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Abstract

Robust Nuclei Segmentation in Cytohistopathological Images Using Statistical

Level Set Approach with Topology Preserving Constraint

Shaghayegh Taheri Hosseinabadi

Computerized assessments of cyto-histological specimens have drawn increased attention in

the field of digital pathology as the result of developments in digital whole slide scanners and

computer hardwares. Due to the essential role of nucleus in cellular functionality, automatic seg-

mentation of cell nuclei is a fundamental prerequisite for all cyto-histological automated systems.

In 2D projection images, nuclei commonly appear to overlap each other, and the separation of

severely overlapping regions is one of the most challenging tasks in computer vision. In this

thesis, we will present a novel segmentation technique which effectively addresses the problem

of segmenting touching or overlapping cell nuclei in cyto-histological images. The proposed

framework is mainly based upon a statistical level-set approach along with a topology preserving

criteria that successfully carries out the task of segmentation and separation of nuclei at the

same time. The proposed method is evaluated qualitatively on Hematoxylin and Eosin stained

images, and quantitatively and qualitatively on fluorescent stained images. The results indicate

that the method outperforms the conventional nuclei segmentation approaches, e.g. thresholding

and watershed segmentation.
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Chapter 1

Introduction

Pathology is a medical specialty which concerns laboratory examination of cells and tissue sam-

ples with the purpose of diagnosis and characterization of diseases. More specifically, cytopatho-

logical and histopathological examinations of a biopsy or surgical specimen are two main branches

of anatomical pathology that are commonly applied to diagnose various diseases including cancer.

Cytopathology (or cytology) refers to the microscopic investigation of samples on the cellular

level and is mainly advantageous when quick preparation, staining and interpretation proce-

dures are needed. Despite the fact that cytopathological imagery are highly beneficial as they

provide great cellular details with a low cost, cytological examinations alone are not sufficient

for accurate diagnosis purposes. For instance, they cannot indicate whether the cancer cells

are spreading into and damaging surrounding tissues. Therefore, to obtain a higher diagnostic

accuracy, the preliminary cytological tests must be confirmed by the so called histopathological

(or histological) assessments for which the overall tissue architecture is evaluated.

Pathologists usually make diagnostic interferences by visual inspection of cells based on their

morphological features and architecture, such as shape, position, size, number, etc. Although still

being considered as the gold standard, manual examination of biological images is tedious work
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(a) (b) (c) (d)

Figure 1.1: Figures (a) and (b) are examples of histopathological imagery while figures (c) and
(d) are Cytopathological imagery.

which requires many hours of human labor. This highlights the requirement for an automatic

system that accurately measures these features in a few seconds. Recently, computerized methods

including automatic detection, segmentation and classification of objects in cyto-histological

specimens, have drawn increased attention in the field of digital pathology as the result of

developments in digital whole slide scanners and computer hardwares. Due to the essential

role of nucleus in cellular functionality, automatic segmentation of cell nuclei is a fundamental

prerequisite for all histological and cytological automated systems. Moreover, it substantially

facilitates the segmentation of cytoplasms and the surrounding tissues.

Despite the considerable amount of research that has been dedicated to this topic, nuclei

segmentation in cyto-histological imagery, is still one of the most challenging tasks for several

reasons. First, because of the staining process, the presence of noise is almost ineluctable.

Second, final segmentation results may be affected by nonuniform illumination of the image,

resulted from the thickness of sample or microscope setup. Finally and most importantly, in 2D

projection images, nuclei commonly appear to overlap each other, and the separation of severely

overlapping regions is not trivial.

In this thesis, we will present a fully automated unsupervised segmentation technique which

effectively addresses the problem of segmenting touching or overlapping cell nuclei in cyto-

histological specimens. The rest of this thesis is organized as follows: in chapter (2) we will

2



review the related literature regarding nuclei detection/segmentation along with the background

material on curve evolution and level set technique. In chapter (3) we will extensively describe dif-

ferent stages of the proposed segmentation pipeline. We will also examine the presented method

on Hematoxylin and Eosin (H&E) breast images as well as fluorescent imagery in chapter (4).

Finally, we will present our concluding remarks in chapter (5).
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Chapter 2

Nuclei Localization, Segmentation

and Refinement Methodologies

Although a large variety of nuclei segmentation approaches have been recently developed by

researchers, their overall strategies typically include the same routines; i.e., Preprocessing, Nuclei

detection/localization, Nuclei segmentation and Nuclei Refinement. Nuclei refinement is a post-

processing step, which usually refers to the task of detaching the aggregated nuclei or merging the

over-segmented nuclei. For instance, in [10], nuclei seeds are first identified using the extended

H-maxima transform. Seeds then serve as the starting points in watershed segmentation. Finally,

clumps of nuclei are separated using a distance transform, considering the fact that nuclei are

fairly round. In [12] nuclei are first segmented from the background using local thresholding. The

watershed algorithm is then performed to separate the overlapping nuclei, followed by a remerging

step to avoid over-segmentation. In [20] and [21] adaptive thresholding and active contours

are utilized respectively to segment the foreground clustered nuclei. Subsequently, distance

transform, H-minima transform and watershed algorithm are applied for marker extraction and
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nuclei separation.

2.1 Preprocessing

Prior to the main segmentation stage e.g. nuclei detection and segmentation, a few preprocessing

steps are normally required to compensate for unfavorable acquisition conditions and inconsis-

tencies in the preparation of slides such as nonuniform illumination, nonuniform color, and noise

[7]. The illumination correction can be achieved using either white shading correction or esti-

mating the illumination pattern according to the series of images. Furthermore, many nuclei

segmentation approaches perform color normalization in a different color space rather than the

conventional RGB color model including HSV, Lab, LUV or MDC 1 [55] . Finally, threshold-

ing, morphological operation and Gaussian smoothing are the common noise reduction methods

frequently used in literature.

2.2 Nuclei Detection

Nuclei detection can be regarded as identification of cell nuclei by means of locating the set of

points referred to as ”seeds” or ”markers”, normally one per nucleus and close to its center. This

step is of great importance because the final segmentation results highly rely on how precisely

the initial seeds are determined. Nuclei of most cells are generally rounded or slightly elliptical

in shape, as observed in histopathological and cytopathological imagery. Therefore, many nuclei

detection techniques in literature have been developed according to the prior knowledge of the

nucleus shape. In most cases, nuclei detection involves extracting the local maxima of a response

map, where the mapping function highlights regions with certain prior aspects.

1The Most Discriminant Color Space
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Among earlier approaches, Distance Transform [24] has been commonly employed in con-

junction with H-maxima/H-minima transforms [10, 13, 20, 21]. The distance transform (DT)

is a simple operator which is normally applied to the binarized images. The resulting image is

obtained by replacing the intensity of each pixel with its distance from the nearest background

pixel. One great drawback of the use of distance transform is being highly sensitive to the noise,

thereby leading to over-seeding and over-segmentation.

The classical Hough transform and its variations [25, 27] have been extensively used for nuclei

detection [14, 22]. There are several limitations associated with the Hough transform. First, the

transform is computationally expensive, being of order O(KBN), where K is the number of

pixels in the image, B is the number of circular bins, and N is the width of the neighborhood.

Moreover, since the transform is applied to the gradient image, the efficiency of the transform

relies on how correctly nuclei edges are extracted. It also means that the transform is sensitive

to noise. As an alternative, Radon Transform [17, 26] seems to be more robust to noise, yet it

suffers from the lack of efficiency.

