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Introduction
Over the past two decades, particle filtering has emerged as a procedure for sequential 
signal processing (Refs. [1–4] presents the review). Particle filter has  also become pop-
ular because it is capable of processing observations signified by nonlinear state-space 
models. In such models, the noises can be non-Gaussian. Several fields have adopted 
this methodology including: finance [5–8], wireless communications [9–12], geophysical 
systems [13–17], navigation and tracking [18–20], control [21–25], and robotics [26–
31]. Generally, this methodology can approximate state density p(xk) using a range of 
random particles that have related nonnegative weights:

Abstract 

The restrictions that are related to using single distribution resampling for some 
specific computing devices’ memory gives developers several difficulties as a result of 
the increased effort and time needed for the development of a particle filter. Thus, one 
needs a new sequential resampling algorithm that is flexible enough to allow it to be 
used with various computing devices. Therefore, this paper formulated a new single 
distribution resampling called the adaptive memory size-based single distribution resa-
mpling (AMSSDR). This resampling method integrates traditional variation resampling 
and traditional resampling in one architecture. The algorithm changes the resampling 
algorithm using the memory in a computing device. This helps the developer formu-
late a particle filter without over considering the computing devices’ memory utilisa-
tion during the development of different particle filters. At the start of the operational 
process, it uses the AMSSDR selector to choose an appropriate resampling algorithm 
(for example, rounding copy resampling or systematic resampling), based on the cur-
rent computing devices’ physical memory. If one chooses systematic resampling, the 
resampling will sample every particle for every cycle. On the other hand, if it chooses 
the rounding copy resampling, the resampling will sample more than one of each 
cycle’s particle. This illustrates that the method (AMSSDR) being proposed is capable of 
switching resampling algorithms based on various physical memory requirements. The 
aim of the authors is to extend this research in the future by applying their proposed 
method in various emerging applications such as real-time locator systems or medical 
applications.
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where {xk ,i, wk,i}i= 1,2,...,Nk
 represent the particles’ states and weights, Nk represents the 

total amount of particles at time k, and δx(·) represents the delta-Dirac mass found in 
x. The systematic important sampling principle was used to choose the weights, for 
example:

where yk represents the measurement for time k, and q(·) represents the proposal impor-
tance density. It has been established that after a small amount of iterations in the process 
of particle propagation, the weight will be exclusively concentrated on a few particles. 
Alternatively, the weight of the majority will be negligible, resulting in sample degener-
acy [5]. This problem can be solved by resampling, which gets rid of particles with small 
weights and focuses on heavier particles. Resampling algorithms come in various kinds 
(as elaborated below). However, the simplest is known as the single distribution resam-
pling. This is thought of as the simpler of the two kinds of resampling algorithms: tradi-
tional variation resampling and traditional resampling. These algorithms have significant 
differences when it comes to their sampling strategy. For traditional resampling, each 
j cycle only has one sampling, while the traditional sampling performs more than one 
sampling for every j cycle. Thus, compared to traditional variant resampling, traditional 
resampling needs less memory for every k cycle. Because of the variations in computing 
systems (from handheld embedded systems to enormous supercomputers), there is a ris-
ing need for a new sequential resampling algorithm that needs less memory while oper-
ating within a low memory-based computer system while needing additional memory if 
it operates in a high memory-based computer system.

Therefore, this paper proposes the development of a new sequential resampling algo-
rithm that can be used for various memory platforms with the use of integrated sam-
pling of traditional variant resampling and traditional resampling. The organisation of 
this paper is as follows: “Background to the single distribution resampling particle filter” 
presents a review of the related papers. “Problem formulation” provides an outline of the 
problem’s formulation. “Objective” presents the important research hypotheses and the 
study’s major objectives. “Adaptive memory size-based single distribution resampling 
(AMSSDR)” studies the detailed design used for the adaptive memory size based resa-
mpling (AMSSDR). “Experimental result” presents the result of this proposed method. 
Lastly, “Conclusions and future implementations” discusses the future implications of 
this study.

Background to the single distribution resampling particle filter
This study was introduced in the previous section. For this current section, the back-
ground of the single distribution resampling particle filter is discussed in three sub 
sections: (1) particle filter; (2) resampling; and (3) single distribution resampling. “The 
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particle filter” discusses the general concept behind the particle filter. “Resampling” 
provides a discussion of the basic idea of resampling, which is one of particle filter’s 
components. “Single distribution resampling” provides a discussion of the basic idea 
of single distribution resampling based on the various categories of single distribution 
resampling.

