [128].
NDF methods form the basis of the MATLAB program ode15s. An implementation
of a one-step method for MATLAB, which is called ode23s, is based on the ideas of
the Rosenbrock and the W-method. We employ ode23s and ode15s with the aim of
approximating the solutions of 24 initial value problems for t ∈ [0,4]. An algorithm
for computation of the Jacobian is supplied. The default value for the absolute error
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tolerance is 10−6. Asymptotic values of the solutions of 24 differential equations as
t → ∞ are in interval [17,42]× [7,18]× [4,10] and we set the relative error tolerance to
10−7. We use MATLAB version R2012a [97] and 64 bit floating-point precision.

Problem Runtime of ode15s Runtime of ode23s
θ = 1.2θ̃ 1 (with γ → ∞) 1.36e-01 2.63e+00

2 (with γ → ∞) 1.09e-01 1.63e+00
3 (with γ = 1) 8.74e-02 1.29e+00
4 (with γ = 1) 9.21e-02 1.49e+00
5 (with γ = 2) 1.13e-01 2.39e+00
6 (with γ = 2) 9.52e-02 1.35e+00

θ = 1.5θ̃ 1 (with γ → ∞) 1.52e-01 3.45e+00
2 (with γ → ∞) 1.13e-01 1.45e+00
3 (with γ = 1) 1.04e-01 1.45e+00
4 (with γ = 1) 9.80e-02 1.35e+00
5 (with γ = 2) 1.31e-01 2.77e+00
6 (with γ = 2) 9.51e-02 1.21e+00

θ = 0.5b 1 (with γ → ∞) 1.86e-01 3.14e+00
2 (with γ → ∞) 1.40e-01 1.08e+00
3 (with γ = 1) 1.20e-01 6.79e-01
4 (with γ = 1) 1.26e-01 1.44e+00
5 (with γ = 2) 1.36e-01 3.85e+00
6 (with γ = 2) 1.32e-01 1.24e+00

θ = 0.8θ̃ 1 (with γ → ∞) 9.80e-02 1.22e+00
2 (with γ → ∞) 1.06e-01 1.83e+00
3 (with γ = 1) 7.48e-02 8.90e-01
4 (with γ = 1) 9.45e-02 1.79e+00
5 (with γ = 2) 1.04e-01 1.71e+00
6 (with γ = 2) 9.74e-02 1.66e+00

Table 4.1: Time (in seconds and rounded to three significant numbers) required to solve an initial value problem
of form (4.2) when employing ode15s or ode23s. Each of the problems 1 to 6 is defined by an initial condition
and a value for γ .

The execution time of ode15s and ode23s for each of the 24 initial value problems
is given in Table 4.1. We observe that ode23s is slower than ode15s for all initial value
problems considered here. On average, ode15s is 16 times faster than ode23s. This
may partly be explained by the fact that ode23s uses on average 10 times more steps
than ode15s for approximating a solution of (4.2). The algorithm ode23s is based on a
second order numerical method, while ode15s is based on a class of NDF methods of
orders 1 to 5, [128]. Our results are in accordance with the observation by Shampine
and Reichelt [128] that ode15s is more efficient than ode23s when a high accuracy is
required.

We now test whether ode15s has suitable stability properties for the solution of our
initial value problems. The NDF methods implemented in ode15s have order r ≤ 5
and are A(α)-stable with α ∈ [51◦,90◦] and α = 90◦ for r = 1,2, [128]. Our aim is to
compare the region of absolute stability of the NDF method of order 1 with eigenvalues
of the 240 Jacobians ∂g(d(t j);θ)/∂d described above. In [128], the region of absolute
stability of the NDF method of order 1 is described as the subset of the points z ∈ C
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Figure 4.1: Region of absolute stability of the NDF method of order 1 described in [128] and eigenvalues λi, j,
i= 0,1,2 of the Jacobian ∂g(d(t j;θ))/∂d. The region of absolute stability is the shaded area.

with the property that,

z= (1−κ)− (1−2κ)ζ −κζ 2 , ζ ∈ C , |ζ |= 1 .

The region of absolute stability of the NDF method of order 1 with κ as in [128] and the
subset of the eigenvalues of the Jacobians with |Re(λi, j)| ≤ 4 are shown in Figure 4.1.
Eigenvalues not indicated in Figure 4.1 are on the real axis.

We observe considerable variations in the eigendecomposition of the Jacobian with
d(t). Some eigenvalues are real and positive, but we also observe negative eigenvalues.
The NDF methods are not absolutely stable for real and positive eigenvalues of the
Jacobian, unless sufficiently large step sizes are used. In this case, the one-step error
may be amplified with the number of steps of ode15s. However, 97% of the eigenvalues
considered here have negative real parts and we have |arg(−λ )| < 17◦ for all λ with
Re(λ )< 0. The NDF methods are A(α)-stable for α = 17◦. Summarizing, our results
show that the NDF methods are absolutely stable for the 24 initial value problems
considered in this chapter and for all positive step sizes, unless the Jacobian has positive
real eigenvalues.

In the following, numerical solutions of initial value problems are obtained by
ode15s. An approximation of N(t) at t j, j = 1, . . . ,r, is calculated by interpolation.
We caution that the results from employing ode23s and ode15s for the 24 initial value
problems considered in this chapter can only give an indication for which numerical
method might be suitable for numerical solution of the ODE (4.2).

The algorithm ode15s selects the number of iterations and the approximation of
the Jacobian of an iterative method utilized to approximate a solution of a nonlinear
equation, the order of the NDF methods, and the step size by evaluating conditional
statements, [127, 128]. The objective function of problem (4.1)–(4.2) is a nonsmooth
function with computational noise.
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4.2.6 An example of the optimization problem

In this section, we consider an example of problem (4.1)–(4.2), the case γ → ∞ of
differential equation (4.2) with the data set from Table A.1. This is Problem 1. Let
θ = (6,8,0.08,θ4,2,1.5). The values for θ1, θ2, θ5 and θ6 correspond to the ones
in θ̃ = (6,8,0.05,0.05,2,1.5) with f (θ̃) = 3.25 · 10−3. Here and in the following,
objective function values are rounded to three significant figures.

Figure 4.2 illustrates the computational noise in f (θ) as a function of θ4. The la-
bel on the x-axis of Figure 4.2 corresponds to θ4/b4 ∈ [0,1]. Figure 1.3 from chapter 1
shows the objective function for the same problem, but the absolute and relative tol-
erance for the one-step error are required to be smaller or equal to 10−3 and 10−4,
respectively.
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Figure 4.2: Graph of the objective function of problem (4.1)–(4.2) as a function of θ4, evaluated at 100 points.

We observe that the level of relative noise varies with the tolerance for the one-step
error and θ4. Variations in the absolute stability of the NDFmethods for the eigenvalues
of the Jacobian of function g coincide with the 16 largest jumps in the value of the
objective function that can be observed in Figure 4.2 (a). Here, the level of noise is
considerably larger than the square root of the absolute tolerance for the one-step error
10−6. We observe high- and low-amplitude noise in the objective function.

Figure 4.3 (a) presents the graph of the objective function as function of θ3 ∈ [0,1]
and θ4 ∈ [0,0.4]. The graph of f (θ) as function of θ4 ∈ [0,0.4] and θ5 ∈ [1,3] is given
in Figure 4.3 (b).

The objective function is evaluated on a grid. Missing values in the graph cor-
respond to parameters, for which the objective function could not be evaluated and
indicate hidden constraints. The value ’NaN’ (not a valid number) is assigned to the
objective function in the following two cases. The algorithm ode15s returns an error
message when the tolerances for the one-step error cannot be achieved without de-
creasing the step size below its lower limit. In case of θ3 = θ4 = 0, the differential
equation (4.2) is linear, and the solution of the initial value problem increases exponen-
tially, resulting in objective function value 1.15 ·1023. When the numerical solution of
the differential equation specified by some θ ∈ Θ is too large to be represented by a
computer, an error message is displayed. For the example illustrated in Figure 4.3 (a),
the objective function is not defined for around 4% of the parameter values.
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Figure 4.3: Graph of the objective function of problem (4.1)–(4.2) on a logarithmic scale.
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The graphs of the objective function as a function of θ3 and θ4 and as a function of
θ5 and θ4 show high frequency oscillations and have multiple saddle points for θ4/b4 ∈
[0.1,0.25]. For θ4/b4 ≥ 0.25, hidden constraints are observed and the graph of the
objective function shows high frequency and high amplitude oscillations. Again, we
observe considerable variations in the level of noise.

Figure 4.3 illustrates that the objective function may be highly sensitive to the values
of θ3 and θ4 in comparison to the value of θ5. The function f is poorly scaled (as
defined in [108, Ch. 2]) for θ = (6,8,0.08,θ4,θ5,1.5).

4.3 Numerical simulations

In paper C, the following derivative-free optimization methods are employed for prob-
lem (4.1)–(4.2). FMINSEARCH is an implementation of the Nelder–Mead algorithm
as described in [88]. The simplex-based optimization method is known for a good
practical performance, and has been employed as a point of reference in many cases,
including for parameter estimation for population dynamics models, [114].

SID–PSM [46, 48] is an implementation of a generalized pattern search method
which uses simplex gradients to order the poll directions and quadratic model functions
in a search step. Both strategies can considerably improve the efficiency of generalized
pattern search methods, [46, 48]. As described in [49], SID–PSM handles bound con-
straints by following an approach [86, 93] that may guarantee global convergence of
generalized pattern search methods for bound constraint problems. SID–PSM has been
tested for the set of standard benchmark problems, [46]. For noisy problems and com-
putational budgets between 70(m+ 1) to 120(m+ 1) objective function evaluations,
SID–PSM solves more problems than other derivative-free optimization methods, and
it performs particularly well when high accuracy solutions are required, [46].

Mesh adaptive direct search has convergence theory for problems with bound and
hidden constraints, [10], and to second-order stationary points, [1]. The implemen-
tation of a mesh adaptive direct search method NOMAD [2, 14, 89] is enhanced by
a search step that consists of minimization of a quadratic model function. NOMAD
orders the poll directions based on evaluations of a quadratic model function. A sec-
ond search step is defined based on previously successful directions, [39]. For a set of
benchmark problems and computational budgets of up to 1500(m+1) objective func-
tion evaluations, the mesh adaptive direct search method solves about as many prob-
lems as SID–PSM, [39].

The two directional direct search methods employ quadratic model functions, and a
trust-region method based on radial basis functions is considered. The implementation
of a derivative-free trust-region method using radial basis functions ORBIT has been
observed to be efficient in case of small computational budgets, [143].

FMINSEARCH is not implemented to handle bound constraints. In paper C, the
Nelder–Mead algorithm solves an unconstrained problem and returns negative values
for some parameters and problems. In addition to being biologically implausible, neg-
ative values for one or several parameters may explain unexpected behaviour of the
objective function. This is illustrated by the graph of the objective function as a func-
tion of θ1 and θ4 in Figure 4.4. The objective function (4.1) in case of γ → ∞ and
for the data set from Table A.1 is evaluated at θ = (θ1,8,0.08,θ4,2,1.5). Negativity
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Figure 4.4: Graph of the objective function of problem (4.1)–(4.2) as a function of θ1 and θ4 on a logarithmic
scale and for negative θ1.

of one or several of θ1, . . . , θn may imply that the solution of the differential equa-
tion (4.2) is exponentially decreasing. In case of 0 < γ , the function g is only defined
if −γ ≤ ∑n

l=1θn+lNl(t). If one or several of θn+1, . . . ,θ2n are negative, the function g is
not be defined for all N(t) ∈ Rn+1

≥0 .
However, it is possible that FMINSEARCH finds an infeasible point with small

objective function value. The results from paper C show that FMINSEARCH finds a
good solution for more of the time-dependent problems than any other solver. That the
other implementations of derivative-free optimization methods consider problems with
bound constraints could be a reason for the good performance of FMINSEARCH. We
might suspect that the performances of the derivative-free optimization methods will
change if FMINSEARCH is required to return a feasible point.

Figure 4.3 suggests that some of the optimization problems are poorly scaled. In
general, trust-region methods employing spherical trust-regions are more sensitive to
poor scaling of the objective function than line search methods, [108, Ch. 2]. We
test whether a generating set search method that is enhanced by a strategy different to
minimization of a trust-region subproblem performs well for the set of time-dependent
problems.

New numerical simulations

In this section, we suggest new numerical simulations for the set of time-dependent
problems from paper C, as described in section 4.2.4. FMINSEARCH now handles
bound constraints and we consider a generating set search method which we hypothe-
size to perform well for poorly scaled problems.

We follow the terminology in [61] and refer to the generating set search method in-
troduced in [60, 61] as GSS–CI. We note however that in [4], a more general class of
methods has been referred to as GSS–CI. The generating set search method described
in [60, 61] utilizes average curvature information to define a Newton-like step. In com-
parison to the two directional direct search methods NOMAD and SID–PSM, GSS–CI
updates a vector of m step size parameters individually with the aim of addressing poor
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scaling, [60]. GSS–CI converges under suitable assumptions to second-order station-
ary points, [4]. This may be advantageous in case of problems with saddle points.
GSS–CI has been observed to be robust and able to solve a large number of problems
in comparison to a well-known trust-region method, [61].

Following [107], we employ the Nelder–Mead algorithm for the barrier func-
tion (4.6).

fΘ(θ) =
{

f (θ), θ ∈ [0, b] ,
∞ , else. (4.6)

When a Nelder–Mead simplex method optimizes a barrier function, the simplex may
become arbitrarily close to a subspace of the boundary of the feasible set, [28]. The
algorithm GSS–CI handles bound constraints by minimizing the barrier function (4.6).
This means that for two of the five solvers, the bound constraints are treated as hidden
constraints.

The numerical simulations are implemented as follows. The value ’NaN’ is assigned
to the objective function when the algorithm used to numerically solve the differential
equation returns an error message. Function evaluations at points θ /∈Θ are not counted
in the computation of the data profiles. An algorithm obtains information from a step to
an infeasible point, as it learns that such a point is not a local solution to the optimiza-
tion problem. However, the solvers that have information about the bound constraints
can efficiently handle them.

For all solvers, termination criteria are chosen such that the number of function eval-
uations corresponds to 85 simplex gradient evaluations. Following [99], we denote by
one simplex gradient evaluation (m+1) function evaluations. The use of simplex gra-
dient evaluations instead of function evaluations allows to compare the performances of
solvers for problems with distinct numbers of variables, [99]. The computational bud-
get of at most 85(m+1) function evaluations is rather small compared to the literature
(e.g. [15, 99, 120]) and motivated by the fact that the computational budget is often a
limiting factor for estimation of parameters in population dynamic models, [140]. We
use the same versions of the implementations of derivative-free optimization methods
and the same options for algorithm parameter values as in paper C.

4.4 Results

In this section, we consider the performance of the set S of five derivative–free opti-
mization methods for the noisy problems (4.1)–(4.2) with hidden constraints. Percent-
ages are rounded to the next integer and objective function values are represented with
three significant numbers. We denote by fL,s the lowest objective function value ob-
tained by a derivative-free optimization method s ∈ S for the time-dependent problems
and for a computational budget of 85(m+1) function evaluations.

4.4.1 Performance of a set of derivative-free optimization methods

This section starts with a study of the performance of all five solvers as one set of
methods, as in [120]. We investigate Problems 1 to 6 with the four values for the initial
iterate θ (0) from Table 4.2. For Problem 1 to 6 with undistorted data, an upper bound



4

58 Derivative-free estimation of parameters in slow-fast population dynamic models

and approximation for the minimum is f (θ̃). Table 4.2 presents the average over the
smallest function values found by the five solvers and the smallest function value fL
obtained by any solver. We compare the objective function values obtained by the set
of derivative-free optimization methods with f (θ̃) and f (θ (0)).

Initial iterate Problem 1
5 ∑s∈S fL,s fL f (θ̃) f (θ (0))

θ (0) = 1.2θ̃ 1 (with γ → ∞) 5.37e+00 2.49e-03 3.25e-03 2.73e+02
2 (with γ → ∞) 5.71e+00 1.70e-03 7.41e-01 1.81e+02
3 (with γ = 1) 2.59e-03 3.98e-09 3.68e-03 2.61e+02
4 (with γ = 1) 6.12e-02 4.56e-06 5.90e-02 6.16e+01
5 (with γ = 2) 4.51e-03 8.90e-05 7.04e-04 1.23e+02
6 (with γ = 2) 1.18e-02 3.99e-06 1.39e-02 2.49e+01

θ (0) = 1.5θ̃ 1 (with γ → ∞) 3.10e+01 6.69e-03 3.25e-03 1.06e+03
2 (with γ → ∞) 5.22e+01 1.70e-03 7.41e-01 7.11e+02
3 (with γ = 1) 2.98e-03 6.94e-05 3.68e-03 1.02e+03
4 (with γ = 1) 1.27e+00 4.56e-06 5.90e-02 2.48e+02
5 (with γ = 2) 6.00e-02 9.50e-04 7.04e-04 4.93e+02
6 (with γ = 2) 4.85e-01 3.99e-06 1.39e-02 9.69e+01

θ (0) = 0.5b 1 (with γ → ∞) 8.68e+03 8.70e+00 3.25e-03 1.92e+04
2 (with γ → ∞) 5.38e+02 3.28e+02 7.41e-01 1.53e+04
3 (with γ = 1) 5.71e-02 1.10e-03 3.68e-03 3.65e+03
4 (with γ = 1) 6.21e+00 4.19e+00 5.90e-02 5.43e+03
5 (with γ = 2) 6.39e-01 9.62e-02 7.04e-04 6.48e+02
6 (with γ = 2) 4.99e+00 3.50e+00 1.39e-02 9.80e+01

θ (0) = 0.8θ̃ 1 (with γ → ∞) 9.16e+00 1.23e-03 3.25e-03 6.50e+02
2 (with γ → ∞) 7.58e+00 1.70e-03 7.41e-01 4.16e+02
3 (with γ = 1) 1.60e-02 1.77e-10 3.68e-03 6.09e+02
4 (with γ = 1) 8.74e-02 4.56e-06 5.90e-02 1.24e+02
5 (with γ = 2) 2.63e-02 1.21e-08 7.04e-04 2.76e+02
6 (with γ = 2) 1.70e-02 3.99e-06 1.39e-02 5.59e+01

Table 4.2: Results from numerical simulations. The index i ∈ {1, . . . ,6} refers to data set i with σ = 0 in
Appendix A. We denote by 1

5 ∑s∈S fL,s the average value of the lowest objective function values found by five
derivative-free optimization methods within 595 objective function evaluations when starting at θ (0). The lowest
objective function value obtained by any solver is denoted by fL, and θ̃ is an a priori guess for a solution of the
optimization problem.

