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Abstract 

Cerebral palsy (CP) describes a group of permanent disorders of posture and movement 

caused by disturbances in the developing brain. It is the most common physical disability 

of children worldwide and can lead to a wide range of functional impairments. Accurate 

diagnosis and prognosis, in terms of the type and severity of functional impairment, is 

difficult due to the wide range of injuries that may occur and the variable effect of plasticity; 

which leads to inconsistency in the clinical outcomes of children with CP. The use of 

Magnetic resonance imaging (MRI) to identify and locate brain lesions has facilitated the 

diagnosis and qualitative classification of children with CP. 

Currently, the quantification of image findings from structural MRIs is not automated and 

remains labour intensive, hence is not widely performed for clinical assessment. 

Automated brain image segmentation techniques could reduce the clinical time required to 

provide an accurate and reproducible quantification of injury. Although such approaches 

have been used to study other neurological disorders, the heterogeneous appearance of 

injury and the large anatomical distortion that occurs in CP require modification of existing 

algorithms to be sufficiently reliable. As a result, they have not been widely applied to 

MRIs of children with CP. 

In this thesis, a series of automated image quantification techniques are presented for 

analysing the MRI data obtained from children with CP. These techniques identify and 

quantify the severity of the three main types of injury observed in children with CP; 

including ventricular enlargement, cortical malformations and white and grey matter injury. 

The developed automated pipeline involves a number of technical developments and 

contributions to the automated analysis of CP MRI data. A brain tissue segmentation 

approach based on the Expectation Maximisation (EM)/Markov Random Field (MRF) 

approach was developed, with a modified MRF implementation that expects different 

tissue labels within a given neighbourhood to have a corresponding intensity gradient. 

Following this segmentation step, three different approaches were used to identify and 

quantify the three distinct types of injury observed from children with CP, which are all 

important for clinical assessment. Biomarkers from each type of injury obtained from these 

approaches were used as independent variables in a devised statistical methodology 

designed to elucidate significant and generalisable correlations between image-derived 

measures of injury and patient function. 
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Ventricular enlargement was quantified using a model of lateral ventricular shape that 

encapsulates healthy variation observed in ventricular shape. The residual of this model to 

a target shape reveals a volume of injury, allowing a measure of involvement of critical 

adjacent anatomies, such as the thalamus, caudate nucleus and lenticular nucleus, to be 

computed. This measure of involvement was devised as a way to translate the indirect 

injury of ventricular enlargement to the direct injury to the surrounding tissue leading to 

impairment. With this approach, injury was strongly linked to subcortical grey matter 

structures to multiple clinical measures of patient function. 

Cortical malformations were investigated using an encompassing set of shape measures, 

calculated at labelled regions on the cortical grey matter. The use of all several combined 

shape measures, including cortical thickness, sulcal depth and curvature, ensured that the 

range of cortical malformations would be detected. Anomalous shapes were identified 

compared to the healthy population in the corresponding cortical regions, and with this 

approach a succinct set of cortical biomarkers were linked to patient function. 

White and grey matter injuries were identified as outliers to the tissue models in the EM-

MRF segmentation, additionally using registered tissue probability maps and T2-weighted 

MRIs, where this injury appears hyperintense, to aid lesion detection. Following lesion 

segmentation refinement using the EM algorithm, specific classes of white matter, grey 

matter and internal capsule lesions were identified. This approach was shown to 

outperform the state of the art lesion detection approach. Significant and generalisable 

correlations to multiple clinical outcomes were identified using this method, which 

highlighted the importance of additionally considering grey matter lesions in addition to 

white mater lesions. 

These automated approaches tailored to CP related injury highlight (1) the reliance on 

atlas priors should be minimised and instead rely on adaptive approaches and data-driven 

modifications to enhance segmentations in regions of severe injury, which deviate 

significantly from healthy atlases, (2) utilise unsupervised approaches for lesion 

segmentation with dedicated WM and GM lesion classes, (3) the use of multiple shape 

measures to fully parameterise cortical topology, and (4) the construction of shape models 

of injury should be avoided, and instead measure residual volumes from the closest 

healthy shape from the model manifold. 
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The combination of these automated methods provides a framework for a decision support 

tool to assist clinicians tasked at analysing the MRI of children with CP. Using these 

combined approaches, a moderate to strong correlation between brain injury and patient 

function was observed (Pearson’s r between 0.545 and 0.795, p < 0.008) on an unseen 

test set. Furthermore, these automated methods can repeatedly and automatically provide 

a delineation of lesions, and through the statistical models, estimate patient outcome, 

which can help guide treatment and therapy decisions. This has the potential to benefit the 

wider scientific community, where the translation of structural MR-derived biomarkers to 

functional outcomes can help to understand of the aetiology of CP, as well as children with 

