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Abstract In this paper, a sixth order adaptive non-uniform grid has been devel-
oped for solving a singularly perturbed boundary-value problem (SPBVP) with
boundary layers. For this SPBVP with a small parameter in the leading derivative,
an adaptive finite difference method based on the equidistribution principle, is
adopted to establish 6th order of convergence. To achieve this supra-convergence,
we study the truncation error of the discretized system and obtain an optimal
adaptive non-uniform grid. Considering a second order three-point central finite-
difference scheme, we develop sixth order approximations by a suitable choice of
the underlying optimal adaptive grid. Further, we apply this optimal adaptive grid to
nonlinear SPBVPs, by using an extra approximations of the nonlinear term and we
obtain almost 6th order of convergence. Unlike other adaptive non-uniform grids,
our strategy uses no pre-knowledge of the location and width of the layers. We also
show that other choices of the grid distributions lead to a substantial degradation of
the accuracy. Numerical results illustrate the effectiveness of the proposed higher
order adaptive numerical strategy for both linear and nonlinear SPBVPs.

1 Introduction

Boundary-layer phenomena, have many applications in different areas, such as fluid
dynamics [1, 10, 17], aerodynamics [26] and mass heat transfer [25]. Nowadays
boundary layer problems are addressed mainly with numerical techniques. A
large number of numerical techniques have been proposed by various authors for
singularly perturbed boundary value problem (SPBVPs). Finite difference approx-
imations on non-uniform grids have been investigated in [13, 27, 29]. Numerical
approximations and solutions for SPBVPs have been discussed in [2] and [23].
Theory and applications of singular perturbations in boundary-layer problems and
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multiple timescale dynamics have been reported in [30]. To deal with the steep
solutions regions, two different forms of computational non-uniform grids by
dividing the region into two or more with different uniform spacing were discussed
in [24] for boundary-layer problems. At the beginning of the 90s, special piecewise
uniform grids have been introduced by Shishkin [22], in which simple structured
grids can be used for the numerical approximation of SPBVPs. A truncation error
analysis introduced by the use of non-uniform grids and stretched coordinates for
the numerical study of the boundary-layer problems has been reported in [8, 19, 20]
and [31] in which numerical results are compared with those obtained on uniform
grids. In [21] a stretched grid method was introduced in which the boundary-
layer problems are transformed into new coordinates by a smooth mapping which
concentrates the grid points in the steep regions without an increase of the total
number of grid nodes. This concentration improved the spatial resolution in the
region of large variation and enhanced the accuracy in numerical solutions. Adaptive
moving grid methods for solving the partial differential equations are discussed
in [5, 28]. Adaptive grid methods, graded grid difference schemes and uniformly
accurate finite difference approximations for SPBVPs have been presented in [9, 11]
and [3], respectively. The rate of convergence of finite difference schemes on non-
uniform grids and super convergent grids for two point BVPs have been described
in [6, 14, 32]. Further, finite difference approximations of multidimensional steady
and unsteady convection- diffusion-reaction problems have been discussed in [7, 15,
16]. All these numerical approaches on non-uniform grids are more accurate than
for the uniform case but with the same order of convergence. The supra-convergence
phenomenon of the central finite difference scheme is well-known and it was studied
rigorously. In literature, the increase from second to higher order accuracy for linear
boundary value problems has been reported in [4] and recently in [18]. Second order
central finite differences on non-uniform grids are discussed in [18], in which an
adaptive numerical method is applied to obtain 4th-order convergence.

In the present study, we consider a singularly perturbed linear elliptic ordinary
differential equation with a boundary layer. The goal is to propose an efficient
adaptive numerical method which can be solve approximately such SPBVPs with
an accuracy independent of the value of the perturbation parameter. Three-point
finite-difference methods are, in general, of second order accuracy on a uniform
grid. In all the schemes that have been discussed before, we may conclude that such
schemes are accurate to 2nd order (uniform and non-uniform grids) and 4th order
(non-uniform grids). Here, we extend these results to 6th order approximations not
only for linear BVPs, but we are also able to obtain an (almost) 6th order accuracy
for nonlinear models. For this, we propose a non-uniform equidistributed grid and
show that the second order central finite difference scheme is substantially upgraded
to sixth order on this refined grid. This supra-convergence is obtained by using an
appropriate monitor function, which depends on the lowest derivative. Numerical
experiments are discussed for different choices of the monitor functions to confirm
the higher order of convergence.
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The present manuscript is organized as follows: In Sect. 2, the SPBVP under
consideration is presented. In Sect. 3, we present a higher order adaptive numerical
method after which a general central finite difference scheme on non-uniform grids
is derived in Sect. 3.1. To construct the adaptive grid, the equidistribution principle
is explained in Sect. 3.2. Further, in Sect. 4, numerical results for different choices of
non-uniform grids, are discussed. Numerical implementation for a nonlinear SPBVP
on the proposed adaptive grid, is presented in Sect. 5. Finally, we summarize our
results in Sect. 6.