In [32], Esteves et al. thoroughly investigated the application of Local Convergence Filters

(LCF), initially proposed by [29–31], in nuclei detection. LCF refer to the wide range of filters

that are commonly designed to find convex objects as they reveal locations in the image where

the gradient vectors converge within a local region (support region).

2.3 Nuclei Segmentation

As mentioned earlier, nuclei segmentation is an essential requirement in computer-aided cyto-

histological diagnosis. Generally speaking, image segmentation is the process of subdividing an

image into multiple regions or categories, usually with the aim of simplifying further analysis. In

this process, each pixel of the image is assigned to one of the available categories such that: (1)

6



(a) (b)

(c) (d)

Figure 2.1: Examples of LCF filters represented in [32]; (a) Coin filter [29]; (b) IRIS filter [29];
(c) Adaptive ring filter [30]; (d) Side band filter [31]

pixels that are assigned to the same category have similar characteristics, whereas (2) adjacent

pixels assigned to different categories, are disparate from each other regarding to those charac-

teristics. Since the primary concentration of this thesis is on pathology specimen images, only

the common segmentation approaches to this area of research are briefly discussed.

Thresholding is the simplest and perhaps the most common segmentation technique that

classifies pixels into two categories based on a certain threshold intensity value [11, 12]. Another

group of segmentation schemes frequently used in this context, are those ones that mainly rely

on morphological operations to perform segmentation [8, 10].

A very common region-based segmentation approach in medical image analysis and particu-

larly in nuclei segmentation, is the so called watershed algorithm which is the method of choice,

mainly because of its intrinsic capability of separating overlapping objects [10, 12, 18, 20–22, 44].

For this reason, in the next section we will review a common mathematical definition of water-

shed, based on the concept of topographical distance [45].

7



2.3.1 Watershed Segmentation Method

Intuitively, a grayscale image can be viewed as a topographic surface in which the elevation of

each location in the landscape indicates the intensity value of the corresponding pixel. Assuming

that the landscape is gradually being immersed in water, then the catchment basins around

the local minima or valleys start to get filled with water. Also, catchment basins are separated

from the adjacent catchment by locating a watershed line (or watershed) at the points where

water coming from two catchment basins is about to merge. Finally, as the water reaches to the

highest point, the process is stopped and the resulting watersheds form the final segmentation

boundaries. To be more explicit, let I represent a digital grayscale image, then the lower slope

LS(p) of I at pixel p is defined as:

LS(p) = max
q∈N(p)

(I(p)− I(q)

d(p,q)

)
(2.1)

where N(p) denotes the neighbors of pixel p including p, and d(p,q) is the Euclidean distance

between pixels p and q. Also, when p = q the lower slope is defined to be zero. Accordingly,

the set of lower neighbors of pixel p denoted by Γ(p) is:

Γ(p) =
{
q ∈ N(p)

∣∣∣ I(p)− I(q)

d(p,q)
= LS(p)

}
(2.2)

Pixel q is said to belong to the upstream of pixel p, if there exists a path π = (p0, ..,pl) of

steepest slope from p0 to pl, that means: ∀i = 0, .., l − 1,pi−1 ∈ Γ(pi). For each local minima

mi in the image, the corresponding catchment basin CB(mi) is the set of all points in the

8



upstream of mi. Finally, watershed pixels are the pixels for which there is at least two paths of

steepest slope toward different local minima.

Despite its simplicity, high speed and inclusive segmentation, the traditional watershed trans-

form has the major drawback of over-segmentation, since the method is highly sensitive to noise

and irrelevant local minima. Thus several alternatives such as marker controlled watersheds and

hierarchical watersheds have been developed to improve the method. A comprehensive study of

different watershed definitions and algorithms can be found in [46].

While there have been various attempts on the field of nuclei segmentation in literature,

optimization techniques are being considered as more principled, systematic and flexible methods.

Generally speaking, these methods may be categorized mainly into spatially discrete and spatially

continuous settings. In the discrete setting, the input image is converted into a directed graph

such that pixels of the image are treated as the graph nodes and the segmentation is obtained

by means of finding the minimal (cost) cut in the graph. Continuous optimization methods, on

the other hand, aim at minimizing an energy functional which mostly involves solving partial

differential equations. In what follows, we will briefly discuss some major contributions to this

field.

2.4 Curve Evolution and Level Set Techniques

In the variational frameworks, the segmentation of an image uC : Ω ∈ R
2 → R is achieved

through the minimization of an appropriate energy functional subject to some constraints, in

such a way that the local or global minima occurs at the boundary of the desired objects. This is

obtained by deforming a closed curve C : [0 1] → Ω in the direction of negative energy gradient,

described by the following gradient descent:

9



∂C

∂t
= −∂E(C)

∂C
(2.3)

Here, the evolution of the curve is expressed in an explicit manner. Using the alternative implicit

representation, in which contours are regarded as the zero level curve of some embedding function

φ:

C = {(x, y) ∈ Ω | φ(x, y) = 0} (2.4)

one can reformulate equation (2.3) as:

∂φ

∂t
= −∂E(φ)

∂φ
(2.5)

The level set methods originally developed by Osher and Sethian [37] are conceptually simple,

yet powerful mathematical tools for numerically analyzing and computing the motion of curves

and surfaces. The level set approach suggests that rather than directly evaluating the motion

of a curve in the plane, we can find an embedding surface such that at each time, the evolving

curve exactly fits the intersection between the moving surface and the x − y plane Fig.(2.2.a).

For this reason, the curve is commonly referred to as the zero level-set or zero level-curve of the

10



(a) (b)

Figure 2.2: Illustration of level set function in 3D space.

surface.

To be more precise, through the introduction of a Lipschitz continuous function φ(x, y, t) :

Ω → R, the level set representation of a curve is given as follows:

C = {(x, y) ∈ Ω | φ(x, y) = 0},

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(x, y, t) = 0 on the curve

φ(x, y, t) > 0 inside the curve

φ(x, y, t) < 0 outside the curve

(2.6)

One typical example of such function is the signed distance function of curve.

Level set based techniques have become increasingly popular in the field of Geometric PDEs 2

and variational image segmentation, as they bring several advantages: In case of 2D plane curves,

calculations are done in a fixed rectangular grid, making the level set formulation perfectly suited

for dealing with gray level images. Moreover, unlike the explicit parametrization methods, they

can handle the automatic changes in topology i.e. merging and splitting of the segmented regions.

Further, the issue of self-intersection of curves in parametric deformable models no longer exists.

2Partial Differential Equations

11



2.4.1 Edge-Based and Region-Based Active Contours

Earlier works in the variational framework were mainly based upon the classical Snakes, also

called active contours models [33]:

E(C) = −
∫

|∇I(C)|2ds+ ν1

∫
|Cs|2ds+ ν2

∫
|Css|2ds (2.7)

Where parameter s is the arc-length along the curve and Cs and Css stand for the first and second

derivate of the curve with respect to s. One main difficulty of using the explicit representation

of Snakes in (2.7) is that they are not capable of handling the topological changes; therefore

not capable of detecting multiple objects in the image simultaneously. Besides, because of the

explicit parametrization of the evolution, a re-parameterization procedure is required every few

iterations. With some slight modifications, the Geodesic Active Contours model [34] proposed

a level-set formulation for the Snake model, which resolves the issues arising from the explicit

parametrization:

∂φ

∂t
= |∇φ| div (

g(I)
∇φ

|∇φ|
)

= g(I)|∇φ| div ( ∇φ

|∇φ|
)
+∇g(I).∇φ

(2.8)

The classical snakes and the geodesic active contours are considered as ”edge-based” active

contours as they both rely on an edge detector function (of |∇I|) to stop the evolving curve.

