9 research outputs found

    A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

    Get PDF
    The Job Shop Scheduling Problem (JSP) is a combinatorial optimization problem cataloged as type NP-Hard. To solve this problem, several heuristics and metaheuristics have been used. In order to minimize the makespan, we propose a Memetic Algorithm (MA), which combines the exploration of the search space by a Genetic Algorithm (GA), and the exploitation of the solutions using a local search based on the neighborhood structure of Nowicki and Smutnicki. The genetic strategy uses an operation-based representation that allows generating feasible schedules, and a selection probability of the best individuals that are crossed using the JOX operator. The results of the implementation show that the algorithm is competitive with other approaches proposed in the literature

    An Efficient Improvement Of Ant Colony System Algorithm For Handling Capacity Vehicle Routing Problem

    Get PDF
    Capacitated Vehicle Routing Problem (CVRP) is considered as one of the most famous specialized forms of VRP that has attracted considerable attention from researchers. This problem belongs to complex combinatorial optimization problems included in the NP-Hard Problem category, which is a problem that needs difficult computation. This paper presents an improvement of Ant Colony System (ACS) to solve this problem. In this study, the problem deals with a few vehicles which are used for transporting products to specific places. Each vehicle starts from a main location at different times every day. The capacitated vehicle routing problem (CVRP) is defined to serve a group of delivery customers with known demands. The proposed study seeks to find the best solution of CVRP by using improvement ACS with the accompanying targets: (1) To decrease the distance as long distances negatively affect the course of the process since it consumes a great time to visit all customers. (2) To implement the improvement of ACS algorithm on new data from the database of CVRP. Through the implementation of the proposed algorithm better results were obtained from the results of other methods and the results were compared

    Solving the vehicle routing problem using hybrid cellular evolutionary algorithm

    Get PDF
    Problem usmjeravanja vozila (VRP) kompleksan je kombinatorički problem s kojim se svakodnevno susreću tvrtke koje obavljaju dostavu robe. Njegovim učinkovitim rješavanjem moguće je značajno smanjiti troškove dostave. Metaheurističkim metodama moguće je relativno brzo pronaći visoko kvalitetna rješenja. Stanični evolucijski algoritam metaheuristički je algoritam kod kojeg su jedinke iz populacije raspoređene unutar toroidalne mreže i mogu biti u interakciji samo sa obližnjim jedinkama. Podešavanjem selekcijskog pritiska moguće je postići odgovarajući omjer diverzifikacije i intenzifikacije koji je ključan za uspješnost algoritma. Hibridizacija postupkom pretraživanja velikog susjedstva ubrzava pronalazak visoko kvalitetnih rješenja. Razvijeni algoritam testiran je na nekoliko skupova ispitnih zadataka te na problemima dostave hrvatskih tvrtki. Rezultati ostvareni na ispitnim zadacima pokazuju da učinkovitost algoritma ne odstupa mnogo od najboljih poznatih algoritama za ovu vrstu problema, dok rezultati ostvareni na problemima hrvatskih tvrtki pokazuju da je primjenom algoritma moguće postići značajne uštede.Vehicle Routing Problem (VRP) is a complex combinatorial problem encountered daily by companies that are dealing with goods delivery. With its ecient solving it is possible to signicantly reduce the cost of delivery. Metaheuristic methods are capable of nding high-quality solutions in reasonable amount of time. The cellular evolutionary algorithm is a metaheuristic algorithm in which the individuals from the population are distributed within the toroidal grid and can interact only with nearby entities. By adjusting the selection pressure, it is possible to achieve the appropriate ratio of diversication and intensication that is crucial to the success of the algorithm. Hybridization by a large neighborhood search accelerates the nding of high quality solutions. The developed algorithm has been tested on several sets of benchmarks and on the delivery problems of Croatian companies. The results obtained on the benchmarks show that the eciency of the algorithm does not dier much from the best-known algorithms for this type of problem, while the results achieved on the problems of Croatian companies show that it is possible to achieve signicant savings by algorithm application

