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Abstract

Based on the principles of importance sampling and resampling, sequential Monte Carlo

(SMC) encompasses a large set of powerful techniques dealing with complex stochastic dynamic

systems. Many of these systems possess strong memory, with which future information can help

sharpen the inference about the current state. By providing theoretical justification of several

existing algorithms and introducing several new ones, we study systematically how to construct

efficient SMC algorithms to take advantage of the “future” information without creating a

substantially high computational burden. The main idea is to allow for lookahead in the Monte

Carlo process so that future information can be utilized in weighting and generating Monte

Carlo samples, or resampling from samples of the current state.
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1 Introduction

Sequential Monte Carlo (SMC) methods have been widely used to deal with stochastic dynamic

systems often encountered in engineering, bioinformatics, finance, and many other fields (Gordon

et al., 1993; Kong et al., 1994; Avitzour, 1995; Hürzeler and Künsch, 1995; Liu and Chen, 1995;

Kitagawa, 1996; Kim et al., 1998; Liu and Chen, 1998; Pitt and Shephard, 1999; Chen et al., 2000;

Doucet et al., 2001; Liu, 2001; Fong et al., 2002; Godsill et al., 2004). They utilize the sequential

nature of stochastic dynamic systems to generate sequentially weighted Monte Carlo samples of the

unobservable state variables or other latent variables, and use these weighted samples for statistical

inference of the system or finding stochastic optimization solution. A general framework for SMC

is provided in Liu and Chen (1998) and Del Moral (2004). Many successful applications of SMC in

diverse areas of science and engineering can be found in Doucet et al. (2001) and Liu (2001).

Dynamic systems often possess strong memory so that future information is often critical for

sharpening the inference about the current state. For example, in target tracking systems (Godsill

and Vermaak, 2004; Ikoma et al., 2001), at each time point along the trajectory of a moving object,

one observes a function of the object’s location with noise. Such observations obtained in the future

contain substantial information about the current true location, velocity and acceleration of the

object. In protein structure prediction problems, often the objective is to find an optimal poly-

mer conformation that minimizes certain energy function. By “growing” the polymer sequentially

(Rosenbluth and Rosenbluth, 1955), the construction of polymer conformations can be turned into

a stochastic dynamic system with long memory. In such cases, lookahead techniques have been

proven very useful (Zhang and Liu, 2002).

To utilize the strong memory effect, Clapp and Godsill (1999) studied fixed-lag smoothing using

the information from future. Independently, Chen et al. (2000) proposed the delayed-sample method

that generates samples of the current state by integrating (marginalizing) out the future states, and

showed that this method is effective in solving the problem of adaptive detection and decoding in a

wireless communication problem. The computational complexity of this method, however, can be

substantial when the number of future states being marginalized out is large. Wang et al. (2002)

developed the delayed-pilot sampling method which generates random pilot streams to partially

explore the space of future states, as well as the hybrid-pilot method that combines delayed-sample

method and delayed-pilot sampling method. Guo et al. (2004) proposed a multilevel method to

reduce complexity for large state space system. These low-complexity techniques have been shown

to be effective in the flat-fading channel problem treated in Chen et al. (2000). Doucet et al.

(2006) proposed a block sampling strategy to utilize future information in generating better samples

of the current states. Zhang and Liu (2002) developed the pilot-exploration resampling method,
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which utilizes multiple random pilot paths for each particle of the current state to gather future

information, and showed that it is effective in finding the minimum-energy polymer conformation.

In this paper, we formalize the general principle of lookahead in SMC. Several existing methods

are then systematically summarized and studied under this principle, with more detailed theoretical

justifications. In addition, we propose an adaptive lookahead scheme. The rest of this paper is

organized as follows. In Section 2, we briefly overview the general framework of SMC. Section 3

introduces the general principle of lookahead. Section 4 discusses several lookahead methods in

detail. In Section 5, we discuss adaptive lookahead. Section 6 presents several applications. The

proof of all theorems are presented in the Appendix.

2 Sequential Monte Carlo (SMC)

Following Liu and Chen (1998), we define a stochastic dynamic system as a sequence of evolving

probability distributions π0(x0), π1(x1), · · · , πt(xt), · · · , where xt is called the state variable. We fo-

cus on the case when the state variable evolves with increasing dimension, i.e., xt = (x0, x1, · · · , xt) =

(xt−1, xt), where xt can be multi-dimensional. For example, in the state space model, the latent

state xt evolves through state dynamic xt ∼ gt(· | xt−1), and “information” yt ∼ ft(· | xt) is

observed at each time t. In this case,

πt(xt) = p(xt | yt) ∝ g0(x0)
t∏

s=1

gs(xs | xs−1)fs(ys | xs).

In this paper, we use the notation πt(xt | xt−1) ≡ p(xt | xt−1, yt) and πt−1(xt | xt−1) ≡ p(xt |
xt−1, yt−1). Usually, the goal is to make inference of certain function h(xt) given all past informa-

tion yt = (y1, · · · , yt).

With all the information up to time t, we see that the minimum mean squared error (MMSE)

estimator of h(xt), which minimizes Eπt

[
ĥ− h(xt)

]2
, is ĥ = Eπt

(
h(xt)

)
. When an analytic so-

lution of Eπt

(
h(xt)

)
is not available, importance sampling Monte Carlo scheme can be employed

(Marshall, 1956; Liu, 2001). Specifically, we can draw samples x
(j)
t , j = 1, · · · ,m, from a trial

distribution rt(xt), given that rt(xt)’s support covers πt(xt)’s support, then Eπt

(
h(xt)

)
can be

estimated by
1
m

m∑

j=1

w
(j)
t h(x(j)

t ) or
1

∑m
j=1 w

(j)
t

m∑

j=1

w
(j)
t h(x(j)

t ),

where w
(j)
t = wt(x

(j)
t ) = πt(x

(j)
t )/rt(x

(j)
t ) is referred to as a proper importance weight for x

(j)
t with

respect to πt(xt). Although the second estimator is biased, it is often less variable and easier to use

since in this case wt only needs to be evaluated up to a multiplicative constant. Throughout this

paper, we will use xt and x
(j)
t to denote the true state and the Monte Carlo sample, respectively.
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The basis of all SMC methods is the so-called “sequential importance sampling (SIS)” (Kong

et al., 1994; Liu, 2001), which sequentially builds up a high dimensional sample according to the

chain rule. More precisely, the sample x
(j)
t is built up sequentially according to a series of low

dimensional conditional distributions:

rt(xt) = q0(x0)q1(x1|x0)q2(x2|x1) · · · qt(xt|xt−1).

The importance weight for the sample can be updated sequentially as

wt(x
(j)
t ) = wt−1(x

(j)
t−1)ut(x

(j)
t ), where ut(x

(j)
t ) =

πt(x
(j)
t )

πt−1(x
(j)
t−1)qt(x

(j)
t |x(j)

t−1)

is called the incremental weight. The choice of the trial distribution rt (or qt) has a significant impact

on the accuracy and efficiency of the algorithm. As a general principle, a good trial distribution

should be close to the target distribution. An obvious choice of qt in the dynamic system setting

is qt(xt|xt−1) = πt−1(xt|xt−1) (Avitzour, 1995; Gordon et al., 1993; Kitagawa, 1996). Kong et al.

(1994) and Liu and Chen (1998) argued that qt(xt|xt−1) = πt(xt|xt−1) is a better trial distribution

because of its usage of the most “up-to-date” information to generate xt. More choices of qt(xt|xt−1)

can be found in Chen and Liu (2000); Kotecha and Djuric (2003); Lin et al. (2005); Liu and Chen

(1998); van der Merwe et al. (2002) and Pitt and Shephard (1999).

As t increases, the distribution of the importance weight wt often becomes increasingly skewed

(Kong et al., 1994), resulting in many unrepresentative samples of xt. A resampling scheme is

often used to alleviate this problem (Gordon et al., 1993; Liu and Chen, 1995; Kitagawa, 1996;

Liu and Chen, 1998; Pitt and Shephard, 1999; Chopin, 2004; Del Moral, 2004). The basic idea is

to imagine implementing multiple SIS procedures in parallel, i.e., to generate {x(1)
t , · · · , x

(m)
t } at

each step t, with corresponding weights {w(1)
t , · · · , w

(m)
t }, and resample from the set according to

a certain “priority score.” More precisely, suppose we have obtained {(x(j)
t , w

(j)
t ), j = 1, · · · , m}

that is properly weighted with respect to πt(xt), then we create a new set of weighted samples as

follows:

Resampling Scheme

• For each sample x
(j)
t , j = 1, · · · ,m, assign a priority score α

(j)
t > 0.

• For j = 1, · · · ,m,

– Randomly draw x
∗(j)
t from the set {x(j)

t , j = 1, · · · ,m} with probabilities proportional

to {α(j)
t , j = 1, · · · ,m};

– If x
∗(j)
t = x

(j0)
t , then set the new weight associated with x

∗(j)
t to be w

∗(j)
t = w

(j0)
t /α

(j0)
t .
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• Return the new set of weighted samples {(x∗(j)t , w
∗(j)
t ), j = 1, · · · ,m}.

This new set of weighted samples is also approximately properly weighted with respect to πt(xt).

Often, α
(j)
t are chosen to be proportional to w

(j)
t , so that the new samples are equally weighted.

Some improved resampling schemes can be found in Liu and Chen (1998); Carpenter et al. (1999);

Crisan and Lyons (2002); Liang et al. (2002) and Pitt (2002).

Resampling plays an important role in SMC. Chopin (2004) and Del Moral (2004) provides

asymptotic results on its effect, but its finite sample effects have not been fully understood. Per-

forming resampling at every step t is usually neither necessary nor efficient since it induces excessive

variations (Liu and Chen, 1995). Liu and Chen (1998) suggests to use either a deterministic sched-

ule, in which resampling only takes place at time T, 2T, 3T, · · · , or a dynamic schedule, in which

resampling is performed when the effective sample size (Kong et al., 1994) ESS = m/(1 + vt(w)) is

less than certain threshold, where vt(w) is the estimated coefficient of variation, i.e.,

vt(w) =
1
m

∑m
j=1

(
w

(j)
t −∑m

j=1 w
(j)
t /m

)2

(∑m
j=1 w

(j)
t /m

)2 . (1)

In problems that the state variable xt takes values in a finite set A = {a1, · · · , a|A|}, duplicated

samples produced in sampling or resampling steps result in repeated calculation and a waste of

resources. Using an idea related to the rejection control (Liu et al., 1998), Fearnhead and Clifford

(2003) developed a more efficient scheme that combines sampling and resampling in one step and

guarantees to generate distinctive samples.

Most of the SMC algorithms are designed for filtering and smoothing problems. It is a challeng-

ing problem when the system has unknown fixed parameters to be estimated and learned. Some

new development can be found in Gilks and Berzuini (2001); Chopin (2002); Fearnhead (2002);

Andrieu et al. (2010) and Carvalho et al. (2010). In this paper we assume all the parameters are

known.

3 The Principle of Lookahead

To formalize our argument that the “future” information is helpful for the inference about the

current state, we assume that the dynamic system πt offers more and more “information” of the state

variables as t increases. A simple way to quantify this concept is to assume that the information

available at time t takes the form yt = (y1, y2, · · · , yt), and increments to (yt, yt+1) at time t + 1.

The dynamic system πt(xt) simply takes the form of πt(xt) = p(xt | yt). Although this framework

is not all-inclusive, it is sufficiently broad and our theoretical results are all under this setting. The
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basic lookahead principle is to use “future” information for the inference of the current state. That

is, we believe that E(h(xt) | yt+∆) results in a better inference of the current state h(xt) than

E(h(xt) | yt) for any ∆ > 0. Thus, if the added computational burden is not considered, we would

like to use a Monte Carlo estimate of E(h(xt) | yt+∆) to make inference on h(xt).