As a result, they can only detect objects with distinct boundaries. Also, since they are locally

optimized the segmentation result highly depends on the initialization and there is always a

12



high chance of getting trapped in the false local minimum. Furthermore, in cases with complex

topology e.g. multiple holes and bridges, the edge-based active contours will not suffice to

properly segment the image. In contrast to the ”edge-based” methods that mainly depend

on local features such as gradient, ”region-based” active contours use the global or regional

information of the image for the stopping procedure which makes them more robust to noise

compared with the edge-based techniques. In this context, the Mumford-Shah (MS) energy

model [35] and its well-established piecewise constant approximation, also known as ”Cartoon

Limit”, have been broadly used as the region-based variational approaches to the task of image

segmentation.

In Mumford-Shah model, segmentation of a given image uC : Ω ∈ R
2 → R into a number of

sub-regions is considered as the problem of computing the optimal piecewise smooth approxima-

tion u : Ω → R of the image, such that u varies smoothly or slowly within each region, and it

varies discontinuously or rapidly across the boundaries of the regions. Accordingly, the piecewise

smooth approximation is obtained by minimizing the following energy functional:

EMS(u,C) =

∫
Ω\C

|u− uC |2dxdy + μ

∫
Ω\C

|∇u|2dxdy + ν|C| (2.9)

Where constants μ ≥ 0 and ν ≥ 0 are weighting parameters, C is the boundary of an open

subset ω of Ω, i.e. ω ∈ Ω and C = ∂ω, and the total length of the boundaries of regions |C|,

penalizes the smoothness of the segmentation curve. If we assume that the segmentation curve

C partitions image into two regions u1 and u2 referring to inside the curve and outside the curve,

i.e. foreground and background regions, equation (2.9) can be re-written as follows:

13



EMS(u1, u2, C) =

∫
inside C

|u1 − uC |2dxdy + μ1

∫
inside C

|∇u1|2dxdy

+

∫
outside C

|u2 − uC |2dxdy + μ2

∫
outside C

|∇u2|2dxdy + ν|C|
(2.10)

The numerical analysis of MS equation was facilitated by the level-set method which can be

found in [38] in more details. Accordingly, the level set representation of the above equation can

be written as:

EMS(u1, u2, φ) =

∫
|u1 − uC |2H(φ)dxdy + μ1

∫
|∇u1|2H(φ)dxdy

+

∫
|u2 − uC |2(1−H(φ))dxdy + μ2

∫
|∇u2|2(1−H(φ))dxdy + ν

∫
|∇H(φ)|dxdy.

(2.11)

Where H(z) is the Heaviside function of variable z:

H(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if z ≥ 0

0 if z < 0

(2.12)

The Mumford-Shah paradigm in its original form has a nontrivial solution that requires much

computation time because it involves solving three Euler-Lagrange equations simultaneously [38].

As an alternative, Chan and Vese in [39] proposed a piecewise constant model along with its

level-set formulation and demonstrated that the model is equivalent to the two-phase piecewise

constant approximation of MS. Assuming that image uC is composed of two regions u1 and u2

having constant intensities c1 and c2 respectively, the ”Chan-Vese” (CV) model is written as:

14



ECV (c1, c2, C) =λ1

∫
inside C

|c1 − uC |2 dxdy + λ2

∫
outside C

|c2 − uC |2 dxdy

+ν . Length(C).

(2.13)

Using the level set framework, the above energy can be written as:

ECV (c1, c2, φ) =λ1

∫
Ω

|c1 − uC |2 H(φ(x, y)) dxdy + λ2

∫
Ω

|c2 − uC |2 (1−H(φ(x, y))) dxdy

+ν

∫
Ω

δ(φ(x, y)) |∇φ(x, y)| dxdy.
(2.14)

Where, H(·) and δ(·) respectively denote the Heaviside function defined in equation (2.12) and

one-dimensional Dirac delta function, i.e. δ(z) = dH(z)/dz. The Gradient descent equations of

the above functional are then formed by employing the Euler-Lagrange derivation:

∂φ

∂t
= δ(φ)[−(c1 − uc)

2
+ (c2 − uc)

2
+ ν div(

∇φ

|∇φ| )]. (2.15)

c1(φ) =

∫
Ω
uc(x, y)H(φ(x, y)) dxdy∫

Ω
H(φ(x, y)) dxdy

. (2.16)

c2(φ) =

∫
Ω
uc(x, y)(1−H(φ(x, y))) dxdy∫

Ω
(1−H(φ(x, y))) dxdy

. (2.17)

A possible regularization of functions H(·) and δ(·) is suggested by [39]:
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H(z) =
1

2
+

1

π
arctan (

z

ε
). , δ(z) =

dH(z)

dz
. (2.18)

Where ε is a small number.

2.4.2 Optimum Choice of Smoothness Parameter

The smoothness parameter has a critical role in segmentation results. Choosing very small values

of ν will lead to over segmentation, since small edges created by the noise are also segmented.

On the other hand, choosing very large values of ν will not produce some of the important edges.

In [54], the optimum choice of parameter ν is suggested to be:

ν = βσ2 (2.19)

σ2 =

∫
Ω
(u− ū)

2
dxdy∫

Ω
dxdy

(2.20)

Where, σ2 denotes the variance of image u, ū is the mean value of u and β is a constant factor

which depends on the amount of noise in the original image.

In this chapter, several significant contributions to the field of nuclei detection and segmen-

tation have been briefly discussed. Moreover, some relevant background information considering

the basic mathematical concepts of curve evolution and level-set method was given to provide

more insight to the reader. As highlighted earlier, optimization techniques such as level-set based

methods are being considered as more principled and adaptable methods. However, in the con-

text of nuclei segmentation, a two-phase level set model will not suffice to segment individual

nucleus unless a segregation strategy is applied. In the proposed framework, we will add two
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constraints to the original level-set framework, namely topology preserving constraint and shape

constraint. In the succeeding chapter, these constraints will be discussed in details.
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Chapter 3

The Proposed Framework

The proposed framework is a new region-based segmentation method, which consists of three

major modules. First, to extract the desired stains, the image is passed through a color de-

convolution unit [3]. Afterward, the generalized fast radial symmetry transform, also known as

GFRS [5], followed by non-maxima suppression is used to specify the initial seed points and

their corresponding GFRS ellipses. Later, the resulting ellipses, which may be interpreted as

the initial nuclei borders (one per nucleus) serve as the initial curves in a level-set variational

framework. Finally, nuclei borders are evolved through the use of a statistical level-set approach

along with a topology preserving criteria that successfully carries out the task of segmentation

and separation of nuclei at the same time. Indeed, the topology preserving constraint [6] prevents

the evolving regions from remerging into each other. The flow chart in figure (3.1) demonstrates

the presented framework.
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Figure 3.1: Nuclei Segmentation Pipeline for H&E images

3.1 Color Deconvolution

In order to improve the visualization of cell and tissue sections and highlight the desired struc-

tures, biological specimens are usually stained with certain number of dyes. The most widely used

staining protocol is the combination of Hematoxylin and Eosin (H&E). Hematoxylin stains nuclei

blue, whereas Eosin is employed to stain red blood cells, cytoplasm and extracellular structures

magenta or red. Whole slide digital scanners currently available use the RGB-based1 imaging

sensors, thus a stain separation method is needed to calculate the contribution of each stain.