From Table 4.2, we observe that for about 71% of the problems, the five derivative-
free optimization methods together found an objective function value smaller than
f (θ̃). More precisely, fL is smaller than f (θ̃) for all problems with θ (0) = 1.2θ̃ or
θ (0) = 0.8θ̃ and for two of six problems with θ (0) = 1.5θ̃ . When starting close enough
to the a priori guess for a solution of the optimization problem, the five derivative-free
methods together find a solution with objective function value smaller than 3 · 10−3.
For 25% of the problems overall, the smallest objective function value obtained by any
solver within 85 simplex gradient evaluations is smaller than the absolute tolerance for
the one-step error. The smallest relative reduction of the objective function by all five
solvers together ( f (θ (0))− fL)/ f (θ (0)) is by 97%. The minimum value of the objec-
tive function is unknown, and may not be zero. Overall, we find that the set of five
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solvers finds sufficiently accurate solutions for the least squares problem.
The point θ (0) = 0.5b is the initial iterate with largest distance (in the 2-norm) to θ̃ .

The results in Table 4.2 show that the problems with θ (0) = 0.5b are most challenging.
In general, we observe in Table 4.2 that for every initial iterate, the values of fL and
1/5∑s∈S fL,s are larger for the problems with γ → ∞ than for the problems with γ =
1 or γ = 2. The problems with highly nonlinear differential equation appear to be
challenging.

Comparing the third and fourth column in Table 4.2, we observe that the average
solution found by the five solvers is on average 27 times larger (rounded to the next
integer) than the best solution found by any of the five solvers. A good choice of the
optimization method is important.

4.4.2 Comparison of the derivative-free optimization methods

In this section, we consider the results from a comparison of the five derivative-free
optimization methods for the set of time-dependent problems from section 4.2.4. Fol-
lowing paper C, the optimization problems are distinguished by the value of γ and the
initial iterate.

The comparison of the performances of derivative-free optimization methods relies
on tools described in [99] and we utilize one of them, data profiles. Moré and Wild [99]
suggest a test of convergence for derivative-free optimization methods, which compares
objective function values with fL. Given a tolerance τ > 0, the inequality (4.7) holds if
the decrease in the objective function from the starting point θ (0) to θ is at least (1−τ)
times the best possible reduction.

f (θ (0))− f (θ)≥ (1− τ)( f (θ (0))− fL) . (4.7)

The data profile ds(α) is defined as the fraction of problems that an algorithm s solves
with a computational budget corresponding to α > 0 simplex gradient evaluations, [99].

The data profiles for FMINSEARCH, ORBIT, SID–PSM, NOMAD and GSS–CI
for the time-dependent problems and for τ ∈{10−1,10−3,10−5} are given in Figure 4.5.
In general, the required accuracy τ has a strong impact on the percentages of problems
solved for any budget. Another difference in the data profiles for distinct values of τ
is that the graphs of the data profiles flatten out, and the differences in the data profiles
decrease with an increasing number of function evaluations for τ = 10−1, but not for
τ = 10−3 and τ = 10−5. With the computational budget of 85·(m+ 1) function eval-
uations, about 76%-99% of the problems are solved with accuracy τ = 10−1, about
16%-74% with accuracy τ = 10−3 and 2%-50% with accuracy τ = 10−5. All solvers
solve most problems at least with accuracy 10−1. It appears to be challenging to achieve
accuracy 10−5 with the given computational budget.

Figure 4.5 (a) shows the fraction of problems, for which a solver reduces the objec-
tive function by 90% compared with the best reduction obtained by any solver. This
corresponds to convergence criterion (4.7) for τ = 10−1. With a budget of 85 simplex
gradient evaluations, SID–PSM solves about 99% of the problems and NOMAD, GSS–
CI, FMINSEARCH and ORBIT solve approximately 97%, 95%, 93% and 76% of the
problems, respectively. If a problem is solved, then this takes on average 11 simplex
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gradient evaluations for FMINSEARCH, 21 for ORBIT, 16 for SID–PSM, 22 for NO-
MAD and 13 for GSS–CI. For τ = 10−1, NOMAD and ORBIT perform best for small
computational budgets (α ≤ 4), FMINSEARCH, GSS–CI and SID–PSM perform well
for α ∈ [11,61] and SID–PSM and NOMAD solve the largest percentage of the prob-
lems overall. Summarizing, the direct search methods are more successful than the
trust-region method, and FMINSEARCH and GSS–CI are, overall, fastest.

Considering the data profiles for accuracy τ = 10−5 in Figure 4.5 (c) and the per-
centages of problems solved with accuracy τ = 10−3 in Figure 4.5 (b), we observe that
the directional direct search methods GSS–CI and SID–PSM solve the highest number
of problems overall. With a budget of at most 85 simplex gradient evaluations, aver-
age gradient and curvature information, which is utilized in a direct search framework,
seems to allow for more accurate solutions for the time-dependent problems.

Comparison with the Noisy Benchmark Problems

In this section, FMINSEARCH, GSS–CI, ORBIT, NOMAD and SID–PSM are em-
ployed for the noisy benchmark problems (4.3) with deterministic noise and relative
noise level ε f = 10−5. As for the time-dependent problems, the solvers terminate after
85·(m+1) function evaluations. We compare the data profiles for the noisy benchmark
problems in Figure 4.6 with the data profiles for the time-dependent problems from
Figure 4.5.

The data profiles for τ = 10−1 in Figure 4.6 (a), for τ = 10−3 in Figure 4.6 (b)
and for τ = 10−5 in Figure 4.6 (c) illustrate that for all values of α considered here,
the noisy benchmark problems are on average solved more frequently than the time-
dependent problems. Especially for the two high accuracies τ = 10−3 and 10−5, the
time-dependent problems are considerably more challenging than the noisy benchmark
problems. For the two values of τ and all values of α , no derivative-free optimization
method solves a higher percentage of the time-dependent problems than of the noisy
benchmark problems.

For all 0 ≤ α ≤ 85, we consider the difference between the largest percentage of
problems solved by any solver and the smallest percentage of problems solved by any
solver. The variations in performances for the time-dependent problems illustrated in
Figures 4.5 are compared with the differences in the data profiles for the noisy bench-
mark problems presented in Figure 4.6. For τ = 10−1, the differences in percentages
of solved problems are larger for the time-dependent problem than for the noisy bench-
mark problems if α ≥ 20. The variations between the data profiles for τ = 10−3 and for
the time-dependent problems exceed the ones for the same accuracy and the benchmark
problems if α ≥ 50. Summarizing, for many computational budgets, and for τ = 10−1

and τ = 10−3, we observe larger variations in the performances for the time-dependent
problems than for the noisy benchmark problems.

The ranking of the solvers regarding the highest fraction of problems solved for a
given computational budget differs for the two types of problems. For example, for
τ = 10−5, GSS–CI solves the highest number of time-dependent problems for almost
all computational budgets considered, while SID–PSM solves most of the benchmark
problems for all α ∈ [0,85]. For τ = 10−5, NOMAD solves more of the noisy bench-
mark problems than FMINSEARCH, while the opposite is observed for the problems
with ODE constraints. Overall and in comparison to the other derivative-free optimiza-
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(a) Data profile for τ = 10−1.
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(b) Data profile for τ = 10−3.
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(c) Data profile for τ = 10−5.

Figure 4.5: Percentage of problems solved by a solver for the time-dependent problems.
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(a) Data profile for τ = 10−1.
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(b) Data profile for τ = 10−3.
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(c) Data profile for τ = 10−5.

Figure 4.6: Percentage of problems solved by a solver for the noisy benchmark problems.



4

4.4 Results 63

tion methods, the Nelder–Mead algorithm and GSS–CI perform better for the parame-
ter estimation problems than for the noisy benchmark problems and the time-dependent
problems are more challenging than the noisy benchmark problems, especially for NO-
MAD and ORBIT.

Our results are in accordance with previous results from employing derivative-free
optimization for the set of benchmark problems. An earlier version of NOMAD than
the one employed in this chapter has been observed to be slower than SID–PSM for
a set of benchmark problems by Moré and Wild [99] (but not the noisy benchmark
problems) and for level of accuracy 10−3, [39]. As in [143], ORBIT is observed to
be effective when the computational budget is small. Furthermore, SID–PSM has also
previously been observed to be able to find accurate solutions for the noisy benchmark
problems, [46].

Nonlinearity of the differential equation

The parameter γ indicates the nonlinearity of the differential equation. In case of γ →∞,
the objective function may be highly sensitive to the values of θ3 and θ4, as illustrated
in Figure 4.3.
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(a) Data profile for γ = 1.
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(b) Data profile for γ → ∞.
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(c) Data profile for γ = 2.

Figure 4.7: Percentage of problems solved for τ = 10−1 and for the time-dependent problems, classified by the
nonlinearity of the differential equation.

Figure 4.7 presents the percentage of problems solved by any of the five derivative-
free optimization methods with accuracy τ = 10−1 for the subsets of the problems
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defined by γ = 1, γ = 2 or the case γ → ∞. Figures 4.7 (a) and (c) illustrate that all
derivative-free optimization methods are efficient for the cases γ = 1 and γ = 2. The
convergence test (4.7) is on average satisfied less frequently for the subset of problems
described as the case γ → ∞ than for the two cases γ = 1 and γ = 2. This is in accor-
dance with the observation from section 4.4.1 that the problems with highly nonlinear
differential equation are more challenging than the cases γ = 1 and γ = 2.

For all α ∈ [0,85], ORBIT solves fewer of the problems for the case γ → ∞ than
for the other two cases. The nonlinearity of the differential equation has a considerable
impact on the performance of the model-based derivative-free optimization method. In-
terestingly, ORBIT performs better for the problems with γ = 2 than with γ = 1. With
a budget of 85 simplex gradient evaluations, NOMAD and SID–PSM frequently find
high quality solutions for the three subsets of problems. However, the two directional
direct search methods which are enhanced by a model-based search steps are less effi-
cient than FMINSEARCH and GSS–CI for the problems with highly nonlinear ODE.

Robustness to the initial iterate

Figure 4.8 presents the data profiles for the problems with θ (0)= 0.8θ̃ and the problems
with θ (0) = 0.5b for τ = 10−1.
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(a) Data profile for θ (0) = 0.8θ̃ .
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(b) Data profile for θ (0) = 0.5b.

Figure 4.8: Percentage of problems solved for τ = 10−1 and for the time-dependent problems, classified by the
initial iterate.

We observe considerable variations in the performances of the five solvers with the
initial iterate. Figure 4.8 illustrates that the problems with θ (0) = 0.5b are, on average,
solved less frequently than the problems with θ (0) = 0.8θ̃ . NOMAD and SID–PSM
are the only solvers to find a solution that satisfies the convergence test for τ = 10−1

for more than 90% of the problems with the largest distance between θ̃ and the initial
iterate.

ORBIT performs better for the problems defined by θ (0) = 0.5b than for the prob-
lems with θ (0) = 0.8θ̃ . As illustrated in Figure 4.8, FMINSEARCH and GSS–CI are
less efficient and solve fewer of the problems with θ (0) = 0.5b than the other solvers.
ORBIT is observed to be most robust and FMINSEARCH and GSS–CI are least robust
to the choice of the initial iterates.
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4.4.3 Hidden constraints of the parameter estimation problems

In the following, we examine the effect of hidden constraints on the data profiles from
Figure 4.5. In paper C, hidden constraints are observed for about 8% of the optimization
problems, more precisely the ones with γ → ∞ and θ (0) = 0.5b.

During optimization with NOMAD, hidden constraints arise for five of six of the
problems defined by the data from Tables A.1–A.6, initial iterate θ (0) = 0.5b and the
ODE in case of γ →∞. In total, 15 evaluations of the objective function failed, and in 22
cases, the value of the objective function exceeds the largest finite number represented
in 64 bit floating-point precision, causing an overflow. For all time-dependent problems
with hidden constraints, NOMAD obtains an objective function value that satisfies the
convergence test (4.7) for τ = 10−1. For some of the problems with hidden constraints,
the objective function value returned by NOMAD after 85 simplex gradient evaluations
is the best solution found by any solver. The good performance of NOMAD is not
surprising, since mesh adaptive direct search methods are designed to handle hidden
constraints.

The objective function is defined for all θ ∈ Θ considered by GSS–CI, FMIN-
SEARCH, SID–PSM and ORBIT. That the number of unsuccessful attempts to evaluate
the objective function is highest for NOMAD may to be due to the fact that NOMAD
moves further away from the initial iterate θ (0) than any of the other solvers.

FMINSEARCH and GSS–CI handle bound constraints as if they were hidden con-
straints. For 90 of the 144 time-dependent problems, FMINSEARCH evaluates the
objective function at points that are not elements of Θ. This corresponds to about 7%
of the function evaluations. For GSS–CI, hidden constraints occur for 130 problems
and on average for about 8% of the function evaluations. For each problem, the objec-
tive function is not defined for at most 35% of the points considered by FMINSEARCH
and at most 33% of the points tested by GSS–CI.

In general, minimization of a barrier function may be challenging for the simplex-
based optimization method, [28], and GSS–CI is not designed to build a rich sequence
of poll directions. However, for a large range of computational budgets considered in
the numerical simulations, GSS–CI solves at least as many problems with accuracy
τ = 10−5 as any other solver. GSS–CI obtains the lowest objective function value for
more problems than any other algorithm and it performs well for the medium and higher
values for α . For all values of τ and for most computational budgets, the simplex-based
optimization method solves more problems than at least two other implementations
of derivative-free optimization methods. FMINSEARCH and GSS–CI found iterates
satisfying the convergence test (4.7) with τ = 10−1 for more than 90% of the time-
dependent problems within 85 simplex gradient evaluations. Despite treating bound
constraints as hidden constraints, the two solvers perform well for the time-dependent
problems.
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4.5 Discussion

4.5.1 Comparison of the results from two sets of numerical simulations

We now compare the data profiles from paper C for α ≤ 85 with the results from the
numerical simulations from this chapter. The aim is to test, whether key results from
paper C remain valid for the new simulations.

We employ the same versions of SID–PSM, ORBIT and NOMAD as in paper C,
and the data profiles of the three algorithms in paper C resemble the ones in this chap-
ter. The numerical simulations from paper C differ from the ones in this chapter by
the number of solvers and by the approach used by FMINSEARCH to handle bound
constraints.

In this chapter, we consider an additional solver (GSS–CI), which provides a better
solution than the other solvers for 43% of the problems when FMINSEARCH mini-
mizes a barrier function. This explains why the data profiles from paper C for SID–
PSM, ORBIT and NOMAD are for some α ∈ [0,85] larger than data profiles from this
chapter for the same solvers and the same accuracy. However, for the three imple-
mentations of derivative-free optimization methods, the data profiles from paper C are
smaller or equal to the data profiles from this chapter for most values of 0 ≤ α ≤ 85
and for all values of τ . Since the additional solver explains only smaller data profiles in
this chapter than in paper C, this can only be due to the fact that in paper C, the Nelder–
Mead algorithm solves an unconstrained problem, while we employ FMINSEARCH to
minimize the barrier function (4.6).

The unconstrained problems considered in paper C are less challenging for FMIN-
SEARCH than minimization of a barrier function for the time-dependent problems. For
the numerical simulations from paper C, FMINSEARCH solves the highest number of
problems for all three accuracies and for a computational budget of at most 85 sim-
plex gradient evaluations. When minimizing a barrier function, FMINSEARCH ranks
lower than SID–PSM for most computational budgets and accuracies. Overall, the dif-
ferences in the data profiles of FMINSEARCH are small. The performances may be
explained by the possibility to return θ /∈ Θ with small objective function value and
the fact that optimization of barrier functions can be challenging for the simplex-based
optimization method.

Several observations from paper C are confirmed by the numerical simulations in
this chapter. This includes results concerning the behaviour of the derivative-free op-
timization methods with variations of the initial iterate and the value of γ . In paper C
and in this chapter, it is observed that the Nelder–Mead algorithm performs better for
the time-dependent problems than for the noisy benchmark problems.

As described in paper C, the variations in the performances of the solvers for the
time-dependent problems are overall larger than for the noisy benchmark problems,
and the time-dependent problems are more challenging than the benchmark problems.
These observations remain valid for the new set of derivative-free optimization methods
and the modified time-dependent problems.
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4.5.2 Performance of the derivative-free optimization methods

The high variations in the data profiles for the time-dependent problems can be linked
to the fact that the problems are challenging. This can be explained as follows. Moré
andWild [99] observe that the differences in data profiles may decrease with increasing
number of function evaluations if many solvers find a sufficiently accurate solution for
a sufficiently large computational budget. For all α ∈ [0,85], the time-dependent prob-
lems are on average solved less often than the noisy benchmark problems. It is possible
that more functions evaluations are required to solve the time-dependent problems than
the noisy benchmark problems.

The following challenges may be encountered for optimization of the time-
dependent problems. The problems (4.1)–(4.2) have hidden and bound constraints.
Hidden constraints have a small effect on the performance of the derivative-free opti-
mization methods for the problems considered in this chapter. Only two of the con-
sidered implementations, NOMAD and SID–PSM, have first-order global convergence
properties for bound constraint problems.

Another difference between the time-dependent problems and the noisy benchmark
problems is the type of noise. For the noisy benchmark problems, the level of noise
is 10−5 and independent of θ . As illustrated in Figure 4.2, the level of computational
noise of the objective function (4.1) may be considerably larger than 10−5 and varies
with θ . Model-based derivative-free optimization may be less successful than direct
search for accuracies that are about the level of noise than for smaller accuracies, [99].
A strong impact of computational noise on the performance of the solvers could explain
why ORBIT is overall outperformed and NOMAD less efficient for the time-dependent
problems. That SID–PSM and GSS–CI use average gradient and curvature information,
respectively, may explain why the two methods obtain the most accurate solutions.