2 A Boundary Value Problem

In this section, we first consider the following singularly-perturbed linear boundary-
value problem with inhomogeneous Dirichlet boundary conditions:

ε u′′ − u = 0, u(0) = e
− 1√

ε , u(1) = 1, (1)

which has the exact solution

u(x) = e
x−1√

ε . (2)

For small values of the perturbation parameter 0 < ε � 1, the steep solution (2)
shows a boundary-layer behavior at x = 1. This is illustrated in Fig. 1. However,
we will proceed further as if the exact solution is unknown. We will use (2) only to
access the quality of a solution.
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Fig. 1 Exact solutions of model (1) for decreasing values of ε
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3 An Adaptive Numerical Method

For a higher order of convergence than two (on a three-point stencil), we are going
to generate an optimal adaptive non-uniform grid for the convection dominant
singularly perturbed BVP (1) as follows:

1. Discretize problem (1) on non-uniform grid and transform the discretized system
from the physical coordinate x to a computational coordinate ξ .

2. Generate an optimal adaptive non-uniform grid based on the equidistribution
principle.

3. Compute the solution of the discretized system of given problem (1) on the
optimal adaptive non-uniform grid, obtained from previous the step to establish
a higher order of convergence.

3.1 Discretizations on Non-uniform Grids

In order to deal with the appearance of steep boundary layers in the given model (1),
non-uniformly distributed grids could be used to obtain more efficient and more
accurate numerical solutions. Non-uniform discretization of the second derivative
in (1) is given by

u′′
j ≈

uj+1−uj

p
− uj −uj−1

q

hj

,

where the p, q and hj are computed as:

p := xj+1 − xj , q := xj − xj−1, hj := p + q

2
.

Approximating the derivatives in model (1) by using these expressions, yields the
following numerical approximation:

ε

uj+1−uj

p
− uj −uj−1

q

hj
− uj = 0 (3)

with boundary conditions u0 = e−1/
√

ε , uJ = 1. The idea is to choose a non-
uniform central finite difference method such that the steep parts in the solution can
be resolved. We will do this by performing the following steps. First, we transform
the original model from the physical domain I = [0, 1] to a computational domain
I∗.

Let x and ξ denote the physical and computational coordinates, respectively.
Without loss of generality, we define a composed function v(ξ) := u ◦ x = u(x(ξ))
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and coordinate transformation between x and ξ as follows:

x = x(ξ), ξ ∈ I∗ = [0, 1],

where x(0) = 0 and x(1) = 1. The computational domain I∗ can be discretized
into J equal segments {ξj = j Δξ}Jj=0 with Δξ = 1/J . The first derivative is then
transformed as

u′ = du

dx
= dv

dξ

dξ

dx
= dv

dξ

1

xξ

.

The SPBVP (1) on the computational domain I∗ can be written as

ε

xξ

d

dξ

(
1

xξ

dv

dξ

)
− v(ξ) = 0, v(0) = e

− 1√
ε , v(1) = 1. (4)

We also assume that the Jacobian J(ξ) of mapping x(ξ) is bounded from below and
above by some positive constant: 0 < J := dx/dξ < ∞. Equation (4) equivalent
with:

ε

J

d

dξ

(
1

J

dv

dξ

)
− v(ξ) = 0 (5)

with the same boundary conditions v(0) = e−1/
√

ε , v(1) = 1. Equation (5) can be
discretized on the uniform grid h as follows:

ε

Jj

(
vj+1 − vj

J
j+ 1

2

− vj − vj−1

J
j− 1

2

)
− vj = 0, v0 = e

− 1√
ε , vJ = 1, (6)

where the Jacobian J is computed as:

Jj+ 1
2

:= p

Δξ
, Jj− 1

2
:= q

Δξ
, Jj :=

Jj+ 1
2

+ Jj− 1
2

2Δξ
.

Scheme (6) is equivalent to (3).