Ruifrok and Johnston in [3] proposed an unmixing algorithm for up to three stains that reveals

uncorrelated information about stain concentration even when the stains have overlapping spec-

tral absorption. According to Lambert-Beers law, the gray level of channel C is exponentially

dependent on the stain concentration:

1Red-Green-Blue
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IC = I0,Cexp(−A cC) (3.1)

Where I0,C and IC are intensity of light, before and after passing through the sample slide, A is

the amount of stain, and cC is the absorption factor of stain for intensity channel C. The optical

density (OD) of channel C is then defined as:

ODC = −log10(IC/I0,C) = A cC (3.2)

For each stain, optical densities of RGB channels can be measured in advance according to

the above equation. Given these reference optical densities, each stain can be characterized by a

3×1 vector, OD = [sr sg sb]
T . After dividing each OD vector by its total length, the normalized

OD matrix, S, can be formed:

S =

stain 1 stain 2 stain 3⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

sr,1 sr,2 sr,3 R

sg,1 sg,2 sg,3 G

sb,1 sb,2 sb,3 B

If we assume that X is a 3×1 vector containing the amount of each stain at a particular pixel

(x, y), then the OD values Y at that pixel can be calculated from the following linear equation:

Y(x, y) = S X(x, y), (3.3)
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Finally, solving the above linear equation yields in a 3× 1 vector representing the amount of

stains s1, s2, s3 at pixel (x, y):

X(x, y) = S−1Y(x, y) = DY(x, y) (3.4)

In particular, for the combination of Hematoxylin, Eosin and DAB stains, D is:

D =

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

1.88 −1.02 −0.55

−0.07 1.13 −0.13

−0.6 −0.48 1.57

Figures (3.2) and (3.3) illustrate two examples of Hematoxylin and Eosin stained tissues and

their corresponding stain separation results acquired by the above method.

3.2 Noise Reduction and Contrast Enhancement

As previously mentioned, in cyto-histological images noise is mainly considered as the undesirable

structures that appear in the background due to the staining and imaging process. Hence, objects

that are small enough to be considered as noise will be removed after the segmentation stage

through the use of morphological opening. Furthermore, choosing higher values of smoothness
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(a)

(b)

(c)

Figure 3.2: Examples of H&E stain separation using color deconvolution [3] (a) Original RGB
image. (b) Hematoxylin. (c) Eosin.
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(a)

(b)

(c)

Figure 3.3: Examples of H&E stain separation using color deconvolution [3] (a) Original RGB
image. (b) Hematoxylin. (c) Eosin.
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parameter ( which will be introduced later in section (2.3) ) will automatically lead to the

elimination of small structures. Aside from that, because of intrinsic acquisition mechanism in

CCD 2 sensors, microscopic images may contain some level of Poisson noise. In order to reduce

this type of noise, (isotropic) nonlinear diffusion filtering has been used to smooth the image

while preserving or even enhancing the sharp edges. Assuming that I(x, y) and Ω be the original

image and image domain, u(x, y, t), the solution of diffusion equation is calculated using the

following diffusion equation:

∂tu = div (g(|∇uσ|2)∇u) (3.5)

where,

u(x, y, 0) = I(x, y). (3.6)

∂nu = 0 , on ∂Ω (3.7)

Here, n denotes the normal vector of image boundary ∂Ω, t is a scaling parameter, and

the diffusivity function g is a decreasing function of gradient magnitude |∇uσ|, where uσ is a

Gaussian smoothed version of u. A semi-implicit discretization scheme i.e. Additive Operator

Splitting (AOS) has been used to obtain more stable and faster result. More details about the

AOS scheme can be found in [53]. In order to enhance image contrast, a linear gamma correction

method has been used such that one percent of data is saturated at low and high intensities.

2Charge-Coupled Device
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3.3 Nuclei Detection

As for nuclei detection previously discussed in section (2.2), the fast radial symmetry transform

and its affine invariant variation are employed. In the following subsections, these methods will

be described in detail.

3.3.1 Fast Radial Symmetry

The fast radial symmetry (FRST) has been very popular due to its good performance in detecting

the points of high radial symmetry, while preserving low computational cost and complexity [4].

Thanks to its fast runtime and high efficiency, FRST has been widely used in real time applica-

tions, e.g. object tracking. The transform can be explained in the following way:

For each image pixel p, and each radius n ∈ N , the corresponding positively-affected p+ve(p)

and negatively-affected p−ve(p) pixels are defined as the pixels a distance n away from p in the

direction that the gradient vector at p is pointing to or pointing away from:

p±ve(p) = p± round(
g(p)

||g(p)||n) (3.8)

Using affected points p+ve(p) and p−ve(p), the orientation projection image On and magnitude

projection image Mn are formed:

On(p±ve(p)) = On(p±ve(p))± 1 (3.9)

Mn(p±ve(p)) = Mn(p±ve(p))± ||g(p)|| (3.10)
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(a)

(b)

Figure 3.4: Fast Radial Symmetry Transform: (a) Point p and the corresponding affected pixels
p+ve and p−ve shown with black dots. (b) A grayscale image and its FRST transform.
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Where On and Mn are initially zero. At each positively affected point, images On and Mn are

incremented by 1 and ||g(p)|| respectively and at each negatively affected point, On and Mn are

decremented by the same quantities. Finally, radial symmetry transform at radius n is defined

as the convolution:

Sn = Fn ∗An (3.11)

Where An is a Gaussian kernel, Fn and Õn are:

Fn(p) =
Mn(p)

kn

( |Õn(p)|
kn

)α

Õn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
On(p) if On(p) < kn

kn otherwise

(3.12)

and kn and α are the scaling factor at radius n and radial strictness parameter respectively.

The total transform over a set of radii N = {n1, n2, ...} is defined as the average of all radially

symmetric transforms Sn, n ∈ N .

3.3.2 Generalized Fast Radial Symmetry Transform

Cell nuclei vary in size and shape during different phases of metabolism. Moreover, they may

deviate significantly from spherical symmetry in response to many different factors. For instance,

it has been observed that diseases like cancer may cause significant elongation in nuclei shape.

Therefore, in order to precisely locate the cell nuclei, it is necessary to incorporate techniques

that can handle the elongation in shape of the nuclei. For this reason, in addition to the circular

symmetry approximation, it is reasonable to assume that each nucleus in the image has undergone

an affine transformation.
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Although the fast radial symmetry (FRS) has been regarded as an efficient method which pro-

vides impressive results with a relatively low computational cost, it is not invariant with respect

to the affine transformations. In [5] the fast radial symmetry was extended to the generalized

fast radial symmetry (GFRS) for affine invariance systematically by considering the rotation and

scaling matrices:

R =

⎛
⎜⎜⎝
cos(θ) − sin(θ)

sin(θ) cos(θ)

⎞
⎟⎟⎠ , S =

⎛
⎜⎜⎝
a 0

0 b

⎞
⎟⎟⎠ (3.13)

Where θ, a, b denote the orientation, major and minor axes respectively. Accordingly, the total

affine transformation matrix G and the voting vector V̂ are determined:

G = R S (3.14)

V̂ = G M G−1 M−1 g(p) , M =

⎛
⎜⎜⎝

0 1

−1 0

⎞
⎟⎟⎠ (3.15)

In the same manner with (3.8), the associated affected pixels are formed as stated in [5],

merely by replacing the gradient vector with the voting vector at point p:

p±ve(p) = p± round(
V̂ (p)

||V̂ (p)||n) (3.16)
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3.4 Nuclei Segmentation

In section (2.3), two commonly used region-based models, namely, piecewise smooth and piece-

wise constant models were discussed. In a more general manner, segmentation is perceived as a

statistical estimation problem. The following sections present a comprehensive overview of the

statistical scheme.