The problems with γ → ∞ are more challenging than the problems with γ = 1 or
γ = 2. The differential equation (4.2) is highly nonlinear in case of γ → ∞, and the
problems with γ → ∞ may be poorly scaled, as observed in Figure 4.3. Spherical trust-
regions or trust-regions of form {x ∈ Rm|∥x− xk∥∞ ≤ ∆k}, as employed by ORBIT,
are not suitable for poorly scaled problems, [108, Ch. 4]. Newton’s method is scale
invariant, e.g. [108, Ch. 2], and individual step lengths are useful for poorly scaled
functions, [60]. Poor scaling of the time-dependent problems with γ →∞ might explain
why GSS–CI is more efficient for the problems with γ → ∞ than NOMAD, ORBIT and
SID–PSM.

The error bounds for the model functions utilized by ORBIT and in the search
step of SID–PSM and NOMAD depend on the nonlinearity of the objective func-
tion, [44, 143]. While radial basis functions may perform better than quadratic models
for multi-modal functions, [144], ORBIT is the only solver that relies on an accurate
approximation of the objective function. High nonlinearity of the objective function
could be a reason for ORBIT to be less efficient and for FMINSEARCH to rank high.
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4.6 Concluding remarks

4.6.1 On the numerical simulations

The conclusions from this chapter are only valid for the specific implementations of
the optimization methods and the specific optimization problems. The set of time-
dependent problems is limited in the variety of the number of variables, the initial
iterates, and the feasible set.

Further methods, such as NEWUOA [113], or methods designed to solve nonlinear
least squares problems, such as POUNDERS [87] or DFLS [147], might be considered.
However, a nonlinear least squares function is one of several types of objective func-
tions commonly used for parameter estimation for population dynamic models, [73,
Ch. 6]. The optimization methods employed in this chapter can be applied for a broad
variety of objective functions. The set of solvers is chosen with the aim of testing the
overall performance of derivative-free methods for parameter estimation in the singu-
larly perturbed differential equations.

A remark is in place about the fact that a solver might fast approach a local solution
with considerably higher objective function value than fL. In general, data profiles
consider the reduction of the objective function value and contain no information about
whether a local solution of an optimization problem is approached.

The following software has been updated. SID–PSM now incorporates an option
to build sequences of sets of poll directions that, after normalization, become asymp-
totically dense in the unit sphere, [49]. The implementation of mesh adaptive direct
search utilizes now a vector of m mesh and poll size parameters, and the efficiency of
NOMAD has been improved, [15].

The challenges of problem (4.1)–(4.2) are typical for parameter estimation for
ODEs that are solved numerically. The objective functions are noisy due to the numer-
ical solution of the differential equations and may, for several reasons, not be defined
for all θ ∈ Θ. In general, the convergence may be slow if the objective function is more
sensitive to a subset of the parameters than to others, e.g. [125, Sect. 4.2]. Derivatives
or their approximations may inform about the local sensitivity of the objective function
with respect to one point in the feasible set. However, unless the objective function is
linear in the parameters, the local measure is only valid for a single point in the feasi-
ble set, and methods for investigation of the global sensitivity of the objective function
with respect to the parameters require additional function evaluations, [123].

4.6.2 On estimation of parameters in population dynamic models

Implausible results are frequently obtained when estimating parameters in population
dynamic models, [98], as, for example, in [64]. Heuristic approaches, which for exam-
ple consist of keeping some parameters fixed and successively increasing the number
of parameters to be addressed, [58], have been adopted in the fisheries literature, [98].
Derivative-free optimization methods such as mesh adaptive direct search provide a
nonheuristic approach to handling hidden constraints.

Models for the dynamics of fish populations may incorporate several species and
environmental factors with temporal and spatial variations at several distinct scales.
Spatially and temporarily structured populations may be described by partial differen-
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tial equations, [75]. Derivative-free optimization has been successfully applied for es-
timation of parameters in partial differential equations, e.g. [59, 87]. Individual-based
models describe the characteristics of every individual in the population over its life-
time. Mechanisms such as growth may be described by piecewise-defined functions,
thus resulting in nondifferentiable dynamical systems, [130]. We may anticipate that
derivative-free optimization may in the future be applied more frequently for parameter
estimation in population dynamic models.
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Chapter 5

Emergent properties of a multi-stage population
dynamic model

5.1 Introduction

A stage structured population may consist of several early life stages (such as eggs,
larvae and juveniles) and several adult classes. For stages i = 1, . . . ,n, denote by
zt = (z1,t . . .zn,t) ∈ Rn

≥0 the vector of numbers of individuals at time t ∈ N0. Based
on standard assumptions from the fisheries literature, e.g. [116, Ch. 5], the population
dynamics may be described by a difference equation (5.1) with nonnegative real-valued
functions gi and initial condition z0 ∈ Rn

≥0.

zi,t = gi(zt ,zt−1), i= 1, . . . ,n . (5.1)

The functions gi represent birth and death processes and the transitions from one stage
to the next.

Define recruitment as the transition of fish to stage m ∈ N, with 1 ≤ m < n. A
traditional assumption is that recruitment is given by a SR function

r : R≥0 → R≥0 s.t. zm,t = r (St−τ) ,

for all t ≥ τ, for τ ≥ 1 and for all solutions zt of (5.1),

where

St =
n

∑
i=m

wi zi,t , with wi ≥ 0.

An example of wi is the fraction of spawners in age class i = m, . . . ,n. In this case, St
denotes the total number of spawners at time t. If we assume wi = 1 for i = m, . . . ,n,
then St is the total number of adults at time t. Parameter τ ≥ 0 may, as an example,
denote the average time from spawning to recruitment.

From chapter 3, we know that in case no SR function exists, recruitment may be a
function of the number of adults in several age classes. We distinguish between two
parent-progeny relationships: a SR function, which describes recruitment as a function
of a weighted sum of the number of adults in several age-classes and recruitment as a
function of numbers of adults zm,t , ... , zn,t . In comparison to chapter 3, we consider a
discrete-time model for several early life stages.
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Our aim is to derive sufficient conditions for the existence of the two parent-progeny
functions, and a framework that is applicable for a broad range of multi-stage models
from the literature.

We start this chapter by considering an example of a life cycle of fish, which in-
cludes the egg, larval, juvenile and adult stages. The dynamics of the population are
described by a discrete-time multi-stage model. In section 5.3, we state the general
form of the emergent parent-progeny relationship. Sufficient conditions for the exis-
tence of two parent-progeny functions are given in section 5.4. Sections 5.2–5.4 present
results from manuscript B.

In section 5.5, we give examples of discrete-time multi–stage models with SR func-
tion and compare them with multi–stage models from the fisheries literature. A SR
function and recruitment as a function of the number of adults in several age-classes
have been considered for a continuous-time two-stage population dynamic model in
chapter 3. In section 5.6, we relate the sufficient conditions for existence of a SR func-
tion from chapter 3 to the ones from manuscript B.

Comparisons of models for populations with several early life stages to SR functions
can be found in the literature. The question of existence of a SR function has not been
considered for these multi-stage models, since the models are based on assumptions
that guarantee their existence. We compare the assumptions underlying the multi-stage
models from the literature with the results from manuscript B in section 5.7.

5.2 A general multi-stage model

Eggs Larvae

JuvenilesAdults

Hatching

Metamorphosis

Maturation

Cannibalism

Cannibalism

Spawning

Ageing Ageing

Figure 5.1: A schematic diagram of the life cycle of fish. Hatching, metamorphosis, maturation and spawning
are the principal developmental processes that cause the transition from one life stage to the next. The linkages
between the adults and the early life stages through cannibalism are indicated. (From manuscript B.)

An example of a schematic overview of the life history of fish, which involves sev-
eral early life stages, is shown in Figure 5.1. The arrows indicate interactions between
individuals of distinct life stages (such as cannibalism) and transitions from one stage to
the next. As an example, egg production and survival may be influenced by the quantity
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and structure of the parent population. We may consider several age-classes of juve-
niles and adults. The loop from the vertex that represents adults to itself indicates tran-
sitions from one age-class of adults to the next age-class of adults. Ageing of juveniles
is represented by the loop from the vertex which represents juveniles. A SR relation-
ship for the life cycle 5.1 subsumes the processes spawning, hatching, metamorphosis,
maturation, cannibalism and ageing of juveniles. The life cycle 5.1 is considered in
manuscript B, where a description of the life history of fish from an ecological point of
view can be found.

S= {e, l, j,a} Set of life stages: eggs (e), larvae (l), juveniles ( j), adults (a)
t ∈ N0 Simulation time
m ∈ N0 Number of juvenile age-classes
n ∈ N0 Index of the oldest age-class
k ∈ {0, ..,m, ..,n} Indices of age-classes
Et ∈ R≥0 Number of eggs at time t
Lt ∈ R≥0 Number of larvae at time t
Jk,t ∈ R≥0 Number of juveniles in class k = 0, . . . ,m−1 at time t
Nk,t ∈ R≥0 Number of adults in class k = m, . . . ,n at time t
0< pk < 1 Proportion of adult female population in class k = m, . . . ,n
fk ≥ 0 Number of eggs produced per adult female of age k
si : Rd → (0,1] Probability of surviving stage i ∈ {e, l,( j,k1),(a,k2)}, for k1 =

0, . . . ,m−1 and k2 = m, . . . ,n, in each time step, with d ∈ N
Jt = (J0,t , . . . ,Jm−1,t) Numbers of juveniles at time t
Nt = (Nm,t , . . . ,Nn,t) Numbers of adults at time t

Table 5.1: Nomenclature for a general multi-stage model.

In manuscript B, a population dynamic model is introduced, which represents the
dynamics of a stage structured population as indicated in Figure 5.1. The population
consists of eggs, larvae, juveniles and adults. We distinguish between m ∈ N0 age-
classes of juveniles and denote by n ∈N the oldest age-class. The indices m, . . . ,n refer
to age-classes of adults. The population model describes egg production, mortality and
transitions from one stage to the next.

The model is based on the following biological considerations. Total egg production
is the sum of egg productions per age-class. Egg production per age-class k = m, . . . ,n
is proportional to fecundity fk ≥ 0 and the proportion pk ∈ (0,1) of spawners in age-
class k. Survival of eggs and early life stages might be limited by cannibalism and is
described as a function of the number of adults. Food availability and competition may
be limiting factors for survival of (feeding) larvae and juveniles. Survival of larvae and
juveniles are described as functions of the number of larvae and juveniles, respectively.
Fish reach the juvenile age-class 0 in the same time step as they are spawned (if at
all). If surviving, juveniles and adults age by one in every simulation time step (with
exception of fish of age n).

A nomenclature for the general discrete-time population model is given in Table 5.1.
Numbers of individuals in a stage or age-class are denoted by uppercase letters, while
functions and parameters are denoted by lowercase letters. The indices e, l, j and a refer
to the life stages eggs (e), larvae (l), juveniles ( j) and adults (a). The probabilities si
of surviving a stage i ∈ {e, l,( j,k1),(a,k2)} for k1 = 0, . . . ,m−1 and k2 = m, . . . ,n are
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described by positive functions. The notation in this chapter differs from the notation
used in manuscript B, where survival of adults and fecundity are described as functions
of age.

The general multi-stage model is defined by (5.2)–(5.8) with initial condition
(J0,N0) ∈D⊂ Rn+1

≥0 . Recruitment is denoted by Rt , and we assume Rt = Nm,t .

Et =
n

∑
k=m

fk pk Nk,t−1 = e(Nt−1) , (5.2)

Lt = Et · se(Nt−1) , (5.3)
J0,t = Lt · sl(Lt , Nt−1) , (5.4)
Jk,t = Jk−1,t−1 · s j,k−1(Jk−1,t−1, Nt−1), k = 1, . . . ,m−1 , (5.5)

Nm,t =

{
Jm−1,t−1 · s j,m−1(Jm−1,t−1, Nt−1) , m≥ 1,
J0,t , m= 0, (5.6)

Nk,t = sa,k−1 · Nk−1,t−1, k = m+1, . . . ,n−1 , (5.7)
Nn,t = sa,n−1 · Nn−1,t−1 + sa,n · Nn,t−1 . (5.8)

We define a matrix model (introduced in section 2.2.2) to represent the dynamics
of numbers of juveniles and adults as described by the general multi-stage model. To
this aim, we define the probability j0 : Rn−m

≥0 → (0,1] of survival from the egg stage to
the juvenile class 0 by (5.9). From the definition of the model by (5.2)–(5.4) and the
definition of j0, the number of juveniles in age-class 0 is given by (5.10).

j0(Nt) = se(Nt) · sl
(
e(Nt) · se(Nt), Nt

)
. (5.9)

J0,t = (
n

∑
k=m

fk pk Nk,t−1) · j0(Nt−1) . (5.10)

Equations (5.10) and (5.5)–(5.8) represent a matrix model (5.11) for the number of
juveniles and adults.

(
Jt
Nt

)
=



0 . . . 0 βm+1 . . . βn−1 βn
s j,1 0. . .

s j,m−1
sa,m

. . .

0 sa,n−1 sa,n


(

Jt−1
Nt−1

)
. (5.11)

The coefficients in the first row of the matrix are 0 and βk as defined by (5.12).

βk = fkpk j0(Nt−1), k = m+1, . . . ,n . (5.12)

The coefficients in the first subdiagonal are s j,k(Jk−1,t−1, Nt−1) for k= 1, . . . ,m−1 and
sa,k for k = m, . . . ,n−1.
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5.3 The parent-progeny relationship for the general multi-stagemodel

In the following, we consider the parent-progeny relationship that is admitted by the
general multi-stage model.

The directed graph 5.2 illustrates the relationship between recruitment at time t and
numbers of adults as given by the general multi-stage model. The functional relation-
ships described by (5.2)–(5.6) are represented by edges. The directed graph includes
an edge from a vertex denoted by v1 to a vertex denoted by v2 if the variable denoted
by v2 is a function of the variable denoted by v1. As an example, equation (5.6) gives
Nm,t as a function of Nt−1 and Jm−1,t−1. The graph includes vertices representing Nt−1
and Jm−1,t−1 and a directed edge starting from each of the two nodes and ending at the
node that represents Nm,t . The edges from nodes which represent numbers of adults are
labelled by the functional relationship which they represent. From (5.2)–(5.6), we see
that Rt is obtained from Et−m, Lt−m, J0,t−m, J1,t−m+1, ... , Jm−1,t−1, Nt−m−1, ... , Nt−1.
From every vertex denoted by Nu, for u= t−m−1, . . . , t−1, we have a path to the ver-
tex denoted by Nm,t . The directed graph shows that Rt = Nm,t is in general a function of
Nt−m−1, . . . , Nt−1.

In case of m = 0, the directed graph includes only the vertices labelled Et , Lt , J0,t ,
Nt−1 and the edges between these nodes.

Et−m Lt−m J0,t−m J1,t−m+1 Jm−1,t−1 Nm,t

Nt−m−1 Nt−m Nt−2 Nt−1

E se sl sj,0 sj,m−1 sj,m

Figure 5.2: A schematic diagram of the relationship between recruitment at time t and numbers of adults at time
t−1, . . . , t−m, as given by (5.2)–(5.6).

An equation for the parent-progeny relationship described by the general multi-
stage model can be derived from (5.2)–(5.6). The probability jk : R

k(n−m)
≥0 → (0,1]

of survival from the egg stage to the juvenile age-class k, for k = 1, . . . ,m, is defined
recursively by (5.9) and (5.13).

jk(Nt−1, . . . ,Nt−k−1) = jk−1(Nt−2, . . . ,Nt−k−1)

· s j,k−1

(
e(Nt−k−1) · jk−1(Nt−2, . . . ,Nt−k−1), Nt−1

)
, k = 1, . . . ,m . (5.13)

With this definition, we obtain that recruitment is given by (5.14) for all t ≥ m+1, as
shown in manuscript B.

Rt = e(Nt−m−1) · jm(Nt−1, . . . ,Nt−m−1) . (5.14)

For the general multi-stage model, recruitment Rt = Nm,t is in general a function of
Nt−m−1, . . . , Nt−1.
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5.4 Necessary and sufficient conditions for the existence of a SR
function for the general multi-stage model

We state the following two hypotheses about the parent-progeny relationship described
by model (5.2)–(5.8).

Hypothesis 1: There exists an adult-recruitment (AR) function

r̃ : Rn−m
≥0 → R≥0 s.t. Nm,t = r̃ (Nm,t−τ , . . . ,Nn,t−τ)

for all t ≥ τ, for τ ∈ [1,m+1] and for all solutions of (5.2)–(5.8).

Hypothesis 2: Additionally, function r̃ is the composite of a function r : R≥0 → R≥0
and the linear function b : Rn−m

≥0 → R≥0 given by,

b(Nm,t , . . . ,Nn,t) =
n

∑
k=m

wk Nk,t , with wk ≥ 0. (5.15)

Hypothesis 1 entails that recruitment is a function of numbers of adults. The SR
function for the general multi-stage model is a function

r : R≥0 → R≥0 s.t. Nm,t = r (St−τ) ,

for all t ≥ τ, for τ ∈ [1,m+1] and for all solutions of (5.2)–(5.8), where

St = b(Nm,t , . . . ,Nn,t) =
n

∑
k=m

wk Nk,t , with wk ≥ 0 .

Function r in Hypothesis 2 is the SR function.
If a SR function exists for a multi-stage model, we may define the AR function

as r̃ = r ◦ b. Thus, a SR function exists if and only if Hypotheses 1 and 2 are true.
A necessary condition for the existence of a SR function is the existence of an AR
function.

Because Rt is in general given as a function of Nt−m−1, . . . , Nt−1, we require the
delay τ in the definition of an AR and a SR function to be in interval [1,m+1].

In the remainder of section 5.4 and in section 5.5, we assume (Et ,Lt ,J0,t , . . . ,Jm−1,t ,
Nm,t , . . . ,Nn,t) to be a solution of the initial value problem given by (5.2)–(5.8) with
(J0,N0) ∈ D, for nonempty D ⊂ Rn+1

≥0 . The parameters pk and fk and the functions
si are assumed to be as described in Table 5.1 and egg production is assumed to be
nonzero, i.e., we have ∑n

k=m fkpk > 0.
In the following, we state sufficient conditions for Hypotheses 1 and 2.

Existence of an AR function

By Theorem 2 in manuscript B, each of the following conditions (C1), (C2) and (C3)
is sufficient for Hypothesis 1.

(C1) Nt = N0 for all t ∈ [0,m+1],

(C2) s j,k(Jk,t , Nt) = s j,k(Jk,t) for all k = 0, . . .m−1 and for all t ≥ 0,
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(C3) m= 0 and Nm,t = J0,t is given by (5.4).