The particle filter

This part will provide a discussion on the general concept behind a particle filter. It 
begins with a short review about particle filter as well as the notation’s introduction. The 
state-space model is described in the following manner:

Where t represents a time index and t = 1, 2, …; xt ∊ Rdx represents the state of the 
hidden model (for instance, not observed); yt ∊ Rdy represents the observation; ut ∊ Rdu 
and vt  ∊  Rdv represent the white noises that are not dependent on each other; and 
g :Rdx × Rdu → Rdx and h:Rdx × Rdv → Rdy represent known functions. Alternatively, 
these equations can be represented by the state’s probability distributions, p(xt |xt−1 ), 
and by the observation, p(yt |xt ), which one can gather from (1) and (2) and the ut and 
vt or probability distributions, vt, respectively. The focus is on nonlinear models when 
the noises observed in (1) and (2) need not necessarily be Gaussian. The particle filter 
aims to sequentially estimate the state’s distributions, including the predictive distri-
bution p(xt

∣

∣y1:t−1 ), the filtering distribution p(xt
∣

∣y1:t ), or the smoothing distribution, 
p(xt

∣

∣y1:T ), where t < T. The focus of this part is on the filtering distribution. The expres-
sion of this distribution can be based on the filtering distribution during time instant 
t − 1, p(xt−1|y1:t−1)—for instance, in a recursive form using;

where ∝ implies being ‘proportional to’. Except in rare cases, one cannot analytically 
implement this update. Thus, the authors have to approximate, while emphasising that 
with particle filter, the fundamental approximation is a representation of the continu-
ous distributions by discrete random measures that are made up of particles xt(m), which 
can be probable values of the unknown weights wt

(m) and state xt and were given to the 
particles. One can approximate the distribution p(xt−1

∣

∣y1:t−1 ) using a random measure 
having the form Xt−1 =

{

x
(m)
t−1,w

(m)
t−1

}M

m=1
, where M represents the amount of particles, 

like in the example below:

where δ(·) represents the Dirac delta impulse with all the weights adding up to one. 
Given this approximation, one can readily solve the integral in (3) and express it as 
follows:

(3)xt = g(xt−1,ut),

(4)yt = h(xt , vt),
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where ∝̇ signifies ‘approximate proportionality’. The final expression is a demonstration 
of how the filtering distribution’s approximation xt can be recursively obtained overtime. 
During time instant t − 1, the development of xt begins by the generation of particles 
xt(m), which represent p(xt |xt−1 ). This particle filter step is called particle propagation, 
since particle x(m)

t−1 moves forward through time and is considered the parent of xt(m). The 
importance sampling concept is used for weight computation and particle propagation 
[15]. Ideally, each of the propagated particles has to be taken from p(xt

∣

∣y1:t ) in order to 
obtain equal weights. However, this is not feasible for most cases, therefore necessitat-
ing the utilisation of an instrumental function π(xt) (as in [32]), with the p(xt|xt−1) func-
tion. The particle filter’s second basic step is calculating particle weights. To find a right 
inference based on the generated particles, the theory shows how the generated parti-
cles from π(xt), are different from p(xt|y1:t), and therefore need to be weighted [33–35]. 
When working in mild conditions, one can demonstrate how these weights can be com-
puted recursively based on:

It has often been recognised that the calculation of the expression that is found on the 
right side of the proportionality sign is succeeded by weight normalisation (for example, 
they should add up to one). Ideally, the particles’ weights have to be the same. However, 
it is also extremely undesirable if each particle’s weights are equal to zero, or if one (or 
some) particles make up most of the weight and the remaining particle weights become 
negligible. This is often referred to as degeneracy. It has been proven to occur when the 
particle filter is designed using only the two previously mentioned steps [36–39]. As the 
observation processing progresses, the weight variance increases until it gets to a point 
where the random measure resembles a very poor filtering distribution approximation. 
Thus, the need to have a third step, known as resampling, has arisen.