3.4.1 Statistical Approach to Level Set Segmentation

The segmentation problem can be addressed within the framework of Bayesian inference by

maximizing a posterior probability. Assuming that P(Ω) represents the optimal partition of the

image u : Ω → R into disjoint regions: Ω1, ...,ΩN , the Bayes’ rule suggests that [40]:

p(P(Ω)|u) ∝ p(u|P(Ω)) p(P(Ω)). (3.17)

Where the conditional probability p(u|P(Ω)), represents the image information based on the

partitioning P(Ω), whereas the second term is the a-priori probability of the optimal partitioning

P(Ω) which corresponds to the geometric aspects of the partition and shape priors. Although

the statistical scheme allows for complex shape priors, the most typical assumption about the

geometric properties of the partition is that the boundary C of the partition is as short as

possible. This can be expressed in an exponential form:
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p(P(Ω)) ∝ e−ν|C| ν > 0. (3.18)

As mentioned earlier, the optimal partition P(Ω) splits the image domain Ω into mutually

exclusive regions {Ω1, ..,ΩN}. Further, assuming that different locations (x, y) within the same

region Ωi are independent and identically distributed with the probability density function pi,

the posterior probability p(u|P(Ω)) can be extended to:

p(u|P(Ω)) = p(u|{Ω1, ...,ΩN}) =
N∏
i=1

p(u|Ωi)

=
N∏
i=1

∏
(x,y)∈Ωi

(pi(u(x, y)))
dxdy.

(3.19)

Rather than directly maximizing the posterior probability, it is more feasible to minimize its

negative logarithm that can be expressed as the following energy functional, according to Eqs.

(3.17-3.19):

E({Ωi}i=1,..,N ) = −
N∑
i=1

∫
Ωi

log pi(u(x, y)) dxdy + ν |C|. (3.20)

3.4.2 Investigation of the Model in Two-Phase Setting

In the two-phase case, in which the image u is assumed to be partitioned into two disjoint regions,

Eq. (3.20) comes down to the following energy functional:
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E(u,C) =

∫
Ω

−log p1(u(x, y)) dxdy +

∫
Ω\C

−log p2(u(x, y)) dxdy + ν |C|. (3.21)

Pursuing the level set scheme, in a similar manner as in the previous section, the level-set

representation of the above functional:

E(φ) =

∫
Ω

−H(φ(x, y)) log p1(u(x, y))

−(1−H(φ(x, y)) log p2(u(x, y)) + ν |∇H(φ(x, y))| dxdy.
(3.22)

and the corresponding gradient descent:

∂φ

∂t
= δ(φ)

(
log

p1(u(x, y))

p2(u(x, y))
+ ν div

∇φ

|∇φ|
)

(3.23)

are formed, where functions H(·) and δ(·) have been introduced earlier in this chapter.

To further narrow down the statistical approach, the probabilistic model pi needs to be

specified. One may differentiate between parametric and non-parametric probabilistic models.

Given a parametric model pi with a set of parameters θi the energy functional in Eq. (3.20) can

be expressed as:

E({Ωi, θi}i=1,..,N ) = −
N∑
i=1

∫
Ωi

log p(u(x, y)|θi) dxdy + ν |C|. (3.24)
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A reasonable choice of such parametric models is the Gaussian distribution function with

parameters μi and σ2
i :

p(s | μi, σ
2
i ) =

1√
2πσi

exp (− (s− μi)
2

2σ2
i

) (3.25)

Consequently, the gradient descent in Eq. (3.23) will be rearranged into:

∂φ

∂t
= δ(φ)

(
log

p(u(x, y) | μ1, σ
2
1)

p(u(x, y) | μ2, σ2
2)

+ ν div
∇φ

|∇φ|
)

= δ(φ)
( (u(x, y)− μ2)

2

2σ2
2

− (u(x, y)− μ1)
2

2σ2
1

+ log
σ2

σ1
+ ν div

∇φ

|∇φ|
) (3.26)

In addition to the parametric models such as Gaussian approximation, non-parametric density

estimates are also applicable to the statistical segmentation scheme. As pointed out by [42], the

Parzen density estimate pi, can be simply obtained by smoothing the discrete histogram of region

Ωi, with a Gaussian kernel Kσ:

pi(s) = Kσ ∗
∫
Ωi

δu(x,y) s dxdy∫
Ωi

dxdy
(3.27)

where δij = 1 if i = j and 0 otherwise.

3.4.3 Integrating Multiple Feature Channels

The main advantage of the statistical approach is that the Bayesian framework in Eq. (3.17) is

not restricted to the use of image intensity, but rather it can be extended to other image features

,e.g. color, texture, motion, etc. More precisely, image u : Ω → R in Eq. (3.20) can be generally

replaced with a feature F : Ω → R:
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E({Ωi}i=1,..,N ) = −
N∑
i=1

∫
Ωi

log pi(F (x, y)) dxdy + ν |C|. (3.28)

More interestingly, it further allows for integration of multiple cues, in cases where only one

cue is not adequate [42]:

E({Ωi}i=1,..,N ) = −
M∑
j=1

N∑
i=1

∫
Ωi

log pij(Fj(x, y)) dxdy + ν |C|. (3.29)

where M denotes the number of feature channels and pij represents the probability density

function of feature Fj within region Ωi.

3.4.4 Statistical Interpretation of Mumford-Shah Model

The gradient descent in Eq. (3.26) indicates a close similarity to the piecewise constant solution

in Eq. (2.15). Letting μ1 = c1 , μ2 = c2 and σ1 = σ2 =
√
0.5, the Gaussian Bayesian model

comes down exactly to the piecewise constant approximation of the Mumford-Shah i.e. cartoon

model. In other words, the cartoon model is equivalent to the Gaussian probabilistic model with a

fixed standard deviation. Brox and Cremers in [41] further illustrated that the piecewise smooth

Mumford-Shah is a first order approximation of the Bayesian model with local region statistics.

In contrast to the previously mentioned statistical models where the same probability density

function is applied to all the locations within a region; local region models consider a different

probability density for each location of a region. The Gaussian distribution corresponding to the

local setting leads to:
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pi(s, x, y) =
1√

2πσi(x, y)
exp (− (s− μi(x, y))

2

2σi(x, y)
2 ) (3.30)

Parameters μi(x, y) and σi(x, y) can be estimated by smoothing the image with a Gaussian kernel

with standard deviation σw within a local window centered at location (x, y) :

μi(x, y) =

∫
Ωi

Gσw
(τ1 − x, τ2 − y) u(τ1, τ2) dτ1dτ2∫

Ωi
Gσw(τ1 − x, τ2 − y) dτ1dτ2

(3.31)

σ2
i (x, y) =

∫
Ωi

Gσw(τ1 − x, τ2 − y) (u(τ1, τ2)− μi(x, y))
2
dτ1dτ2∫

Ωi
Gσw

(τ1 − x, τ2 − y) dτ1dτ2
(3.32)

According to [41], it can be shown that μi in Eq. (3.31) is the exact minimizer of:

E(μi) =

∫
Ωi

(
(μi − u)

2
+

∞∑
k=1

λk

k!

