3,446 research outputs found

    Adaptive memory-based single distribution resampling for particle filter

    Get PDF
    The restrictions that are related to using single distribution resampling for some specific computing devices’ memory gives developers several difficulties as a result of the increased effort and time needed for the development of a particle filter. Thus, one needs a new sequential resampling algorithm that is flexible enough to allow it to be used with various computing devices. Therefore, this paper formulated a new single distribution resampling called the adaptive memory size-based single distribution resampling (AMSSDR). This resampling method integrates traditional variation resampling and traditional resampling in one architecture. The algorithm changes the resampling algorithm using the memory in a computing device. This helps the developer formulate a particle filter without over considering the computing devices’ memory utilisation during the development of different particle filters. At the start of the operational process, it uses the AMSSDR selector to choose an appropriate resampling algorithm (for example, rounding copy resampling or systematic resampling), based on the current computing devices’ physical memory. If one chooses systematic resampling, the resampling will sample every particle for every cycle. On the other hand, if it chooses the rounding copy resampling, the resampling will sample more than one of each cycle’s particle. This illustrates that the method (AMSSDR) being proposed is capable of switching resampling algorithms based on various physical memory requirements. The aim of the authors is to extend this research in the future by applying their proposed method in various emerging applications such as real-time locator systems or medical applications

    PPF - A Parallel Particle Filtering Library

    Full text link
    We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributed-memory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with the necessary tools for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 GB of particle data, on 192 cores with 67% parallel efficiency. To the best of our knowledge, the PPF library is the first open-source software that offers a parallel framework for PF applications.Comment: 8 pages, 8 figures; will appear in the proceedings of the IET Data Fusion & Target Tracking Conference 201

    Lookahead Strategies for Sequential Monte Carlo

    Get PDF
    Based on the principles of importance sampling and resampling, sequential Monte Carlo (SMC) encompasses a large set of powerful techniques dealing with complex stochastic dynamic systems. Many of these systems possess strong memory, with which future information can help sharpen the inference about the current state. By providing theoretical justification of several existing algorithms and introducing several new ones, we study systematically how to construct efficient SMC algorithms to take advantage of the "future" information without creating a substantially high computational burden. The main idea is to allow for lookahead in the Monte Carlo process so that future information can be utilized in weighting and generating Monte Carlo samples, or resampling from samples of the current state.Comment: Published in at http://dx.doi.org/10.1214/12-STS401 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Parallel resampling in the particle filter

    Full text link
    Modern parallel computing devices, such as the graphics processing unit (GPU), have gained significant traction in scientific and statistical computing. They are particularly well-suited to data-parallel algorithms such as the particle filter, or more generally Sequential Monte Carlo (SMC), which are increasingly used in statistical inference. SMC methods carry a set of weighted particles through repeated propagation, weighting and resampling steps. The propagation and weighting steps are straightforward to parallelise, as they require only independent operations on each particle. The resampling step is more difficult, as standard schemes require a collective operation, such as a sum, across particle weights. Focusing on this resampling step, we analyse two alternative schemes that do not involve a collective operation (Metropolis and rejection resamplers), and compare them to standard schemes (multinomial, stratified and systematic resamplers). We find that, in certain circumstances, the alternative resamplers can perform significantly faster on a GPU, and to a lesser extent on a CPU, than the standard approaches. Moreover, in single precision, the standard approaches are numerically biased for upwards of hundreds of thousands of particles, while the alternatives are not. This is particularly important given greater single- than double-precision throughput on modern devices, and the consequent temptation to use single precision with a greater number of particles. Finally, we provide auxiliary functions useful for implementation, such as for the permutation of ancestry vectors to enable in-place propagation.Comment: 21 pages, 6 figure

    Ensemble Transport Adaptive Importance Sampling

    Full text link
    Markov chain Monte Carlo methods are a powerful and commonly used family of numerical methods for sampling from complex probability distributions. As applications of these methods increase in size and complexity, the need for efficient methods increases. In this paper, we present a particle ensemble algorithm. At each iteration, an importance sampling proposal distribution is formed using an ensemble of particles. A stratified sample is taken from this distribution and weighted under the posterior, a state-of-the-art ensemble transport resampling method is then used to create an evenly weighted sample ready for the next iteration. We demonstrate that this ensemble transport adaptive importance sampling (ETAIS) method outperforms MCMC methods with equivalent proposal distributions for low dimensional problems, and in fact shows better than linear improvements in convergence rates with respect to the number of ensemble members. We also introduce a new resampling strategy, multinomial transformation (MT), which while not as accurate as the ensemble transport resampler, is substantially less costly for large ensemble sizes, and can then be used in conjunction with ETAIS for complex problems. We also focus on how algorithmic parameters regarding the mixture proposal can be quickly tuned to optimise performance. In particular, we demonstrate this methodology's superior sampling for multimodal problems, such as those arising from inference for mixture models, and for problems with expensive likelihoods requiring the solution of a differential equation, for which speed-ups of orders of magnitude are demonstrated. Likelihood evaluations of the ensemble could be computed in a distributed manner, suggesting that this methodology is a good candidate for parallel Bayesian computations

    Particle-filtering approaches for nonlinear Bayesian decoding of neuronal spike trains

    Full text link
    The number of neurons that can be simultaneously recorded doubles every seven years. This ever increasing number of recorded neurons opens up the possibility to address new questions and extract higher dimensional stimuli from the recordings. Modeling neural spike trains as point processes, this task of extracting dynamical signals from spike trains is commonly set in the context of nonlinear filtering theory. Particle filter methods relying on importance weights are generic algorithms that solve the filtering task numerically, but exhibit a serious drawback when the problem dimensionality is high: they are known to suffer from the 'curse of dimensionality' (COD), i.e. the number of particles required for a certain performance scales exponentially with the observable dimensions. Here, we first briefly review the theory on filtering with point process observations in continuous time. Based on this theory, we investigate both analytically and numerically the reason for the COD of weighted particle filtering approaches: Similarly to particle filtering with continuous-time observations, the COD with point-process observations is due to the decay of effective number of particles, an effect that is stronger when the number of observable dimensions increases. Given the success of unweighted particle filtering approaches in overcoming the COD for continuous- time observations, we introduce an unweighted particle filter for point-process observations, the spike-based Neural Particle Filter (sNPF), and show that it exhibits a similar favorable scaling as the number of dimensions grows. Further, we derive rules for the parameters of the sNPF from a maximum likelihood approach learning. We finally employ a simple decoding task to illustrate the capabilities of the sNPF and to highlight one possible future application of our inference and learning algorithm
    • …
    corecore