Here we study the benefit of the lookahead strategy rigorously. Let ĥt+∆ be a consistent Monte

Carlo estimator of Eπt+∆

(
h(xt)

)
= E

(
h(xt) | yt+∆

)
and ĥt+∆ is independent of the true state xt

conditional on yt+∆. The mean squared difference between h(xt) and its estimator ĥt+∆, averaged

over the Monte Carlo samples, the true state, and the future observations can be decomposed as

Eπt

[
ĥt+∆ − h(xt)

]2
= Eπt

[
ĥt+∆ − E

(
h(xt) | yt+∆

)]2
+ Eπt

[
E

(
h(xt) | yt+∆

)− h(xt)
]2

4
= I(∆) + II(∆).

(2)

As the Monte Carlo sample size tends to infinity, I(∆), which is the variance of the consistent

estimator, tends to zero. For II(∆), we can show that,

Proposition 1. For any square integrable function h(·), II(∆) decreases as ∆ increases.

The proof is given in the appendix.

When the Monte Carlo sample size is sufficiently large, I(∆) becomes negligible relative to

II(∆). Hence, the above proposition implies that a consistent Monte Carlo estimator of E
(
h(xt) |

yt+∆

)
is always more accurate with larger ∆ when the Monte Carlo sample size is sufficiently large.

However, this gain of accuracy is not always desirable in practice because of the additional

computational costs. Most of the time additional computational resources are needed to obtain

consistent estimators of E
(
h(xt) | yt+∆

)
with larger ∆. Furthermore, I(∆) sometimes increases

sharply as ∆ increases when the Monte Carlo sample size is fixed. More detailed analysis is shown

in Section 5.

In order to achieve the goal of estimating the lookahead expectation Eπt+∆

(
h(xt)

)
effectively

using SMC, we may consider defining a new stochastic dynamic system with the probability distri-

bution at step t being the ∆-step lookahead (or delayed) distribution, i.e.,

π∗t (xt) = πt+∆(xt) =
∫

πt+∆(xt+∆)dxt+1 · · · dxt+∆. (3)

With the system defined by {π∗0(x0), π∗1(x1), · · · }, the same SMC recursion can be carried out.

In practice, however, it is often difficult to use this modified system directly since the analytic

evaluation of the integration/summation in (3) is impossible for most systems. Even when the

state variables take values from a finite set so that πt+∆(xt) can be calculated exactly through

summation, the number of terms in the summation grows exponentially with ∆. Nonetheless, the

lookahead system {π∗0(x0), π∗1(x1), · · · } suggests a potential direction that we can work towards.
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There are three possible ways to make use of the future information: (i) for choosing a good

trial distribution rt(xt) close to π∗t (xt); (ii) for calculating and keeping track of the importance

weight for xt using π∗t (xt) as the target distribution; and (iii) for setting up an effective resampling

priority score function αt(xt) using information provided by π∗t (xt). Detailed algorithms are given

in the next section.

We note here that lookahead (into the “future”) strategies are mathematically equivalent to delay

strategies (i.e., making inference after seeing more data) in Chen et al. (2000). In our setup, we

assume that the current time is t + ∆ and we observe y1, · · · , yt+∆. In fact, some of the algorithms

we covered were initially named ’delay algorithms’, under the notion that the system allows certain

delay in estimation. The reason that we choose to use the term ’lookahead’ instead of ’delay’ is

that, we focus on sampling of xt, using information after time t (i.e its own future). It is easier to

discuss and compare the same xt when looking further into the future (increasing ∆), rather than

a longer delay (with a fixed current time and discuss the estimation of xt−∆ with changing ∆).

The lookahead algorithms we discuss here are closely related to the smoothing problem in state

space models where one is interested in making inference with respect to p(xt | y1, · · · , yT ) for

t = 1, · · · , T . Many algorithms, some are closely related to our approach, can be found in (Godsill

et al., 2004; Douc et al., 2009; Briers et al., 2010; Carvalho et al., 2010; Fearnhead et al., 2010) and

others. However, in this paper we emphasize on dynamically processing of p(xt | y1, · · · , yt+∆) for

t = 1, · · · , n. It has the characteristic of both filtering (updating as new information comes in) and

smoothing (inference with future information).

Another possible benefit of the proposed lookahead strategy is that it tends to be more robust

to outliers, since the future information will correct the mis-information from the outliers. This is

particularly helpful during resampling stages. With an outlier, the ’good samples’ that are close to

the true state will be mistakenly given smaller weights. Resampling according to weights will then

more likely to remove these ’good sample’. Lookahead that takes into account of more information

will be very useful in such a situation.

A ’true’ lookahead would utilize the expected (but unobserved) future information in generating

samples of current xt. The popular and powerful auxiliary particle filter (Pitt and Shephard, 1999)

is based on such an insight, though it only looks ahead one step. Our experience shows that the

improvement is limited with more steps of such a ’true’ lookahead scheme, as the information is

limited to y1, · · · , yt. Here we focus on the utilization of the extra information provided by future

observations.
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4 Basic Lookahead Strategies

4.1 Lookahead weighting algorithm

Suppose at step t + ∆, we obtain a set of weighted samples {(x(j)
t+∆, w

(j)
t+∆), j = 1, · · · ,m} prop-

erly weighted with respect to πt+∆(xt+∆), using the standard concurrent SMC. With the same

weight w
(j)
t

4
= w

(j)
t+∆, the partial chain x

(j)
t is also properly weighted with respect to the marginal

distribution πt+∆(xt). Specifically, we have the following algorithmic steps.

Lookahead weighting algorithm:

• At time t = 0, for j = 1, · · · ,m

– Draw (x(j)
0 , · · · , x

(j)
∆ ) from distribution q0(x0)

∏∆
s=1 qs(xs | xs−1).

– Set

w
(j)
0 ∝ π∆(x(j)

∆ )

q0(x0)
∏∆

s=1 qs(x
(j)
s | x(j)

s−1)
.

• At times t = 1, 2, · · · , suppose we obtained {(x(j)
t+∆−1, w

(j)
t−1), j = 1, · · · ,m} properly

weighted with respect to πt+∆−1(xt+∆−1).

– (Optional) Resample with probability proportional to the priority scores α
(j)
t−1 = w

(j)
t−1

to obtain a new set of weighted samples.

– Propagation: For j = 1, · · · ,m :

∗ (Sampling.) Draw x
(j)
t+∆ from distribution qt+∆(xt+∆ | x

(j)
t+∆−1). Set x

(j)
t+∆ =

(x(j)
t+∆−1, x

(j)
t+∆).

∗ (Updating Weights.) Set

w
(j)
t ∝ w

(j)
t−1

πt+∆(x(j)
t+∆)

πt+∆−1(x
(j)
t+∆−1)qt+∆(x(j)

t+∆ | x(j)
t+∆−1)

.

– Inference: Eπt+∆(h(xt)) is estimated by
∑m

j=1 w
(j)
t h(x(j)

t )/
∑m

j=1 w
(j)
t .

Because the x
(j)
t are still generated based on the information up to step t, e.g., qt(xt | xt−1) =

πt(xt | xt−1), and the future information is utilized only through weight adjustments, Chen et al.

(2000) call this method the delayed-weight method. Clapp and Godsill (1999) called the procedure

sequential imputation with decision step, as inference and decisions are made separately at different

time steps.

The lookahead weighting algorithm is a simple scheme to provide a consistent estimator for

Eπt+∆

(
h(xt)

)
with almost no additional computational cost, except for some additional memory
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buffer. Hence, it is often useful in real-time filtering problems (Chen et al., 2000; Kantas et al.,

2009). However, when ∆ is large, it is well known that such a forward algorithm is highly inaccurate

and inefficient in approximating the smoothing distribution πt+∆(xt) (e.g. Godsill et al. (2004);

Douc et al. (2009); Briers et al. (2010); Fearnhead et al. (2010); Carvalho et al. (2010)).

4.2 Exact lookahead sampling

This method was proposed by Chen et al. (2000), termed as delayed-sample method. Its key is

to use the modified stochastic dynamic system defined by π∗t (xt) = πt+∆(xt) in (3) to construct

the importance sampling distribution. At step t, the conditional sampling distribution for x
(j)
t is

chosen to be

qt(xt|x(j)
t−1) = π∗t (xt|x(j)

t−1) = πt+∆(xt|x(j)
t−1), (4)

and the weight is updated accordingly as

wt(x
(j)
t ) = wt−1(x

(j)
t )

π∗t (x
(j)
t )

π∗t−1(x
(j)
t−1)π

∗
t (x

(j)
t |x(j)

t−1)
= wt−1(x

(j)
t )

πt+∆(x(j)
t−1)

πt+∆−1(x
(j)
t−1)

.

Figure 1 illustrates the method with xt ∈ A = {0, 1} and ∆ = 2, in which the trial distribution is

qt(xt = i |x(j)
t−1) = πt+2(xt = i |x(j)

t−1) =
∑
xt+1

∑
xt+2

πt+2(xt = i, xt+1, xt+2|x(j)
t−1)

∝
∑
xt+1

∑
xt+2

πt+2(x
(j)
t−1, xt = i, xt+1, xt+2)

for i = 0, 1.

 x
t−1

x
t
 

x
t+1

x
t+2

1 

0 1 0 1 

0 1 0 1 0 1 0 1 

q
t
(x

t
=0½  x

t−1
) 

0 

q
t
(x

t
=1½  x

t−1
) 

Figure 1: Illustration of the exact lookahead sampling method, in which the trail distribution qt(xt = i|x(j)
t−1),

i = 0, 1, is proportional to the summation of πt+2(xt = i, xt+1, xt+2|x(j)
t−1) for xt+1, xt+2 = 0, 1.

The exact lookahead sampling algorithm is shown as follows.
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Exact lookahead sampling algorithm:

• At time t = 0, for j = 1, · · · ,m

– Draw x
(j)
0 from distribution q0(x0).

– Set w
(j)
0 = π∆(x(j)

0 )/q0(x
(j)
0 ).

• At times t = 1, 2, · · · ,

– (Optional) Resample {x(j)
t−1, w

(j)
t−1, j = 1, · · · , m} with priority scores α

(j)
t−1 = w

(j)
t−1.

– Propagation: For j = 1, · · · ,m

∗ (Sampling.) Draw x
(j)
t from distribution

qt(xt | x(j)
t−1) = πt+∆(xt | x(j)

t−1) =
πt+∆(x(j)

t−1, xt)

πt+∆(x(j)
t−1)

.

∗ (Updating Weights.) Set

w
(j)
t = w

(j)
t−1

πt+∆(x(j)
t−1)

πt+∆−1(x
(j)
t−1)

.

– Inference: Eπt+∆(h(xt)) is estimated by
∑m

j=1 w
(j)
t h(x(j)

t )/
∑m

j=1 w
(j)
t .

Specifically, for models with finite state space, the sampling and weight update steps in the

exact lookahead sampling method involve evaluation of summations of the form

πt+∆(xt) =
∑

xt+1,··· ,xt+∆

πt+∆(xt, xt+1, · · · , xt+∆)

∝
∑

xt+1,··· ,xt+∆

g0(x0)
t+∆∏

s=1

gs(xs | xs−1)fs(ys | xs). (5)

For continuous state space, it is more difficult to adopt this approach, as one needs to generate

samples from

qt(xt | x(j)
t−1) = πt+∆(xt | x(j)

t−1) ∝
∫

πt+∆(x(j)
t−1, xt, xt+1, · · · , xt+∆)dxt+1 · · · dxt+∆ (6)

and evaluate it in order to update the weight. A slightly different version of the algorithm was

proposed in Clapp and Godsill (1999), termed as lagged time filtering density. Instead of calculating

the exact sampling density (5) or (6), and sample from it, they proposed to use forward filtering

backward sampling techniques of Carter and Kohn (1994) and Clapp and Godsill (1997).

As demonstrated in Chen et al. (2000) and Clapp and Godsill (1999), the exact lookahead

sampling method can achieve a significant improvement in performance compared to the concurrent
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SMC method. Chen et al. (2000) provided some heuristic justification of this method. Here we

provide a theoretical justification by showing that the exact lookahead sampling method generates

more effective samples (or “particles”) than any trial distribution that does not utilize the future

information.