    Solving the vehicle routing problem using hybrid cellular evolutionary algorithm

    Get PDF
    Problem usmjeravanja vozila (VRP) kompleksan je kombinatorički problem s kojim se svakodnevno susreću tvrtke koje obavljaju dostavu robe. Njegovim učinkovitim rješavanjem moguće je značajno smanjiti troškove dostave. Metaheurističkim metodama moguće je relativno brzo pronaći visoko kvalitetna rješenja. Stanični evolucijski algoritam metaheuristički je algoritam kod kojeg su jedinke iz populacije raspoređene unutar toroidalne mreže i mogu biti u interakciji samo sa obližnjim jedinkama. Podešavanjem selekcijskog pritiska moguće je postići odgovarajući omjer diverzifikacije i intenzifikacije koji je ključan za uspješnost algoritma. Hibridizacija postupkom pretraživanja velikog susjedstva ubrzava pronalazak visoko kvalitetnih rješenja. Razvijeni algoritam testiran je na nekoliko skupova ispitnih zadataka te na problemima dostave hrvatskih tvrtki. Rezultati ostvareni na ispitnim zadacima pokazuju da učinkovitost algoritma ne odstupa mnogo od najboljih poznatih algoritama za ovu vrstu problema, dok rezultati ostvareni na problemima hrvatskih tvrtki pokazuju da je primjenom algoritma moguće postići značajne uštede.Vehicle Routing Problem (VRP) is a complex combinatorial problem encountered daily by companies that are dealing with goods delivery. With its ecient solving it is possible to signicantly reduce the cost of delivery. Metaheuristic methods are capable of nding high-quality solutions in reasonable amount of time. The cellular evolutionary algorithm is a metaheuristic algorithm in which the individuals from the population are distributed within the toroidal grid and can interact only with nearby entities. By adjusting the selection pressure, it is possible to achieve the appropriate ratio of diversication and intensication that is crucial to the success of the algorithm. Hybridization by a large neighborhood search accelerates the nding of high quality solutions. The developed algorithm has been tested on several sets of benchmarks and on the delivery problems of Croatian companies. The results obtained on the benchmarks show that the eciency of the algorithm does not dier much from the best-known algorithms for this type of problem, while the results achieved on the problems of Croatian companies show that it is possible to achieve signicant savings by algorithm application

    Solving the vehicle routing problem using hybrid cellular evolutionary algorithm

    Get PDF
    Problem usmjeravanja vozila (VRP) kompleksan je kombinatorički problem s kojim se svakodnevno susreću tvrtke koje obavljaju dostavu robe. Njegovim učinkovitim rješavanjem moguće je značajno smanjiti troškove dostave. Metaheurističkim metodama moguće je relativno brzo pronaći visoko kvalitetna rješenja. Stanični evolucijski algoritam metaheuristički je algoritam kod kojeg su jedinke iz populacije raspoređene unutar toroidalne mreže i mogu biti u interakciji samo sa obližnjim jedinkama. Podešavanjem selekcijskog pritiska moguće je postići odgovarajući omjer diverzifikacije i intenzifikacije koji je ključan za uspješnost algoritma. Hibridizacija postupkom pretraživanja velikog susjedstva ubrzava pronalazak visoko kvalitetnih rješenja. Razvijeni algoritam testiran je na nekoliko skupova ispitnih zadataka te na problemima dostave hrvatskih tvrtki. Rezultati ostvareni na ispitnim zadacima pokazuju da učinkovitost algoritma ne odstupa mnogo od najboljih poznatih algoritama za ovu vrstu problema, dok rezultati ostvareni na problemima hrvatskih tvrtki pokazuju da je primjenom algoritma moguće postići značajne uštede.Vehicle Routing Problem (VRP) is a complex combinatorial problem encountered daily by companies that are dealing with goods delivery. With its ecient solving it is possible to signicantly reduce the cost of delivery. Metaheuristic methods are capable of nding high-quality solutions in reasonable amount of time. The cellular evolutionary algorithm is a metaheuristic algorithm in which the individuals from the population are distributed within the toroidal grid and can interact only with nearby entities. By adjusting the selection pressure, it is possible to achieve the appropriate ratio of diversication and intensication that is crucial to the success of the algorithm. Hybridization by a large neighborhood search accelerates the nding of high quality solutions. The developed algorithm has been tested on several sets of benchmarks and on the delivery problems of Croatian companies. The results obtained on the benchmarks show that the eciency of the algorithm does not dier much from the best-known algorithms for this type of problem, while the results achieved on the problems of Croatian companies show that it is possible to achieve signicant savings by algorithm application