∑
j1+j2=k

(
dkμi

dxj1dyj2
)2

)
dxdy (3.33)

The local Gaussian density with a fixed standard deviation σ =
√
0.5, yields:

E(μ,C) =

N∑
i

∫
Ωi

(μi(x, y)− u(x, y))
2
dxdy + ν|C|+ const (3.34)

Therefore, the Bayesian model may be re-written as:

EB(μ,C) =
∑
i

∫
Ωi

(
(μi(x, y)− u(x, y))

2
+

∞∑
k=1

λk

k!

∑
j1+j2=k

(
dkμi

dxj1dyj2
)2

)
dxdy + ν|C|+ const

(3.35)
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Ultimately, considering the first order approximation of the above equation, i.e. disregarding

higher order terms with k > 1, the above energy leads exactly to the Mumford-Shah functional

in Eq. (2.9):

EB(μ,C) =
∑
i

∫
Ωi

(
(μi(x, y)− u(x, y))

2
+ λ|∇μi|2

)
dxdy + ν|C|+ const.

=EMS(μ,C)

(3.36)

3.4.5 Adding Topology Constraint

Although the automatic handling of topology changes is generally being considered as a great

advantage of level set based schemes, such flexibility becomes undesirable in applications where

the number of components to be segmented and their topological arrangement are known in

advance, as in case of nuclei segmentation with predefined seed points. To address this problem,

a topology preserving level set method (TLSM) was proposed in [6] that can be generally applied

to all level set based approaches, within a narrow band. TLSM provides an effective strategy to

prevent automatic topology changing while maintaining the other advantages of level set over

the previously stated parametric approaches, including generation of nonintersecting curves,

facilitating the computation by using fixed grid points, and handling sharp corners.

The key idea of TLSM is to monitor the sign of level set function at every iteration and

examine a potential sign change to see whether it occurs at a so called ”simple point” or at a

”non simple point”. In accordance with the digital topology context, a simple point is a point

whose deletion does not change the topology of the binarized level set function, as shown in Fig.
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(a) (b) (c)

Figure 3.5: Level set representation on a discrete gird: dark points represent inside the zero level
set, where φ > 0. (a) Original level-set. (b) A sign change at a simple point (topology remains
unchanged). (c) A sign change at a non-simple point (topology changes).

(3.5). This verification of the candidate point can be obtained through the connected component

labeling within the 3×3 neighborhood of the point, using the concepts of Geodesic Neighborhood

and Topological Numbers [6, 43] in 2D settings:

I. Geodesic Neighborhood

The geodesic neighborhood of p ∈ V with respect to S ⊂ V of order k is the set Nk
n(p, S) defined

recursively by:

Nk
n(p, S) = ∪{Nn(q) ∩N∗

8 (p) ∩ S, q ∈ Nk−1
n (p, S)},

with N1
n(p, S) = N∗

n(p) ∩ S.

II. Topological Number

The topological numbers of the point p ∈ V , relative to the set S ⊂ V are:

T4(p, S) = #C4(N
2
4 (p, S)),

T8(p, S) = #C8(N
1
8 (p, S)),

where # denotes the cardinality of a set and Cn(S) represents the set of all n-connected compo-

nents of S ⊂ V .

In both definitions, V ⊂ Z
2 is the set of lattice points which represent the binarized image,
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n ∈ {4, 8} denotes the connectivity type, and Nn(p) and N∗
n(p) denote the n-neighborhood of

the point p, including and excluding p respectively. It can be shown that a point p is simple

if and only if Tn(p, S) = 1 and Tn̄(p, S̄) = 1, where values n and n̄ are the connectivity types

of foreground and background set of pixels S and S̄, and have to be assigned differently. For

instance, if n is set to 4, then n̄ must be 8. Consequently, the TLSM steps are presented as what

follows in algorithm (1).

Even though the topology constraint computations are only being done within a narrow

band of the zero level set, calculation of topological numbers at every iteration, decelerate the

segmentation process. Consequently, we have used a 511×1 look up table containing every

combination of pixels in a 3×3 neighborhood. Although being simple, this significantly improves

the performance of segmentation.

In figures (3.6) and (3.6), two histological and fluorescent images are segmented without

(3.6.a, 3.7.a) and with (3.6.b, 3.7.b) the topology preserving criteria respectively.

3.4.6 Roundness Energy

In applications where nuclei are priorly known to have a fairly circular structure without elon-

gation , we suggest to add a new roundness energy to the existing energy functional. One way

to measure the shape roundness is to calculate the inner product of the gradient vector and the

vector connecting each point (x,y) to a specified center point (xc, yc). In our case this center

point could be easily obtained using Fast Radial Symmetry (FRST) transform. In order to get

the desired segmentation as round as possible, we need to maximize: cos∠(�r, �∇H(φ)):
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(a)

(b)

Figure 3.6: (a) segmentation of an H&E image without topology preservation (b) segmentation
with topology preservation
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(a)

(b)

Figure 3.7: (a) segmentation of a fluorescent image without topology preservation (b) segmen-
tation with topology preservation 39



Algorithm 1 Topology Preserving Level Set

1. Initialize φ0(.) to be the signed distance function of the initial contour.

2. Update the level set function within a narrow band qi ∈ {pi |φm(pi)| < Wnb, i =
1, ..., Nnb}, at iteration m+ 1:

(a) Compute φtemp = φm(qi) + Δt Δφm(qi). If sign(φtemp(qi) = sign(φm(qi): set
φm+1(qi) = φtemp(qi) , keep B(qi) unchanged, and go to step (d) otherwise con-
tinue to the next step.

(b) Compute Tn(p, S) and Tn̄(p, S̄), where S and S̄ are the foreground and background
pixels such that: X = {pi; B(pi) = 1} and S̄ = {pi; B(pi) = 0}. If Tn(p, S) =
Tn̄(p, S̄) = 1: set φm+1(yi) = φtemp(yi) , B(yi) = 1 − B(yi) and go to step (d)
otherwise continue to the next step.

(c) Set φm+1(qi) = ε . sign(φm(qi)) and keep B(qi) unchanged.

(d) If i ≤ Nnb , then set i = i+ 1, otherwise go to step (4).

3. Reinitialize the level set function to the signed distance function of the current curve.

4. Terminate the algorithm if the zero level set has stopped moving, otherwise set m = m+1
and go back to step (2).

ER =

∫∫
cos∠(�r,∇H(φ)) =

∫∫
x,y∈C

�r . �∇H(φ)

||�r || . || �∇H(φ) ||
dxdy (3.37)

|| �∇H(φ) || = 1 and �∇H(φ) = δ(φ).∇(φ) so,

ER =

∫∫
�r . �∇φ

||�r || , δ(φ)dxdy =

∫∫
(x− xC).φx + (y − yC).φy√

(x− xC)2 + (y − yC)2
δ(φ)dxdy

=

∫∫
g(x, y, φ(x, y), φx(x, y), φy(x, y))

(3.38)

Using the Euler Lagrange Equation the gradient descent can be obtained:
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(a)

Figure 3.8: Illustration of roundness measurement.

