260 research outputs found

    A Comprehensive Overview of Computational Nuclei Segmentation Methods in Digital Pathology

    Full text link
    In the cancer diagnosis pipeline, digital pathology plays an instrumental role in the identification, staging, and grading of malignant areas on biopsy tissue specimens. High resolution histology images are subject to high variance in appearance, sourcing either from the acquisition devices or the H\&E staining process. Nuclei segmentation is an important task, as it detects the nuclei cells over background tissue and gives rise to the topology, size, and count of nuclei which are determinant factors for cancer detection. Yet, it is a fairly time consuming task for pathologists, with reportedly high subjectivity. Computer Aided Diagnosis (CAD) tools empowered by modern Artificial Intelligence (AI) models enable the automation of nuclei segmentation. This can reduce the subjectivity in analysis and reading time. This paper provides an extensive review, beginning from earlier works use traditional image processing techniques and reaching up to modern approaches following the Deep Learning (DL) paradigm. Our review also focuses on the weak supervision aspect of the problem, motivated by the fact that annotated data is scarce. At the end, the advantages of different models and types of supervision are thoroughly discussed. Furthermore, we try to extrapolate and envision how future research lines will potentially be, so as to minimize the need for labeled data while maintaining high performance. Future methods should emphasize efficient and explainable models with a transparent underlying process so that physicians can trust their output.Comment: 47 pages, 27 figures, 9 table

    Multi-Surface Simplex Spine Segmentation for Spine Surgery Simulation and Planning

    Get PDF
    This research proposes to develop a knowledge-based multi-surface simplex deformable model for segmentation of healthy as well as pathological lumbar spine data. It aims to provide a more accurate and robust segmentation scheme for identification of intervertebral disc pathologies to assist with spine surgery planning. A robust technique that combines multi-surface and shape statistics-aware variants of the deformable simplex model is presented. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user-assistance is allowed to disable the prior shape influence during deformation. Results have been validated against user-assisted expert segmentation

    Nuclei & Glands Instance Segmentation in Histology Images: A Narrative Review

    Full text link
    Instance segmentation of nuclei and glands in the histology images is an important step in computational pathology workflow for cancer diagnosis, treatment planning and survival analysis. With the advent of modern hardware, the recent availability of large-scale quality public datasets and the community organized grand challenges have seen a surge in automated methods focusing on domain specific challenges, which is pivotal for technology advancements and clinical translation. In this survey, 126 papers illustrating the AI based methods for nuclei and glands instance segmentation published in the last five years (2017-2022) are deeply analyzed, the limitations of current approaches and the open challenges are discussed. Moreover, the potential future research direction is presented and the contribution of state-of-the-art methods is summarized. Further, a generalized summary of publicly available datasets and a detailed insights on the grand challenges illustrating the top performing methods specific to each challenge is also provided. Besides, we intended to give the reader current state of existing research and pointers to the future directions in developing methods that can be used in clinical practice enabling improved diagnosis, grading, prognosis, and treatment planning of cancer. To the best of our knowledge, no previous work has reviewed the instance segmentation in histology images focusing towards this direction.Comment: 60 pages, 14 figure

    Automatic Segmentation of Cells of Different Types in Fluorescence Microscopy Images

    Get PDF
    Recognition of different cell compartments, types of cells, and their interactions is a critical aspect of quantitative cell biology. This provides a valuable insight for understanding cellular and subcellular interactions and mechanisms of biological processes, such as cancer cell dissemination, organ development and wound healing. Quantitative analysis of cell images is also the mainstay of numerous clinical diagnostic and grading procedures, for example in cancer, immunological, infectious, heart and lung disease. Computer automation of cellular biological samples quantification requires segmenting different cellular and sub-cellular structures in microscopy images. However, automating this problem has proven to be non-trivial, and requires solving multi-class image segmentation tasks that are challenging owing to the high similarity of objects from different classes and irregularly shaped structures. This thesis focuses on the development and application of probabilistic graphical models to multi-class cell segmentation. Graphical models can improve the segmentation accuracy by their ability to exploit prior knowledge and model inter-class dependencies. Directed acyclic graphs, such as trees have been widely used to model top-down statistical dependencies as a prior for improved image segmentation. However, using trees, a few inter-class constraints can be captured. To overcome this limitation, polytree graphical models are proposed in this thesis that capture label proximity relations more naturally compared to tree-based approaches. Polytrees can effectively impose the prior knowledge on the inclusion of different classes by capturing both same-level and across-level dependencies. A novel recursive mechanism based on two-pass message passing is developed to efficiently calculate closed form posteriors of graph nodes on polytrees. Furthermore, since an accurate and sufficiently large ground truth is not always available for training segmentation algorithms, a weakly supervised framework is developed to employ polytrees for multi-class segmentation that reduces the need for training with the aid of modeling the prior knowledge during segmentation. Generating a hierarchical graph for the superpixels in the image, labels of nodes are inferred through a novel efficient message-passing algorithm and the model parameters are optimized with Expectation Maximization (EM). Results of evaluation on the segmentation of simulated data and multiple publicly available fluorescence microscopy datasets indicate the outperformance of the proposed method compared to state-of-the-art. The proposed method has also been assessed in predicting the possible segmentation error and has been shown to outperform trees. This can pave the way to calculate uncertainty measures on the resulting segmentation and guide subsequent segmentation refinement, which can be useful in the development of an interactive segmentation framework