To set up the analysis, we assume that {(x(j)
t−1, w

(j)
t−1), j = 1, · · · ,m} is properly weighted with

respect to πt−1(xt−1) (not the lookahead distribution). We compare two sampling schemes. In exact

lookahead sampling, x
(1,j)
t is generated from πt+∆(xt|x(j)

t−1), and x
(1,j)
t = (x(j)

t−1, x
(1,j)
t ) is properly

weighted with respect to πt+∆(xt) by weight

w
(1,j)
t = w

(j)
t−1

πt+∆(x(j)
t−1)

πt−1(x
(j)
t−1)

. (7)

Let sample x
(2,j)
t be generated from a trial distribution qt(xt|x(j)

t−1) that uses no future information,

i.e., qt(xt|x(j)
t−1) does not depend on yt+1, · · · , yt+∆, then x

(2,j)
t = (x(j)

t−1, x
(2,j)
t ) is properly weighted

with respect to πt+∆(xt) using the weight

w
(2,j)
t = w

(j)
t−1

πt+∆(x(2,j)
t )

πt−1(x
(j)
t−1)qt(x

(2,j)
t | x(j)

t−1)
. (8)

Let the subscript πt+∆ indicate that the corresponding operations are to be taken conditional

on yt+∆, and let

Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)
=

∫
h(x(j)

t−1, xt)πt+∆(xt | x(j)
t−1) dxt.

We have the following proposition:

Proposition 2.

varπt+∆

(
w

(2,j)
t

)
≥ varπt+∆

(
w

(1,j)
t

)
, (9)

and

varπt+∆

[
w

(2,j)
t h(x(2,j)

t )
]
≥ varπt+∆

[
w

(1,j)
t Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)]
, (10)

varπt+∆

[
w

(2,j)
t Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)]
≥ varπt+∆

[
w

(1,j)
t Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)]
. (11)

The proof is presented in the Appendix.

Note that the right-hand sides of (10) and (11) use Rao-Blackwellization estimator

w
(1,j)
t Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)
.

For finite state space, it is often achievable since

Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)
=

|A|∑

i=1

h(x(j)
t−1, xt = ai)πt+∆(xt = ai | x(j)

t−1)

11



where πt+∆(xt = ai | x(j)
t−1) have been computed during the propagation step. Also note that (10)

does not provide a direct comparison between
∑m

j=1 w
(1,j)
t h(x(j)

t ) and
∑m

j=1 w
(2,j)
t h(x(j)

t ). This is

because the sampling efficiency is also related to function h(·). If h(xt) does not depend on xt, then

(10) indeed shows that the full lookahead sampler is always better. Otherwise, this proposition

suggests to use

1
∑m

j=1 w
(j)
t

m∑

j=1

w
(j)
t Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)

for estimation in the exact lookahead sampler.

As a direct consequence of Proposition 2, the following proposition shows that exact lookahead

sampling is more efficient than lookahead weighting. Suppose in lookahead weighting, sample

x
(3,j)
t = x

(2,j)
t = (x(j)

t−1, x
(2,j)
t ) is available at time t and x

(3,j)
t+1:t+∆ is generated from

t+∆∏

s=t+1

qs(xs | x(3,j)
t , xt+1:s−1)

in the next ∆ steps. Let x
(3,j)
t+∆ = (x(3,j)

t ,x
(3,j)
t+1:t+∆), then the weight corresponding to the lookahead

weighting algorithm is

w
(3,j)
t = w

(j)
t−1

πt+∆(x(3,j)
t+∆)

πt−1(x
(j)
t−1)

∏t+∆
s=t qs(x

(3,j)
s | x(3,j)

s−1 )
.

We have the following proposition:

Proposition 3.

varπt+∆

(
w

(3,j)
t+∆

)
≥ varπt+∆

(
w

(2,j)
t

)
,

and for any square integrable function h(xt),

varπt+∆

[
w

(3,j)
t+∆h(x(j)

t−1, x
(2,j)
t )

]
≥ varπt+∆

[
w

(2,j)
t h(x(j)

t−1, x
(2,j)
t )

]
.

The proof is presented in the Appendix.

In the exact lookahead sampling, the incremental weight Ut = πt+∆(xt−1)/πt+∆−1(xt−1) usually

will be close to 1 when ∆ is large, so the variance of weights typically decreases as ∆ increases

(Doucet et al., 2006). The benefit of exact lookahead sampling, however, comes at the cost of

increased analytical and computational complexities due to the need of marginalizing out the future

states xt+1, · · · , xt+∆ in (3). Often, the computational cost grows exponentially as the lookahead

step ∆ increases.
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4.3 Block sampling

Doucet et al. (2006) proposes a block sampling strategy, which can be viewed as a variation of

lookahead. A slightly modified version (under our notation) is given as follows.

Block sampling algorithm:

• At time t = 0, for j = 1, · · · ,m

– Draw (x(j)
0 , · · · , x

(j)
∆ ) from distribution q0(x0)

∏∆
s=1 qs(xs | xs−1)

– Set

w
(j)
0 ∝ π∆(x(j)

∆ )

q0(x0)
∏∆

s=1 qs(x
(j)
s | x(j)

s−1)
.

• At times t = 1, 2, · · · ,

– (Optional) Resample {x(j)
t+∆−1, w

(j)
t−1, j = 1, · · · ,m} with priority scores α

(j)
t−1 = w

(j)
t−1.

– Propagation: For j = 1, · · · ,m

∗ (Sampling.) Draw x
∗(j)
t:t+∆ from qt(x

∗(j)
t:t+∆ | x(j)

t+∆−1).

∗ (Updating Weights.) Set

w
(j)
t = w

(j)
t−1

πt+∆(x(j)
t−1, x

∗(j)
t:t+∆)λt(x

(j)
t:t+∆−1 | x(j)

t−1,x
∗(j)
t:t+∆)

πt+∆−1(x
(j)
t−1,x

(j)
t:t+∆−1)qt(x

∗(j)
t:t+∆ | x(j)

t−1, x
(j)
t:t+∆−1)

.

∗ Let x
(j)
t+∆ = (x(j)

t−1,x
∗(j)
t:t+∆).

– Inference: Eπt+∆(h(xt)) is estimated by
∑m

j=1 w
(j)
t h(x(j)

t )/
∑m

j=1 w
(j)
t .

Here λt(x
(j)
t:t+∆−1 | x(j)

t−1,x
∗(j)
t:t+∆) is called the artificial conditional distribution.

Doucet et al. (2006) suggested that one should choose qt(x
∗(j)
t:t+∆ | x(j)

t+∆−1) = qt(x
∗(j)
t:t+∆ | x(j)

t−1),

that is, the trial distribution doesn’t depend on x
(j)
t:t+∆−1. Then the optimal choice of qt and λt are

qt(x
∗(j)
t:t+∆ | x(j)

t−1,x
(j)
t:t+∆−1) = πt+∆(x∗(j)t:t+∆ | x(j)

t−1),

and

λt(x
(j)
t:t+∆−1 | x(j)

t−1, x
∗(j)
t:t+∆) = πt+∆−1(x

(j)
t:t+∆−1 | x(j)

t−1).

Note that in this case, the marginal trial distribution of x
∗(j)
t is πt+∆(x∗(j)t | x(j)

t−1), and the weight

is updated by

w
(j)
t = w

(j)
t−1

πt+∆(x(j)
t−1)

πt+∆−1(x
(j)
t−1)

.

In this case, the blocking sampling method becomes the exact lookahead sampling.
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In practice, we can use

qt(x
∗(j)
t:t+∆ | x(j)

t−1,x
(j)
t:t+∆−1) = π̂t+∆(x∗(j)t:t+∆ | x(j)

t−1),

and

λt(x
(j)
t:t+∆−1 | x(j)

t−1, x
∗(j)
t:t+∆) = π̂t+∆−1(x

(j)
t:t+∆,t−1 | x(j)

t−1),

which are low complexity approximations of the optimal qt and λt.

4.4 Pilot lookahead sampling

Because of the desire to explore the space of future states with controllable computational cost,

Wang et al. (2002) and Zhang and Liu (2002) considered the pilot exploration method, in which the

space of future states {xt+1, · · · , xt+∆} is partially explored by pilot “paths”. The method could

be viewed as a low-accuracy Monte Carlo approximation to the exact lookahead sampling method.

The method was introduced for the case of finite state space of xt ∈ A = {a1, · · · , a|A|} in both

Wang et al. (2002) and Zhang and Liu (2002). Specifically, suppose at time t− 1 we have a set of

samples {(x(j)
t−1, w

(j)
t−1), j = 1, · · · ,m} properly weighted with respect to πt−1(xt−1). For each x

(j)
t−1

and each possible value ai of xt, a pilot path x
(j,i)
t:t+∆ = (x(j,i)

t = ai, x
(j,i)
t+1 , · · · , x

(j,i)
t+∆) is constructed

sequentially from distribution

t+∆∏

s=t+1

qpilot
s (xs | x(j)

t−1, xt = ai,xt+1:s−1). (12)

Then, x
(j)
t can be drawn from a trial distribution that utilizes the “future information” gathered

by the pilot samples x
(j,i)
t+1:t+∆, i = 1, · · · , |A|.

Figure 2 illustrates the pilot lookahead sampling operation, with A = {0, 1} and ∆ = 2, in

which the pilot path for (x(j)
t−1, xt = 0) is (xt+1 = 1, xt+2 = 1) and the pilot path for (x(j)

t−1, xt = 1)

is (xt+1 = 0, xt+2 = 1), both are shown as a dark path.

The single pilot lookahead algorithm is as follows.
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Figure 2: Illustration of the single-pilot lookahead sampling method, in which the pilot path for (x(j)
t−1, xt =

0) is (xt+1 = 1, xt+2 = 1) and the pilot path for (x(j)
t−1, xt = 1) is (xt+1 = 0, xt+2 = 1).

Single pilot lookahead algorithm:

• At time t = 0, for j = 1, · · · ,m

– Draw x
(j)
0 from distribution q0(x0).

– Set w
(j)
0 = π0(x

(j)
0 )/q0(x

(j)
0 ).

– Generate pilot path x
(j,∗)
1:∆ from

∏∆
s=1 qpilot

s (xs | x(j)
0 , x1:s−1) and calculate

w
aux(j)
0 = w

(j)
0

π∆(x(j)
0 , x

(j,∗)
1:∆ )

π0(x
(j)
0 )

∏∆
s=1 qpilot

s (xs | x(j)
0 , x1:s−1)

.

• At times t = 1, 2, · · · ,,

– (Optional) Resample {x(j)
t−1, w

(j)
t−1, j = 1, · · · , m} with priority scores α

(j)
t−1 = w

aux(j)
t−1 .

– Propagation: For j = 1, · · · ,m

∗ (Generating Pilots.) For xt = ai, i = 1, · · · , |A|, draw x
(j,i)
t+1:t+∆ from (12) and

calculate

U
(j,i)
t =

πt+∆(x(j)
t−1, xt = ai, x

(j,i)
t+1:t+∆)

πt−1(x
(j)
t−1)

∏t+∆
s=t+1 qpilot

s (x(j,i)
s | x(j)

t−1, xt = ai,x
(j,i)
t+1:s−1)

. (13)

∗ (Sampling.) Draw x
(j)
t from distribution qt(xt = ai | x(j)

t−1) = U
(j,i)
t∑|A|

k=1 U
(j,k)
t

.

∗ (Updating Weights.) We will keep two sets of weights. Let

w
(j)
t = w

(j)
t−1

πt(x
(j)
t )

πt−1(x
(j)
t−1)qt(x

(j)
t | x(j)

t−1)
and w

aux(j)
t = w

(j)
t−1

|A|∑

k=1

U
(j,k)
t .

– Inference: Eπt+∆(h(xt)) is estimated by

∑m
j=1 w

(j)
t−1

∑|A|
i=1 U

(j,i)
t h

(
x

(j)
t−1, xt = ai

)

∑m
j=1 w

aux(j)
t

. (14)
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In the algorithm we maintain two sets of weights. The weight w
(j)
t is being updated at each

step, and the sample (xt, w
(j)
t ) is properly weighted with respect to πt(xt), but not πt+∆(xt). A

second set of weights, the auxiliary weight w
aux(j)
t , is obtained for resampling and making inference

of Eπt+∆

(
h(xt)

)
. We have the following proposition:

Proposition 4. The weighted sample (x(j)
t , w

aux(j)
t ) obtained by the single pilot lookahead algo-

rithm is properly weighted with respect to πt+∆(xt), and estimator (14) is a consistent estimator of

Eπt+∆

(
h(xt)

)
.