More specifically, it is shown in manuscript B that if at least one of (C1), (C2) or (C3)
is true, then recruitment is given by an AR function described by (5.16).

Nm,t = e(Nt−m−1) · jm(Nt−m−1) , for t ≥ m+1 . (5.16)

Recruitment is total egg production multiplied with the probability of survival from
the egg stage to recruitment. It is a function of the number of adults at the time of
spawning. Hypothesis 1 is true for τ = m+1.

As shown in manuscript B, (C1) implies that Nt = N0 for all t ≥ 0 and for all
solutions of the initial value problem given by (5.2)–(5.8) with (J0,N0) ∈ D. In this
case, recruitment is constant with respect to time and Hypotheses 1 and 2 are true.

Assuming proposition (C2) to be true, we can remove the edges labelled s j,k, with
k= 0, . . . ,m from the directed graph 5.2. In this case, there are no paths from the nodes
denoted by Nt−m, . . . ,Nt−1 to the vertex denoted by Nm,t . The graph shows recruitment
as a function of Nt−m−1.

If proposition (C3) is true, then equation (5.10) from section 5.3 is identical to (5.16)
and gives recruitment as a function of Nt−1.

A multi-stage model for which none of the propositions (C1)–(C3) are true, may
not admit an AR function. An example of the general multi-stage model for which
Hypothesis 1 is false for all τ ∈ [1,m+1] is given in manuscript B.

Existence of a SR function

Assume that an AR function exists, i.e., recruitment is a function of Nt−m−1 given
by (5.16). (C1) implies that Hypothesis 2 is true, and we assume that either (C2) or
(C3) are true. (C3) implies that the AR function is the product of e, se and sl .

As shown in manuscript B, a sufficient condition for an AR function r̃ given
by (5.16) to be a SR function is the logical conjunction of the following propositions
(C4)(a), (C4)(b), and (C4)(c).

(C4)(a) ∃ ẽ : R≥0 → R≥0 s.t. e(x) = ẽ(b(x)), for all x ∈ Rn−m
≥0 ,

(C4)(b) ∃ s̃e : R≥0 → R≥0 s.t. se(x) = s̃e(b(x)), for all x ∈ Rn−m
≥0 ,

(C4)(c) ∃ s̃l : R2
≥0 → R≥0 s.t. sl(y, x) = s̃l(y, b(x)) for all x ∈ Rn−m

≥0 , y ∈ R≥0.

If any of the conditions (C4)(a), (C4)(b), or (C4)(c) is false, then the AR function
may not have the structure of a SR function, as shown in manuscript B.

5.5 Examples of discrete-time multi-stage models

In the following, we state the parent-progeny relationship for three examples of the gen-
eral multi-stage model. In two cases, the matrix model (5.11) for numbers of juveniles
and adults corresponds to one of the matrix models considered in section 2.2.2.
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Example I

Example I of a general multi-stage model is given by (5.2)–(5.8) under the assumption
that se, sl and s j,k, for k = 0, . . . ,m−1, are constant with respect to L, J and N.

In this case, (C2), (C4)(b), and (C4)(c) are true. This implies Hypothesis 1. The
AR function is given by (5.16). From the definition (5.9) and (5.13) of the probabilities
jk and the definition (5.2) of the function e, we obtain the AR function given by (5.17).

Nm,t = (
n

∑
k=m

fk pk Nk,t−1) · se · sl ·
m−1

∏
k=0

s j,k . (5.17)

Whether (C4)(a) is true and the parent-progeny relationship is a SR function, depends
on the definition of St . If St is defined as the total number of fecund fish, i.e., St =
∑n
k=m pkNk,t , and fk = f for all k = m, . . . ,n, then the AR function is a SR function.

Under the additional assumption that pk = p for all k = m, . . . ,n, recruitment could
alternatively be formulated as a function of the total number of adults St = ∑n

k=mNk,t .
For Example I, the matrix model (5.11) for the dynamics of juveniles and adults is

linear. If we assume sa,n = 0, we obtain a Leslie matrix model with nonzero coefficients
only in the first row and the first subdiagonal and with βk = 0 for k = 0, . . . ,m−1. For
the Leslie matrix model, recruitment is a function of the total number of adults if βi = 0
for i= 1, . . . ,m−1 and βm= βm+1= · · ·= βn, [116, Ch. 5]. From (5.12), we see that the
assumption βm = βm+1 = · · ·= βn implies fmpm = · · ·= fnpn and (C4)(a), (b), and (c).

Example II

Example II of a general multi-stage model is derived from the assumptions that s j,k, for
k = 0, . . . ,m−1, are constant with respect to N. Furthermore, we assume that se and sl
are functions of egg production ∑n

k=m fkpkNk,t .
In this case, the probability of survival of eggs to juvenile class 0 is given by (5.18)

and a function of egg production.

j0(Nt) = se(
n

∑
k=m

fk pk Nk,t) · sl(
n

∑
k=m

fk pk Nk,t) . (5.18)

Since (C2) is true, the parent-progeny relationship is the AR function given by (5.16).
From (5.18), we see that a SR function as described by Hypothesis 2 exists for
b(Nm,t , . . . ,Nn,t) = ∑n

k=m fkpkNk,t .
In case of m = 0, the dynamics of the adults are given by the matrix model (5.19)

with βk as defined by (5.12) and j0(Nt) given by (5.18).

Nt =


β0(Nt) β1(Nt) . . . βn(Nt)
s j,1 0. . .

0 sa,n−1 sa,n

Nt−1 . (5.19)

For sa,n = 0, we obtain the nonlinear matrix model considered in section 2.2.2. This
model is derived from the assumption that survival of prerecruits is a function of a
weighted sum of the number of adults, [116, Ch. 7.4].
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Example III

As a third example of a general multi-stage model, we consider a general multi-stage
model with m > 0 and se, sl and s j,k, for k = 0, . . . ,m− 1, constant with respect to
N. Furthermore, we assume that St = ∑n

k=m fkpkNk,t . In this case, the dynamics of the
juveniles and recruitment are given by (5.20).

J0,t = e(Nt) · j0(e(Nt)) ,

Jk,t = Jk−1,t−1 · s j,k−1(Jk−1,t−1) , k = 1, . . . ,m−1 ,
Nm,t = Jm−1,t−1 · s j,m−1(Jm−1,t−1) . (5.20)

The propositions (C2) and (C4)(a), (b) and (c) are true and recruitment is a function
of St−m−1.

5.6 SR functions for slow-fast population dynamic models

Under a different set of assumptions than the one used to derive the general multi-stage
model, we derived a continuous-time two-stage model in section 3.3.1. The popula-
tion dynamic model is given by an initial condition N(0) ∈ Rn

≥0 and (3.14)–(3.16) in
chapter 3. The equations are re-stated by (5.21).

.
N0(t) = −αN0(t)+

1
ε

n

∑
i=1

li fiNi(t)

−


1
εm0N0(t)

(
1+ 1

γm0
∑n
i=1 piNi(t)

)γ
, case γ > 0 ,

1
εm0N0(t) · exp

(
1
m0

∑n
i=1 piNi(t)

)
, case γ → ∞ ,

.
Ni(t) = αNi−1(t)−αNi(t)−miNi(t), i= 1, . . . ,n . (5.21)

Here, N0(t) denotes the number of prerecruits and Ni(t), i = 1, . . . ,n denotes numbers
of adults in n age-classes at time t ∈R≥0. For the slow-fast population dynamic model,
recruitment is defined as R(t) = αN0(t) and S(t) = ∑n

i=1 fiNi(t) is the total number of
fish contributing to egg production. Here, fi ≥ 0 denotes the fraction of spawners in
age-class i.

Similarly to Hypotheses 1 and 2, we may state two hypotheses about the parent-
progeny relationship described by the continuous-time model.

Hypothesis 3: There exists an adult-recruitment (AR) function

r̃ : Rn
≥0 → R≥0 s.t. R(t) = r̃ (N1(t− τ), . . . ,Nn(t− τ)) ,

for all t ≥ τ, for τ ≥ 0 and for all solutions Nt of (5.21).

Hypothesis 4: Additionally, function r̃ is the composite of a function r : R≥0 → R≥0
and the linear function b : Rn

≥0 → R≥0 given by,

b(N1(t), . . . ,Nn(t)) =
n

∑
i=1

fi Ni(t), with fi ≥ 0.
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Let N(t) be a solution of the slow-fast population dynamic model (5.21). From
section 3.3.2, we know that for ε > 0 sufficiently small, there exists a function h defined
on a suitable set K ⊃ [0, S̄]n such that if N(0) ∈ h([0, S̄]n)× [0, S̄]n and Ni(t)≤ S̄ for all
i = 1, . . . ,n and all t ≥ 0, then N0(t) = h(N1(t), . . . ,Nn(t)) for all t ≥ 0. The function
r̃ = αh is an AR function with τ = 0. The sufficient conditions for the existence of
an AR function are requirements on the initial population N(0), the boundedness of
the solution of the ODE and the ratio ε between the two time scales of the slow-fast
system.

As shown in paper A, the function r̃ = αh can be approximated by function r̃0 :
Rn
≥0 → R≥0 defined by (5.22), which is identical to (3.17) from section 3.3.1. Here

and in the following, we consider the case γ > 0. The case γ → ∞ can be treated
analogously.

R(t) =
α
m0

(
n

∑
i=1

li fiNi(t))

(
1+

1
γm0

(
n

∑
i=1

piNi(t))

)−γ

. (5.22)

In section 3.4, the following sufficient condition for function r̃0 to be a SR function is
suggested.
(C6) For all i= 1, . . . ,n, either pi = c fi and li = l with c, l > 0, or pi = fi = li = 0.

The sufficient condition (C6) for r̃0 to be a SR function relates to the sufficient
condition (C4) for Hypothesis 2 as follows. For the slow-fast population dynamic
model, the rate of egg production e(N(t)) is given by (5.23) and the mortality rate mγ
of prerecruits is defined by (5.24).

e(N1(t), . . . ,Nn(t)) =
n

∑
i=1

li fiNi(t) . (5.23)

mγ(N1(t), . . . ,Nn(t)) = m0

(
1+

1
γm0

n

∑
i=1

piNi(t)

)γ

. (5.24)

We define the following two propositions:

(C5)(a) ∃ ẽ : R≥0 → R≥0 s.t. e(x) = ẽ(b(x)), for all x ∈ Rn
≥0,

(C5)(b) ∃ m̃γ : R≥0 → R≥0 s.t. mγ(x) = m̃γ(b(x)), for all x ∈ Rn
≥0.

For b : Rn
≥0 → R given by b(N(t)) = ∑n

i=1 fiNi, (C6) implies (C5)(a)–(b). This can
be verified by defining ẽ(x) = lx and m̃γ(x) = m0(1+(c/γm0)x)γ .

We observe that the sufficient conditions for an adult-recruitment relationship to be a
SR function given in manuscript B, reformulated for the continuous-time model, imply
the conditions given in chapter 3. The sufficient conditions from chapter 3 include
sufficient conditions given in [139] and paper A.

5.7 Discussion

A link between a SR function and a multi-stage population model for fish has been
established by Paulik [110]. The model in [110] describes the dynamics of a species
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with three spatially separated life stages. It is derived from the assumptions that the
number of individuals in the first stage is a function of the spawning stock size and that
the number of individuals in stages 2 and 3 are functions of the number of individuals
in stages 1 and 2, respectively. Using the notation from the introduction of this chapter,
the model by Paulik may be described by (5.25).

z1 = g1(S) , z2 = g2(z1) , R= g3(z2) . (5.25)

For the multi-stage model (5.25), the SR function is the composite of g1,g2 and g3.
Brooks and Powers [30] described the SR functions emergent from a multi-stage

population model. Under the additional assumption that St = e(Nt), and denoting by
Jk,t the number of individuals in an arbitrary prerecruit stage, equation (5.20) is satisfied
for their model. We obtain Example III of a general multi-stage model. For Example
III, conditions (C2) and (C4)(a), (b), and (c) are true and guarantee the existence of a
SR function.

Here and in section 5.5, we have demonstrated that the framework from manuscript
B can be applied for several discrete-time models from the fisheries literature.

The general multi-stage model (5.2)–(5.8) includes two important extensions in
comparison to a model of form (5.25) or (5.20). Firstly, we consider an age structured
class of adults. Secondly, the mortality of prerecruits may be a function of numbers of
adults. This assumption is, for example, suitable when mortality is correlated with the
spawning stock biomass as, e.g., for North East Arctic cod, [25].

For a multi-stage model, which includes several classes of juveniles and which as-
sumes survival to be a nonlinear function of numbers of adults, a SR function might not
exist. This is illustrated in paper B, where the Rt-St−m−1 relationship is not a function,
but the trajectories of the general multi-stage model spiral inwards. The SR relationship
is affected by the temporal variations of the structure and state of the adult population.
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Chapter 6

Summary of papers and future outlook

In this thesis, we have addressed two challenges that are prerequisites for the adop-
tion of multiple time-scale multi-stage population dynamic models in fisheries science.
Firstly, a description of the parent-progeny relationship is required. An important
question is whether the assumption of the existence of a (specific) SR function, or
an adult-recruitment function can be justified. Secondly, one needs to identify a suit-
able approach for estimating the parameters in a slow-fast population dynamic model.
This task includes the formulation of the optimization problem, choice of a numerical
method to solve the differential equation, and choice of an optimization method.

The scientific contributions of the thesis are summarized, and open problems for
future research are proposed in the following.

6.1 Paper A. A parametrized stock-recruitment relationship derived
from a slow-fast population dynamic model

A singularly perturbed differential equation may describe the dynamics of a two-stage
(prerecruits and adults) population of fish. The evolution of prerecruits is assumed to
be considerably faster than ageing and mortality of adult fish.

Paper A has addressed the existence of a SR function, or an adult-recruitment func-
tion, assuming that population dynamics are given by a singularly perturbed differen-
tial equation. Sufficient conditions for trajectories of a generic slow-fast population
dynamic model to approach or remain on the graph of a parent-progeny function have
been stated. The assumptions concern the set of fixed points of the differential equation
that describes the fast dynamics of prerecruits and the smoothness of the differential
equation. The results require the use of geometric singular perturbation theory.

In paper A, we have provided an answer to whether a dome-shaped SR function
can be explained by slow-fast population dynamic models. The parametrized slow-fast
population dynamic model introduced in paper A admits a rich class of SR functions,
including the Beverton–Holt, the Ricker, and the Deriso SR functions. If the mortality
rate of prerecruits increases more than linearly with the number of adults, then a SR
function is dome-shaped. Strictly increasing SR functions result when the mortality
rate is a linear function of the numbers of adults and have been previously observed for
slow-fast population dynamic models.

The solutions of the new slow-fast population dynamic model are nonnegative for
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nonnegative initial values. For suitable values of the parameters, the differential equa-
tion has a positive fixed point.

6.2 Paper B. Emergent properties of a multi-stage population dy-
namic model

In manuscript B, a difference equation model has been used to describe the dynamics
of a fish population that includes several life stages (egg, larvae, juveniles, and adults).
The model represents egg production, mortality, and transitions from one stage to the
next. Two hypotheses about the parent–progeny relationship admitted by the general
discrete time multi–stage model have been defined.

It has been shown that the general discrete-time multi-stage model may not admit an
adult-recruitment function. Sufficient conditions for the existence of this type of parent-
progeny relationship have been given. An adult-recruitment function exists if the time
between spawning and recruitment is sufficiently short, or mortality of juveniles is
constant with respect to the adult population. An adult-recruitment function may not
have the structure of a SR function unless egg production and mortality of eggs and
larvae are functions of the spawning stock size.

The manuscript investigated the population dynamics by incorporating functional
relationships from the fisheries literature, which describe egg production and mortality
in the four life stages. Our results show that temporal variations of the structure of
the adult population may influence the parent–progeny relationship and prevent the
existence of a SR function.

6.3 Paper C. Derivative-free optimization for population dynamic
models

When estimating parameters in the parametrized slow-fast population dynamic model,
the objective function is not defined for all parameters that satisfy some bound con-
straints. We deal with the additional challenge that the objective function is noisy due
to the numerical solution of the differential equations and nondifferentiability of the
functions involved.

The performances of the following four well-known derivative-free optimization
methods, three direct search methods and one trust-region method, have been compared
in paper C for the time-dependent problems. A derivative-free trust-region method uti-
lizes nonconvex model functions, which are obtained from interpolation. A simplex-
based optimization method adapts a simplex to the local curvature of the objective
function. The following two direct search methods employ quadratic model functions,
but their convergence does not rely on the quality of the models. Mesh adaptive direct
search methods are designed to handle problems with hidden constraints and nons-
mooth objective functions. A generalized pattern search method utilizes average gradi-
ent information.

In paper C, a set of time-dependent problems has been defined based on variations of
the data sets with and without observational errors and the nonlinearity of the differen-
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tial equation. For each problem, several initial iterates have been considered. Solutions
of the singularly perturbed and stiff differential equations have been approximated by
numerical differentiation formulas (NDF’s). Criteria for a good performance of the
derivative-free optimization methods are the ability to improve the objective function
as a function of the computational budget, the robustness to the initial iterate, and the
robustness to the nonlinearity of the differential equation.

It has been shown that the derivative-free trust-region method is more successful in
solving the time-dependent problems than the direct search methods when the compu-
tational budget is small, but the problems with highly nonlinear differential equation
are challenging for the model-based method. For medium and large computational
budgets (exceeding 150 function evaluations), the direct search methods outperform
the derivative-free trust-region method. The Nelder–Mead simplex method is the most
successful and fastest solver overall for the time-dependent problems. However, occa-
sionally, the simplex-based optimization method, which is the only algorithm to con-
sider an unconstrained problem, has returned infeasible iterates.

Higher variations in performances of the solvers for the time-dependent problems
than for a set of noisy benchmark problems demonstrate that estimation of parameters
in singularly perturbed differential equations is, at least for some of the optimization
methods, more challenging than the standard benchmark problems.

6.4 Additional scientific contributions and concluding remarks

At several places, additional questions have arisen from the discussion of the three
papers. Results concerning the topics of paper A and manuscript B are summarized in
section 6.4.1. Scientific contributions additional to the ones from paper C can be found
in section 6.4.2. In section 6.4.3, we sum up how the main findings of the thesis as a
whole contribute to the research field.