3.2 Adaptive Non-uniform Grid Generation

The aim of the equidistribution principle is to concentrate the non-uniformly
distributed grid points in the steep regions of the solution (see [5, 12, 28, 33] and
references therein). In this principle, the desired mapping x(ξ) is obtained as a
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solution of the nonlinear problem:

d

dξ

[
ω(x)

dx

dξ

]
= 0, x(0) = 0, x(1) = 1, (7)

where ω(x) is the so-called monitor function. The name equidistribution has to
do with the fact that we would like to ‘equally distribute’ the positive valued and
sufficiently smooth function ω(x) on each non-uniform interval. For this, we first
define the grid points

0 = x0 < x1 < x2 < · · · < xJ−1 < xJ = 1.

Next, we determine the grid point distribution such that the contribution of ω on
each subinterval [xj−1, xj ] is equal. A discrete version of (7), after integrating once,
reads:

∫ xj+1

xj

ω(x) dx = 1

J

∫ 1

0
ω(x) dx, j = 0, 1, . . . , J − 1.

In practice, one has to choose the monitor function ω(x) and solve the nonlinear (7)
to obtain the required mapping x(ξ). Equation (7) can be discretized using central
finite differences as:

1

Δξ

[
ω

j+ 1
2

p

Δξ
− ω

j− 1
2

q

Δξ

]
= 0, j = 1, 2, . . . , J − 1, (8)

with boundary conditions x0 = 0 , xJ = 1. Equation (8) is called a discrete
equidistribution principle. The discrete system can be solved efficiently using a
tridiagonal matrix algorithm. The iterations are continued until convergence for a
prescribed tolerance has been achieved.

4 Numerical Results

The aim of this section is to point out that it is possible to develop a central three-
point finite-difference scheme on non-uniform grids which exhibits a higher order
accuracy than expected and known until now. We solve the discretized system of
SPBVP (1) on adaptive non-uniform grids based on the equidistribution principle.
We establish these higher-order optimal grids (4th order and 6th order) with the
help of a local truncation error analysis of the discretized system of (1). Numerical
experiments show that the other choices of grid distribution lead to a substantial
degradation of the accuracy. Numerical results illustrate the effectiveness of the
proposed numerical strategy for linear and nonlinear SPBVPs. We measure the
accuracy of the numerical solution by computing its distance to the reference
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solution

‖εh‖∞ ≡ ‖uh − u‖∞ = max
1≤j≤J

|uj − u(xj )|, (9)

and the order of convergence can be calculated numerically as:

order = log2
‖εh‖∞

‖εh/2‖∞
. (10)

4.1 Case 1: Fourth Order of Convergence

The discretization of model (1) by approximating the second derivative on non-
uniform grids, is given by

ε

uj+1−uj

p
− uj −uj−1

q

1
2 (p + q)

− uj = 0. (11)

Scheme (11) can be equivalently rewritten as:

ε

(
2uj − 2p

p + q
uj−1 − 2q

p + q
uj+1

)
+ pquj = 0. (12)

We rewrite expression (12):

ε
(
2uj − R1uj−1 − R2uj+1

) + S0uj−1 + S1uj + S2uj+1) = 0, (13)

where

R1 = 2p

p + q
, R2 = 2q

p + q
, S0 = 0, S1 = pq, S2 = 0.

For 4th order of convergence, the discretized system is defined as:

ε
(
2uj − R1uj−1 − R2uj+1

) + S1uj = 0. (14)

This is equivalent to scheme (11).
We study the approximation properties of scheme (11) on general non-uniform

grids. For this, we need to work out Taylor expansions and compose the finite
differences which appear in (11):

uj+1 − uj

p
= u′ + p

2!u
′′ + p2

3! u′′′ + p3

4! u(4) + p4

5! u(5) + O(p5),

uj − uj−1

q
= u′ + q

2!u
′′ + q2

3! u′′′ + q3

4! u(4) + q4

5! u(5) + O(q5).

(15)
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Assume further that the mapping x(ξ), is sufficiently smooth. Note that the grid
difference functions p and q can be written as:

p = xj+1 − xj = Δξ xξ + Δξ2

2! xξξ + Δξ3

3! xξξξ + O(Δξ4),

q = xj − xj−1 = Δξ xξ − Δξ2

2! xξξ + Δξ3

3! xξξξ + O(Δξ4).

(16)

We obtain the asymptotic expression:

ε u′′ − u − ε

(
p − q

3
u′′′ − p2 − pq + q2

12
u(4) − (p − q)(p2 + q2

60
u(5) + O(Δξ4)

)
= 0.