The proof is given in the Appendix.

The pilot scheme can be quite flexible. For example, multiple pilots can be used for each

(x(j)
t−1, xt = ai). This would be particularly useful when the size of the state space A is large.

Specifically, for each (x(j)
t−1, xt = ai), multiple pilots x

(j,i,k)
t+1:t+∆, k = 1, · · · ,K, are generated from

distribution (12) independently and the corresponding cumulative incremental weights U
(j,i,k)
t are

calculated by

U
(j,i,k)
t =

πt+∆(x(j)
t−1, xt = ai, x

(j,i,k)
t+1:t+∆)

πt−1(x
(j)
t−1)

∏t+∆
s=t+1 qpilot

s (x(j,i,k)
s | x(j)

t−1, xt = ai, x
(j,i,k)
t+1:s−1)

.

Sample x
(j)
t is then generated from distribution

qt(xt = ai | x(j)
t−1) =

∑K
k=1 U

(j,i,k)
t∑|A|

i=1

∑K
k=1 U

(j,i,k)
t

. (15)

The corresponding weight and auxiliary weight are updated by

w
(j)
t = w

(j)
t−1

πt(x
(j)
t )

πt−1(x
(j)
t−1)qt(x

(j)
t | x(j)

t−1)
and w

aux(j)
t = w

(j)
t−1

A∑

i=1

1
K

K∑

k=1

U
(j,i,k)
t ,

respectively.

Similar to the conclusion of Proposition 4, samples (x(j)
t , w

aux(j)
t ) is properly weighted with

respect to πt+∆(xt). In addition, we have the following proposition:

Proposition 5. Suppose sample x
(1,j)
t is generated by the exact lookahead sampling algorithm with

weight w
(1,j)
t as in (7). Denote (x(4,j)

t , w
(4,j)
t , w

aux(j)
t ) as the weighted samples from k-pilot lookahead

algorithm, U
(j,i,k)
t are the cumulative incremental weights, then

0 ≤ varπt+∆

(
w

aux(j)
t

)
− varπt+∆

(
w

(1,j)
t

)
∼ O(1/K)

and

0 ≤ varπt+∆

[
w

(j)
t−1

A∑

i=1

1
K

K∑

k=1

U
(j,i,k)
t h

(
x

(j)
t−1, xt = ai

)]

− varπt+∆

[
w

(1,j)
t Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)]
∼ O(1/K).
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The proof is in Appendix.

This proposition shows that the variance of the weights under the multiple-pilot lookahead

sampling method is larger than that under the exact lookahead sampling method, but converges to

the latter at the rate of 1/K as the number of pilots K increases. As a consequence, the samples

generated by the multiple-pilot lookahead sampling method are more effective than the samples

generated by the lookahead weighting method when pilot number K is reasonably large.

When the state space for xt is continuous, it is infeasible to explore all the possible values of

xt. Finding a more efficient method to carry out lookahead in continuous state space cases is a

challenging problem currently under investigation.

One possible approach is the following simple algorithm. For each j, draw multiple samples

of x
(j,i)
t , i = 1, · · · , A, from qt(xt|x(j)

t−1) and treat this set as the space of x
(j)
t (the possible values

x
(j)
t can take). Then we run single or multiple pilots from each of these values, and sample x

(j)
t

according to the lookahead cumulative incremental weights, just as in the discrete state-space case.

In the special case of A = 1, the sampling distribution of this lookahead method will be the same

as that in the concurrent SMC, but one would use the lookahead weight as the resampling priority

score at time t.

An improvement of this approach for the continuous state-space case can be achieved if the

dimension of xt is relatively low and when the state space model is Markovian. That is,

gt(xt | xt−1) = gt(xt | xt−1) and ft(yt | xt) = ft(yt | xt).

In this case, the cumulative incremental weight U
(j,i)
t of the pilot (x(j,i)

t ,x
(j,i)
t+1:t+∆) can be written

as

U
(j,i)
t =

πt+∆(x(j)
t−1, x

(j,i)
t , x

(j,i)
t+1:t+∆)

πt−1(x
(j)
t−1)qt(x

(j,i)
t |x(j)

t−1)
∏t+∆

s=t+1 qpilot
s (x(j,i)

s | x(j,i)
s−1)

∝ gt(x
(j,i)
t |x(j)

t−1)ft(yt | x(j,i)
t )

∏t+∆
s=t+1 gs(x

(j,i)
s | x(j,i)

s−1)fs(ys | x(j,i)
s )

qt(x
(j,i)
t |x(j)

t−1)
∏t+∆

s=t+1 qpilot
s (x(j,i)

s | x(j,i)
s−1)

4
= V

(j,i)
t V

(j,i)
t+1:t+∆,

where

V
(j,i)
t =

gt(x
(j,i)
t |x(j)

t−1)ft(yt | x(j,i)
t )

qt(x
(j,i)
t |x(j)

t−1)
and V

(j,i)
t+1:t+∆ =

∏t+∆
s=t+1 gs(x

(j,i)
s | x(j,i)

s−1)fs(ys | x(j,i)
s )

∏t+∆
s=t+1 qpilot

s (x(j,i)
s | x(j,i)

s−1)
.

Standard procedure would choose x
(j)
t from the generated x

(j,i)
t , i = 1, · · · , A, with probability
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U
(j,i)
t /

∑
l U

(j,l)
t . However, note that

V
(j,i)
t+1:t+∆

4
= E(V (j,i)

t+1:t+∆ | x(j)
t−1, x

(j,i)
t , yt+∆) (16)

=
∫

g(xt+1 | x(j,i)
t )f(yt+1 | xt+1)

t+∆∏

s=t+2

gs(xs | xs−1)f(ys | xs) dxt+1 · · · dxt+∆,

only depends on x
(j,i)
t , and

V
(j,i)
t V

(j,i)
t+1:t+∆ ∝ πt+∆(x(j)

t−1, x
(j,i)
t )

πt−1(x
(j)
t−1)qt(x

(j,i)
t | x(j)

t−1)
,

is the lookahead cumulative incremental weight in (8), which is shown to be more efficient than

U
(j,i)
t = V

(j,i)
t V

(j,i)
t+1:t+∆ as in Proposition 3.

With a Markovian model, V
(j,i)
t+1:t+∆ is function of x

(j,i)
t , and V

(j,i)
t+1:t+∆ can be considered as a

noisy version of V t+1:t+∆(x(j,i)
t ). That is, one can write

V
(j,i)
t+1:t+∆ = V t+1:t+∆(x(j,i)

t ) + e
(j,i)
t , where E(e(j,i)

t | x(j,i)
t ) = 0.

Hence if the dimension of xt is small, one can smooth V
(j,i)
t+1:t+∆ in the space of xt to obtain an

estimate of V
(j,i)
t+1:t+∆, using all the pilot samples. The estimate is then used for sampling and

resampling. For example, let V̂
(j,i)
t+1:t+∆ be a nonparametric estimate of V

(j,i)
t+1:t+∆ and let Û

(j,i)
t =

V
(j,i)
t V̂

(j,i)
t+1:t+∆. One can choose x

(j)
t from x

(j,i)
t , i = 1, · · · , A, with probability Û

(j,i)
t /

∑
l Û

(j,l)
t

and weight it accordingly. Experience shows that a very accurate smoothing method (e.g., kernel

smoothing) is not necessary, as to control computational cost. Often a piecewise constant smoother

is sufficient.

4.5 Deterministic piloting

It is also possible to use deterministic pilots in the pilot lookahead sampling method. For example,

at time t, the pilot starting with (x(j)
t−1, xt = ai) for each ai ∈ A, can be a future path x

(j,i)
t+1:t+∆

that maximizes πt+∆(xt+1:t+∆ | x(j)
t−1, xt = ai). Since such a global maximum is usually difficult to

obtain, an easily obtainable local maximum is to sequentially, for s = t + 1, · · · , t + ∆, obtain

x(j,i)
s = arg max

xs

πs(xs | x(j)
t−1, xt = ai, x

(j,i)
t+1:s−1). (17)

Once the pilots are drawn, the remaining steps are similar to those in the random pilot algorithm,

except that there is usually no easy way to obtain a proper weight with respect to πt+∆(xt), though

a proper weight with respect to πt(xt) is easily available. In order to make proper inference with

respect to πt+∆(xt), one can generate an additional random pilot path to xt+∆. Specifically, we

have the following scheme.
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Deterministic pilot lookahead algorithm:

• At time t = 0, for j = 1, · · · ,m

– Draw x
(j)
0 from distribution q0(x0).

– Set w
(j)
0 = π0(x

(j)
0 )/q0(x

(j)
0 ).

– Generate deterministic pilots x
(j,∗)
1:∆ sequentially by letting

x(j,∗)
s = argmax

xs

πs(xs | x(j)
∆ ,x

(j,∗)
1:s−1)

for s = 1, · · · , ∆. Let U
(j,∗)
0 = π∆(x(j)

0 , x
(j,∗)
1:∆ )/π0(x

(j)
0 ).

– Set w
res(j)
0 = w

(j)
0 U

(j,∗)
0 .

• At times t = 1, 2, · · · ,,

– (Optional) Resample {(x(j)
t−1, w

(j)
t−1), j = 1, · · · , m} with priority scores α

(j)
t−1 =

w
res(j)
t−1 .

– Propagation: For j = 1, · · · ,m

∗ (Generating Deterministic Pilots.) For xt = ai, i = 1, · · · , |A|, obtain x
(j,i)
t+1:t+∆

sequentially using (17) for s = t + 1, · · · , t + ∆.

∗ (Sampling.) Draw x
(j)
t from distribution qt(xt = ai | x(j)

t−1) = U
(j,i)
t /

∑|A|
i=1 U

(j,i)
t ,

where

U
(j,i)
t =

πt+∆(x(j)
t−1, xt = ai, x

(j,i)
t+1:t+∆)

πt−1(x
(j)
t−1)

.

∗ (Updating Weights.) We keep three sets of weights for concurrent weighting,

resampling, and estimation.

(1) Concurrent weight: w
(j)
t = w

(j)
t−1

πt(x(j)
t )

πt−1(x(j)
t−1)qt(x

(j)
t |x(j)

t−1)
;

(2) Resampling weight w
res(j)
t = w

(j)
t−1

∑|A|
i=1 U

(j,i)
t ;

(3) Auxiliary weight: draw x
aux(j)
t+1:t+∆ from

∏t+∆
s=t+1 qaux

s (xs | x(j)
t−1, x

(j)
t , xt+1:s−1)

and calculate

w
aux(j)
t = w

(j)
t

πt+∆(x(j)
t−1, x

(j)
t ,x

aux(j)
t+1:t+∆)

πt(x
(j)
t )

∏t+∆
s=t+1 qaux

s (xaux(j)
s | x(j)

t−1, x
(j)
t ,x

aux(j)
t+1:s−1)

.

– Inference: Eπt+∆ (h(xt)) is estimated by
∑m

j=1 w
aux(j)
t h(x(j)

t )/
∑m

j=1 w
aux(j)
t .

The above algorithm requires the generation of additional random pilot x
aux(j)
t+1:t+∆ to obtain w

aux(j)
t ,
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which is properly weighted with respect to πt+∆(xt). Alternatively, one can combine the deter-

ministic pilot scheme and the lookahead weighting method in Section 4.1 to obtain a consistent

estimate of Eπt+∆(h(xt)).

The resampling weight w
res(j)
t is served as the priority score for resampling when needed. It

retains the information from the deterministic pilot and avoids the additional random variation

from the additional sample path required by the auxiliary weight w
aux(j)
t .