    An estimation of distribution algorithm coupled with the generalized Mallows distribution for a school bus routing problem with bus stop selection.

    Get PDF
    [ES] Aunque los algoritmos de estimación de distribuciones fueron originalmente diseñados para resolver problemas con dominio de valores reales o enteros, en esta contribución se utilizan para la resolución de un problema basado en permutaciones. El ruteo de autobuses escolares con selección de paradas es resuelto utilizando la distribución generalizada de Mallows como un intento para describir y obtener una distribución de probabilidad explicita sobre un conjunto de rutas de autobuses escolares. Además, un operador de mutación es considerado para mejorar la estimación de la permutación central, un parámetro de la distribución de Mallows. Diferentes y diversas instancias sirvieron como parámetro de entrada y prueba para mostrar que problemas basados en permutaciones tales como el ruteo de autobuses escolares con selección de paradas pueden ser resueltos por medio de un modelo de probabilidad, y mejorar la estimación de la permutación central ayuda al desempeño del algoritmo.[EN] Although the estimation of distribution algorithms were originally designed for solving integer or real-valued domains, this contribution applies the algorithms mentioned to deal with a permutation-based problem, called school bus routing problem with bus stop selection, using the generalized Mallows distribution as an attempt to describe and obtain an explicit probability distribution over a set of school bus routes. In addition, a mutation operator is considered for improving the estimation of the central permutation, a parameter of the Mallows distribution. Different and diverse instances served as input and test parameters in order to show that permutation-based optimization problems such as the school bus routing problem with bus stop selection can be solved by means of a probability model, and improving the estimation of the central permutation helps the performance of the algorithm.Pérez-Rodríguez, R.; Hernández-Aguirre, A. (2017). Un Algoritmo de Estimación de Distribuciones copulado con la Distribución Generalizada de Mallows para el Problema de Ruteo de Autobuses Escolares con Selección de Paradas. Revista Iberoamericana de Automática e Informática industrial. 14(3):288-298. https://doi.org/10.1016/j.riai.2017.05.002OJS288298143Afifi S., Dang D.-C., Moukrim, A., 2015. Heuristic solutions for the vehicle routing problem with time windows and synchronized visits. Optimization Letters, DOI 10.1007/s11590-015-0878-3.Aquino-Santos R., González-Potes A., Villaseñor-González L.A., Crespo A., Sánchez J., Gallardo J.R., 2009. Simulación de Algoritmos para regular el Flujo Vehicular y la Comunicación entre Vehículos Móviles Autónomos utilizando Redes Ad Hoc. RIAI 6(1), 75-83.Barbucha D., 2014. Team of A-Teams Approach for Vehicle Routing Problem with Time Windows. In Terrazas G., Otero F., Masegosa A., (Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO 2013), Springer International Publishing, Vol. 512, pp. 273-286.Berghida M., Boukra A., 2015. EBBO: an enhanced biogeography-based optimization algorithm for a vehicle routing problem with heterogeneous fleet, mixed backhauls, and time windows. The International Journal of Advanced Manufacturing Technology 77(9-12), 1711-1725.Borda J., 1784. Memoire sur les elections au scrutin. Histoire de l'Academie Royale des Science.Ceberio J., Irurozki E., Mendiburu A., Lozano J., 2014. A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem. IEEE Transaction on evolutionary computation 18(2), 286-300.Ceberio J., Mendiburu A., Lozano J., 2011. Introducing the Mallows Model on Estimation of Distribution Algorithms. In Bao-Liang L., Liqing Z., Kwok J., (Eds.), Neural Information Processing. 