(17)

We transform the system x 
→ ξ so, from (17), one gets

− ε
Δξ2

3

[
xξξu

′′′ + 1

4
x2
ξ u′′′′

]
+ O(Δξ4) = 0. (18)

In general, the scheme (11) is second order accurate. However, we notice that the
scheme will be fourth order accurate, if the mapping x(ξ) satisfies the following
equation:

xξξu
′′′ + 1

4
x2
ξ u′′′′ = 0, (19)

where u(x) is a solution of (1). Equation (19) can be rewritten as:

(u′′′)
3
4

[
(u′′′)

1
4 xξ

]
ξ

= 0.

Since u′′′ ∝ u′, we obtain
[
(u′)1/4xξ

]
ξ

= 0. For our numerical simulations,
we make the following choice of the monitor function to illustrate the use of the
equidistribution principle (see Sect. 3.2):

ω = (u′)
1
4 . (20)

In the equidistribution method, we obtain the mapping x(ξ) from (7). For SP-
BVP (1), we can write the monitor function in a generalized form:

ωη(x) = (u′(x))η. (21)
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We take the optimal choice of the monitor function (20) to establish the 4th order of
convergence for model (1). The numerical experiments are performed for different
choices of η in (21) and ε = 0.01.

We slightly change the monitor function by changing the values of η and observe
that the convergence order also changes. Table 1 shows clearly that the optimal
result is obtained for η = 1/4. This is the optimal choice to get the higher
order of convergence 4 for the scheme (11). On the other hand, for other choices
of the monitor functions ω(x) with different η in (21), we obtain 2nd order of
convergence. However, for the choice ω = (u′)2, the convergence of order falls
down to ≈ 1/2, which is, of course, to be avoided for practical numerical simulation.
As mentioned above, by taking different choices for the monitor functions ω, we
observe a difference in accuracy and convergence order of the numerical solutions.
An even higher order of convergence can be found by an appropriate choice of the
monitor function in the next section.

4.2 Case II: Sixth Order of Convergence

Instead of only using the grid values (xj , uj ) for the approximation of the linear
reaction term in (1), we consider now the case S0 �= 0 and S2 �= 0 in
(13), which means that the reaction term will be approximated on a three-point
stencil (xj−1, uj−1), (xj , uj ) and (xj+1, uj+1). We expand the various terms of
expression (13) in a Taylor expansion as mentioned in (15) and (16). We obtain the
following:

(2 − R1 − R2 + S1)uj + Δξ(R1q − R2p)u′
j

+ Δξ2
(

−R1

2
q2 − R2

2
p2 + S0 + S2

)
u′′

j

+ Δξ3
(

R1

3! q3 − R2

3! p3 − S0q + S2p

)
u′′′

j

+ Δξ4
(

−R1

4! q4 − R2

4! p4 + S0
q2

2! + S2
p2

2!
)

u′′′′
j

+ · · · = 0. (22)

We now determine the values for Si (i = 1, 2, 3) for Case II, where the coefficients
R1 and R2 are similar to the ones in Case I. We can rewrite expression (22) in the
following way:

T0uj + ΔξT1u
′
j + Δξ2T2u

′′
j + Δξ3T3u

′′′
j + Δξ4T4u

′′′′
j + · · · = 0,
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where the coefficients of Δξ are set as:

T0 = 2 − R1 − R2 + S1 = 0,

T1 = R1q − R2p = 0,

T2 = −R1

2
q2 − R2

2
p2 + S0 + S2 = 0, (23)

T3 = R1

3! q3 − R2

3! p3 − S0q + S2p = 0,

T4 = −R1

4! q4 − R2

4! p4 + S0
q2

2! + S2
p2

2! = 0.

Making use of the coefficients T1, . . . , T4 and R1, R2 from Case I, we obtain the
following three expressions for the unknowns coefficients for Case II:

S0 = p

6(p + q)
(q2 + pq − p2),

S1 = pq − S0 − S2,

S2 = q

6(p + q)
(p2 + pq − q2).

(24)

The terms R1 and R2 from Case I and (24) define Case II. For a higher order
accuracy, we expand several more terms of the Taylor expansion of (13) and
then estimate the terms asymptotically as mentioned in (15) and (16), respectively.
Finally, (13) yields:

−ε
Δξ4

20

(
xξξu

(5) + 1

12
x2
ξ u(6)

)
+ O(Δξ6) = 0.

For Case II, we obtain a higher order of accuracy (supra-convergence), if the
transformation x(ξ) satisfies the following relation:

xξξu
(5) + 1

12
x2
ξ u(6) = 0.