The deterministic pilots are useful because they gather future information to guide the gener-

ation of the current state xt. In some cases, the deterministic pilots can provide a better approx-

imation of the distribution πt+∆(xt | x
(j)
t−1) than the random pilots, especially when we can only

afford to use a single pilot for each (x(j)
t−1, xt = ai). In addition, with some proper approximation,

the deterministic pilot scheme may have lower computational complexity. The example in Section

6.1 uses a low complexity method to generate the deterministic pilots.

4.6 Multilevel Pilot Lookahead Sampling

In case of finite state space, when the size of the state space A is large, the pilot lookahead sampling

method can still be too expensive. To reduce the computational cost, we introduce a multilevel

method, which constructs a hierarchical structure in the state space and utilizes lookahead idea

within the structure. Guo et al. (2004) developed a similar algorithm.

Specifically, at time t, we first divide the current state space A of xt into disjoint subspaces on

L + 1 different levels, that is

A = Cl,1 ∪ Cl,2 ∪ · · · ∪ Cl,Dl
l = 0, · · · , L.

In the division, each level-l subspace Cl,i consists of several level-(l+1) sets Cl+1,j . On the top level

(level-0), C0,1 = A. On the lowest level (level-L), each CL,i only contains a single state value ai ∈ A.

For example, in a 16-QAM wireless communication problem (Guo et al., 2004), the transmitted

signal xt to be decoded takes values in space A = {ai = (ai,1, ai,2) : ai,1, ai,2 = ±1,±2}. Figure 3

depicts a multilevel scheme where the state space is divided into three levels (L = 2)

A = C0,1 = C1,1 ∪ C1,2 ∪ C1,3 ∪ C1,4 = ∪16
i=1C2,i = ∪16

i=1{ai}.

At time t, instead of sampling x
(j)
t directly, we generate a length L index sequence {I(j)

t,1 , · · · , I
(j)
t,L},

in which I
(j)
t,l indicates that x

(j)
t belongs to level-l subsets C

l,I
(j)
t,l

. A valid index sequence {I(j)
t,1 , · · · , I

(j)
t,L}

needs to satisfy C
l,I

(j)
t,l

⊂ C
l−1,I

(j)
t,l−1

, l = 1, · · · , L. The last indicator I
(j)
t,L specifies the value of x

(j)
t

as the level-L subset C
L,I

(j)
t,L

only contains one state value.
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Figure 3: Illustration of multilevel structure in 16-QAM modulation.

The index sequence {I(j)
t,1 , · · · , I

(j)
t,L} is generated sequentially, starting from the highest level,

following the trial distribution
L∏

l=1

qt,l(It,l | x(j)
t−1, It,l−1).

Here we define It,0 ≡ 1, which coincides with xt ∈ C0,1 ≡ A. The index sampling distribution

qt,l(It,l | x(j)
t−1, It,l−1) can be constructed as follows, using a pilot scheme.

For every i such that Cl,i ⊂ Cl−1,It,l−1
, randomly draw a pilot path (x(j,i)

t , x
(j,i)
t+1 , · · · , x

(j,i)
t+∆) from

the trial distribution

qpilot
t (xt | x(j)

t−1, It,l = i)
t+∆∏

s=t+1

qpilot
s (xs | x(j)

t−1,xt:s−1) (18)

where qpilot
t (xt | x(j)

t−1, It,l = i) indicates that xt must be a member of Cl,i, and calculate

U
(j,i)
t,l =

πt+∆(x(j)
t−1,x

(j,i)
t:t+∆)

πt−1(x
(j)
t−1)q

pilot
t (x(j,i)

t | x(j)
t−1, It,l = i)

∏t+∆
s=t+1 qpilot

s (x(j,i)
s | x(j)

t−1, x
(j,i)
t:s−1)

(19)

Then sample I
(j)
t,l is generated from distribution

qt,l(It,l = i | x(j)
t−1, I

(j)
t,l−1) =

U
(j,i)
t,l∑

k: Cl,k⊂Cl−1,It,l−1
U

(j,k)
t,l

. (20)

Specifically, the algorithm is as follows.
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Multilevel pilot algorithm:

• At time t = 0, for j = 1, · · · ,m

– Draw x
(j)
0 from distribution q0(x0).

– Set w
(j)
0 = π0(x

(j)
0 )/q0(x

(j)
0 ).

– Generate pilot path x
(j,∗)
1:∆ from

∏∆
s=1 qpilot

s (xs | x(j)
0 , x1:s−1) and calculate

U
(j,∗)
0 =

π∆(x(j)
0 , x

(j,∗)
1:∆ )

π0(x
(j)
0 )

∏∆
s=1 qpilot

s (xs | x(j)
0 , x1:s−1)

.

– Set w
aux(j)
0 = w

(j)
0 U

(j,∗)
0 .

• At time t = 1, 2, · · · ,

– (Optional) Resample {x(j)
t−1, w

(j)
t−1, j = 1, · · · , m} with priority scores α

(j)
t−1 = w

aux(j)
t−1 .

– Propagation: For j = 1, · · · ,m,

∗ Set I
(j)
t,0 ≡ 1. For level l = 1, 2, · · · , L,

· (Generating Pilots.) For each i such that Cl,i ⊂ C
l−1,I

(j)
t,l−1

, generate pilot

(x(j,i)
t , x

(j,i)
t+1:t+∆) from distribution (18) and U

(j,i)
t,l is calculated as in (19).

· (Sampling.) Draw I
(j)
t,l−1 from the trial distribution (20).

∗ (Updating Weights.) If x
(j)
t = ai0 is chosen at last, i.e., C

L,I
(j)
t,L

= {ai0}, let

w
(j)
t = w

(j)
t−1

πt(x
(j)
t )

πt−1(x
(j)
t−1)

∏L
l=1 qt,l(I

(j)
t,l | I(j)

t,l−1, x
(j)
t−1)

,

w
aux(j)
t = w

(j)
t−1

U
(j,i0)
t,L∏L

l=1 qt,l(I
(j)
t,l | I(j)

t,l−1, x
(j)
t−1)

.

– Inference: Eπt+∆(h(xt)) is estimated by
∑m

j=1 w
aux(j)
t h(x(j)

t )/
∑m

j=1 w
aux(j)
t .

The advantage of the multilevel method is that it reduces the total number of probability

calculations involved in generating x
(j)
t . For example, generating x

(j)
t directly from trial distribution

qt(xt | x
(j)
t−1) requires a total of |A| evaluations of qt(xt = ai | x

(j)
t−1), i = 1, · · · , |A|. On the other

hand, generating {I(j)
t,1 , · · · , I

(j)
t,L} only requires

∑L
l=1 n(I(j)

t,l−1) such evaluations, where n(I(j)
t,l−1) is

the number of level-l subsets contained in level-(l− 1) subset C
l−1,I

(j)
t,l−1

. In the example illustrated

by Figure 3, I
(j)
t,1 is chosen from a set of four subgroups at the first step. Given a selected I

(j)
t,1 , I

(j)
t,2 is

drawn from a set of four elements under I
(j)
t,1 . Hence, n(It,0) = 4 and n(It,1) = 4. In this example, a
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total of 8 probabilities need to be evaluated, reduced from 16 if x
(j)
t were generated directly. More

generally, if |A| = 4L, we can reduce the computation to 4L evaluations based on such a multilevel

structure.

As discussed in Section 4.5, deterministic pilot can also be used in the multilevel method.

A multilevel pilot lookahead sampling method using deterministic pilot is applied to the signal

detection example in Section 6.1.

4.7 Resampling with lookahead and piloting

As discussed in Liu and Chen (1995, 1998), although a resampling step introduces additional Monte

Carlo variations for estimating the current state, it enables the sampler to focus on important

regions of “future” spaces and can improve the effectiveness of samples in future steps. Liu and

Chen (1998) suggested that one can perform resampling according to either a deterministic schedule

or an adaptive schedule. In the following, we consider the problem of finding the optimal resampling

priority score if resampling only takes place at time T, 2T, 3T, · · · (i.e., a deterministic schedule).

Suppose we perform a standard SMC procedure. At time t = nT , samples {(x(j)
t , w

(j)
t ), j =

1, · · · ,m} properly weighted with respect to πt(xt) are generated, in which x
(j)
t follows the distri-

bution rt(xt), and w
(j)
t = wt(x

(j)
t ) = πt(x

(j)
t )/rt(x

(j)
t ). We perform a resampling step with priority

score b(x(j)
t ), then the new samples x

∗(j)
t , j = 1, · · · ,m, approximately follow the distribution ψ(xt)

that is proportional to rt(xt)b(xt). In the following T steps, x
∗(j)
t+1 , · · · , x

∗(j)
t+T is generated sequen-

tially from distribution qs(xs | x∗(j)s−1), s = t + 1, · · · , t + T , then the corresponding weight of x
∗(j)
t+T

with respect to πt+T (xt+T ) is

wt+T (x∗(j)t+T ) =
πt(x

∗(j)
t )

ψt(x
∗(j)
t )

πt+T (x∗(j)t+T )

πt(x
∗(j)
t )

∏t+T
s=t+1 qs(x

∗(j)
s | x∗(j)s−1)

∝ πt(x
∗(j)
t )

rt(x
∗(j)
t )bt(x

∗(j)
t )

πt+T (x∗(j)t+T )

πt(x
∗(j)
t )

∏t+T
s=t+1 qs(x

∗(j)
s | x∗(j)s−1)

.

The following proposition concerns the choice of priority score b(xt) that minimizes the variance of

weight wt+T (x∗(j)t+T ).

Proposition 6. The variance of weight wt+T (x∗(j)t+T ) is minimized when

bt(xt) ∝ wt(xt)η
1/2
t,T (xt). (21)

where

ηt,T (xt) =
∫ [

πt+T (xt+T )

πt(xt)
∏t+T

s=t+1 qs(xs | xs−1)

]2 t+T∏

s=t+1

qs(xs | xs−1) dxt+1 . . . dxt+T .
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The proof is in the Appendix.

Specifically, if we perform resampling at every step (T = 1), and the trial distribution is

qs(xs | xs−1) = πs(xs | xs−1), the optimal priority score becomes

bt(xt) = wt(xt)
πt+1(xt)
πt(xt)

,

which is the priority score used in the sequential imputation of Kong et al. (1994) and Liu and

Chen (1995), and the auxiliary particle filter proposed by Pitt and Shephard (1999).

When T > 1, the exact value of ηt,T (xt) in (21) is difficult to calculate. In this case, one can use

pilot method to find an approximation. For each sample x
(j)
t , multiple pilots x

(j,i)
t+1:t+T , i = 1, · · · ,K,

are generated following distribution
∏t+T

s=t+1 qs(xs | x(j,i)
s−1) with the cumulative incremental weight

U
(j,i)
t =

πt+T (x(j)
t ,x

(j,i)
t+1:t+T )

πt(x
(j)
t )

∏t+T
s=t+1 qs(x

(j,i)
s | x(j)

t , x
(j,i)
t+1:s−1)

.

Then η(x(j)
t ) can be estimated by K−1

∑K
i=1

(
U

(j,i)
t

)2
.

4.8 Combined methods

The lookahead schemes discussed so far can be combined to further improve the efficiency. For

example, Wang et al. (2002) considered a combination of the exact lookahead sampling and the

pilot lookahead sampling methods. In this approach, the space of the immediate future states is

explored exhaustively, and the space of further future states is explored using pilots.

5 Adaptive Lookahead

Many systems have structures with different local complexity. In these systems, it may be beneficial

to have different lookahead schemes based on local information. For example, in one of the wireless

communication applications, the received signal yt can be considered as following

yt = ξtxt + vt,

where {vt} is white noise with variance σ2, {xt} is the transmitted discrete symbol sequence, {ξt} is

the fading channel coefficient that varies over time. Since {ξt} varies, the signal-to-noise ratio in the

system also changes. When |ξt| is large, the current observation yt contains sufficient information

to decode xt accurately. In this case, lookahead is not needed. When |ξt| is small, the signal-to-

noise ratio is low and lookahead becomes very important to bring in future observations to help

the estimation of ξt and xt.
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Lookahead strategies always result in a better estimator provided that the Monte Carlo sample

size is sufficiently large so that I(∆) in (2) is negligible. To control computational cost, however,

Monte Carlo sample size used may not be large enough to make I(∆) negligible. For a fixed sample

size, I(∆) can increase as ∆ increases. Hence, it is possible that lookahead make the performance

worse with finite Monte Carlo sample size. The following proposition provides the condition under

which one additional lookahead step in the pilot lookahead sampling method makes the estimator

less accurate.