6.4.1 On stock-recruitment relationships emergent from stage structured popula-
tion models

As shown in chapter 3, the parametrized slow-fast population dynamic model intro-
duced in paper A may be derived from ecological assumptions. We have considered
slow-fast population models additional to the parametrized slow-fast population dy-
namic model and the model by Touzeau and Gouzé. For the aim of parameter esti-
mation, the slow-fast population dynamic model has been reformulated in terms of a
smaller number of parameters than used in paper A.

In chapter 5, we have established that several well-known multi-stage models are
examples of the model from manuscript B. It has been shown that the framework from
manuscript B can be employed for a rich class of discrete-time models. The suffi-
cient conditions for an adult-recruitment function to be a SR function also apply to the
parametrized slow-fast population dynamic model.
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6.4.2 On derivative-free optimization for population dynamic models

In chapter 4, we have described several types of hidden constraints of optimization
problems addressing parameters in differential equations. Because of their efficiency,
we have employed NDFmethods of orders 1 to 5 to solve the stiff differential equations.
Numerical simulations show that the stability properties of the algorithms are overall
suitable for numerical solution of the slow-fast population dynamic models. However,
the differential equations represent several classes of dynamic behaviour. We have
observed high- and low-amplitude noise in the objective function, and the level of noise
varies with the parameters in the differential equation.

It has been demonstrated that the derivative-free optimization methods find suffi-
ciently accurate solutions for the optimization problems with hidden constraints and
noisy objective functions. This includes several classes of derivative-free optimization
methods without convergence theory for problems with hidden constraints. Existing
algorithms with convergence theory in case of hidden constraints build sets of sample
points that become asymptotically dense in the feasible set or an asymptotically dense
set of poll directions. Model-based derivative-free methods generate sets of well scat-
tered sample points in a neighbourhood of the current iterate. Direct search methods
employ sequences of poll directions, which are positive spanning sets. We have found
that several classes of derivative-free optimization methods are suitable for problems
with unknown feasible sets and estimation of parameters in differential equations.

Chapter 4 includes numerical simulations additional to the ones from paper C. The
new set of optimization methods contains a generating set search method, which utilizes
average curvature information. A considerable modification in the implementation of
the numerical simulations in comparison to paper C is that two algorithms, the Nelder–
Mead algorithm and the generating set search method, now treat bound constraints
as hidden constraints. We have observed that the simplex-based optimization method
solves fewer of the bound constrained problems than of the unconstrained problems
and is now outperformed by several direct search methods. However, many of the key
results from paper C are confirmed by the new numerical simulations.

The time-dependent problems with numerical noise arising from numerical solution
of the differential equations are, for several reasons, more challenging than a class of
noisy benchmark problems. The problems considered in this thesis have bound and
hidden constraints, and some of the objective functions are more sensitive to some
parameters than to others. Furthermore, we have observed larger variations in the level
of noise for the time-dependent problems than for the noisy benchmark problems. The
properties of the optimization problems may explain why direct search methods overall
outperform model-based derivative-free methods for estimation of parameters in the
slow-fast population dynamic models.

The mesh adaptive direct search method with convergence theory for nonsmooth
problems with hidden constraints solves second most problems overall, and the high-
est percentage of the problems with largest distance between an a priori guess for a
solution of the optimization problem and the initial iterate. However, a method with-
out convergence theory in case of hidden constraints, the generating set search method,
treats bound constraints as hidden constraints and is one of the two most successful
solvers for the time-dependent problems. We have found that the two methods which
employ average gradient and curvature information in a direct search framework, the
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generating set search method and the generalized pattern search method, achieve the
most accurate solutions for the noisy optimization problems.

6.4.3 On derivative-free optimization and multiple time-scale dynamics of stage
structured populations

Central to the choice of methodology in this thesis is the assumption that a model for a
population of fish that includes the dynamics of prerecruits is a dynamical system with
two time-scales. The assumption justifies the use of geometric singular perturbation
theory for investigation of the parent-progeny function admitted by a continuous-time
population model. Some of the adaptive strategies of methods for the solution of initial
value problems are typical for stiff systems of differential equations.

We have suggested a new framework for quantification of the parent-progeny re-
lationship in fish populations. Instead of assuming the existence of a SR function, a
mathematical model for a stage structured population is derived from ecological as-
sumptions. The models considered in this thesis describe the temporal variations of
multi-stage demographic mechanisms, which act at several distinct temporal scales and
may influence the SR relationship. The parameters in the population dynamic model
may be estimated using the initial value approach, derivative-free optimization and fast
and accurate methods for the solution of differential equations. With the frameworks
proposed in paper A and B, the assumption of existence a SR function (or an adult-
recruitment function) may be justified or questioned. Even if the assumptions that
would support a SR function fail to be validated, we obtain parameters that describe
the parent-progeny relationship.

6.5 Outlook

Open problems for future research can be seen in several areas.
A further challenge for modelling the SR relationship is to describe the relation-

ship between environmental or physical factors and the dynamics of prerecruits and
adults. The parametrized slow-fast population dynamic model could be extended to
incorporate the multiple time-scale dynamics of a varying environment and ecosys-
tem. The temporal variations of, e.g. temperature, food availability, or wind direction
and intensity may be represented by additional variables or time-dependent parameters.
The resulting differential equation might be nonautonomous. Using geometric singu-
lar perturbation theory or Tikhonov’s theorem, the relationship between recruitment,
spawning stock, and additional variables might be described. The emergent model for
recruitment could be compared with the literature.

The following open problems can be identified for parameter estimation for popu-
lation dynamic models. Hidden constraints and nondifferentiability of objective func-
tions have been reported in the fisheries literature. To test the applicability of derivative-
free optimization methods for parameter estimation for discrete-time models and data
used in fisheries science remains a topic for further research. A set of benchmark prob-
lems could be designed for the specific purpose of application in fisheries science. As
criteria for the performance of optimization methods, we could consider the ability to
find sufficiently accurate solutions for a rich class of optimization problems. We might
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observe that the selected benchmark problems have more parameters than the optimiza-
tion problems considered in this thesis.

The following open problem for future research can be identified in the field of
parameter estimation for differential equations. The level of noise of the objective
function depends on the algorithm used for the solution of ODEs. Additionally, the
algorithm employed for evaluation of an objective function may affect the number of
occurrences of hidden constraints. As an example, some implicit Runge–Kutta meth-
ods have better stability properties than the NDF methods employed in this thesis and
might result in fewer instances of hidden constraints. It could be tested, how the choices
of the method for the numerical solution of ODEs and the tolerance for the one-step
error affect the performance of optimization methods. The results of the numerical sim-
ulations might guide the choice and development of methods for parameter estimation
for differential equations.
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Appendix A

Data for the optimization problems

The following data is utilized in chapter 4. It is obtained as described in paper C.
Data set 1: d0 = (8.98646736,25,60) and case γ → ∞.

d0(t) d1(t) d2(t)
t1 8.98646736 25.00000000 60.00000000
t2 27.69436176 16.10227985 36.88118817
t3 37.94783180 16.77225746 24.18020381
t4 40.79748468 18.64289672 18.20469792
t5 41.46307462 19.81182432 15.62469156
t6 41.60914443 20.38333939 14.56338504
t7 41.63561072 20.63703369 14.14053742
t8 41.63678330 20.74389482 13.97614135
t9 41.63430935 20.78735220 13.91354268
t10 41.63238718 20.80455470 13.89015267

Table A.1: Data set 1 with σ = 0

d0(t) d1(t) d2(t)
t1 7.46854134 24.81846959 57.81713724
t2 27.64581085 13.94542887 36.42847537
t3 39.24581391 16.25875730 24.19284702
t4 39.39028446 18.84947634 17.92929358
t5 41.21717674 19.12502156 14.88162472
t6 42.62890869 20.56848854 14.92309032
t7 42.87948633 21.88169622 14.24031778
t8 41.45694573 20.50287043 14.32913487
t9 43.89054086 20.90293915 14.86927886
t10 39.21394628 22.83228515 15.76334086

Table A.2: Data set 1 with σ = 1

d0(t) d1(t) d2(t)
t1 4.43268929 24.45540876 53.45141173
t2 27.54870904 9.63172691 35.52304977
t3 41.84177814 15.23175698 24.21813344
t4 36.57588401 19.26263559 17.37848490
t5 40.72538100 17.75141602 13.39549104
t6 44.66843721 20.93878682 15.64250086
t7 45.36723755 24.37102129 14.43987849
t8 41.09727060 20.02082165 15.03512193
t9 48.40300388 21.13411306 16.78075123
t10 34.37706448 26.88774605 19.50971724

Table A.3: Data set 1 with σ = 3

d0(t) d1(t) d2(t)
t1 1.39683723 24.09234794 49.08568621
t2 27.45160723 5.31802495 34.61762417
t3 44.43774237 14.20475666 24.24341986
t4 33.76148357 19.67579484 16.82767622
t5 40.23358525 16.37781049 11.90935736
t6 46.70796573 21.30908511 16.36191140
t7 47.85498876 26.86034636 14.63943919
t8 40.73759547 19.53877288 15.74110899
t9 52.91546690 21.36528698 18.69222360
t10 29.54018268 30.94320695 23.25609362

Table A.4: Data set 1 with σ = 5

d0(t) d1(t) d2(t)
t1 0.10000000 23.72928711 44.71996069
t2 27.35450542 1.00432299 33.71219857
t3 47.03370660 13.17775634 24.26870629
t4 30.94708312 20.08895409 16.27686755
t5 39.74178951 15.00420495 10.42322367
t6 48.74749425 21.67938340 17.08132194
t7 50.34273998 29.34967143 14.83899990
t8 40.37792034 19.05672411 16.44709605
t9 57.42792992 21.59646089 20.60369597
t10 24.70330087 34.99866785 27.00247000

Table A.5: Data set 1 with σ = 7

d0(t) d1(t) d2(t)
t1 0.10000000 23.36622629 40.35423518
t2 27.25740361 0.10000000 32.80677297
t3 49.62967083 12.15075602 24.29399271
t4 28.13268268 20.50211334 15.72605887
t5 39.24999376 13.63059942 8.93708999
t6 50.78702277 22.04968169 17.80073248
t7 52.83049119 31.83899650 15.03856061
t8 40.01824521 18.57467533 17.15308311
t9 61.94039295 21.82763480 22.51516833
t10 19.86641907 39.05412874 30.74884638

Table A.6: Data set 1 with σ = 9
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Data set 2: d0 = (7.38258415,0.5,0.6) and case γ → ∞.

d0(t) d1(t) d2(t)
t1 7.38258415 0.50000000 0.60000000
t2 32.98613094 6.26457416 1.32903058
t3 47.42159120 15.46143490 4.42924855
t4 45.26782326 20.03692690 8.24919503
t5 43.06329820 21.15697960 10.98806725
t6 42.12142048 21.19703473 12.52325802
t7 41.78473061 21.05138536 13.27985596
t8 41.67489429 20.93622750 13.62472871
t9 41.64173250 20.87150297 13.77384258
t10 41.63262694 20.83986054 13.83586676

Table A.7: Data set 2 with σ = 0

d0(t) d1(t) d2(t)
t1 5.86465813 0.31846959 0.10000000
t2 32.93758003 4.10772318 0.87631778
t3 48.71957331 14.94793474 4.44189176
t4 43.86062304 20.24350652 7.97379069
t5 42.81740032 20.47017683 10.24500041
t6 43.14118474 21.38218388 12.88296329
t7 43.02860622 22.29604790 13.37963631
t8 41.49505672 20.69520312 13.97772223
t9 43.89796401 20.98708992 14.72957876
t10 39.21418604 22.86759099 15.70905495

Table A.8: Data set 2 with σ = 1

d0(t) d1(t) d2(t)
t1 2.82880608 0.10000000 0.10000000
t2 32.84047822 0.10000000 0.10000000
t3 51.31553754 13.92093442 4.46717819
t4 41.04622260 20.65666577 7.42298201
t5 42.32560458 19.09657130 8.75886672
t6 45.18071326 21.75248217 13.60237384
t7 45.51635743 24.78537297 13.57919702
t8 41.13538159 20.21315434 14.68370929
t9 48.41042703 21.21826384 16.64105113
t10 34.37730424 26.92305189 19.45543133

Table A.9: Data set 2 with σ = 3

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 32.74337641 0.10000000 0.10000000
t3 53.91150177 12.89393410 4.49246461
t4 38.23182215 21.06982502 6.87217333
t5 41.83380883 17.72296576 7.27273304
t6 47.22024178 22.12278045 14.32178438
t7 48.00410865 27.27469804 13.77875773
t8 40.77570646 19.73110557 15.38969635
t9 52.92289005 21.44943775 18.55252350
t10 29.54042244 30.97851279 23.20180771

Table A.10: Data set 2 with σ = 5

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 32.64627460 0.10000000 0.10000000
t3 56.50746600 11.86693378 4.51775103
t4 35.41742170 21.48298427 6.32136466
t5 41.34201309 16.34936023 5.78659936
t6 49.25977030 22.49307874 15.04119492
t7 50.49185986 29.76402311 13.97831844
t8 40.41603133 19.24905679 16.09568341
t9 57.43535308 21.68061166 20.46399587
t10 24.70354063 35.03397369 26.94818409

Table A.11: Data set 2 with σ = 7

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 32.54917279 0.10000000 0.10000000
t3 59.10343023 10.83993346 4.54303745
t4 32.60302126 21.89614352 5.77055598
t5 40.85021734 14.97575470 4.30046568
t6 51.29929882 22.86337703 15.76060546
t7 52.97961108 32.25334818 14.17787914
t8 40.05635620 18.76700802 16.80167047
t9 61.94781610 21.91178557 22.37546823
t10 19.86665883 39.08943458 30.69456047

Table A.12: Data set 2 with σ = 9
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Data set 3: d0 = (35,25,60) and γ = 1.

d0(t) d1(t) d2(t)
t1 35.00000000 25.00000000 60.00000000
t2 33.62885306 20.35724876 37.98652456
t3 32.18781796 18.02578111 25.64919974
t4 30.92885136 16.66920968 18.75478858
t5 29.96313360 15.78939548 14.86854202
t6 29.28188726 15.19248686 12.64210605
t7 28.82467757 14.78596206 11.34151752
t8 28.52628544 14.51246151 10.56712722
t9 28.33445058 14.33121238 10.09835937
t10 28.21208613 14.21266625 9.81084598

Table A.13: Data set 3 with σ = 0

d0(t) d1(t) d2(t)
t1 33.48207397 24.81846959 57.81713724
t2 33.58030215 18.20039778 37.53381176
t3 33.48580008 17.51228095 25.66184295
t4 29.52165114 16.87578931 18.47938424
t5 29.71723573 15.10259272 14.12547518
t6 30.30165152 15.37763601 13.00181132
t7 30.06855318 16.03062459 11.44129787
t8 28.34644788 14.27143712 10.92012075
t9 30.59068209 14.44679933 11.05409555
t10 25.79364523 16.24039670 11.68403417

Table A.14: Data set 3 with σ = 1

d0(t) d1(t) d2(t)
t1 30.44622192 24.45540876 53.45141173
t2 33.48320034 13.88669582 36.62838616
t3 36.08176431 16.48528063 25.68712937
t4 26.70725069 17.28894856 17.92857556
t5 29.22543998 13.72898718 12.63934150
t6 32.34118004 15.74793429 13.72122186
t7 32.55630440 18.51994966 11.64085858
t8 27.98677275 13.78938835 11.62610780
t9 35.10314511 14.67797325 12.96556792
t10 20.95676342 20.29585760 15.43041055

Table A.15: Data set 3 with σ = 3

d0(t) d1(t) d2(t)
t1 27.41036987 24.09234794 49.08568621
t2 33.38609853 9.57299386 35.72296056
t3 38.67772853 15.45828031 25.71241579
t4 23.89285025 17.70210780 17.37776689
t5 28.73364424 12.35538165 11.15320782
t6 34.38070856 16.11823258 14.44063241
t7 35.04405561 21.00927473 11.84041929
t8 27.62709762 13.30733957 12.33209486
t9 39.61560813 14.90914716 14.87704029
t10 16.11988162 24.35131850 19.17678693

Table A.16: Data set 3 with σ = 5

d0(t) d1(t) d2(t)
t1 24.37451782 23.72928711 44.71996069
t2 33.28899672 5.25929190 34.81753496
t3 41.27369276 14.43127999 25.73770221
t4 21.07844980 18.11526705 16.82695821
t5 28.24184849 10.98177611 9.66707413
t6 36.42023708 16.48853087 15.16004295
t7 37.53180683 23.49859980 12.03998000
t8 27.26742249 12.82529080 13.03808192
t9 44.12807115 15.14032107 16.78851266
t10 11.28299982 28.40677939 22.92316331

Table A.17: Data set 3 with σ = 7

d0(t) d1(t) d2(t)
t1 21.33866577 23.36622629 40.35423518
t2 33.19189491 0.94558994 33.91210936
t3 43.86965699 13.40427967 25.76298863
t4 18.26404935 18.52842630 16.27614953
t5 27.75005275 9.60817058 8.18094045
t6 38.45976560 16.85882916 15.87945349
t7 40.01955804 25.98792488 12.23954071
t8 26.90774736 12.34324202 13.74406898
t9 48.64053417 15.37149498 18.69998503
t10 6.44611802 32.46224029 26.66953969

Table A.18: Data set 3 with σ = 9
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Data set 4: d0 = (6.39344262,0.5,0.6) and γ = 1.

d0(t) d1(t) d2(t)
t1 6.39344262 0.50000000 0.60000000
t2 15.48705454 3.64386476 1.00159575
t3 21.24682122 7.12560640 2.33893143
t4 24.12866065 9.71704348 4.00667153
t5 25.67833115 11.38217391 5.53019834
t6 26.57238015 12.40223924 6.72879783
t7 27.11026020 13.01990637 7.59729528
t8 27.44147177 13.39476746 8.19653914
t9 27.64803024 13.62389799 8.59758866
t10 27.77774083 13.76507189 8.86081251

Table A.19: Data set 4 with σ = 0

d0(t) d1(t) d2(t)
t1 4.87551660 0.31846959 0.10000000
t2 15.43850363 1.48701378 0.54888295
t3 22.54480333 6.61210624 2.35157464
t4 22.72146043 9.92362310 3.73126719
t5 25.43243328 10.69537114 4.78713150
t6 27.59214441 12.58738839 7.08850311
t7 28.35413581 14.26456890 7.69707563
t8 27.26163421 13.15374307 8.54953267
t9 29.90426175 13.73948495 9.55332484
t10 25.35929993 15.79280234 10.73400070