∇ER =
∂g

∂φ
− ∂

∂x

∂g

∂φx
− ∂

∂y

∂g

∂φy
= − 1√

(x− xC)2 + (y − yC)2
δ(φ) (3.39)

∂g
∂φx

= x−xC√
(x−xC)2+(y−yC)2

δ(φ) , ∂
∂x

∂g
∂φx

= (y−yC)2

(x−xC)2+(y−yC)2(3/2)
δ(φ)+ (x−xC).φx√

(x−xC)2+(y−yC)2
δ′(φ)

∂g
∂φy

= y−yC√
(x−xC)2+(y−yC)2

δ(φ), ∂
∂y

∂g
∂φy

= (x−xC)2

(x−xC)2+(y−yC)2(3/2)
δ(φ)+

(y−yC).φy√
(x−xC)2+(y−yC)2

δ′(φ)

∂φR

∂t
= −∇E =

1√
(x− xC)2 + (y − yC)2

δ(φ) (3.40)

E = ERegion + βERoundness + ν|C|. (3.41)

Finally, the gradient descent equation with shape roundness prior is determined by:

∂φ

∂t
= δ(φ)

(
log

p1(u(x, y))

p2(u(x, y))
+ β

1√
(x− xC)2 + (y − yC)2

+ ν div
∇φ

|∇φ|
)

(3.42)
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3.4.7 The Proposed Method

The overview of the proposed nuclei segmentation pipeline is presented in algorithm2. An im-

portant property of the proposed method is that all the computations are required only in a

narrow band within the curve. The proposed framework does not add too much computational

complexity to the regular level set based narrow band implementation. In fact, at the first

stage of the pipeline, computation of GFRS ellipses is of the order O(Kl), where K is the total

number of pixels and l is the number of affine transformations (in this thesis l = 36). All the

other computations are linear with the total number of pixels. To compute the gradient descent

of equation (3.23) we have implemented two commonly used finite difference schemes: Forward

Time Centered Space (FTCS) and Alternating Directional Implicit (ADI). More details on the

numerical approximations of these schemes can be found in [54].
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Algorithm 2 Proposed Method

1. Convert RGB image to grayscale using color deconvolution method in section 3.1.

2. Calculate GFRS transforms of the image MAP = {MAP1,MAP2, ...,MAPl}, where l is
the total number of affine transformations. If the overall nuclei symmetry in the dataset is
circular use the FRST transform to obtain MAP = {MAP1}.

3. Apply non-maxima suppression on MAP to find the local maxima of each transform S ={
{p11, p12, ...}, {p21, p22, ...}, ..., {pl1, pl2, ...}

}
and store their associated parameters Ai, Bi,

θi. If you have used the FRST transform go to step (5).

4. Re-apply non-maxima suppression on S to obtain Initial seed ellipses Sc = {p1, p2, ..., pk},
Ac = {a1, a2, ..., ak}, Bc = {b1, b2, ..., bk}, θc = {θ1, θ2, ..., θk},

5. Initialize the level set φ0(.)to the signed distance function of initial ellipses obtained from
previous step. (Rescale parameters Ac and Bc.)

6. Update the level set function within a narrow band qi ∈ {pi |φm(pi)| < Wnb, i =
1, ..., Nnb}, at iteration m+ 1:

(a) Compute φtemp = φm(qi) + Δt Δφm(qi) according to equation 3.23 or 3.42 (If you
have used the FRST transform). Use Gaussian approximation or Parzen density
estimation. If sign(φtemp(qi) = sign(φm(qi): set φm+1(qi) = φtemp(qi) , keep B(qi)
unchanged, and go to step (d) otherwise continue to the next step.

(b) extract the 3× 3 neighboring points of qi and use topology look-up table to check if
the point is simple or not. if qi is simple set φm+1(yi) = φtemp(yi) , B(yi) = 1−B(yi)
and go to step (d) otherwise continue to the next step.

(c) Set φm+1(qi) = ε . sign(φm(qi)) and keep B(qi) unchanged.

(d) If i ≤ Nnb , then set i = i+ 1, otherwise go to step (8).

7. Reinitialize the level set function to the signed distance function of the current curve.

8. Terminate the algorithm if the the zero level set has stopped moving, otherwise set m =
m+ 1 and go back to step (6).
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Chapter 4

Experimental Results and

Discussions

In this chapter, several examples of cyto-histopathological images are examined to validate the

proposed method. Our experiments involve two main types of microscopic images: (I) H&E

stained images, (II) Fluorescent images. Since we couldn’t find a valid segmentation dataset of

H&E stained images, we limited our experiments of H&E images to the qualitative analysis of

segmented results.

4.1 Hematoxylin and Eosin (H&E) Stained Images

In figures (4.1 - 4.3) three histopathological sections of benign and malignant specimens are seg-

mented using three different methods: marker controlled watershed on image gradient, threshold-

ing method along with nuclei separation, and the proposed energy-based method with Gaussian

statistical model. For all three methods, Hematoxylin and Eosin images are first deconvolved

according to [3]. Also the initial markers of watershed method are obtained using the GFRS
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algorithm [5]. In figure (4.5) the same methodologies has been applied to the blue channel of the

input color image.
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Figure 4.1: Comparison of different segmentation results on a Benign H&E tissue section. (a) Original Image (of size
1583 × 828, 40x magnification). (b) Original Image after color deconvolution. (c) Initial ellipses obtained from GFRS.
(d) Initial watershed markers based on initial ellipses in (c). (e,f) Watershed (gradient) segmentation of (d). (g,h)
Maximum correlation thresholding (MCT) segmentation of (b) and shape-based separation (CellProfiler Automatic
strategy, the desired range of cells diameter is set to [10 30] ). (i,j) Proposed Method.( a = {20}, b = {0.6, 0.8} ∗ a, θ =
kπ/8 , k = 0, 1, .., 8 )



Figure 4.2: Comparison of different segmentation results on a Benign H&E tissue section. (a) Original Image. (of size
1583 × 828, 40x magnification). (b) Original Image after color deconvolution. (c) Initial ellipses obtained from GFRS.
(d) Initial watershed markers based on initial ellipses in (c). (e,f) Watershed segmentation of (d). (g,h) Maximum
correlation thresholding (MCT) segmentation of (b) and shape-based separation (CellProfiler Automatic strategy, the
desired range of cells diameter is set to [10 30] ). (i,j) Proposed Method.( a = {20}, b = {0.6, 0.8} ∗ a, θ = kπ/8 , k =
0, 1, .., 8 )



Figure 4.3: Comparison of different segmentation results on a Malignant H&E tissue section. (a) Original Image.
(of size 1583 × 828, 40x magnification).(b) Original Image after color deconvolution. (c) Initial ellipses obtained
from GFRS. (d) Initial watershed markers based on initial ellipses in (c). (e,f) Watershed segmentation of (d). (g,h)
Maximum correlation thresholding (MCT) segmentation of (b) and shape-based separation (CellProfiler Automatic
strategy, the desired range of cells diameter is set to [10 30] ). (i,j) Proposed Method.( a = {20}, b = {0.6, 0.8} ∗ a, θ =
kπ/8 , k = 0, 1, .., 8 )
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Figure 4.5: Comparison of different segmentation results on a H&E Hodgkin’s lymphoma [52]. (a) Original Image. (b)
Blue channel of the original image. (c) Initial ellipses obtained from GFRS. (d) Initial watershed markers based on
initial ellipses in (c). (e,f) Watershed segmentation of (d). (g,h) Maximum correlation thresholding (MCT) segmenta-
tion of (b) and shape-based separation (CellProfiler Automatic strategy, the desired range of cells diameter is set to [5
20] ). (i,j) Proposed Method.( a = {10, 12}, b = {0.6, 0.8} ∗ a, θ = kπ/8 , k = 0, 1, .., 8 )
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(a) (b) (c) (d)

Figure 4.6: Qualitative comparison of different segmentation methods. (a) Original Image
(b) Watershed segmentation with GFRS initial markers (c) Maximum correlation threshold-
ing (MCT) segmentation and shape-based separation (CellProfiler Automatic strategy) on the
color de-convolved image (d) Proposed Method.