Resampling

This section provides a discussion of the basic idea of resampling, which is one of the 
particle filter’s components. Resampling aims to prevent the propagated particles’ degen-
eracy by altering the random measure Xt to X̃t and enhancing the state space examina-
tion at t + 1. While addressing degeneracy during resampling, it is also important for 
the random measure to approximate the original distribution as precisely as possible 
so that bias in the estimates can be prevented [40–43]. Although the X̃t approximation 
closely resembles that of Xt, the set of X̃t particles have important variations from that 
of Xt. Resampling makes sure that Xt particles that are heavier will have greater tendency 
to dominate X̃t compared to lighter particles. This leads to the creation of additional 
new particles in the region having heavier particles during the subsequent time step. 
This results into exploration improvements after resampling. Furthermore, the focus of 
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exploration moves to the portions of space that possess large probability masses. Due 
to resampling, the particles propagated from X̃t will possess less discriminate weights 
compared to the propagation using the Xt particles. This concept is intuitive and has sig-
nificant theoretical and practical implications. Formally, resampling refers to a process 
that takes samples from the original random measure Xt =

{

x
(m)
t ,w

(m)
t

}M

m=1
 so that it 

can generate a new random measure X̃t =
{

x̃
(n)
t , w̃

(n)
t

}N

n=1
. For the particles of Xt, the 

random measure is then replaced with X̃t. Some of the particles are replicated during 
this process. The replicated particles are often the heaviest ones. The particles are mainly 
used to propagate new particles, and are thus considered the parents of x(m)

t+1.
One should note that in order to approximate p(xt|y1:t), using Xt is more effective than 

X̃t. It was also observed that the amount of resampled particles Nis not equal to the 
amount of propagated particles all the time. Traditional resampling methods help main-
tain their value, and, generally, M = N. Lastly, for most resampling methods, the particle 
weights after resampling become equal. However, resampling may produce undesired 
effects, such as sample impoverishment. During resampling, it is likely for low weighted 
particles to be removed. Thus, the diversity of the particles is reduced [32, 44–48]. For 
instance, if a small amount of particles of Xt has the greatest weights, numerous resa-
mpled particles will end up being the same (there will be lesser distinct particles in X̃t). 
The next effect is on the particle filter’s speed of implementation. Often, particle filter is 
used to process signals when there is a need for the real-time processing of observations. 
An effective solution is to parallelise the particle filter. Later, it will be demonstrated how 
the process of parallelising the resampling can be a challenging one. Resampling’s unde-
sired effects have encouraged researchers to develop advanced resampling methods. 
These methods have a vast range of features, which include a variable amount of parti-
cles, the avoidance of rejecting low weighted particles, the removal of the restriction of 
the resamples needing equal weights, and the introduction of parallel frameworks that 
can be used during resampling. Several decisions are needed when conducting resam-
pling, including: specifying the sampling strategy; choosing the distribution for resam-
pling, determining the resampled size; and choosing the resampling frequency.

Single distribution resampling

This section will provide a discussion of the basic concept of single distribution resa-
mpling. Its focus will be on the various kinds of single distribution resampling that has 
been produced. Currently, single distribution resampling has two general categories: 
traditional variation resampling and traditional resampling. One can observe significant 
differences between these two methods. For instance, traditional resampling functions 
possess a single sample for every j cycle, while traditional variation resampling possesses 
a different function for each (demonstrated in Fig. 1). Some algorithms that are classi-
fied as traditional resampling include systematic, multinomial, residual, and stratified. 
On the other hand, traditional variation resampling has three algorithms: branch kill, 
residual systematic and rounding copy.

The categorisation for traditional resampling is considered a basic algorithm that 
makes use of numerous particle filters. The first is called multinomial resampling and is 
seen as a basic approach. The main notion behind multinomial resampling [49] includes 
the generation of independent random N numbers, ut(m) that are taken from a uniform 
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distribution on (0, 1]. They are then applied during the selection of particles from the 
xt(m). When conducting the nth particle selection, one chooses a particle xt(m) if it satisfies 
the conditions presented below:

Where

Thus, the likelihood of the chosen xt(m) and ut(n) existing in the interval that is bounded 
by the normalised weights’ total sum of is quite the same. The second algorithm is called 
stratified resampling [50]. This algorithm divides the entire particle population into 
smaller populations known as strata. Furthermore, it is responsible for pre-partitioning 
the (0, 1] interval to create N disjoint subintervals 

(

0,1
N

]

∪ · · · ∪

(

1− 1
n , 1

]

.
For each subinterval, there is an independent drawing of random numbers 

{

u
(n)
t

}N

n=1
 

in the following manner;

Thus, the bounding scheme, which depends on the sum of all the normalised weights, 
is utilised. The third algorithm is called systematic resampling [51].