Specifically, suppose in a finite state system, a sample set {(x(j)
t−1, w

(j)
t−1), j = 1, · · · ,m} properly

weighted with respect to πt−1(xt−1) is available at time t − 1. At time t, ∆-step pilots x
(j,i)
t+∆ =

(x(j)
t−1, xt = ai,x

(j,i)
t+1:t+∆), j = 1, · · · ,m, i = 1, · · · ,A, are generated from distribution (12) with

cumulative incremental weight

U
(j,i)
t,∆ =

πt+∆(x(j,i)
t+∆)

πt−1(x
(j)
t−1)

∏t+∆
s=t+1 qpilot

s (x(j,i)
s | x(j,i)

s−1 , ys)
.

Then the ∆-step pilot lookahead sampling estimator of h(xt) is

ĥ =
1
m

m∑

j=1

w
(j)
t−1

A∑

i=1

U
(j,i)
t,∆ h(x(j)

t−1, xt = ai) → E(h(xt) | yt+∆).

If we lookahead one more step and draw x
(j,i)
t+∆+1 from trial distribution qt+∆+1(xt+∆+1 | x(j,i)

t+∆, yt+∆+1),

the proper (∆ + 1)-step cumulative incremental weight is

U
(j,i)
t,∆+1 = U

(j,i)
t,∆

πt+∆+1(x
(j,i)
t+∆+1)

πt+∆(x(j,i)
t+∆) qt+∆+1(x

(j,i)
t+∆+1 | x(j,i)

t+∆, yt+∆+1)
.

Then the (∆ + 1)-step pilot lookahead sampling estimator of h(xt) is

ĥ∗ =
1
m

m∑

j=1

w
(j)
t−1

A∑

i=1

U
(j,i)
t,∆+1h(x(j)

t−1, xt = ai) → E(h(xt) | yt+∆+1).

Proposition 7. Let x
(j,i=1:A)
t+∆ = {x(j,i)

t+∆, i = 1, · · · ,A} and suppose x
(j)
t−1, j = 1, · · · ,m, are i.i.d.

given yt+∆. When

1
m

E

[
var

(
w

(j)
t−1

A∑

i=1

U
(j,i)
t,∆+1h(x(j,i)

t−1 ) | x(j,i=1:A)
t+∆ ,yt+∆

) ∣∣∣yt+∆

]

≥
(

1 +
1
m

)
var

[
E

(
h(xt) | yt+∆+1

) ∣∣∣yt+∆

]
,

(22)

we have

E

[(
ĥ∗ − h(xt)

)2 ∣∣∣yt+∆

]
≥ E

[(
ĥ− h(xt)

)2 ∣∣∣yt+∆

]
.
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The proof is in the Appendix.

Condition (22) may be difficult to check in practice. However, when p(xt | yt+∆) = p(xt |
yt+∆+1), i.e., yt+∆+1 is independent of the current state xt given yt+∆, the condition always holds

since var
[
E

(
h(xt) | yt+∆+1

) ∣∣∣yt+∆

]
= 0.
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Figure 4: Illustration of adaptive lookahead criterion.

Proposition 7 suggests that, with a fixed number of samples, the performance of the SMC es-

timator can be optimized by choosing a proper lookahead step. Here we use a heuristic criteria,

depicted in Figure 4. Suppose that the state space of xt takes four possible values and the dis-

tribution πt+d(xt) for different lookahead d = 0, 1, 2, 3 is as shown in Figure 4, we can conclude

that the information available at t (i.e. yt) is not sufficiently strong for making inference on xt,

and the samples we generate for xt at this time (d = 0) may not be useful as the system propa-

gates. However, as d increases, the distribution becomes less diffused, showing the accumulation of

information about xt from the future yt+d. It also shows that further lookahead beyond d = 3 is

probably not necessary. The details of this adaptive criteria is as follows

• In a finite state space model, consider lookahead steps ∆ = 0, 1, 2, · · · . Stop if ∆ ≥ N or the

estimated posterior distribution satisfies

maxi

{
π̂t+∆(xt = ai)

}
= maxi

{ ∑
j w

(j)
t−1U

(j,i)
t,∆∑

l,j w
(j)
t−1U

(j,l)
t,∆

}
> p0, (23)

where N is the maximum number of lookahead steps we will perform, 0 < p0 < 1 is a threshold

close to 1, and U
(j,i)
t are the cumulative incremental weights defined in (13).

• In a continuous state space model, try lookahead steps ∆ = 0, 1, 2, · · · . Stop if ∆ ≥ N or the
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estimated variance varπt+∆(xt) satisfies

v̂arπt+∆(xt) =

∑
i,j w

(j)
t−1U

(j,i)
t,∆

(
x

(j,i)
t

)2

∑
i,j w

(j)
t−1U

(j,i)
t,∆

−



∑
i,j w

(j)
t−1U

(j,i)
t,∆ x

(j,i)
t∑

i,j w
(j)
t−1U

(j,i)
t,∆




2

< σ2
0, (24)

where σ2
0 is a given threshold, x

(j,i)
t are samples of current state generated from each x

(j)
t−1

under the pilot scheme, U
(j,i)
t,∆ are the corresponding cumulative incremental weights.

Some examples of using adaptive lookahead in finite state space model and continuous state space

model are presented in Sections 6.

6 Applications

In this section, we demonstrate the property of lookahead and make performance comparisons. In

all cases, δ, ∆, and ∆′ are used to denote the numbers of lookahead steps in lookahead weighting,

exact lookahead sampling and pilot lookahead sampling, respectively.

6.1 Signal Detection over Flat-fading Channel

In a digital wireless communication problem (Chen and Liu, 2000; Wang et al., 2002), the received

signal sequence {yt} is modelled as

yt = ξtxt + vt,

where {xt} is the transmitted complex digital symbol sequence, {vt} is white complex Gaussian

noise with variance σ2 and independent real and complex components, {ξt} is the transmitted

channel, which can be modelled as an ARMA process

ξt + φ1ξt−1 + · · ·+ φrξt−r = θ0ut + θ1ut−1 + · · ·+ θrut−r,

where {ut} is a unit white complex Gaussian noise. In this example, we assume {ξt} follows the

ARMA(3,3) process (Guo et al., 2004)

ξt − 2.37409ξt−1 + 1.92936ξt−2 − 0.53208ξt−3

= 10−2
(
0.89409ut + 2.68227ut−1 + 2.68227ut−2 + 0.89409ut−3

)
.

This system can be turned into a conditional dynamic linear model (CDLM) as follows

zt = Fzt−1 + gut,

yt = ξtxt + vt = hHzt xt + vt,
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where

F =




−φ1 −φ2 · · · −φr 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




, g =




1

0
...

0




,

h = [θ0 θ1 · · · θr]H .

Here we consider a high-constellation system with 256-QAM modulation, thus the symbol space

is A = {ai = (ai,1, ai,2) : ai,1, ai,2 = ±1,±3, · · · ,±15}, where ai,1 and ai,2 are the real and imaginary

parts of symbol ai, respectively. We decode {xt} from received {yt} under the framework of mixture

Kalman filter of Chen and Liu (2000) and the “optimal-resampling” scheme of Fearnhead and

Clifford (2003).

Because the symbol space is large (|A| = 256), we use a combination of the multilevel pilot

lookahead sampling method and the lookahead weighting method. The multilevel structure used

is similar to that of 16-QAM presented in Figure 3. The symbol space is divided into subspaces

of five different levels (L = 4). Hence, at time t, we generate (I(j)
t,1 , I

(j)
t,2 , I

(j)
t,3 , I

(j)
t,4 ) to obtain x

(j)
t for

given x
(j)
t−1 sequentially.

To construct the conditional trial distribution qt,l(It,l | x
(j)
t−1, I

(j)
t,l−1), we generate deterministic

pilot (x(j,It,l)
t , · · · , x

(j,It,l)
t+∆′ ) for every possible It,l given (x(j)

t−1, I
(j)
t,1 , · · · , I

(j)
t,l−1) generated. The steps

to generate deterministic pilot are as follows:

• Predict channel ξt by ξ̂
(j)
t = E(ξt | x(j)

t−1, Yt−1). Let x
(j,It,l)
t be the symbol ai ∈ Cl,It,l

closest to

yt/ξ̂
(j)
t .

• For s = t + 1, · · · , t + ∆′, repeat the following:

– Predict channel ξs by ξ̂
(j,It,l)
s = E(ξs | x(j)

t−1, x
(j,It,l)
t , · · · , x

(j,It,l)
s−1 , ys−1).

– Choose symbol ai ∈ A closest to ys/ξ̂
(j,It,l)
s as x

(j,It,l)
s .

Let U
(j,It,l)
t = πt+∆′(x

(j)
t−1, x

(j,It,l)
t , x

(j,It,l)
t+1:t+∆′)/πt−1(x

(j)
t−1), the trial distribution is

qt,l(It,l | x(j)
t−1, I

(j)
t,l−1) =

U
(j,It,l)
t∑

k: Cl,k⊂C
l−1,I

(j)
t,l−1

U
(j,k)
t

For comparison, SMC without using multilevel structure and lookahead pilot is also considered.

More computational details of this problem can be found in Wang et al. (2002).
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In the simulation, the length of transmitted symbol sequences is 500. To avoid phase am-

biguities, differential decoding is used. Specifically, suppose the information symbol sequence is

{dt}. The actual transmitted symbol sequence {xt} is constructed as follows: Given the 256

QAM transmitted symbol xt−1 and information symbol dt, we first map them to four QPSK sym-

bols (rxt−1,1, rxt−1,2, rxt−1,3, rxt−1,4) and (rdt,1, rdt,2, rdt,3, rdt,4) respectively. Let rxt,i = rdt,irxt−1,i,

i = 1, 2, 3, 4, and we map these four QPSK symbols (rxt,1, rxt,2, rxt,3, rxt,4) back to 256-QAM as

the transmitted symbol xt. The differential receiver calculates r
d̂t,i

= rx̂t,ir
∗
x̂t−1,i, where (x̂t−1, x̂t)

are estimated (xt−1, xt) at the receiver, then decodes the information symbol dt as the 256-QAM

symbol corresponding to (r
d̂t,1

, r
d̂t,2

, r
d̂t,3

, r
d̂t,4

). To improve the decoding accuracy of this high-

constellation system, we also insert 10% symbols that are known to the receiver into the transmit-

ted symbol sequences periodically. The experiment is repeated 100 times. Total 50,000 symbols

(400,000 bit information) are decoded.

Figure 5 reports the bit-error-ratio (BER) performance of different lookahead step δ of the

lookahead weighting method with standard concurrent SMC sampling (∆ = 0, ∆′ = 0). m = 200

samples are used. It is seen that the BER performance does not improve further after δ ≥ 8

lookahead steps. We use δ = 10 in the following comparison.

BER performance of pilot lookahead sampling methods with different lookahead steps ∆′ is

shown in Figure 6. The number of Monte Carlo samples is adjusted so that each method takes

approximately the same CPU time. From the result, it is seen that the multilevel pilot lookahead

sampling method with ∆′ = 1 has smaller BER than SMC without using lookahead pilot. But

when we use ∆′ = 2, the performance is worse. One of the reasons is that we use predicted channel

to construct the pilot, which could be very different from the true channel and severely mislead the

sampling, especially when the number of lookahead steps is large. We also implement the adaptive

method. Here we use adaptive stop criteria (23) with p0 = 0.90. The resulting average number of

lookahead steps is 0.195. Due to the saving in smaller number of lookahead steps, larger Monte

Carlo sample size is used with the same computational time. Its BER performance is slightly better

than using fixing pilot lookahead step ∆′ = 1.