In figures (4.6) and (4.7), several magnified patches of the segmentation results in figures (4.1

- 4.5) are depicted in more details. As it can be seen from the figure, watershed and thresholding

methods have failed to segment the entire nuclei area whereas the proposed curve evolution

method has been greatly successful in reaching nuclei borders.
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(a) (b) (c) (d)

Figure 4.7: Qualitative comparison of different segmentation methods. (a) Original Image
(b) Watershed segmentation with GFRS initial markers (c) Maximum correlation threshold-
ing (MCT) segmentation and shape-based separation (CellProfiler Automatic strategy) on the
color de-convolved image (d) Proposed Method.
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(a) (b) (c)

Figure 4.8: Fluorescence microscopy image segmentation. (a) The ground truth segmentation
results presented in [2]. (b) The CellProfiler [1] segmentation results using thresholding technique
and shape prior for distinguishing clumped objects. (The desired range of cells diameter is set
to [80 120]) (c) Segmentation results using the proposed method. ( a = {50, 60}, b = {0.6, 0.8} ∗
a, θ = kπ/8 , k = 0, 1, .., 8 ) 53



4.2 Fluorescent Stained Microscopy Images

To validate our new method, we have also tested our proposed method on a set of 47 fluorescent

microscopy images (U2OS cells) proposed in [2]. In all experiments, fixed parameters e.g. major

and minor axes (a and b) and smoothness parameter (ν) for all the images have been used. Also,

since this dataset contains small nuclei patches on the boundary with small GFRS responses,

a simple mean thresholding and nonlinear diffusion are added to the segmentation pipeline. In

Fig. (4.8) we have compared the proposed method with the CellProfiler previously mentioned

nuclei segmentation unit: Maximum correlation thresholding (MCT) segmentation combined

with shape-based separation (CellProfiler Automatic strategy).

4.3 Robustness of the overlapping boundaries and smooth-

ness parameter

For the sake of separating touching nuclei, conventional shape-based approaches usually take

the advantage of points of high concavity. In our proposed method however nuclei boundaries

automatically tend to occur at points of high curvature by minimizing the total curvature and

therefore by setting higher values of smoothness parameter ν. To get accurate and smooth

boundaries within the overlapping regions, in first few iterations we set the smoothness param-

eter to lower values in order for the curve to reach closer to nuclei boundaries, then we set the

smoothness parameter to higher values. This will prevent formation of jagged edges in overlap-

ping regions. The effect of smoothness parameter on overlapping edges has been illustrated in

figures (4.9.c) and (4.9.d). The smoothness parameter of figure (4.9.d) is chosen twice that of

figure (4.9.c).
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(a) (b)

(c) (d)

Figure 4.9: Effect of smoothness parameter (a) Ground truth (b) Cell profiler result (c) Proposed
method with ν = ν1, (d) Proposed method with ν = ν2, ν2 = 2ν1
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4.4 Segmentation Evaluation Metrics

Considering the segmentation as a form of data clustering problem, we can use the similarity

measurements commonly used for evaluating the clustering results. We have used the Rand and

Jaccard indexes used in [2]. Let S and R be the segmented and reference images respectively.

For each pair of pixels pi and pj , , i, j = 1, ..., n, i �= j, where n is the total number of pixels in

R and S, there are four possible situations:

True Positive (TP) : Ri = Rj , Si = Sj

False Positive (FP) : Ri �= Rj , Si = Sj

False Negative (FN) : Ri = Rj , Si �= Sj

True Negative (TN) : Ri �= Rj , Si �= Sj

Rand index (RI) measures the percentage of the pairs of pixels where two clusters concur:

RI(R,S) =
TP + TN

TP + FP + FN + TN
(4.1)

Similarly, Jaccard index is defined as:

JI(R,S) =
TP + TN

FP + FN + TN
(4.2)

In addition to Rand and Jaccard indexes, we also count the number of split, merged, added

and missing nuclei in accordance with the metrics presented in [2].

As illustrated in table (1), the proposed method yields in relatively high Rand and Jaccard

indices (with the highest Jaccard index). Also, the average number of split, merged and missing

nuclei are the minimum.
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Algorithm Rand Index Jaccard Index Split Merged Added Missing

Expert Manual 95 % 2.4 1.6 1.0 0.8 2.2
RC Threshold 92 % 2.2 1.1 2.4 0.3 5.5
Ostu Threshold 92 % 2.2 1.1 2.4 0.3 5.6
Mean Threshold 96 % 2.2 1.3 3.4 0.9 3.6
Watershed (direct) 91 % 1.9 13.8 1.2 2.0 3.0
Watershed (gradient) 90 % 1.8 7.7 2.0 2.0 2.9
Active Masks 87 % 2.1 10.5 2.1 0.4 10.8
Merging Algorithm 96 % 2.2 1.8 2.1 1.0 3.3
Proposed Method 95 % 2.5 0.5 0.79 0.57 0.19

Table 1: Comparison of different segmentation algorithms in [48–51] according to the results in
[2]. (Dataset: U2OS, pixel size: 1349×1030, Nr. Cells: 1831, Min Nr. Cells: 24, Max Nr. Cells:
63)
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Chapter 5

Conclusion and Future work

In this thesis, we have addressed the two main problems of active contours for segmenting

cytohistological imageries. The main drawback of active contours is the problem of getting stuck

in local minima. We have resolved this issue by locating the initial curves as close as possible to

the desired objects by utilizing their radial or elliptical symmetric features. Furthermore, we have

implicitly combined both boundary and region information through the use of a gradient-based

transform (FRST or GFRS) and a region-based active contour. The second issue is that active

contour method itself is not capable of separating severely overlapped cells and a separation

method (e.g. concavity detection, distance transform, ...) is needed at the ultimate stage. By

considering the topology criteria, initial curves no longer merge to each other and no more

separation is required. Finally, a new roundness energy is introduced for applications where

nuclei are priorly known to have a fairly circular structure without elongation. Experiments in

chapter 4 revealed that the statistical model (i.e. Gaussian or Parzen approximation) is much

stronger than watershed and thresholding in presence of intensity variation. In other words,

watershed and thresholding methods failed to segment the entire nuclei area in regions with

significant intensity variations and produced incomplete edges.
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As a future work, since the intensity of attached nuclei varies rapidly across the overlapping

boundaries, we would suggest to incorporate boundary energy with the existing region-based

model. This improvement is expected to generate better results specially at the boundaries

of the overlapping regions. Additionally, it is more reasonable to use a image-specific color

deconvolution technique rather than a fixed normalized optical density matrix for hematoxylin

and eosin stain deconvolution.
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