Essentially, it also explores the idea of strata [50, 51], but in a different manner. Here, 
the ut(1) is chosen from a uniform distribution that is found on 

(

0,1
N

]

, while the rest of the 
u numbers are obtained deterministically as in the following;

(9)Q
(m−1)
t < u

(n)
t ≤ Q

(m)
t

(10)Q
(m)
t =

m
∑

k=1

w
(k)
t .

(11)u
(n)
t ∼ U

(

n− 1

N
,
n

N

]

, n = 1, 2, . . . ,N ,

u
(1)
t ∼ U

(

0, 1

N

]

,

Fig. 1 Simulation illustration of sampling; the traditional resampling constant, sampling one for each j  cycle; 
meanwhile, the traditional variation resampling varies sampling for each j  cycle
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The final algorithm categorised as traditional resampling is residual resampling [52]. 
Generally, it is contains two main steps. In the first step, there is a deterministic replica-
tion of the particles having a weight greater than 1/N while the second step involves the 
random sampling with the help of the remaining weights (called as residuals). Code 2 
represents the deterministic replication, whereas Nt

(m) describes the number of times the 
xt(m) particle is replicated in this manner. In the residual resampling scheme, the mth par-
ticle can be resampled Nt

(m) + Rt
(m) times, whereas, Nt

(m) and Rt
(m) refers to the replication 

number obtained from the earlier two steps, wherein, Nt
(m) = Nwt

(m). The overall number 
of the particles replicated in the step 1, can be estimated by Nt =

∑M
m=1N

(m)
t , while in 

step 2, the number is calculated as Rt = N − Nt. The residual of all the weights can be 
determined using the following equation:

For the second step, the particle is chosen in terms of their residual weights and 
using the aid of multinomial resampling (one can also use any other random sampling 
scheme), where the probability of choosing xt(m) is in direct proportion to particle resid-
ual weight.

The previously mentioned algorithms are the most popular, and commonly used 
conventional algorithms. They are also called traditional resampling. However, many 
researchers have modified them based on their needs. This led to the birth of the second 
classification of single distribution resampling called traditional variation resampling. 
For this portion, the computationally dearer portion about the multinomial resampling 
within the residual resampling algorithm was omitted, and the implementation of the 
resampling was done in one single loop. This algorithm is called residual systematic resa-
mpling. This process collects the fractional contributions that each particle found in a 
search systematic contributes until a sample can be generated (in a manner that is the 
same to the collection idea that was implemented in the systematic resampling method). 
No added procedure for residuals is needed. Hence, one can achieve one iteration loop 
having a complexity of O(N) order. If one can vary the particle size in example M at each 
time step, this can be achieved by having the particles present in parallel and in a sin-
gle loop. However, it is possible if keeping the particle size constant is not required at 
every time step and the size can be made to vary. There is also another easy way to man-
age particles that are in one loop and are parallel. Previous studies have described two 
approaches—branch kill resampling [53] and rounding copy resampling [54]. In branch 
kill resampling, one can represent the replicated particle xt(m) number as N (m)

t = |Nw
(m)
t |, 

which has a probability of 1 − p or corresponding to N (m)
t = |Nw

(m)
t | + 1 with a prob-

ability p, where in p = N
(m)
t = |Nw

(m)
t |. In rounding copy resampling, Nt

(m) is used to 
represent the closest Nwt

(m) integer—for instance, when the Nt
(m) is rounded. These two 

algorithms do not need any additional operations and they can also satisfy the unbi-
asedness condition, even if they do not produce varying sample sizes. It was observed 
that for the three algorithms called residual systematic, branch kill, and the rounding 

(12)u
(n)
t = u

(1)
t +

n− 1

N
, n = 2, 3, . . . ,N .

(13)ŵ
(m)
t = w

(m)
t −

N
(m)
t

N
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copy, the amount of replications for the mth particle’s higher and the lower limits are 
N

(m)
t = |Nw

(m)
t |, respectively. The next section will talk about the problem formulation 

that was introduced in this paper.

Problem formulation
The previous part talked about the basic idea behind single distribution resampling. The 
notion being discussed is focused on the categorisation and differences of single distribu-
tion resampling. This section will talk about the issues that this paper raises. Generally, 
for all computing systems (from embedded hand-held systems to large supercomputers), 
memory systems primarily dictate power consumption, application performance, and 
reliability. The rising data-intensive nature of advanced applications requires significantly 
increased levels of performance within the limits imposed by power and cost. However, 
this is beyond the ability of traditional memory technologies. For instance, every minute, 
more than 100 h of video are uploaded to YouTube [55] and 250,000 photos are uploaded 
on Facebook [56]. In a similar manner, it is anticipated that extreme scale systems in 
the future will have to handle several exabytes of data. However, utilising a hard disk to 
support restart or checkpoint in these systems can lower their performance by over half 
[57]. Generally, software that has a particle filter needs high quantities of particle opti-
misation processing—for instance, a process called resampling.