18th International Conference ICONIP 2011, Shanghai China, Berlin: Springer Berlin Heidelberg, pp. 461-470.Chakraborty, U.K., Dastidar, D.G., 1993. Using reliability analysis to estimate the number of generations to convergence in genetic algorithms. Information Processing Letters. 46, 199-209.Cruz-Ramírez N., Martínez-Morales M., 1997. Un algoritmo para generar redes Bayesianas a partir de datos estadísticos. Primer Encuentro Nacional de Computación, ENC 97. Querétaro, México.de Armas J., Melián-Batista B., 2015. Constrained dynamic vehicle routing problems with time windows. Soft Computing, DOI 10.1007/s00500-014- 1574-4.Díaz-Parra O., Ruiz-Vanoye J., Buenabad-Arias M., Canepa-Saenz A., 2013. Vertical Transfer Algorithm for the School Bus Routing Problem. In Gavrilova M., Tan C., Abraham A., (Eds.), Transactions on Computational Science XXI, Springer Berlin Heidelberg, Vol. 8160, pp. 211-229.Euchi J., Mraihi R., 2012. The urban bus routing problem in the Tunisian case by the hybrid artificial ant colony algorithm. Swarm and Evolutionary Computation 2, 15-24.Fligner M., Verducci J., 1986. Distance based ranking models. J. Royal Stat. Soc. 48(3), 359-369.Fligner M., Verducci J., 1988. Multistage ranking models. J. Amer. Stat. Assoc. 83(403), 892-901.Gan X., Kuang J., Niu B., 2014. Multi-type Vehicle Routing Problem with Time Windows. In Huang D.-S., Jo K.-H., Wang L., (Eds.), Intelligent Computing Methodologies, Springer International Publishing, Vol. 8589, pp. 808-815.Gintner V., Kliewer N., Suhl L., 2008. A Crew Scheduling Approach for Public Transit Enhanced with Aspects from Vehicle Scheduling. In Hickman M., Mirchandani P., Voß S., (Eds.), Computer-aided Systems in Public Transport, Springer Berlin Heidelberg, Vol. 600, pp. 25-42.Kliewer N., Mellouli T., Suhl L., 2006. A time-space network based exact optimization model for multi-depot bus scheduling. European Journal of Operational Research 175(3), 1616-1627.Kwan A., Kwan R., Wren A., 1999. Driver Scheduling Using Genetic Algorithms with Embedded Combinatorial Traits. In Wilson N., (Ed.), Computer-Aided Transit Scheduling, Springer Berlin Heidelberg, Vol. 471, pp. 81-102.Larrañaga P., Lozano J., 2002. Estimation of distribution algorithms: a new tool for evolutionary computation. Kluwer Academic Publishers.Li J., Li Y., Pardalos P., 2014. Multi-depot vehicle routing problem with time windows under shared depot resources. Journal of Combinatorial Optimization, DOI 10.1007/s10878-014-9767-4.Mallows C., 1957. Nonnull ranking models. Biometrika 44(1-2), 114-130.Meila M., Phadnis K., Patterson A., Bilmes J., 2007. Consensus ranking under the exponential model. Proc. 22nd Conf. Uncertainty Artif. Intell., Vancouver, pp. 285-294.Minocha B., Tripathi S., 2014. Solving School Bus Routing Problem Using Hybrid Genetic Algorithm: A Case Study. In Babu B., Nagar A., Deep K., Pant M., Bansal J., Ray K., Gupta U., (Eds.), Proceedings of the Second International Conference on Soft Computing for Problem Solving SocProS 2012, Springer India, Vol. 236, pp. 93-103.Nalepa J., Blocho M., 2015. Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Computing, DOI 10.1007/s00500-015-1642-4.Niu H., 2013. Application of Genetic Algorithm to Optimize Transit Schedule under Time-Dependent Demand. In Wang W., Wets G., (Eds.), Computational Intelligence for Traffic and Mobility, Atlantis Press, Vol. 8, pp. 71-88.Pacheco J., Caballero R., Laguna M., Molina J., 2013. Bi-Objective Bus Routing: An Application to School Buses in Rural Areas. Transportation Science 47(3), 397-411.Park J., Kim B., 2010. The school bus routing problem: A review. European Journal of Operational Research 202(2), 311-319.Pérez-Rodríguez R., Hernández-Aguirre A., 2016. Probability model to solve the school bus routing problem with stops selection. International Journal of Combinatorial Optimization Problems and Informatics 7(1), 30-39.Prins C., 2004. A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31(12), 1985-2002.Riera-Ledesma J., Salazar-González J., 2012. Solving school bus routing using the multiple vehicle traveling purchaser problem: A branch-and-cut approach. Computers & Operations Research 39(2), 391-404.Schittekat P., Kinable J., Sörensen K., Sevaux M., Spieksma F., Springael J., 2013. A metaheuristic for the school bus routing problem with bus stop selection. European Journal of Operational Research 229(2), 518-528.Schwarze S., Voß S., 2015. A Bicriteria Skill Vehicle Routing Problem with Time Windows and an Application to Pushback Operations at Airports. In Dethloff J., Haasis H.-D., Kopfer H., Kotzab H., Schönberger J., (Eds.), Logistics Management (Vols. Products, Actors, Technology - Proceedings of the German Academic Association for Business Research, Bremen, 2013), Springer International Publishing, pp. 289-300.Soonpracha K., Mungwattana A., Manisri T., 2015. A Re-constructed MetaHeuristic Algorithm for Robust Fleet Size and Mix Vehicle Routing Problem with Time Windows under Uncertain Demands. In Handa H., Ishibuchi H., Ong Y.-S., Tan K.-C., (Eds.), Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Springer International Publishing, Vol. 2, pp. 347-361.Suiter J., Cooley D., 2001. Optimal Municipal Bus Routing Using a Genetic Algorithm. In Kůrková V., Neruda R., Kárný M., Steele N., (Eds.), Artificial Neural Nets and Genetic Algorithms, Springer Vienna, pp. 312- 315.Thangiah S., Fergany A., Wilson B., Pitluga A., Mennell W., 2008. School Bus Routing in Rural School Districts. In Hickman M., Mirchandani P., Voß S., (Eds.), Computer-aided Systems in Public Transport, Springer Berlin Heidelberg, Vol. 600, pp. 209-232.Toth P., Vigo D., (Eds.), 2001. The Vehicle Routing Problem. Philadelphia, PA, USA: SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics.Widuch J., 2012. A label correcting algorithm for the bus routing problem. Fundamenta Informaticae 118(3), 305-326.Widuch J. 2013. A label correcting algorithm with storing partial solutions to solving the bus routing problem. Informatica 24(3), 461-484.Yang C., Guo Z.-x., Liu, L.-y., 2015. Comparison Study on Algorithms for Vehicle Routing Problem with Time Windows. In Qi E., Shen J., Dou R., Proceedings of the 21st International Conference on Industrial Engineering and Engineering Management 2014, Atlantis Press, pp. 257-260.Yoshihara I., 2003. Scheduling of Bus Drivers' Service by a Genetic Algorithm. In Ghosh A., Tsutsui S., (Eds.), Advances in Evolutionary Computing, Springer Berlin Heidelberg, pp. 799-817.Able, B., 1945. Nombre del artículo. Nombre de la revista 35, 123-126. DOI: 10.3923/ijbc.2010.190.20
    corecore