From this follows the equidistribution principle:

[
(u(5))

1
12 xξ

]
ξ

= 0. (25)

It is easily checked from (2), that u(5) ∝ u′, and we find for Case II the equivalent
equation:

[
(u′)

1
12 xξ

]
ξ

= 0. (26)
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Next, we numerically solve the system (13) with the monitor function ω =
(u′)1/12 from (26). As indeed follows from the theory, we get more accurate results
and a 6th order accuracy (see Table 2). By considering other choices for the monitor
function, we observe that by taking η = 1/2 in (21), scheme (13) suddenly drops to
the 2nd order of accuracy, the same as or the uniform grid case (see Fig. 2). Also,
for this choice of the monitor function in Case I (see Table 1) it gives 4th order
accurate solutions. We also demonstrate this by taking slightly changed values of
η = 1/11 or η = 1/13: we obtain second order of accuracy for non-optimal grids.
The power η = 1/12 in (26) gives the optimal sixth order accuracy, which is the
maximum order that can be obtained on a three-point non-uniform stencil. No further
improvement of the order can be reached. This follows directly from the analysis of
systems (23) and (24).

5 Numerical Implementation for a Nonlinear Problem

To show the effects on a nonlinear model, we finally consider the SPBVP:

10−2u′′ − sin(u) = 0, u(0) = e−10, u(1) = 1. (27)

Equidistribution equations (8) with monitor functions ω = 1, ω = (u′)1/4, and
ω = (u′)1/12, respectively, are being solved iteratively in combination with (13). We
cannot find an exact optimal grid transformation as for the linear case. Therefore, we
approximate model (27) by approximating sin(u) ≈ u. Optimal non-uniform grids,
for obtaining fourth and sixth order accuracy for the linear case are given by grid
transformation (21) with η = 1/4 and η = 1/12, respectively. A reference solution
of model (27) has been obtained by applying a uniform grid with J = 1281 and the
routine f solve from Matlab. The exact solution (2) of the linearized model (1) has
been chosen as the initial guess for the iterative procedure. The numerical results
can be found in Table 3.

We clearly observe an almost fourth order (≈ 3.5) and almost sixth order (≈ 5.4)

accuracy of the proposed non-uniform grid methods. The full orders of four and six
cannot be reached, since we approximate the nonlinear function in SPBVP (27) by a
linear one. Despite of the linearization, a significant gain in accuracy can be realized
for the nonlinear case as well.

6 Conclusion

In the present article, we proposed higher order adaptive non-uniform finite
difference grid, to solve convection-dominated singularly perturbed linear and non-
linear boundary value problems with boundary-layers. Traditionally, three point
central finite differences on a uniform grid produce a second order of accuracy.
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Fig. 2 Convergence order for several choices of the monitor function ω for Case I (left) and
Case-II (right). We observe numerical evidence of the theoretically predicted convergence order,
depending on the power in the monitor function. The convergence order can be two for standard
choices (left and right) but also four (left) and even six (right) for special monitor functions,
yielding supra-convergence

Table 3 Maximum error and convergence orders for different choices of the grids for model (27):
a uniform grid (second order), non-uniform grids with η = 1/4 (≈ fourth order) and η = 1/12
(≈ sixth order)

Uniform: ω = 1 ω = (u′)1/4
ω = (u′)1/12

J Error Order Error Order Error Order

20 0.0153 – 3.4663e-04 – 2.6304e-05 –

40 0.0038 2.0194 4.1124e-05 3.1663 8.4274e-07 4.9641

80 9.4621e-04 2.0057 4.3215e-06 3.2740 2.2635e-08 5.2185

160 2.3584e-04 2.0013 3.8656e-07 3.4591 5.6042e-10 5.3359

320 5.8774e-05 2.0049 3.4502e-08 3.4967 1.3462e-11 5.3998

However, we have presented higher order of accurate adaptive non-uniform grids ap-
proximations based on the equidistribution principle. We provided several numerical
experiments for different choices of the monitor functions, which demonstrate the
effectiveness of the proposed adaptive numerical method. We have also described an
optimal choice of the adaptive non-uniform grid. We presented a detailed discussion,
to get higher order of accuracy by considering a special way to discretize the given
system. The proposed method on optimal adaptive non-uniform grids, performed
exceptionally. We established numerically the 6th order of accuracy by considering
a three point central finite differences. Numerical results confirmed this behavior.
Comparisons between numerical results illustrate that to achieve the same accuracy,
the proposed method needs approximately a factor of 5–10 fewer grid points than
the uniform case. This depends, of course, on the value of the small parameter ε in
the model.
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