There are several kinds of resampling methods, and the basic resampling method is 
called the single distribution resampling. Furthermore, single distribution resampling 
is subdivided into two categories called: traditional variation resampling and traditional 
resampling. Using traditional resampling benefits computing devices that need a single 
sampling process for every j cycle (for instance, computing devices that only have low 
memory requirements). On the other hand, the utilisation of traditional variation res-
ampling is beneficial for computing devices that require more than a single sampling 
process for every j cycle (for instance, computing devices that have a high memory 
requirement). Although computing devices that have high memory requirement do not 

Sequential 
Important Sampling

Resampling Selector 

Systematic Resampling 

Rounding Copy 
Resampling

Input 

Output 

Output 

Fig. 2 Block diagram of AMSSDR (inside the dash line box) in single distribution resampling particle filter
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normally have problems with memory consumption, traditional variation resampling is 
often thought to be more appropriate for usage in this environment because it is faster 
than traditional resampling [58].

By limiting the utilisation of single distribution resampling for particular computing 
devices, memory-related issues have proven to be difficult for the developer because 
they resulted into the need for more time and effort during particle filter development. 
This meant that a new sequential resampling algorithm was needed. This new algorithm 
must demand less memory when it is used in a low memory-based computer system and 
it must require additional memory when it is used in a high memory-based computer 
system. Thus, to address this issue, a new solution is needed, as elaborated in the next 
section. This could benefit the developer, since it could simply be applied in the particle 
filter of any computing device without having to take into account the issues of memory 
requirement. The next section will talk about the objective that was presented in this 
current paper.

Objective
The previous section talked about the issue that was introduced in this paper, specifi-
cally the utilisation of resampling in various memory computing devices. In this current 
section, the solution to this issue will be outlined. Therefore, the aim of this paper is to 
outline a new and credible method to conduct single distribution resampling, which is 
called the adaptive memory size based resampling. This new method is based on the 
integration of traditional variation resampling and traditional resampling in a resam-
pling architecture. The algorithm is capable of switching the resampling algorithm based 
on computing device’s memory. Applying this algorithm can help the developer develop 
a particle filter more easily without having to immediately consider a computing device’s 
memory utilisation when different particle filter development processes are involved. 
The next section will talk about the design of the proposed algorithm that was presented 
in this paper.

Adaptive memory size‑based single distribution resampling (AMSSDR)
The previous section talked about this paper’s objective (the introduced solution based 
on the integration of traditional variation resampling and traditional resampling). This 
current section will talk about the proposed design of AMSSDR or the single distribu-
tion resampling. Figure 2 shows the AMSSDR’s block diagram (inside the dash box) for 
the single distribution resampling particle filter. It can be seen in this figure that there 
are four major components; sequential important sampling; systematic important resa-
mpling (discussed in more detail in “Systematic resampling”); AMSSDR selector (dis-
cussed in more detail in “Adaptive memory size-based single distribution resampling 
selector”); and rounding copy resampling (discussed in more detail in “Rounding copy 
resampling”). Sequential sampling is utilised to produce the computation of the parti-
cle and weight, followed by AMSSDR (demonstrated in the dash box). The AMSSDR 
selector is implemented to choose an appropriate resampling algorithm (both for tradi-
tional variation resampling and traditional resampling), based on the current comput-
ing devices’ physical memory. For this proposed algorithm, the systematic important 
resampling was chosen as traditional resampling while the rounding copy is used as the 



Page 10 of 22Bejuri et al. J Big Data  (2017) 4:33 

traditional variation resampling. They were chosen because they were seen as the best 
approach within their group or resampling categorisation. If one chooses systematic res-
ampling, the resampling will have to sample every particle for each j cycle. On the other 
hand, if one chooses the rounding copy resampling, the resampling will need to sample 
over one particle for every j cycle.