Table A.20: Data set 4 with σ = 1

d0(t) d1(t) d2(t)
t1 1.83966455 0.10000000 0.10000000
t2 15.34140182 0.10000000 0.10000000
t3 25.14076756 5.58510592 2.37686106
t4 19.90705998 10.33678235 3.18045852
t5 24.94063753 9.32176561 3.30099782
t6 29.63167293 12.95768668 7.80791365
t7 30.84188702 16.75389397 7.89663634
t8 26.90195908 12.67169430 9.25551973
t9 34.41672477 13.97065886 11.46479721
t10 20.52241813 19.84826323 14.48037708

Table A.21: Data set 4 with σ = 3

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 15.24430001 0.10000000 0.10000000
t3 27.73673179 4.55810560 2.40214748
t4 17.09265954 10.74994160 2.62964984
t5 24.44884179 7.94816007 1.81486413
t6 31.67120145 13.32798496 8.52732419
t7 33.32963824 19.24321904 8.09619705
t8 26.54228395 12.18964553 9.96150679
t9 38.92918779 14.20183278 13.37626958
t10 15.68553633 23.90372413 18.22675346

Table A.22: Data set 4 with σ = 5

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 15.14719819 0.10000000 0.10000000
t3 30.33269602 3.53110528 2.42743391
t4 14.27825909 11.16310085 2.07884116
t5 23.95704604 6.57455454 0.32873045
t6 33.71072997 13.69828325 9.24673473
t7 35.81738945 21.73254411 8.29575776
t8 26.18260882 11.70759675 10.66749384
t9 43.44165082 14.43300669 15.28774194
t10 10.84865452 27.95918503 21.97312983

Table A.23: Data set 4 with σ = 7

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 15.05009638 0.10000000 0.10000000
t3 32.92866025 2.50410496 2.45272033
t4 11.46385865 11.57626010 1.52803248
t5 23.46525030 5.20094900 0.10000000
t6 35.75025849 14.06858154 9.96614528
t7 38.30514066 24.22186918 8.49531847
t8 25.82293369 11.22554798 11.37348090
t9 47.95411384 14.66418060 17.19921431
t10 6.01177272 32.01464593 25.71950621

Table A.24: Data set 4 with σ = 9
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Data set 5: d0 = (6.98060942,25,60) and γ = 2.

d0(t) d1(t) d2(t)
t1 6.98060942 25.00000000 60.00000000
t2 10.47741075 12.91465354 36.41550691
t3 13.68647107 8.95958456 22.04390622
t4 15.59355317 8.06993366 14.02140913
t5 16.33300738 8.05383789 9.80511983
t6 16.53491512 8.16113221 7.66631431
t7 16.57286006 8.23185234 6.59738016
t8 16.57424370 8.26451613 6.06416397
t9 16.57083279 8.27725250 5.79699239
t10 16.56833580 8.28160638 5.66223642

Table A.25: Data set 5 with σ = 0

d0(t) d1(t) d2(t)
t1 5.46268339 24.81846959 57.81713724
t2 10.42885984 10.75780256 35.96279411
t3 14.98445319 8.44608440 22.05654943
t4 14.18635294 8.27651329 13.74600479
t5 16.08710951 7.36703512 9.06205299
t6 17.55467938 8.34628135 8.02601959
t7 17.81673567 9.47651487 6.69716051
t8 16.39440614 8.02349174 6.41715750
t9 18.82706430 8.39283946 6.75272858
t10 14.14989490 10.30933683 7.53542460

Table A.26: Data set 5 with σ = 1

d0(t) d1(t) d2(t)
t1 2.42683134 24.45540876 53.45141173
t2 10.33175803 6.44410060 35.05736851
t3 17.58041742 7.41908408 22.08183585
t4 11.37195250 8.68967253 13.19519611
t5 15.59531376 5.99342958 7.57591930
t6 19.59420790 8.71657964 8.74543013
t7 20.30448688 11.96583994 6.89672122
t8 16.03473101 7.54144296 7.12314456
t9 23.33952732 8.62401337 8.66420094
t10 9.31301309 14.36479772 11.28180098

Table A.27: Data set 5 with σ = 3

d0(t) d1(t) d2(t)
t1 0.10000000 24.09234794 49.08568621
t2 10.23465622 2.13039863 34.15194291
t3 20.17638165 6.39208376 22.10712228
t4 8.55755205 9.10283178 12.64438743
t5 15.10351802 4.61982405 6.08978562
t6 21.63373642 9.08687793 9.46484067
t7 22.79223810 14.45516501 7.09628193
t8 15.67505588 7.05939419 7.82913162
t9 27.85199034 8.85518728 10.57567331
t10 4.47613129 18.42025862 15.02817736

Table A.28: Data set 5 with σ = 5

d0(t) d1(t) d2(t)
t1 0.10000000 23.72928711 44.71996069
t2 10.13755441 0.10000000 33.24651731
t3 22.77234588 5.36508344 22.13240870
t4 5.74315161 9.51599103 12.09357876
t5 14.61172227 3.24621852 4.60365194
t6 23.67326494 9.45717622 10.18425121
t7 25.27998931 16.94449008 7.29584264
t8 15.31538075 6.57734541 8.53511868
t9 32.36445336 9.08636119 12.48714568
t10 0.10000000 22.47571952 18.77455374

Table A.29: Data set 5 with σ = 7

d0(t) d1(t) d2(t)
t1 0.10000000 23.36622629 40.35423518
t2 10.04045259 0.10000000 32.34109171
t3 25.36831010 4.33808312 22.15769512
t4 2.92875116 9.92915028 11.54277008
t5 14.11992653 1.87261298 3.11751826
t6 25.71279347 9.82747450 10.90366176
t7 27.76774052 19.43381515 7.49540335
t8 14.95570562 6.09529664 9.24110573
t9 36.87691638 9.31753510 14.39861805
t10 0.10000000 26.53118042 22.52093012

Table A.30: Data set 5 with σ = 9
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Data set 6: d0 = (6.33065498,0.5,0.6) and γ = 2.

d0(t) d1(t) d2(t)
t1 6.33065498 0.50000000 0.60000000
t2 13.63765122 3.39515736 0.97279446
t3 16.10336014 5.91690364 2.08704437
t4 16.53789398 7.26595637 3.26071918
t5 16.58656087 7.86779731 4.15303316
t6 16.57968558 8.11745481 4.73533360
t7 16.57161480 8.21750786 5.08485580
t8 16.56760483 8.25696884 5.28438985
t9 16.56608271 8.27247466 5.39473361
t10 16.56563248 8.27860653 5.45449698

Table A.31: Data set 6 with σ = 0

d0(t) d1(t) d2(t)
t1 4.81272895 0.31846959 0.10000000
t2 13.58910032 1.23830638 0.52008166
t3 17.40134225 5.40340348 2.09968758
t4 15.13069375 7.47253599 2.98531484
t5 16.34066300 7.18099454 3.40996632
t6 17.59944984 8.30260395 5.09503887
t7 17.81549040 9.46217040 5.18463615
t8 16.38776726 8.01594445 5.63738337
t9 18.82231422 8.38806162 6.35046980
t10 14.14719158 10.30633698 7.32768517

Table A.32: Data set 6 with σ = 1

d0(t) d1(t) d2(t)
t1 1.77687690 0.10000000 0.10000000
t2 13.49199851 0.10000000 0.10000000
t3 19.99730648 4.37640316 2.12497400
t4 12.31629331 7.88569524 2.43450616
t5 15.84886725 5.80738900 1.92383264
t6 19.63897836 8.67290224 5.81444942
t7 20.30324162 11.95149547 5.38419686
t8 16.02809213 7.53389568 6.34337043
t9 23.33477724 8.61923553 8.26194216
t10 9.31030978 14.36179788 11.07406155

Table A.33: Data set 6 with σ = 3

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 13.39489669 0.10000000 0.10000000
t3 22.59327071 3.34940284 2.15026042
t4 9.50189286 8.29885449 1.88369748
t5 15.35707151 4.43378347 0.43769896
t6 21.67850688 9.04320053 6.53385996
t7 22.79099283 14.44082054 5.58375757
t8 15.66841700 7.05184690 7.04935749
t9 27.84724026 8.85040945 10.17341453
t10 4.47342798 18.41725878 14.82043793

Table A.34: Data set 6 with σ = 5

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 13.29779488 0.10000000 0.10000000
t3 25.18923494 2.32240252 2.17554684
t4 6.68749242 8.71201374 1.33288881
t5 14.86527576 3.06017794 0.10000000
t6 23.71803540 9.41349881 7.25327050
t7 25.27874405 16.93014561 5.78331828
t8 15.30874187 6.56979813 7.75534455
t9 32.35970328 9.08158336 12.08488690
t10 0.10000000 22.47271967 18.56681431

Table A.35: Data set 6 with σ = 7

d0(t) d1(t) d2(t)
t1 0.10000000 0.10000000 0.10000000
t2 13.20069307 0.10000000 0.10000000
t3 27.78519917 1.29540219 2.20083326
t4 3.87309197 9.12517299 0.78208013
t5 14.37348001 1.68657240 0.10000000
t6 25.75756392 9.78379710 7.97268104
t7 27.76649526 19.41947068 5.98287898
t8 14.94906674 6.08774935 8.46133161
t9 36.87216630 9.31275727 13.99635927
t10 0.10000000 26.52818057 22.31319069

Table A.36: Data set 6 with σ = 9
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Abstract

The Beverton–Holt, Ricker and Deriso functions are three distinct descriptions of the link between a parental population size

and subsequent offspring that may survive to become part of the fish population.

This paper presents a model consisting of a system of ordinary differential equations, which couples a stage of young fish with

several adult stages. The slow-fast dynamics captures the different time scales of the dynamics of the population and leads to a

singular perturbation problem.

The novelty of the model presented here is its capability to replicate a rich class of the stock-recruitment relationship, including

the Beverton–Holt, Ricker and Deriso dynamics. The results are explained using geometric singular perturbation theory and

illustrated by numerical simulations.

c© 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Slow-fast; Population dynamic; Stock-recruitment relationship; Geometric singular perturbation theory; Stage-structured model

1. Introduction

Fish populations decrease due to (natural and fishing) mortality and increase when new generations of fish resulting

from egg production are added to the existing population. In the literature, the spawning stock refers to the part of

the stock that is matured enough (called spawners) to contribute to the reproduction process, while stock-recruitment

means the relationship between the spawning stock and number of young fish resulting from egg production.

Recruitment is traditionally described as a function of the number of spawners (spawning stock size). The two

most popular representations of the relationship have been introduced by Beverton–Holt [2] and Ricker [15]. Both

models assume a decrease in recruitment per spawner with stock size, but the degree of decline, often referred to as

∗ Corresponding author.

E-mail addresses: ute.schaarschmidt@ii.uib.no (U. Schaarschmidt), Trond.Steihaug@ii.uib.no (T. Steihaug), samuel.subbey@imr.no (S.

Subbey).
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0378-4754/ c© 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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Fig. 1. Traditional stock-recruitment relationships.

Table 1

Processes described by the age-structured model (4)–(5).
∑n

i=1li fi X i (t) Rate of egg production

−mi X i (t) Rate of mortality of individuals in age-class i = 0, . . . , n

−
∑n

i=1 pi X i (t)X0(t) Rate of mortality as function of numbers of adults

−p0 X0(t)2 Rate of mortality as function of the number of prerecruits

±αX i (t) Rate of ageing of individuals in age-class i = 0, . . . , n

density-dependence, distinguishes the two models from each other. A Beverton–Holt function, as described by Eq. (1),

is strictly increasing with an asymptotic maximum. A Ricker type of stock-recruitment relationship (SRR) given by

Eq. (2) has a maximum and is dome-shaped, i.e., recruitment may decrease with increasing spawning stock size (as

illustrated in Fig. 1). The Deriso model [4] corresponds to the Ricker model for γ → ∞ and to the Beverton–Holt

model for γ = 1, see Eq. (3). Here, R denotes recruitment and S the number of spawners. In the following, we let

a, b, γ ∈ R+ \ {0}, with R+ the set of non-negative real numbers.

Beverton–Holt: R =
aS

1 + bS
(1)

Ricker: R = aSe−bS (2)

Deriso: R = aS(1 +
b

γ
S)−γ

. (3)

Not only is recruitment a function of numbers of spawners, but the spawning stock consists of survivors of previous

recruitments. This two-sided relationship has for example been investigated by Touzeau and Gouzé [21]. A prerecruit

stage (including eggs, larvae and juveniles) is added to a continuous time population dynamic model with discrete

age structures. For further discussion about age-structured models, see e.g. [13]. Dynamic processes at the prerecruit

stage evolve on shorter time scales than at other stages and in [21], two distinct time scales are used.

More specifically, a system of differential equations describes the dynamic behaviour of numbers of prerecruits

X0(t) and adults X i (t) of age-class i = 1, . . . , n at time t ≥ 0, with positive natural number n. The processes

described by Eqs. (4)–(5) are listed in Table 1. Initial conditions of the form X i (0) ≥ 0 for i = 0, . . . , n ensure

that X i (t) ≥ 0 for all t > 0 and i = 0, . . . , n, [21]. The rate (of change in numbers of individuals with time) of

egg production is assumed to be proportional to the numbers of adults and the average rate li > 0 of eggs spawned

per individual of age i . The rate of mortality per prerecruit is assumed to be linear in X0 and X i , for i = 1, . . . , n.

The parameters p0 ≥ 0 and pi ≥ 0 express the degree of the limiting effect of the numbers of prerecruits and adult

age-class i , respectively. Rates of mortality per individual of age i , which are independent of X j , j = 0, . . . , n, are

called density-independent and are denoted by mi , for i = 0, . . . , n. The rate of ageing per individual is α > 0.

A nomenclature including parameters and their units is given in Table A.2. In the following, we let parameters be

chosen as described in Table A.2. We remark that the parameters may in practice vary with time, but the assumption

of time-independent model parameters is standard practice in fisheries science, [14].

In order to cope with the fact that evolution of prerecruits happens at faster rates than ageing and mortality of adult

fish, a fast time T and a slow time t = ǫT are used. The parameter 0 < ǫ ≪ 1 describes the ratio between the two
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time scales. For reasons of simplicity, let X (t) denote the (n + 1)-dimensional vector (X0(t), X1(t), . . . , Xn(t))t . The

function AT G : R
n+1 → R defined in Eq. (4) summarizes the fast events associated with spawning and mortality

of prerecruits. Changes in numbers of prerecruits consist (partly) of rapidly varying processes, while sizes of adult

age-classes are slow variables. The processes which drive the dynamics of adults in age-classes i = 1, . . . , n are

ageing and natural mortality. Summarizing, Touzeau and Gouzé [21] derived the following model,

Ẋ0(t) = − αX0(t) +
1

ǫ

[

−m0 X0(t) +

n∑

i=1

fi li X i (t) −

n∑

i=1

pi X i (t)X0(t) − p0 X0(t)2

]

︸ ︷︷ ︸
=AT G (X (t))

, (4)

Ẋ i (t) =αX i−1(t) − αX i (t) − mi X i (t), i = 1, . . . , n. (5)

The age-structured model also characterizes the dynamics of spawning stock size and recruitment. At any point in

time, recruitment is assumed to be a proportion α of the number of prerecruits and the spawning stock is the sum of

fecund fish (see Eq. (6), where fi ≥ 0 denotes the fraction of spawners in age-class i = 1, . . . , n).

R(t) = αX0(t) and S(t) =

n∑

i=1

fi X i (t). (6)

Dynamical systems where a subset of variables is assumed to change at a faster rate than the rest of the variables are

often referred to as slow-fast systems. Continuous slow-fast systems are singularly perturbed differential equations,

since they behave singularly in the limiting case ǫ → 0. For a general literature about slow-fast systems, see [23],

while specific fisheries applications include [1,3] and references therein. A method for reduction of the number

of dependent variables (e.g. age-classes) of a (population) dynamical system, which bases on geometric singular

perturbation theory, is described in [1].

In [21], singular perturbation theory is used to show that for ǫ sufficiently small, the dynamic behaviour of the

system (4)–(5) can in general be separated into the following two phases. In the first phase, fast processes are dominant.

The number of prerecruits is subject to larger variations than numbers of adults in age-class i , for all i = 1, . . . , n. This

is illustrated in Fig. 2(a). In the second phase, solutions remain in a neighbourhood of a surface described by the set of

zeros of function AT G (given by equation AT G(X ) = 0). The equation AT G(X ) = 0 describes a relationship between

the fast variable X0 and the slow variables X i . Due to the connection between prerecruits and recruitment, as well as

adults and spawners (given by Eq. (6)), this yields a SRR (as illustrated in Fig. 2(b) and (c)). Under suitable conditions,

the dynamical system has an unstable equilibrium point at 0 and an asymptotically stable fixed point, [21]. Here and in

the following, we refer to constant solutions of an ordinary differential equation (ODE) as fixed or equilibrium points.

For further discussion of fixed points and definitions of their stability, see e.g. [24, Ch. 1].

As shown in [21], a function assigning a unique value for recruitment to a spawning stock size may in general not

exist. But, assuming that the parameters in Eq. (4) are independent on age and positive (li = l > 0, fi = f > 0,

pi = p > 0, for all i = 1, . . . , n), AT G(X (t)) = 0 yields a function which links recruitment to the spawning stock

size. For p0 = 0, the approximation for the SRR (7) corresponds to a Beverton–Holt function.

R(t) =

αl
m0

S(t)

1 +
p

m0 f
S(t)

. (7)

The slow-fast population dynamic model by Touzeau and Gouzé with prerecruit stage explains a Beverton–Holt type

of stock-recruitment function, but a Ricker type of SRR cannot be derived from the population dynamic model.

Further, it has been shown that the SRR obtained under assumption of positive and age-independent parameters (with

exception of mi ≥ 0) is strictly increasing, [21]. The system of differential equations in case of p0 6= 0 is described

in [21] and we let p0 = 0 for reasons of simplicity.