6.2 Nonlinear Filtering

Consider the following nonlinear state space model (Gordon et al., 1993):

state equation : xt = 0.5xt−1 + 25xt−1/(1 + x2
t−1) + 8 cos(1.2(t− 1)) + ut,

observation equation : yt = x2
t /20 + vt,
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Figure 5: BER performance of the lookahead weighting method with ∆ = 0, ∆′ = 0, m = 200 and

different δ in 256-QAM system.
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δ=10,adpt ∆’(=0.195),m=180

Figure 6: BER performance of the multilevel pilot lookahead sampling method with ∆ = 0, δ = 10

but different ∆′ and number of samples m in 256-QAM system. The number of samples are chosen

so that each of the method takes approximately the same CPU time.
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where ut ∼ N(0, σ2), vt ∼ N(0, η2) are Gaussian white noise. In the simulation, we let σ = 1

and η = 1, and the length of observations is T = 100. We compare the performance of different

lookahead strategies.

In this nonlinear system, πt(xt|xt−1) can not be easily sampled from. Here we use the simple

trial distribution

qt(xt|xt−1) = πt−1(xt|xt−1) = gt(xt | xt−1) and qpilot
s (xs|xs−1) = gs(xs | xs−1).

We use SMC to denote the pilot lookahead sampling method for continuous state space case.

The implementation with smoothing step presented in Section 4.4 is denoted as SMC-S. A simple

piecewise constant function with interval width 0.5 is used for smoothing. Resampling is applied

at every step.

We repeat the experiment 1,000 times. The goodness of the fit measures used are

RMSE1 =

[
1
T

T∑

t=1

(x̂t − xt)
2

]1/2

and RMSE2 =

[
1
T

T∑

t=1

(
x̂t − Ẽπt+δ+∆′ (xt)

)2
]1/2

,

where RMSE2 is a measurement of estimation variance, I(δ + ∆′) in (2). Here Ẽπδ+∆′ (xt) is

obtained by SMC (∆′ = 0) with a large number of samples (m = 200, 000) and the lookahead

weighting method with lookahead steps δ∗ = δ + ∆′. Tables 1 and 2 report average RMSE1 and

RMSE2 and the associated CPU time of using different sampling methods and m = 3, 000 samples.

It can be seen that the delayed methods can greatly reduce RMSE1 for small δ+∆′, but no further

improvement can be found when δ+∆′ ≥ 3. SMC with ∆′ = 1, A = 10,K = 16 is an approximation

of the exact lookahead sampling method with ∆ = 1. It has the smallest RMSE1 at the cost of

extensive computation, which confirms Proposition 3. The performance of SMC with single pilot

(K = 1) is poor because the future state space can not be efficiently explored by small number of

pilots. With the smoothing step, SMC-S can achieve better performance than the simple lookahead

weighting method (SMC, ∆′ = 0). SMC-S with A = 3 has better performance than SMC-S with

A = 1, because when using A = 1, the pilot only affects resampling and estimation, but not the

sampling procedure. However, SMC-S with A = 3 also takes longer CPU time.

We also use the adaptive stop criteria (24) (adpt) to choose the lookahead steps adaptively. In

the criteria, we let σ2
0 = 4. The adaptive method has similar performance to the fixed-step pilot

lookahead sampling method, but much fewer average lookahead steps (average lookahead steps are

only 0.244) and less CPU time.

For a fair comparison, Tables 3 and 4 report average RMSE1 and RMSE2 of different methods

with different numbers of samples, which are chosen so that each method used approximately the

same CPU time. In this table, SMC with A = 1 and adaptive lookahead scheme has the smallest
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RMSE1 \ ∆′ + δ 0 1 2 3 5 7 time(sec.)

SMC(∆′ = 0) 3.128 1.011 0.828 0.817 0.818 0.819 0.113

SMC(∆′ = 1, A = 10,K = 16) – 1.009 0.824 0.813 0.812 0.813 5.952

SMC(∆′ = 1, A = 3) – 1.011 0.831 0.826 0.831 0.839 0.319

SMC(∆′ = 2, A = 3) – – 0.838 0.844 0.860 0.876 0.405

SMC(∆′ = 3, A = 3) – – – 0.846 0.885 0.913 0.504

SMC-S(∆′ = 1, A = 1) – 1.009 0.825 0.815 0.814 0.815 0.170

SMC-S(∆′ = 2, A = 1) – – 0.825 0.815 0.815 0.815 0.197

SMC-S(∆′ = 3, A = 1) – – – 0.816 0.816 0.816 0.224

SMC-S(adpt ∆′(0.244), A = 1) 0.995 0.834 0.815 0.814 0.816 0.817 0.147

SMC-S(∆′ = 1, A = 3) – 1.009 0.824 0.813 0.813 0.813 0.421

SMC-S(∆′ = 2, A = 3) – – 0.824 0.813 0.813 0.813 0.498

SMC-S(∆′ = 3, A = 3) – – – 0.814 0.814 0.813 0.576

Table 1: Average RMSE1 for SMC with different lookahead methods. The

same numbers of samples (m = 3, 000) are used in different methods. We use

single pilot lookahead (K = 1) unless stated otherwise. Average lookahead

steps in the adaptive lookahead method are reports in the parentheses.

RMSE1, which demonstrates the effectiveness of the adaptive lookahead strategy. It also shows

that SMC-1 with ∆′ = 1, A = 10,K = 16 has a large RMSE1, because of its high computational

cost per sample.

6.3 Target Tracking in Clutter

Consider the problem of tracking a single target in clutter (Avitzour, 1995). In this example, the

target moves with random acceleration in one dimension. The state equation can be written as

xt,1

xt,2


 =


1 1

0 1





xt−1,1

xt−1,2


 +


1/2

1


ut,

where xt,1 and xt,2 denote the one dimensional location and velocity of the target, respectively;

ut ∼ N(0, σ2) is the random acceleration.

At each time t, the target can be observed with probability pd independently. If the target is

observed, the observation is

zt = xt,1 + vt,
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RMSE2 \ ∆′ + δ 0 1 2 3 5 7 time(sec.)

SMC(∆′ = 0) 0.137 0.055 0.057 0.066 0.078 0.090 0.113

SMC(∆′ = 1, A = 10,K = 16) – 0.023 0.027 0.032 0.038 0.043 5.952

SMC(∆′ = 1, A = 3) – 0.070 0.105 0.138 0.174 0.203 0.319

SMC(∆′ = 2, A = 3) – – 0.156 0.220 0.278 0.326 0.405

SMC(∆′ = 3, A = 3) – – – 0.240 0.356 0.417 0.504

SMC-S(∆′ = 1, A = 1) – 0.043 0.048 0.053 0.062 0.072 0.170

SMC-S(∆′ = 2, A = 1) – – 0.051 0.063 0.066 0.075 0.197

SMC-S(∆′ = 3, A = 1) – – – 0.073 0.081 0.090 0.224

SMC-S(∆′ = 1, A = 3) – 0.029 0.032 0.036 0.041 0.048 0.421

SMC-S(∆′ = 2, A = 3) – – 0.031 0.039 0.042 0.047 0.498

SMC-S(∆′ = 3, A = 3) – – – 0.045 0.050 0.055 0.576

Table 2: Average RMSE2 for SMC with different lookahead methods. The

same numbers of samples (m=3,000) are used in different methods.

where vt ∼ N(0, r2).

In additional to the true observation, there are false signals. Observation of false signals follows

a spatially homogeneous Poisson process with rate λ. Suppose the observation window is wide

and centers around the predicted location of the target. Let ∆ be the range of the observation

window. The actual observation yt includes nt detected signals, among which at most one is the

true observation. Therefore, nt follows a Bernoulli(pd)+Poisson(λ∆) distribution.

Define an indicator variable It as follows

It =





0, if the target is not detected at time t,

k, if the k-th signal in yt is the true observation,

then we have

p(yt, It | xt) ∝





(1− pd)λ, if It = 0,

pd(2πr2)−1/2exp{−(yt,k − xt)2/2r2}, if It = k > 0.

In this system, given It = (I1, · · · , It), it becomes a linear Gaussian state space model. In

such a system, the mixture Kalman filter (MKF) can be applied. The mixture Kalman filter only

generates samples of the indicators I
(j)
t and considers the state space as discrete. Conditional on

I
(j)
t and yt, the state variable xt is normally distributed. The mean and the variance of p(xt−δ |
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RMSE1 \ ∆′ + δ 0 1 2 3 5 7 time(sec.)

SMC (m = 3, 000, ∆′ = 0) 3.128 1.011 0.828 0.817 0.818 0.819 0.113

SMC (m = 60,∆′ = 1, A = 10,K = 16) – 1.079 0.911 0.906 0.912 0.920 0.125

SMC-S(m = 2, 000, ∆′ = 1, A = 1) – 1.010 0.826 0.817 0.817 0.818 0.117

SMC-S(m = 1, 700, ∆′ = 2, A = 1) – – 0.827 0.818 0.817 0.819 0.116

SMC-S(m = 1, 500, ∆′ = 3, A = 1) – – – 0.820 0.822 0.823 0.118

SMC-S(m = 2, 400, adpt ∆′(0.245), A = 1) 0.994 0.835 0.816 0.815 0.817 0.818 0.104

SMC-S(m = 800, ∆′ = 1, A = 3) – 1.015 0.832 0.821 0.821 0.822 0.108

SMC-S(m = 700, ∆′ = 2, A = 3) – – 0.827 0.817 0.816 0.817 0.111

SMC-S(m = 600, ∆′ = 3, A = 3) – – – 0.819 0.819 0.820 0.119

Table 3: Average RMSE1 for SMC with different lookahead methods. The

numbers of samples are chosen so that each method used approximately the

same CPU time. Average lookahead steps in the adaptive lookahead method

are reports in the parentheses.

I
(j)
t , yt) can be exactly calculated through the Kalman filter. To perform lookahead strategies in

MKF, suppose we can obtain samples {(I(j)
t+∆, wj

t ), j = 1, · · · ,m} properly weighted with respect

to πt+∆(It+∆) = p(It+∆ | yt+∆), then
∑m

j=1 w
(j)
t Eπt+∆(xt−δ | It+∆ = I

(j)
t+∆)

∑m
j=1 w

(j)
t

is a consistent estimator of Eπt+∆(xt−δ), δ = 0, 1, · · · . More details of MKF and MKF with

lookahead can be found in Chen and Liu (2000) and Wang et al. (2002).

In this example, we can also use the smoothing step presented in Section 4.4 to improve the

performance of the pilot lookahead sampling method. It can be shown that V
(j,i)
t+1:t+∆ = E(V (j,i)

t+1:t+∆ |
I

(j)
t−1, It = i,yt+∆) in (16) only depends on the mean µ

(j,i)
t and the variance Σ(j,i)

t of the normal

distribution p(xt | I(j)
t−1, It = i, yt). For simplicity, we approximately assume V

(j,i)
t+1:t+∆ only depends

on µ
(j,i)
t = (µ(j,i)

t,1 , µ
(j,i)
t,2 ), that is,

V
(j,i)
t+1:t+∆ ≈ V t+1:t+∆(µ(j,i)

t ) + e
(j,i)
t .

We then use the smoothed V
(j,i)
t+1:t+∆ to reduce the variation introduced by random pilots. We

denoted this method by MKF-S. We used the piecewise constant smoother to estimate U t(µ
(j,i)
t ).

In the smoother, the space
[
min{µ(j,i)

t,1 }, max{µ(j,i)
t,1 }

]
×

[
min{µ(j,i)

t,2 }, max{µ(j,i)
t,2 }

]
is divided into

10× 10 equal parts.
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RMSE2 \ ∆′ + δ 0 1 2 3 5 7 time(sec.)