Adaptive memory size‑based single distribution resampling selector

The previous section talked about the general AMSSDR. Its solution is made up of three 
main components: (1) resampling selector; (2) systematic important resampling; and (3) 
rounding copy resampling. This current section talks about the AMSSDR selector that 
was taken note of in the previous section. The resampling selector’s main purpose is to 
alter the resampling operation between traditional variation resampling and traditional 
resampling, based on memory adaptation. This allows the operation of resampling in 
an optimum manner, based on the computing devices’ physical memory requirements. 
Code 1 illustrates the pseudocode that was used for the resampling selector. Primarily, 
the pseudocode determines the total quantity of physical memory that is presently used 
by a computing device. If it is determined to be beyond 1536 MB, the resampling selec-
tor will select the resampling rounding. On the other hand, the resampling selector will 
select the systematic resampling algorithm to serve as its resampling operation. The next 
section talks about the operation systematic resampling.

Code 1:Adaptive Memory Size-based Single Distribution Resampling selector 

Systematic resampling

The preceding section talked about the AMSSDR selector’s operation, which was utilised 
in the switching of the resampling operation between traditional variation resampling 
and traditional resampling, the basis of which is memory adaptation. Systematic resa-
mpling is the traditional resampling algorithm used, while rounding copy resampling is 
the traditional variation resampling algorithm implemented. This section will talk about 
the operation of systematic resampling (Code 2 can be used to refer to the pseudoc-
ode), which may be utilised the physical memory falls below 1.5 GB (1536 MB). First, 
it will make a sample u1 ∼ U

(

0,1
N

)

and give a definition to ui = u1 +
(i−1)
N  for i = 2,…N. 

Lastly, it utilises ui to choose a particle that has an index i based on the multinomial 
distribution.



Page 11 of 22Bejuri et al. J Big Data  (2017) 4:33 

Code 2: Systematic resampling 
] = Resample [{ ,N]
] = Cumula�veSum

WHILE

WHILE

END

END

Rounding copy resampling

The earlier section talked about sequential importance resampling, which utilises the 
algorithm if a computing device’s physical memory falls below 1.5 GB. This section talks 
about the rounding copy resampling (as demonstrated in Code 3), which is utilised if 
the physical memory exceeds 1.5 GB (1536 MB). It has been demonstrated that every 
particle is strictly resampled ni = [N × Wi] times. Here, the symbol is used to represent 
the nearest integer that is around the contents. This creates a pure deterministic sam-
pling algorithm without having to introduce randomness. For the rounding operation, 
E[N × Wi] = NWi are under the unbiasedness condition. When both sides are summed, 
one obtains the following equation:

Moreover, the scope of N* can be presented as follows:

Remark 1 

Proof For the rounding operation on every particle, the following is obtained: 

 where <≈  is used to signify something infinitely close to and smaller. Conversely, one 
can determine the absolute value inequality as: 

(14)E
(

N ∗
)

= N

max

(

N −
M

2
, 0

)

<≈ [N∗ ≈ N +
M

2
).

(15)|N ×Wi − [N ×Wi]|<≈ 1/2

(16)

∣

∣

∣

∣

∣

M
∑

i=1

(N ×Wi)−

M
∑

i=1

(N ×Wi)

∣

∣

∣

∣

∣

≤

M
∑

i=1

|N ×Wi − [N ×Wi]|
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Code 3: Rounding copy resampling 
] = Resample [{ ]

FOR

END
] = Replica�on [{

Combining (5) and (6), generates: 

The inequality (7) is then resolved based on the condition that N* ≥ 0, determining the 
final scope of N* as mentioned.�

Experimental result
The preceding section talked about the rounding copy resampling algorithm’s opera-
tion, which is applied if the physical memory exceeds 1.5 GB. This section talks about 
the proposed approach’s (AMSSDR) experiment result. At present, several simulations 
were performed to examine the proposed algorithm’s performance. The simulation of 
the experiment was performed using the parameters provided in Table  1, which were 
also utilised in other earlier resampling experiments [59–63].

In order to achieve a fair comparison, the resampling methods should undergo a com-
prehensive quantitative comparison based on the two varied physical memory require-
ments for the computing devices. This is done in order to determine if the proposed 
single distribution resampling (AMSSDR) will be able to function and last under a 
varying memory requirement. Two kinds of physical memory requirements will be uti-
lised—4  GB (typical physical memory requirement) and 1.5 GB (low requirement for 
physical memory) (experiment reference is given in [64]). For the methods of resam-
pling, the method that was utilised for simulation includes (when utilised as a point of 
comparison for the AMSSDR method): multinomial [62], systematic and stratified [60], 
RSR [61], residual [63], rounding-copy [54], and branch kill [59]. To obtain details for 
these algorithms, readers can refer to the pseudocodes provided in the tutorial (for these 
resampling methods, the MATLAB codes can be found at [65]).