A system of slow-fast ordinary differential equations, which could replicate a rich class of SRRs, including the

Ricker and Beverton–Holt functions would be of interest for several reasons. Heterogeneity of time scales is a well-

known challenge in modelling fish populations, [16, Ch. 3]. The durations of egg and larval stage are of the order of

a couple of days and weeks, respectively. Using geometric singular perturbation theory, both fast and slow processes

can be examined and we can describe how micro- and macro-scale events influence each other. On the slow time scale,

a relationship between the spawning stock and recruitment emerges. The relationship between the parental population

and reproduction is important for management of fisheries ([6, Ch. 7]; [22]) and its description is often given by
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(a) Spawning stock size S(t) and recruitment R(t) as de-

scribed by the model by Touzeau and Gouzé as functions of

time.

(b) After a short, first phase, all trajectories evolve similarly to

a Beverton–Holt stock-recruitment curve. The cross marks the

equilibrium states of recruitment and spawning stock size.

(c) Independent of the initial states, the SRR soon behaves similarly to a Beverton–Holt curve. The vertical axis is

time t .

Fig. 2. Numerical solution of the SRR as described by the model (4)–(6) by Touzeau and Gouzé. The numerical experiments are described in

Section 4.

or based on Ricker and Beverton–Holt functions, see e.g. ([6, Ch. 7]; [8, Ch. 8]). The model assumptions by Ricker

explain a dome-shape of stock-recruitment curves, which may arise from important biological mechanisms. Examples

are aggregation of cannibals or predators or density-dependence of growth rates coupled with size-dependent predation

([6, Ch. 7]; [15]). Recent reviews on stock-recruitment models include [14,20].

We keep the structure of a system of differential equations with two time scales, which describes the changes in

numbers of adults and prerecruits. But we define a set of dynamical systems that is able to explain a set of SRRs

including the Ricker model.

The next section starts with a short introduction to geometric singular perturbation theory, application of which

allows us to derive a population dynamic system. This is able to replicate the typical behaviour of recruitment as a

function of the stock size in the sense of both Ricker and Beverton–Holt. Additionally, the model presented here can

be interpreted as a generalization of the model introduced in [21]. This and other properties of the model presented

here are summarized in Section 3 and illustrated in Section 4. Conclusions are given in Section 5.
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2. Deriving a slow-fast population model using geometric singular perturbation theory

2.1. Introduction to geometric singular perturbation theory

This subsection is based on [7,9]. Geometric singular perturbation theory provides tools for investigation of the

geometric properties of slow-fast systems of the form (Fǫ). Here, vector x ∈ R
k consists of variables which change

at fast rates, vector y ∈ R
l summarizes the slow variables and the prime sign “′” denotes d/dT . Furthermore, f and

g denote smooth functions, f, g ∈ C∞. The set of differential equations can also be expressed in terms of slow time

t = ǫT . It is then referred to as the slow system (Sǫ).

x ′(T ) = f (x(T ), y(T ), ǫ) (Fǫ)

y′(T ) =ǫg(x(T ), y(T ), ǫ)

x ′(T ) = f (x(T ), y(T ), 0) (F0)

y′(T ) =0

ǫ ẋ(t) = f (x(t), y(t), ǫ) (Sǫ)

ẏ(t) =g(x(t), y(t), ǫ)

0 = f (x(t), y(t), 0) (S0)

ẏ(t) =g(x(t), y(t), 0).

Geometric singular perturbation theory studies the persistence of characteristics of the reduced forms (the case

ǫ → 0) of the two systems for the general case 0 < ǫ ≪ 1. More specifically, the fast and the slow system are

reduced to lower dimensional problems (F0) and (S0), respectively, for the limiting case ǫ → 0. Central to the

geometric theory of singular perturbations is a compact manifold (possibly with boundary) contained in the set of

zeros of f , the critical manifold M0 ⊂ {(x, y)t ∈ R
k+l | f (x, y, 0) = 0}. Orbits of the reduced slow system (S0) are

restricted to the set of zeros of function f . From point of view of the reduced fast system (F0), the critical manifold is

a set of equilibrium points.

Let z(t, z0, 0) denote the solution of the initial value problem (Fǫ) with z(0) = z0. A set M is called locally invariant

under (Fǫ), if it has a neighbourhood V such that z0 = (x0, y0)t ∈ M with z(t, z0, 0) ∈ V for all t ∈ [0, t̄] and for

t̄ ∈ R+ implies z(t, z0, 0) ∈ M for all t ∈ [0, t̄], and if z0 = (x0, y0)t ∈ M with z(t, z0, 0) ∈ V for all t ∈ [−t̄, 0],

then z(t, z0, 0) ∈ M for all t ∈ [−t̄, 0]. In the following, we refer to W s(M0) defined by Eq. (8) as the stable manifold

of M0. Here, V denotes a neighbourhood of z∗ and z(t, z0, 0) the solution of the initial value problem (F0) with

z(0) = z0. W s(M0) is the union of the stable manifolds of fixed points z∗ ∈ M0. The unstable manifold of M0 is

defined by Eq. (9). The definition can e.g. be found in [10, p. 20 and p. 55], but our notation follows [7].

W
s(M0) =

⋃

z∗∈M0

{z0 ∈ V |z(t, z0, 0) ∈ V ∀t ≥ 0 and z(t, z0, 0) → z∗ exponentially as t → ∞} (8)

W
u(M0) =

⋃

z∗∈M0

{z0 ∈ V |z(t, z0, 0) ∈ V ∀t ≤ 0 and z(t, z0, 0) → z∗ exponentially as t → −∞}. (9)

For ǫ > 0 and sufficiently small, results by Fenichel [5] include conditions sufficient for the existence of a manifold

Mǫ (possibly with boundary) which is locally invariant under (Fǫ) and O(ǫ) close and diffeomorphic to M0 and for the

existence of manifolds W s(Mǫ) and Wu(Mǫ), which are locally invariant under (Fǫ) and O(ǫ) close and diffeomorphic

to W s(M0) and Wu(M0), respectively. Two manifolds V and W are called diffeomorphic, if there exists a continuously

differentiable map f : V → W which is bijective and its inverse is continuously differentiable. The manifolds with

boundary are locally invariant in the sense that trajectories of (Fǫ) can leave a locally invariant manifold M with

boundary only through its boundary.

2.2. Geometric singular perturbation theory for a population dynamic model

In this section, we use geometric singular perturbation techniques to derive a generic population dynamic model

that explains a rich class of SRRs including (1)–(3), and for which the model by Touzeau and Gouzé [21] given by
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Eqs. (4)–(5) with p0 = 0 is a special case. The results by Fenichel which are relevant for the following are referred to

as Fenichel’s theorem and are restated in Appendix B, where we follow [7].

Consider a generalization of the model (4)–(5), a population dynamic model of form (10) with initial conditions

X (0) ∈ R
n+1
+ . This is a slow-fast system expressed in terms of the slow time t as in Eq. (Sǫ). The fast time scale

equivalent of (10) is given by Eq. (11). X0 is the fast variable and there are n slow variables X1, . . . , Xn .

ǫ Ẋ0(t) = − ǫαX0(t) + A(X0(t), X1(t), . . . , Xn(t)) (10)

Ẋ i (t) =αX i−1(t) − αX i (t) − mi X i (t), i = 1, . . . , n

X ′
0(T ) = − ǫαX0(T ) + A(X0(T ), X1(T ), . . . , Xn(T )) (11)

X ′
i (T ) =ǫ (αX i−1(T ) − αX i (T ) − mi X i (T )) , i = 1, . . . , n.

We restate Fenichel’s theorem for the specific case of a slow-fast population dynamic model (11) to obtain a set of

hypotheses for the function A.

(h1) Let A : R × K̂ → R be a C∞ function, for an open set K̂ ⊂ R
n .

Then, the functions f (X, ǫ) = −ǫαX0 + A(X0, X1, . . . , Xn) and g(X, ǫ) = (g1(X ), . . . , gn(X ))t , with gi (X ) =

αX i−1 − αX i − mi X i for i = 1, . . . , n, are C∞ on R × K̂ × R.

(h2) Let K ⊂ K̂ ⊂ R
n be a compact and simply connected set, whose boundary is an (n − 1)-dimensional C∞

submanifold.

Define the critical manifold M0 = {X ∈ R × K |A(X0, X1, . . . , Xn) = 0} and assume that

(h3) M0 is the graph of a C∞ function h0 : K → R which assigns to each (X1, . . . , Xn)t ∈ K the X0 ∈ R s.t.

A(X0, X1, . . . , Xn) = 0.

Assumption (h3) implies that M0 is given by a function associating the number of prerecruits to the numbers of adults.

We consider finite numbers of fish (X i ≤ S̄ for i = 1, . . . , n and S̄ > 0) and assume we may choose a compact set

K ⊃ [0, S̄]n which contains the domain of interest. Premises (h2) and (h3) correspond to hypothesis (H3) in [7]

and Appendix B.

Since M0 is the graph of a C∞ function on compact set K described by (h2), it is a compact manifold with boundary.

One of the hypotheses of Fenichel’s theorem is that the critical manifold is such that (∂ f (X0, X1, . . . , Xn, 0)/∂ X0)|M0

has no zero real part. We assume that

(h4) the derivative of A with respect to X0 on M0 is negative,

∂ A(X0, X1, . . . , Xn)

∂ X0

∣
∣
∣
∣

M0

< 0 . (12)

For the slow-fast population dynamic model (4)–(5) by Touzeau and Gouzé, we have (13)

∂ AT G(X0, X1, . . . , Xn)

∂ X0

= −m0 −

n∑

i=1

pi X i − 2p0 X0 < 0, (13)

for m0 > 0, pi ≥ 0 and X i ≥ 0 with i = 0, . . . , n. This entails that the spawned population size less the proportion of

prerecruits that dies due to natural mortality, decreases strictly with the number of prerecruits. Let (X1, . . . , Xn)t ∈ K .

The point X∗ = (h0(X1, . . . , Xn), X1, . . . , Xn)t ∈ R× K is a fixed point of the reduced fast system given by Eq. (14).

X ′
0(T ) =A(X0(T ), X1(T ), . . . , Xn(T )) (14)

X ′
i (T ) =0, i = 1, . . . , n.

Trajectories of the reduced fast system which start in (X0, X1, . . . , Xn)t , for X0 ∈ R, remain in manifold

{(X0, X1, . . . , Xn)t |X0 ∈ R} and converge under (h4) exponentially to the fixed point X∗ as t → ∞. The

fixed point has a one-dimensional stable manifold {(X0, X1, . . . , Xn)t |X0 ∈ R}. Since we considered an arbitrary

(X1, . . . , Xn)t ∈ K , we obtain W s(M0) = R × K by Eq. (8).

Given hypotheses (h1)–(h4) and for ǫ > 0 sufficiently small, we obtain the following conclusions from Fenichel’s

theorem as provided in [7] and restated in Appendix B. By Theorems 1 and 2 in [7], there exists a function hǫ defined
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on K , such that the graph Mǫ (15) is locally invariant under the fast system (11) and hǫ is Cr
, ∀r < ∞, jointly in y

and ǫ. The graph Mǫ is O(ǫ) close and diffeomorphic to M0.

Mǫ = {(X0, X1, . . . , Xn)t ∈ R
n+1|X0 = hǫ(X1, . . . , Xn), (X1, . . . , Xn)t ∈ K }. (15)

From Theorem 3 in [7], it follows that there exists a stable manifold W s(Mǫ), which is locally invariant under the

fast system (11) and an O(ǫ)-perturbation of and diffeomorphic to W s(M0) = R × K . Since the stable manifold of

Mǫ is diffeomorphic to the non-empty manifold W s(M0) and W s(M0) has dimension n + 1, it follows that W s(Mǫ)

has dimension n + 1 (e.g. by Theorem 2.17 in [12]). Further, let V be a neighbourhood of Mǫ . By Theorem 5

in [7], trajectories of the slow-fast system (11) which start in W s(Mǫ) and remain in neighbourhood V converge

exponentially to Mǫ .

Thus, under (h1)–(h4) and for 0 < ǫ sufficiently small, trajectories of the slow-fast population dynamic model (10)

which start in W s(Mǫ) and stay within a neighbourhood of Mǫ converge exponentially to the graph of hǫ , which

is locally invariant. The function hǫ can be approximated by solving A(X ) = 0 for X0 and assigns the number of

prerecruits to numbers of adults. Since spawning stock size is a weighted sum of numbers of adults and the number

of prerecruits is assumed to be proportional to recruitment, hǫ also describes a link between spawning stock size and

recruitment (but not necessarily a stock-recruitment function).

2.3. A slow-fast population dynamic model

Specification of the function A and introduction of a parameter γ ∈ R+ \ {0} will yield a population dynamic

model, which explains the set of SRRs (1)–(3). We aim at generating a Deriso type of SRR which contains the Ricker

model and the Beverton–Holt model as special cases. The Deriso function, with recruitment and spawning stock size

as functions of time, is given by Eq. (16). We use Eq. (6) to express the Deriso model (16) in terms of numbers of

adults and prerecruits and obtain Eq. (17). Here, we allow age-dependent and non-negative parameters ai , bi ∈ R+

with i = 1, . . . , n.

R(t) = aS(t)(1 +
1

γ
bS(t))−γ

, (16)

αX0(t) = (

n∑

i=1

ai fi X i (t))

(

1 +
1

γ
(

n∑

i=1

bi fi X i (t))

)−γ

. (17)

Now, define a function Aγ : R × K̂ → R with the following properties:

• Eq. (17) describes the solutions of Aγ (X0, X1, . . . , Xn) = 0 for (X1, . . . , Xn)t ∈ K for a suitable set

K ⊃ [0, S̄]n , which is introduced in Section 2.4

• and the function A1 (with γ = 1) is the function AT G defined in Eq. (4) in case of p0 = 0.

This can be achieved by setting ai = αli/m0, bi = pi/(m0 fi ) and defining Aγ on R × K̂ with K̂ =

{(X1, . . . , Xn)t ∈ R
n|1 + (

∑n
i=1 pi X i (t))/(γ m0) > 0} by

Aγ (X (t)) =

[

−m0 X0(t)

(

1 +
1

γ m0

n∑

i=1

pi X i (t)

)γ

+

n∑

i=1

li fi X i (t)

]

. (18)

For parameters chosen as described in Table A.2, the set K̂ contains the domain of interest [0, S̄]n , for S̄ > 0.

The slow-fast population dynamic model is described by Eqs. (19)–(20).

Ẋ0(t) = − αX0(t) +
1

ǫ

[

−m0 X0(t)

(

1 +
1

γ m0

n∑

i=1

pi X i (t)

)γ

+

n∑

i=1

li fi X i (t)

]

︸ ︷︷ ︸
=Aγ (X (t))

(19)

Ẋ i (t) =αX i−1(t) − αX i (t) − mi X i (t), i = 1, . . . , n. (20)

The slow-fast population dynamic model describes ageing, mortality and egg production and may be justified by the

same mechanisms as a Ricker type of SRR. The function Aγ describes the rate of mortality of prerecruits as function
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of the numbers of adults, which is non-linear in the sizes of age-classes X i , i = 1, . . . , n for γ ∈ R+ \ {0, 1}.

Proportionality between the rate of mortality and spawning stock size is a biological assumption which may explain

the Ricker type of SRR. More details may e.g., be found in [6, Ch. 7].

2.4. Geometric singular perturbation theory for the population dynamic model

In the following, we verify that assumptions (h1)–(h4) hold for Aγ (18) and that the population dynamic

model (19)–(20) yields a representation of numbers of prerecruits in terms of numbers of adults, which can be

approximated by a Deriso type of relationship (21).

X0(t) = (

n∑

i=1

li fi

m0

X i (t))

(

1 +
1

γ m0

(

n∑

i=1

pi X i (t))

)−γ

. (21)

The function Aγ is C∞ on R× K̂ and K̂ is an open set. The critical manifold M0 = {X ∈ R× K |Aγ (X ) = 0} is the

graph of function h0 : K → R defined by h0(X1(t), . . . , Xn(t)) = X0(t), with X0(t) given by Eq. (21). Concerning the

choice of a suitable domain K , note that the function h0 is well defined on K̂ . Since K̂ is open and [0, S̄]n is compact

and convex, we can enlarge [0, S̄]n within K̂ to a compact and convex set K (such that [0, S̄]n ⊂ K ⊂ K̂ ⊂ R
n),

whose boundary is an (n−1)-dimensional C∞ submanifold. K ⊂ R
n convex implies K simply connected. A definition

and properties of simply connected sets can e.g. be found in appendix A in [12]. Summarizing, there exists a domain

K which fulfils assumption (h2) and contains [0, S̄]n .

The function h0 is the product of function q(X1, . . . , Xn) = [1 + (
∑n

i=1 pi X i (t))/(γ m0)]−γ and a linear function.

The term 1 + (
∑n

i=1 pi X i (t))/(γ m0) is positive for all (X1, . . . , Xn)t ∈ K̂ and the function q(X1, . . . , Xn) is defined

and C∞ on K̂ . Thus, h0 is C∞ and assumption (h3) holds.

The image h0([0, S̄]n) is a subset of R+ and the numbers of prerecruits are non-negative. Concerning (h4), Eq. (22)

shows that the derivative of Aγ with respect to X0 on M0 is negative for m0 > 0, since 1 + (
∑n

i=1 pi X i (t))/(γ m0) > 0

on M0.

∂ Aγ (X0, X1, . . . , Xn)

∂ X0

∣
∣
∣
∣

M0

= −m0

(

1 +
1

γ m0

n∑

i=1

pi X i (t)

)γ

. (22)

How realistic the assumption ǫ > 0 sufficiently small is, depends on the definition of recruitment, and the duration

time of the recruitment period in relationship to the total life span of a particular fish species; i.e., short or long lived

species. For example, rates of mortality of eggs and larvae may be of order 0.1, of order 0.01 for juveniles and of

order 0.001 for adults, [19]. If recruitment is defined as number of juveniles, one might assume ǫ ≈ 0.1.

3. Properties of the slow-fast population dynamic model

3.1. Stock-recruitment relationships

As the slow-fast population dynamic model (19)–(20) is a special case of the dynamical system (10) investigated

in Section 2.2, the behaviour of its trajectories can be explained using geometric singular perturbation theory. In this

section, we let ǫ > 0 sufficiently small. In a first, short phase, trajectories are governed by the fast system (11). The

spawning stock size undergoes small changes in comparison to the number of prerecruits. Trajectories which start in

W s(Mǫ) are attracted to the graph of a function hǫ , as long as they stay in a neighbourhood of the graph. The function

hǫ is an O(ǫ)-perturbation of h0 described by Eq. (21). Thus, in the second phase, reproduction can be approximated

by a Deriso type of relationship (23). On the critical manifold, recruitment is given as a function of numbers of adults,

but in general not of the spawning stock size. However, in case of positive age-independent parameters (li = l > 0,

fi = f > 0 and pi = p > 0, for i = 1, . . . , n), the critical manifold can be associated with a Deriso function (24),

with a = αl/m0 and b = p/(m0 f ).