SMC(m = 3000, ∆′ = 0) 0.137 0.055 0.057 0.066 0.078 0.090 0.113

SMC(m = 60, ∆′ = 1, A = 10,K = 16) – 0.228 0.254 0.277 0.306 0.334 0.125

SMC-S(m = 2, 000, ∆′ = 1, A = 1) – 0.054 0.058 0.064 0.075 0.087 0.117

SMC-S(m = 1, 700, ∆′ = 2, A = 1) – – 0.066 0.083 0.085 0.098 0.116

SMC-S(m = 1, 500, ∆′ = 3, A = 1) – – – 0.103 0.114 0.126 0.118

SMC-S(m = 800, ∆′ = 1, A = 3) – 0.062 0.067 0.074 0.084 0.096 0.108

SMC-S(m = 700, ∆′ = 2, A = 3) – – 0.061 0.078 0.082 0.094 0.111

SMC-S(m = 600, ∆′ = 3, A = 3) – – – 0.097 0.109 0.121 0.119

Table 4: Average RMSE2 for SMC with different lookahead methods. The

numbers of samples are chosen so that each method used approximately the

same CPU time.

In this example, we let σ2 = 0.1, r2 = 1.0, pd = 0.8, λ = 0.1, and ∆ = 100 r. The length of

the observation period is T = 100. We repeat the experiment 500 times. The resmapling step is

applied when the effective sample size is less than 0.1m.

Following Avitzour (1995), we use the median absolute error (MAE) as the performance mea-

surement. Define

MAE1 = median {|x̂t,1 − xt,1|} and MAE2 = median
{
|x̂t,1 − Ẽπt+∆+δ

(xt,1)|
}

,

where x̂t,1 is the consistent estimation of Eπt+∆+δ
(xt,1) using different lookahead methods, and

Ẽπt+∆+δ
(xt,1) is obtained by the lookahead weighting method using large number of samples (m=20,000).

We first compare the performance of different lookahead methods using the same number of

samples (m=200). Table 5 reports MAE1 and MAE2 for the lookahead weighting method (MKF,

∆ = 0), the exact lookahead sampling method (MKF, ∆ = 3), and the single pilot lookahead

sampling method (MKF, ∆′ = 3 and MKF-S, ∆′ = 3). From the result, MAE1 decreases as the

number of lookahead steps increases, which shows the effectiveness of the lookahead strategies.

The exact lookahead sampling method (MKF, ∆ = 3) has the smallest MAE2, which confirms

Propositions 3 and 5, although its computational cost is the highest. We can also see that MKF-S

(∆′ = 3) performs better than MKF (∆′ = 3).

Then we compare the performance of different methods under similar computational cost. The

number of samples is adjusted so that each method takes approximately the same CPU time. Table

6 reports the quantiles of absolute estimation errors |x̂t,1 − xt,1| for different lookahead methods
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∆ + δ / ∆′ + δ 0 1 2 3 5 8 10 13 15

MKF(∆ = 0) 1.0300 0.7890 0.6560 0.5830 0.5180 0.4750 0.4590 0.4470 0.4450

MAE1 MKF(∆ = 3) – – – 0.5780 0.5150 0.4710 0.4540 0.4410 0.4370

MKF(∆′ = 3) – – – 0.5780 0.5150 0.4730 0.4560 0.4440 0.4420

MKF-S(∆′ = 3) – – – 0.5730 0.5120 0.4690 0.4530 0.4410 0.4370

MKF(∆ = 0) 0.0932 0.0760 0.0618 0.0525 0.0460 0.0453 0.0467 0.0500 0.0520

MAE2 MKF(∆ = 3) – – – 0.0463 0.0357 0.0307 0.0298 0.0298 0.0305

MKF(∆′ = 3) – – – 0.0575 0.0503 0.0472 0.0480 0.0503 0.0525

MKF-S(∆′ = 3) – – – 0.0490 0.0398 0.0360 0.0353 0.0365 0.0375

Table 5: MAE1 and MAE2 for different lookahead methods. The same

numbers of samples (m=200) are used. The CPU time used in each exper-

iment is 0.341 seconds for the lookahead weighting method (MKF, ∆ = 0);

3.554 seconds for the exact lookahead sampling method (MKF, ∆ = 3);

0.783 seconds for the pilot lookahead sampling method (MKF, ∆′ = 3), and

0.788 seconds for MKF-S (∆′ = 3).

with lookahead steps ∆ + δ = 15 (or ∆′ + δ = 15). The performance does not improve further

when ∆′ + δ ≥ 15. Under the same CPU time, the lookahead sampling method has the largest

absolute estimation error because of its high computational cost. The pilot lookahead sampling

method (MKF-S, ∆′ = 3) has better performance than the simple lookahead weighting method

(MKF, ∆ = 0). We then use the stop criteria (24) to choose lookahead steps in the pilot lookahead

sampling method adaptively (MKF-S, adpt ∆′). When we set σ2
0 = 1.5r2 in criteria (24), the

average number of lookahead steps is 1.572. The result shows that the adaptive pilot lookahead

sampling method performs the best under the same CPU time.

Appendix

Proof of Proposition 1: For any ∆2 > ∆1 ≥ 0, we have

Eπt

[
E

(
h(xt) | yt+∆1

)− h(xt)
]2

=Eπt

[
E

(
h(xt) | yt+∆1

)− E
(
h(xt) | yt+∆2

) ]2
+ Eπt

[
E

(
h(xt) | yt+∆2

)− h(xt)
]2

+ 2Eπt

{[
E

(
h(xt) | yt+∆1

)− E
(
h(xt) | yt+∆2

) ][
E

(
h(xt) | yt+∆2

)− h(xt)
]}

.
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Quantiles (∆ + δ = 15) 0.05 0.25 0.50 0.75 0.95 time (sec.)

MKF(m = 450, ∆ = 0) 0.0400 0.2040 0.4420 0.7910 1.7885 0.791

MKF(m = 50, ∆ = 3) 0.0400 0.2080 0.4490 0.8120 2.1610 0.851

MKF-S(m = 200, ∆′ = 3) 0.0390 0.2030 0.4370 0.7790 1.6590 0.788

MKF-S(m = 280, adpt ∆′) 0.0390 0.2020 0.4340 0.7700 1.6295 0.802

Table 6: Quantiles of absolute estimation errors |x̂t,1 − xt,1| for different

lookahead methods. The numbers of samples are chosen so that each method

used approximately the same CPU time. In the adaptive pilot lookahead

sampling method (MKF-S, adpt ∆′), the average number of lookahead steps

is 1.572.

Because

Eπt

{[
E

(
h(xt) | yt+∆1

)− E
(
h(xt) | yt+∆2

) ][
E

(
h(xt) | yt+∆2

)− h(xt)
]}

=E

{
E

{[
E

(
h(xt) | yt+∆1

)−E
(
h(xt) | yt+∆2

) ][
E

(
h(xt) | yt+∆2

)− h(xt)
] ∣∣∣ yt+∆2

}∣∣∣∣∣yt

}
= 0,

the conclusion holds.

Proof of Proposition 2: It is easily seen that

Eπt+∆

[
w

(2,j)
t h(x(2,j)

t ) | x(j)
t−1

]
= Eπt+∆

[
w

(j)
t−1

πt+∆(x(2,j)
t )

πt−1(x
(j)
t−1)qt(x

(2,j)
t | x(j)

t−1)
h(x(2,j)

t ) | x(j)
t−1

]

= w
(j)
t−1

πt+∆(x(j)
t−1)

πt−1(x
(j)
t−1)

Eπt+∆

[
h(x(2,j)

t )
πt+∆(x(2,j)

t | x(j)
t−1)

qt(x
(2,j)
t | x(j)

t−1)

∣∣∣ x
(j)
t−1

]

= w
(1,j)
t Eπt+∆

(
h(xt) | xt−1 = x

(j)
t−1

)
.

Then (10) is a direct result of Rao-Blackwellization. By replacing h(xt) with Eπt+∆ (h(xt) | xt−1)

and h(xt) = 1 in (10), we obtain (11) and (9) respectively.

Proof of Proposition 3: Since

Eπt+∆

{
w

(3,j)
t h(x(j)

t−1, x
(2,j)
t ) | x(j)

t−1, x
(2,j)
t

}

= Eπt+∆

{
h(x(j)

t−1, x
(2,j)
t )

[
w

(j)
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πt+∆(x(3,j)
t+∆)

πt−1(x
(j)
t−1)

∏t+∆
s=t qs(x

(3,j)
s | x(3,j)

s−1 )

] ∣∣∣x
(j)
t−1, x

(2,j)
t

}

= h(x(j)
t−1, x

(2,j)
t ) w

(j)
t−1

πt+∆(x(j)
t−1, x

(2,j)
t )

πt−1(x
(j)
t−1)qt(x

(2,j)
t | x(j)

t−1)
Eπt+∆

{
πt+∆(x(3,j)

t+1:t+∆ | x(j)
t−1, x

(2,j)
t )

∏t+∆
s=t+1 qs(x

(3,j)
s | x(3,j)

s−1 )

∣∣∣ x
(j)
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(2,j)
t

}

= w
(2,j)
t h(x(j)
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t ),
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we have

varπt+∆

[
w

(3,j)
t+∆h(x(j)

t−1, x
(2,j)
t )

]
≥ varπt+∆

[
w

(2,j)
t h(x(j)

t−1, x
(2,j)
t )

]

according to Rao-Blackwellization theorem.

Proof of Proposition 4: To prove (x(j)
t , w

aux(j)
t ) is properly weighted with respect to distribution

πt+∆(xt), we only need to prove

Eπt+∆

[
w

aux(j)
t h(x(j)

t )
]

= Eπt+∆ [h(xt)] .

According to the sampling distribution of the lookahead pilot x
(j,i)
t+∆ and calculation of the

corresponding cumulative incremental weight U
(j,i)
t ,

Eπt+∆

[
w

aux(j)
t h(x(j)

t ) | x(j)
t−1

]
= Eπt+∆

[
w

(j)
t−1

A∑

i=1

U
(j,i)
t h(x(j)

t−1, xt = ai) | x(j)
t−1

]

=w
(j)
t−1
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πt+∆(x(j)
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(j)
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=w
(j)
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πt+∆(x(j)
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(j)
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Eπt+∆

[
h(xt) | x(j)
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]
.

Because sample (x(j)
t−1, w

(j)
t−1) is properly weighted with respect to πt−1(xt−1),

Eπt+∆

[
w

(j)
t−1

πt+∆(x(j)
t−1)
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(j)
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)]
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[
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Eπt+∆ (h(xt) | xt−1)
]

= Eπt+∆ [h(xt)] ,

the proposition follows.

Proof of Proposition 5: Because w
aux(j)
t and w

(1,j)
t both are importance weight, we have

Eπt+∆

(
w

aux(j)
t

)
= Eπt+∆

(
w

(1,j)
t

)
= 1. Hence
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(
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)
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(
w
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)
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(
w
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)2
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(
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[(
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]
− Eπt+∆

[(
w
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.

Now we consider the difference between Eπt+∆

[(
w

aux(j)
t

)2 ∣∣∣ x
(j)
t−1

]
and Eπt+∆

[(
w
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t

)2 ∣∣∣x
(j)
t−1

]
.

Let

ε(j,i,k) = U
(j,i,k)
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Because Eπt+∆

[
U
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t
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=
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, we have Eπt+∆

[
ε(j,i,k)
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(j)
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]
= 0. In addition,

ε(j,i,k), i = 1, · · · ,A, k = 1, · · · ,K are independent conditional on x
(j)
t−1, and for fixed i, ε(j,i,k),
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k = 1, · · · ,K, follow the same distribution.
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w
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t
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]

=
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Then we have
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hence
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(
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(
w
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∼ O(1/K).

With similar method, we can prove
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[
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Proof of Proposition 6: Let ψt(xt) ∝ rt(xt)bt(xt) be the distribution of samples after resampling,

Because Eπt+T

(
w
∗(j)
t+T

)
≡ 1, we only consider minimizing Eπt+T
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According to Jensen’s inequality, to minimize Eπt+T

(
w
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, ψt(xt) needs to be proportional to

πt(xt)η1/2(xt).

39



Proof of Proposition 7: For estimator ĥ∗, because ĥ∗ and h(xt) are independent conditional on

yt+∆+1, we have

E

[(
ĥ∗ − h(xt)

)2
| yt+∆

]

=E

{
E

[[
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Similar to the proof of Proposition 1, we have
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(25)

In the pilot lookahead sampling method, because

U
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,
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we have
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according to Rao-Blackwellization theorem,
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(26)

Combine (25) and (26), the conclusion holds.
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