The simulation makes use of various resampling methods. However, identical obser-
vation data is retained at every time step, and there will the same starting quantity of 

(17)

|N − N ∗| =:
∣

∣

∣

∣

∣

M
∑

i=1

(N ×Wi)−

M
∑

i=1

(N ×Wi)

∣

∣

∣

∣

∣

≤

M
∑

i=1

|N ×Wi − [N ×Wi]|<≈
M

2

Table 1 Parameter setting

Parameter setting Value

Initial state (x) 0.1

Process noise covariance (Q) 10

Measurement noise covariance (R) 1

Simulation length (tf) 100

Number of particle in particle filter (N) 100
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particles N for every filter. However, it will omit the selective resampling strategy that 
only implements resampling at certain steps. The filter estimate that is provided by 
all the particles’ weighted mean is obtained after each filter is resampled so that it can 
directly reflect the effect that resampling has. The results of these filters utilising various 
resampling methods are plotted in the following figures.

As seen in the figures, others are an indication of all the resampling methods that 
the legend did not particularly specify. Generally, the true state and filter estimates are 
demonstrated when N0 is given a value of 100 (demonstrated in Fig. 3) and the quantity 
of particles is determined using various resampling methods against the step (demon-
strated in Fig. 4). To serve as an initial experiment, the single distribution resampling will 
be simulated under 4 GB of physical memory (typical physical memory requirement). It 
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demonstrates that even at every single run, they have almost identical resampling results 
(Fig. 3). This is in agreement with the qualitative study that was provided in the tuto-
rial. Furthermore, it confirms that there is little difference among the unbiased algo-
rithms. Figure  4 shows the plot of the fluctuation of the quantity of particles (sample 
size) against time. The figure demonstrates that the amount of particles vary within the 
range of 75–110 in rounding-copy, branch-kill, and AMSSDR. Furthermore, AMSSDR 
and rounding copy fluctuations were the same. It stays constant for other resampling 
methods when no mechanism is formulated to alter the amount of particles. Afterwards, 
a more in-depth discussion about single distribution resampling for 100 trials will be 
given in the next section. For these 100 trials, the average of the root mean square error 
(RMSE) results can be seen in “Root mean square error (RMSE)”; the sample size is 
given in “Sample size”; processing time is given in “Processing time”; and the proposed 
method’s (AMSSDR) used memory is given in “Used memory”.

Root mean square error (RMSE)

The preceding section talked about the experimental result. Moreover, it gave an outline 
of the experiment procedure that was used in this paper. This section will talk about 
the RMSE that was gathered from the simulated resampling algorithms. The main find-
ings are summarised using these three points: First, resampling is vital in this filtering 
model, as shown by the sequence important sampling (SIS) filter’s evidently low accu-
racy. Thus, the SIS filter will not be discussed further. Second, in terms of RMSE, all 
unbiased resampling methods will provide equivalent estimation accuracy (Figs.  5,  6), 
especially when the number of particles exceeds 100. Lastly, the value of the RMSE of 
Algorithm 1 (known as AMSSDR) is similar to the value for the rounding copy resam-
pling when it is employed in a computing device that has a typical memory requirement. 
On the other hand, RMSE is similar to systematic resampling when it is employed in a 
computing device with low memory requirement.
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Sample size

The preceding section deliberated RMSE gained from a simulated resampling technique. 
This current section considers the sample size of the simulated resampling technique.

As shown in Fig.  7 as well as Fig.  8, the following deductions can be ascertained. It 
is demonstrated that the branch-kill, AMSSDR, and rounding-copy obtain the nearest 
number of units to N0 in descending order. Compared to that, the branch kill is the most 
stable. Generally, the rounding-copy obtained a somewhat smaller number of units than 
the reference, in spite of its mean being the same as the reference in theory [54]. It is 
inferred that this is because of the MATLAB software that uses limited-precision stor-
age to shorten the float number. Furthermore, the sample size of method 1 (known as 
AMSSDR) is same as the rounding copy resampling technique when implemented in a 
standard memory requirement computing device, whereas the sample size is same as 
that of the systematic resampling technique, when implemented in a computing device 
having low memory requirement.
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Processing time

The preceding section considered the sample size of the modelled resampling algorithm. 
This present section reviews the time of processing of the simulated resampling tech-
nique. For the testing period of 100 steps, the average processing time of various resam-
pling methods alongside the starting number of units N0 from 20 to 500 in 100 trials is 
provided in Fig. 9 as well as Fig. 10. It should be observed that the speed of computing 
depends on the hardware platform and the technology used for programming, for which 
all resampling techniques have been accelerated in the nearest equivalent approach pos-
sible. Given this requirement, the results provided in Fig. 6 signify the following basic 
conclusion. When containing the uniform starting number of units, different resampling 
techniques have significantly different speeds of computing, and do not, at all times, 
rank in the same range. When is too small, by increasing the value of N, the computing 
time necessary increases more notably than for others.