    Automated injury segmentation to assist in the treatment of children with cerebral palsy

    Get PDF

    Robust Nuclei Segmentation in Cytohistopathological Images Using Statistical Level Set Approach with Topology Preserving Constraint

    Get PDF
    Computerized assessments of cyto-histological specimens have drawn increased attention in the field of digital pathology as the result of developments in digital whole slide scanners and computer hardwares. Due to the essential role of nucleus in cellular functionality, automatic segmentation of cell nuclei is a fundamental prerequisite for all cyto-histological automated systems. In 2D projection images, nuclei commonly appear to overlap each other, and the separation of severely overlapping regions is one of the most challenging tasks in computer vision. In this thesis, we will present a novel segmentation technique which effectively addresses the problem of segmenting touching or overlapping cell nuclei in cyto-histological images. The proposed framework is mainly based upon a statistical level-set approach along with a topology preserving criteria that successfully carries out the task of segmentation and separation of nuclei at the same time. The proposed method is evaluated qualitatively on Hematoxylin and Eosin stained images, and quantitatively and qualitatively on fluorescent stained images. The results indicate that the method outperforms the conventional nuclei segmentation approaches, e.g. thresholding and watershed segmentation

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    Medical Image Segmentation: Thresholding and Minimum Spanning Trees

    Get PDF
    I bildesegmentering deles et bilde i separate objekter eller regioner. Det er et essensielt skritt i bildebehandling for å definere interesseområder for videre behandling eller analyse. Oppdelingsprosessen reduserer kompleksiteten til et bilde for å forenkle analysen av attributtene oppnådd etter segmentering. Det forandrer representasjonen av informasjonen i det opprinnelige bildet og presenterer pikslene på en måte som er mer meningsfull og lettere å forstå. Bildesegmentering har forskjellige anvendelser. For medisinske bilder tar segmenteringsprosessen sikte på å trekke ut bildedatasettet for å identifisere områder av anatomien som er relevante for en bestemt studie eller diagnose av pasienten. For eksempel kan man lokalisere berørte eller anormale deler av kroppen. Segmentering av oppfølgingsdata og baseline lesjonssegmentering er også svært viktig for å vurdere behandlingsresponsen. Det er forskjellige metoder som blir brukt for bildesegmentering. De kan klassifiseres basert på hvordan de er formulert og hvordan segmenteringsprosessen utføres. Metodene inkluderer de som er baserte på terskelverdier, graf-baserte, kant-baserte, klynge-baserte, modell-baserte og hybride metoder, og metoder basert på maskinlæring og dyp læring. Andre metoder er baserte på å utvide, splitte og legge sammen regioner, å finne diskontinuiteter i randen, vannskille segmentering, aktive kontuter og graf-baserte metoder. I denne avhandlingen har vi utviklet metoder for å segmentere forskjellige typer medisinske bilder. Vi testet metodene på datasett for hvite blodceller (WBCs) og magnetiske resonansbilder (MRI). De utviklede metodene og analysen som er utført på bildedatasettet er presentert i tre artikler. I artikkel A (Paper A) foreslo vi en metode for segmentering av nukleuser og cytoplasma fra hvite blodceller. Metodene estimerer terskelen for segmentering av nukleuser automatisk basert på lokale minima. Metoden segmenterer WBC-ene før segmentering av cytoplasma avhengig av kompleksiteten til objektene i bildet. For bilder der WBC-ene er godt skilt fra røde blodlegemer (RBC), er WBC-ene segmentert ved å ta gjennomsnittet av nn bilder som allerede var filtrert med en terskelverdi. For bilder der RBC-er overlapper WBC-ene, er hele WBC-ene segmentert ved hjelp av enkle lineære iterative klynger (SLIC) og vannskillemetoder. Cytoplasmaet oppnås ved å trekke den segmenterte nukleusen fra den segmenterte WBC-en. Metoden testes på to forskjellige offentlig tilgjengelige datasett, og resultatene sammenlignes med toppmoderne metoder. I artikkel B (Paper B) foreslo vi en metode for segmentering av hjernesvulster basert på minste dekkende tre-konsepter (minimum spanning tree, MST). Metoden utfører interaktiv segmentering basert på MST. I denne artikkelen er bildet lastet inn i et interaktivt vindu for segmentering av svulsten. Fokusregion og bakgrunn skilles ved å klikke for å dele MST i to trær. Ett av disse trærne representerer fokusregionen