R(t) =α(

n∑

i=1

li fi

m0

X i (t))

(

1 +
1

γ m0

(

n∑

i=1

pi X i (t))

)−γ

(23)

R(t) =
αl

m0

S(t)

(

1 +
p

γ m0 f
S(t)

)−γ

. (24)
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By variations of parameter γ , the model (19)–(20) can replicate a rich class of the link between adult population

and reproduction. The parameter γ allows to assign distinct degrees of density-dependence to the stock-recruitment

function.

3.2. Limiting case

Define the limiting case γ → ∞ of the population dynamic system (19)–(20) by Eqs. (25) and (20). The slow-fast

population dynamic model is given by the two systems of differential equations. Analogously to Section 2.4, we

can show that function A∞ fulfils assumptions (h1)–(h4). The set of zeros of function A∞ : Rn+1 → R is the set of

(X0(t), X1(t), . . . , Xn(t))t ∈ R
n+1 for which Eq. (26) holds. The function h0 defined by h0(X1(t), . . . , Xn(t)) = X0(t),

with X0(t) given by Eq. (26) is well defined and C∞ on R
n . We may define a manifold M0 for any compact and convex

set K such that [0, S̄]n ⊂ K ⊂ R
n and the boundary of K is an (n − 1)-dimensional C∞ submanifold, including the

set K defined in Section 2.4.

Ẋ0(t) = − αX0(t) +
1

ǫ

[

−m0 X0(t) · exp

(
1

m0

n∑

i=1

pi X i (t)

)

+

n∑

i=1

li fi X i (t)

]

︸ ︷︷ ︸
=A∞(X (t))

(25)

R(t) =αX0(t) =
α

m0

(

n∑

i=1

li fi X i (t)) · exp

(

−
1

m0

n∑

i=1

pi X i (t)

)

. (26)

Trajectories of the system of differential equations, which start in W s(Mǫ) and remain in a neighbourhood of Mǫ ,

converge to the graph of a perturbation of the Ricker type of stock-recruitment function (26).

3.3. Fixed points

The population dynamic model (19)–(20) has an equilibrium point X0 = X1 = · · · = Xn = 0. Further, if the

parameters are chosen as described in Table A.2 and in addition

• Assumption I: αǫ + m0 <
∑n

i=1 fi liπi

• Assumption II: ∃i∗ ∈ {1, . . . , n} s.t. pi∗ > 0,

then a second fixed point is X∗∗ as given by

X∗∗
0 =

γ m0
∑n

i=1 piπi




(∑n

i=1 li fiπi

m0

−
αǫ

m0

) 1
γ

− 1



 , (27)

X∗∗
i = πi X∗∗

0 , with πi =

i∏

j=1

α

α + m j

, i = 1, . . . , n . (28)

We prove the existence of X∗∗
> 0 for γ > 0. The case γ = 1 has been considered in [21]. From α > 0 and

mi ≥ 0, it follows that πi > 0 for i = 1, . . . , n. By definition of the slow-fast population dynamic model (20), Eq. (28)

implies constant numbers of adults. Thus, we can substitute the fractions of X∗∗
0 for X∗∗

i into Eq. (19) and obtain that

Ẋ∗∗
0 = 0 is equivalent with Eq. (29). Assuming X∗∗

0 6= 0 and with m0 > 0, we obtain (30). Using assumption II and

πi > 0 for i = 1, . . . , n, the fixed point is given by Eq. (27). X∗∗
0 > 0 and X∗∗

i > 0 follow from assumptions I, II,

non-negativity of pi ≥ 0 and positivity of m0, γ, πi > 0 for i = 1, . . . , n.

ǫαX∗∗
0 = −m0 X∗∗

0

(

1 +
1

γ m0

n∑

i=1

piπi X∗∗
0

)γ

+

n∑

i=1

li fiπi X∗∗
0 (29)

(

1 +
1

γ m0

n∑

i=1

piπi X∗∗
0

)γ

=

∑n
i=1 li fiπi

m0

−
αǫ

m0

. (30)
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In terms of recruitment and number of spawners, the equilibrium point (27)–(28) is given by

R∗∗
γ

=
γ m0α

∑n
i=1 piπi




(∑n

i=1 li fiπi

m0

−
αǫ

m0

) 1
γ

− 1



 , (31)

S∗∗
γ

=

n∑

i=1

fiπi

1

α
R∗∗

γ
. (32)

It can be shown that if assumptions I and II hold, then R∗∗
γ

(as a function of parameter γ ) is strictly decreasing for

γ > 0. To see this, substitute θ1 = (m0α)/(
∑n

i=1 piπi ) and θ2 = (
∑n

i=1li fiπi − αǫ)/m0 into Eq. (31) and obtain (33).

Here, we use that assumptions I and II and the choice of the parameters described in Table A.2 imply that θ1 > 0 and

θ2 > 1.

R∗∗
γ

= θ1γ (θ
1/γ

2 − 1) , with ∂ R∗∗
γ

/∂γ = θ1

(
θ

1/γ

2 − 1 − θ
1/γ

2 ln(θ
1/γ

2 )
)

. (33)

The function p : (0, ∞) → R defined by p(x) = x − 1 − x ln(x) is differentiable with p′(x) = − ln(x). Since p is

non-increasing for x ∈ [1, ∞), strictly decreasing for x ∈ (1, ∞) and has zero p(1) = 0, we conclude that p(x) < 0

for all x > 1. With θ
1/γ

2 > 1, it follows that the first derivative of R∗∗
γ

with respect to γ is negative.

The slow-fast population dynamic model described by Eqs. (25) and (20) has also an equilibrium point X0 = X1 =

· · · = Xn = 0 and, under assumptions I and II and for the choices of parameters described in Table A.2, a positive

fixed point. The existence of the positive fixed point given by Eqs. (34), (28) and (32) can be proven analogously to

the case γ > 0.

R∗∗ = αX∗∗
0 =

m0α
∑n

i=1 piπi

ln

(∑n
i=1 li fiπi

m0

−
αǫ

m0

)

. (34)

3.4. Non-negativity of the variables

The slow-fast population dynamics model represents changes in numbers of individuals. As mentioned in the

introduction, for the model by Touzeau and Gouzé (with p0 ≥ 0), the solution X (t) of the initial value problem (4)–(5)

with non-negative X (0) ∈ R
n+1
+ is non-negative, [21].

Concerning the slow-fast population dynamic model introduced in this paper, let parameters be chosen as described

in Table A.2. Then, we have X (t) ∈ R
n+1
+ for all t > 0 for all solutions of the initial value problem (19)–(20) with

non-negative X (0) ∈ R
n+1
+ and for all solutions X (t) of the initial value problem (25) and (20) with non-negative

X (0) ∈ R
n
+.

To see this, let t1 > 0 the smallest t > 0 such that there exists i ∈ {0, 1, . . . , n} with X i (t) ≤ 0. Since X (t) is

continuous in t ≥ 0, we have X i (t1) ≥ 0 for i = 0, . . . , n. Assume X i (t1) = 0 for 0 < i ≤ n. Then, by Eq. (20) and

α > 0, we have Ẋ i (t1) ≥ 0 and X i remains non-negative. Now assume X0(t1) = 0. By Eq. (19) (or Eq. (25)), the

choice of parameters described in Table A.2 and X i (t1) ≥ 0, we obtain Ẋ0(t1) = (1/ǫ)
∑n

i=1li fi X i (t1) ≥ 0. Thus, the

variable X0(t) remains non-negative.

4. Numerical simulations

The presence of two distinct time scales is characteristic for stiff systems. Eqs. (19)–(20) and Eqs. (25) and (20) are

solved by numerical differentiation formulas for stiff problems as implemented in MATLAB and described in [18].

We use default options for algorithm parameter values except for absolute error tolerance 10−10. For given γ > 0 and

initial conditions X (0) ∈ R
n+1
+ , the ODE solver computes an approximation of the solution X (t) of the differential

equation at specific points in time t ∈ {0, 0.0005, 0.001, . . . , 10} by interpolation. Recruitment and spawning stock

size are given by Eq. (6). The limit of the slow-fast system as γ → ∞ refers to Eqs. (25) and (20). The following

age-independent parameter values are used: n = 4, α = 0.8, ǫ = 0.1, m0 = 0.7, p0 = 0, p = 0.1, f = 0.5, l = 15 and

mi = 0.2 for i = 1, . . . , n. In [21], a realistic example for values for the parameters has been suggested and we use the

same parameter values with the following exceptions. Following Section 3.4, we assume ǫ = 0.1. Further, we choose

m0 = 0.7 (instead of m0 = 0.5), p0 = 0 and age-independent parameters. Initial conditions are uniformly distributed

with X (0) ∈ ([0, 1] ∪ [2, 7] ∪ [85, 115]) × [0, 57]4 (Figs. 2 and 4) and X (0) ∈ ([0, 1] ∪ [2, 7] ∪ [45, 60]) × [0, 57]4
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Fig. 3. Simulation of the stock-recruitment relationship corresponding to the slow-fast population dynamic model at t ∈ {0, 0.005, 0.01, . . . , 10}

and for four distinct values for γ .

(Fig. 5). We use MATLAB version R2012a and 64 bit floating-point precision. For the sake of clarity, the figures

present a subset of the results of the numerical experiments.

The SRRs corresponding to the slow-fast population dynamic model with positive age-independent parameters

are illustrated in Fig. 3. The initial value problems given by Eqs. (19)–(20) or Eqs. (25) and (20) with initial

conditions (X0(0), X1(0), . . . , X4(0))t ∈ [0, 340] × [0, 12]4 are solved numerically and in the cases γ ∈ {1, 1.5, 5}

and γ → ∞. We observe that for our choice of initial conditions, all trajectories approach graphs of stock-recruitment

functions. These are approximations of the Beverton–Holt, Deriso and Ricker functions illustrated in Fig. 1. For Fig.

3, (X0(0), X1(0), . . . , X4(0))t ∈ [0, 340]×[0, 12]4 are not uniformly distributed but chosen with the aim of illustrating

the stock-recruitment functions.

For γ = 1, the system corresponds to the case p0 = 0 of the model by Touzeau and Gouzé [21] described by

Eqs. (4) and (5). Under assumptions I and II and further conditions, the equilibrium point (27)–(28), with γ = 1, is

stable, [21]. In case of positive age-independent parameters (with exception of mi ≥ 0), trajectories of the system

of differential equations, which start in W s(Mǫ) and remain in a neighbourhood of Mǫ , approach the graph of a

function, which may be approximated by a Beverton–Holt type of SRR. Recruitment per spawner decreases with

increasing spawning stock size, but the SRR is strictly increasing on the critical manifold. This is illustrated in Fig. 2.

In our simulations, all numerical solutions starting in ([0, 1] ∪ [2, 7] ∪ [85, 115]) × [0, 57]4 approach the graph of a

perturbation of a Beverton–Holt function.

With increasing γ , density-dependence of the stock-recruitment relationship increases. In case of positive and age-

independent parameters (with exception of mi ≥ 0), a Deriso function describes the relationship between spawning

stock and recruitment. This function has a maximum and is dome-shaped for all γ > 1 (for details, see [17]). Fig. 4

presents the case γ = 2. For our choice of initial conditions, all trajectories approach the graph of a perturbation of

the Deriso function. Here, it can also be observed that the equilibrium recruitment R∗∗
γ

is lower in case of γ = 2 than

for γ = 1.

The limiting case γ → ∞ is illustrated in Fig. 5. Comparing Figs. 2(a), 4(a) and 5(a), it can be observed that the

value of recruitment at the fixed point is lower for the case γ → ∞ than for γ = 2 and γ = 1. For about 95% of

the initial conditions, the solutions are attracted to the graph of a perturbation of the Ricker type of stock-recruitment

function (26). The rest of the numerical solutions is observed to be negative. From Section 3.4, we know that the

solution of the initial value problem (25) and (19) with non-negative initial values is non-negative. Negative numerical

solutions indicate a failure of the numerical solution of the differential equation. Only biologically plausible solutions

are illustrated in Fig. 5.

5. Conclusions

The solutions of the slow-fast population dynamic model introduced here, are under suitable assumptions attracted

to the graph of a perturbation of a Deriso type of SRR. If the rate of mortality of prerecruits is a non-linear function

of the numbers of adults, then a non-monotonic SRR may emerge from a slow-fast population dynamic model. The
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(a) Spawning stock size and recruitment as functions of time

converge towards a fixed point.

(b) Here, the SRR is dome-shaped and can be approximated

by a Deriso function.

(c) Independent of the initial states, the SRR soon behaves similarly to a Deriso function.

Fig. 4. Numerical solution of the slow-fast population dynamic model with γ = 2.

approach proposed in this paper is not restricted to the Deriso model. Given a specific stock-recruitment function and

a description of slow dynamics, a set of candidates of descriptions of the fast dynamics can be identified. Sufficient

conditions for a slow-fast population dynamic model to generate a specific SRR have been derived using geometric

singular perturbation theory.

The assumption of age and time-independent model parameters is a simplification, but is standard practice in

fisheries science as pointed out in the introduction. In the case of age-dependent parameters, the population dynamic

model describes recruitment as a function of an age-structured spawning stock, but not of the total number of spawners.

In this paper, we have assumed parameters such as fecundity and rates of mortality to be time-independent. Analyses

such as determination of fixed points necessitate this assumption.

Environmental and physical factors may alter the stock-recruitment function, and affect the complete stock,

including asymptotic behaviour and equilibrium states. A SRR describes the endpoint of the development from

spawning to recruitment as a function of the number of spawners. Time-dependent parameters in a SRR may reflect

long-term variations such as regime shifts. But also daily or seasonal effects, e.g., temperature in the first growing

season, may cause high variations in mortality of larvae and recruitment, [11]. The model introduced here, and the one

by Touzeau and Gouzé, describes the fast evolution of numbers of prerecruits. It can therefore reflect high frequency
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(a) Spawning stock size and recruitment as functions of time

converge towards a fixed point.

(b) The stock-recruitment relationship can be approximated

by a Ricker function.

(c) Independent of the initial states, the SRR soon behaves similarly to a Ricker function.

Fig. 5. Numerical solution of the slow-fast population dynamic model with γ → ∞. The axes are shorter than in Figs. 2 and 4.

variations in parameters such as natural mortality and describe the reaction of the dynamics of stock and recruitment to

these variations. The strength of cannibalism or predation may also change, and thus affect density-dependence. This

may be investigated using the slow-fast population dynamic model presented here, because of its ability to replicate a

rich class of density-dependent mortalities.

Appendix A. Nomenclature

See Table A.2.

Appendix B. Fenichel’s theorem

In the following, we restate a set of theorems described in [7] and used in Section 2. Consider a slow-fast system

of the forms (Fǫ) and (Sǫ) with the lower dimensional problems (F0) and (S0). Assume

(H1) f, g are C∞ on a set U × I , where U ⊂ R
k+l is open and I is an open interval containing 0.

(H2) There exists a set M0 ⊂ {(x, y)t ∈ U | f (x, y, 0) = 0}, s.t.
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Table A.2

Nomenclature.

t ≥ 0 Slow time

T ≥ 0 Fast time

0 < ǫ ≪ 1 Ratio between slow and fast time t = ǫT (dimensionless)

R(t) Numbers of fish recruited to the stock at time t

S(t) Total number of fish in the spawning stock at time t

i ∈ {0, . . . , n} Index of age-class

X i (t) Number of fish in age-class i ∈ {1, . . . , n} at time t

X0(t) Number of prerecruits at time t

α > 0 Rate of ageing; measured in numbers per individual and time unit t

fi > 0 Fecundity of fish of age i ∈ {1, . . . , n} (dimensionless)

li ≥ 0 Rate of eggs produced per fish of age i ; measured in numbers per

adult of age i and per time unit t

pi ≥ 0 Degree of density-dependence attributed to fish of age i ; measured

in numbers of deaths per prerecruit, per adult of age i and per time

unit t

p0 ≥ 0 Degree of density-dependence attributed to juvenile competition;

measured in numbers of deaths per prerecruit squared, and per time

unit t

mi ≥ 0 Rate of density-independent mortality of age-class i ; measured in

numbers of deaths per individual and time unit t

m0 > 0 Rate of density-independent mortality of prerecruits; measured in

numbers of deaths per prerecruit and time unit t

γ > 0 Degree of density-dependence of the SRR (dimensionless)

1. M0 is a compact manifold, possibly with boundary and

2. M0 is normally hyperbolic relative to (F0), i.e. for all (x, y)t ∈ M0, the matrix D fx (x, y, 0) has no eigenvalues

with zero real part.

(H3) M0 = {(x, y)t ∈ R
k+l |x = h0(y), y ∈ K } with a C∞ function h0 defined on K where

1. K ⊂ R
l , compact and simply connected,

2. and the boundary of K is an (l − 1)-dimensional C∞ submanifold.

Let ǫ > 0, but sufficiently small.

• By Theorems 1 and 2 in [7]: Then, there exists a function hǫ : K → R
k s.t. the graph Mǫ = {(x, y)t ∈ R

k |x =

hǫ(y), y ∈ K } is locally invariant under (Fǫ) and hǫ is Cr , ∀r < ∞, jointly in y and ǫ. The graph Mǫ lies

within O(ǫ) of and is diffeomorphic to M0.

• By Theorem 3 in [7]: There exist manifolds W s(Mǫ) and Wu(Mǫ) of Mǫ ,

1. which are O(ǫ) close and diffeomorphic to their unperturbed counterparts W s(M0) and Wu(M0),

respectively.

2. They are each locally invariant under (Fǫ) and they are Cr , including in ǫ, ∀r < ∞.

• By Theorem 5 in [7]: Denote by V a neighbourhood of Mǫ . There exist κs > 0 and αs < 0 so that z0 ∈ W s(Mǫ)

and z(t, z0, 0) ∈ V for all t ∈ [0, t̄], with t̄ > 0 implies d(z(t̄, z0, 0), Mǫ) ≤ κs exp(αs t̄) (with d the Euclidean

distance).

The manifolds W s(Mǫ) and Wu(Mǫ) of Mǫ are called stable and unstable manifolds of Mǫ , respectively.
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