This is cautiously considered when selecting a resampling method. Amongst these, the 
algorithm 1 resampling (AMSSDR) is the most time-consuming, due to the requirement 
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to switch suitable resampling depending on memory requirement, which uses too much 
computing power. Thus, in general, the simulation outcomes demonstrate that: First of 
all, the resampling techniques rarely produce greatly different results if they fulfil the 
unbiasedness (even asymptotically) criteria, preserving a fixed number of particles and 
uniformly weight resampled particles. Another thing is, if these constraints are removed, 
special advantages may be obtained, for instance, adaptively adjusting the amount of 
particles according to the requirement of the system, and disregarding unbiasedness so 
as to preserve particle variety, alleviate impoverishment, or facilitate parallel process-
ing. Nevertheless, these new benefits come at the price of added computational require-
ments (for instance, due to the complicated algorithm design), and are usually model 
specific. Third, various resampling methods may have considerably different com-
putational speeds, based on the amount of particles and the model of the problem. In 
general, deterministic and single sampling techniques are computationally more rapid 
than random and complex sampling methods, and so are more appropriate for parallel 
implementation.

Used memory

The preceding section reviewed the sample size of the simulated resampling technique. 
This present section reviews the used memory of the AMSSDR technique. For the j cycle 
duration of hundred (100) steps (as per Fig. 11 as well as Fig. 12), the amount of parti-
cles against the j cycle changes, when implemented in a standard memory computing 
device, for instance, becoming constant when executed in a computing device having 
low memory. This is because of the operation of the suggested approach (AMSSDR) 
which is similar to the rounding copy resampling technique when implemented in a 
standard memory computing device, whereas the operation of the suggested approach 
will be similar to systematic resampling. This creates the pattern of all the performances 
of the suggested approach (AMSSDR). In the meantime, for the j cycle duration of 100 
steps (as per the Fig. 13 as well as Fig. 14), the quantity of particles against the j cycle 
changes between 0 and 32 bytes, when it is executed in a typical memory computing 
device, whereas it becomes constant at 8 bytes, when executed in a computing device 
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having low memory. This is because of the number of particles changing when imple-
mented into a standard memory computing device, whereas the number of particles is 
fixed and constant when executed into a low memory computing device.

Conclusions and future implementations
The preceding section considered the used memory of the AMSSDR technique. This 
present section reviews the conclusion of the suggested method (AMSSDR). Restricting 
the use of single distribution resampling in case of the memory of specific computing 
devices causes difficulties for the developer, because of the additional time and effort 
needed to develop a particle filter. Hence, a new sequential resampling technique is 
needed, one with an amount which requires memory size depending on the memory 
requirement of computing devices. In this research, a new single distribution resampling 
technique has been created, known as AMSSDR, which is based on the combination of 
traditional resampling technique and traditional variation resampling technique in a res-
ampling architecture. The technique will switch the resampling algorithm which is based 
on memory in a computer. The execution of this algorithm will facilitate developers to 
more effortlessly develop a particle filter, with no need to give a big degree of consid-
eration to memory usage in a computing device when including different particle filter 
development. Initially, in the operational process, the AMSSDR selector will be utilised 
to select an appropriate resampling algorithm (for instance, systematic resampling tech-
nique or rounding copy resampling technique), as per the physical memory available in 
present computing devices. Following that, the outcomes show that, if systematic resam-
pling is chosen, the resampling will take sample for each particle for each j cycle, while if 
the rounding copy resampling is selected, the resampling will take samples for more than 
one unit of each j cycle. Hence, this demonstrates that the suggested method (AMSSDR) 
is capable of switching and resampling algorithms in various physical memory require-
ments. The authors of this paper wish to extend this work gradually by implementing 
their suggested method in a number of different promising applications (for instance, in 
medical software [66] or real-time locator systems [67].
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