og det andre representerer bakgrunnen. Den foreslåtte metoden ble testet ved å segmentere to forskjellige 2D-hjerne T1 vektede magnetisk resonans bildedatasett. Metoden er enkel å implementere og resultatene indikerer at den er nøyaktig og effektiv. I artikkel C (Paper C) foreslår vi en metode som behandler et 3D MRI-volum og deler det i hjernen, ikke-hjernevev og bakgrunnsegmenter. Det er en grafbasert metode som bruker MST til å skille 3D MRI inn i de tre regiontypene. Grafen lages av et forhåndsbehandlet 3D MRI-volum etterfulgt av konstrueringen av MST-en. Segmenteringsprosessen gir tre merkede, sammenkoblende komponenter som omformes tilbake til 3D MRI-form. Etikettene brukes til å segmentere hjernen, ikke-hjernevev og bakgrunn. Metoden ble testet på tre forskjellige offentlig tilgjengelige datasett og resultatene ble sammenlignet med ulike toppmoderne metoder.In image segmentation, an image is divided into separate objects or regions. It is an essential step in image processing to define areas of interest for further processing or analysis. The segmentation process reduces the complexity of an image to simplify the analysis of the attributes obtained after segmentation. It changes the representation of the information in the original image and presents the pixels in a way that is more meaningful and easier to understand. Image segmentation has various applications. For medical images, the segmentation process aims to extract the image data set to identify areas of the anatomy relevant to a particular study or diagnosis of the patient. For example, one can locate affected or abnormal parts of the body. Segmentation of follow-up data and baseline lesion segmentation is also very important to assess the treatment response. There are different methods used for image segmentation. They can be classified based on how they are formulated and how the segmentation process is performed. The methods include those based on threshold values, edge-based, cluster-based, model-based and hybrid methods, and methods based on machine learning and deep learning. Other methods are based on growing, splitting and merging regions, finding discontinuities in the edge, watershed segmentation, active contours and graph-based methods. In this thesis, we have developed methods for segmenting different types of medical images. We tested the methods on datasets for white blood cells (WBCs) and magnetic resonance images (MRI). The developed methods and the analysis performed on the image data set are presented in three articles. In Paper A we proposed a method for segmenting nuclei and cytoplasm from white blood cells. The method estimates the threshold for segmentation of nuclei automatically based on local minima. The method segments the WBCs before segmenting the cytoplasm depending on the complexity of the objects in the image. For images where the WBCs are well separated from red blood cells (RBCs), the WBCs are segmented by taking the average of nn images that were already filtered with a threshold value. For images where RBCs overlap the WBCs, the entire WBCs are segmented using simple linear iterative clustering (SLIC) and watershed methods. The cytoplasm is obtained by subtracting the segmented nucleus from the segmented WBC. The method is tested on two different publicly available datasets, and the results are compared with state of the art methods. In Paper B, we proposed a method for segmenting brain tumors based on minimum spanning tree (MST) concepts. The method performs interactive segmentation based on the MST. In this paper, the image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the MST into two trees. One of these trees represents the region of interest and the other represents the background. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The method is simple to implement and the results indicate that it is accurate and efficient. In Paper C, we propose a method that processes a 3D MRI volume and partitions it into brain, non-brain tissues, and background segments. It is a graph-based method that uses MST to separate the 3D MRI into the brain, non-brain, and background regions. The graph is made from a preprocessed 3D MRI volume followed by constructing the MST. The segmentation process produces three labeled connected components which are reshaped back to the shape of the 3D MRI. The labels are used to segment the brain, non-brain tissues, and the background. The method was tested on three different publicly available data sets and the results were compared to different state of the art methods.Doktorgradsavhandlin
    corecore