CP, where the prediction of functional outcomes can help tailor patient-specific intervention 

strategies in order to promote greater improvements in function. 
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1. Introduction 

1.1 Cerebral palsy and early brain development 

Cerebral palsy (CP) is the most prevalent cause of physical disability in children 

worldwide, occurring in around 2 children per 1000 live births [Kuban and Leviton, 1994]. It 

describes a heterogeneous group of permanent disorders of posture and movement 

caused by non-progressive disturbances in the brain during fetal development 

[Rosenbaum et al 2007]. These pathogenic disturbances lead to a heterogeneous range of 

injuries, depending on the stage of brain development the disturbance occurs. During the 

1st and 2nd trimesters, when proliferation, migration and organisation of neuronal cells are 

the predominant activities, disturbances most commonly lead to brain malformations (e.g. 

cortical malformations). In contrast, during the 3rd trimester when the architecture of the 

brain is established and key structures are formed, disturbances most often result in 

lesions in the white matter (WM) and grey matter (GM) of the brain. The periventricular 

white matter (PWM) is particularly susceptible to injury in the early stages of the 3rd 

trimester, leading to necrosis and gliosis in the WM, and is typically accompanied by loss 

of tissue, which may result in the enlargement of the ventricles. During the latter stages of 

the 3rd trimester, the cortical and deep GM is more susceptible to disturbances, leading to 

focal cortical GM or more selective deep GM involvement. Depending on the location of 

these disturbances, this may lead to various functional and motor impairments, as well as 

cognitive, linguistic, behavioural, and sensory problems [Himmelmann and Uvebrant, 

2011; Pueyo et al., 2009; Venkateswaran and Shevell, 2008]. 

Current diagnosis of CP is based on clinical observations and qualitative assessment of 

delays in motor development, abnormal muscle tone and unusual posture [Krigger, 2006] 

in the first 12-18 months of life. There are three main types of CP [Rosenbaum et al., 

2007], the most common type being spastic CP where muscle tone is stiff and typically 

arises from damage in the corticospinal tract. Other types include dyskinetic CP, which is 

characterised by involuntary muscle contractions arising from injury in the basal ganglia, 

and ataxic CP which is characterised by shaky movements caused by injury in the 

cerebellum. Qualitative classification of motor impairment in different types of CP is 

performed by applying the Gross Motor Function Classification System (GMFCS), and a 

number of functional scales can be applied for specific functional impairments, such as the 
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Manual Ability Classification System (MACS) to test hand function in children with CP or 

the Communication Function Classification System (CFCS) to test the effectiveness of 

communication. These scales allow for treatment strategies, which typically encompass 

physical therapy, medication, and surgery in severe cases [Krigger, 2006; Rosenbaum, 

2003], to be tailored to individual children with the aim of increasing the efficacy of 

rehabilitation. However, determining the most appropriate treatment for individual cases 

remains challenging due to difficulties in obtaining consistent diagnoses, and the variable 

influence of neuroplasticity [Belsky and Pluess, 2009; Chapman et al., 2003], which 

introduces complexity when predicting functional impairments [Accardo et al., 2004]. 

Standardising clinical assessment is essential to improve the consistency of diagnoses, 

help elucidate the relationship between cerebral structure and functional outcome and 

assist the optimisation of treatment strategies for individual children. 

1.2 Imaging of brain injury 

Assessments of motor impairment can be confirmed by non-invasive medical imaging. 

This allows clinicians to qualitatively classify injury into brain malformations, WM and GM 

lesions and ventricular enlargement, based on known classification systems [Krägeloh-

Mann and Horber, 2007], which is utilised to predict functional impairment and adjust 

treatment strategies accordingly. Medical imaging is crucial in improving individualisation 

of treatment [Bax et al., 2006; Ment et al., 2009], as well as increasing consistency in the 

diagnosis of CP. Several imaging technologies are used to assess CP [Accardo et al., 

2004; Bosanquet et al., 2013], including computed tomography, cranial ultrasonography 

and magnetic resonance imaging (MRI). Of these modalities, MRI is favoured as 

ultrasound is limited by acoustic windows, computed tomography involves ionising 

radiation, and both lack soft tissue contrast important for brain imaging [Hoon and 

Vasconcellos Faria, 2010]. Although alternate modalities, including functional and diffusion 

MRI, can provide complementary information on brain structure and function [Heeger and 

Ress, 2002; Madden et al., 2009], structural MRI remains most widely used in clinical 

practice, detecting injury in approximately 85% of children with CP [Korzeniewski et al., 

2008; Krägeloh-Mann and Horber, 2007]. The role of neuroimaging has been emphasised 

by the American Academy of Neurology who recommend all children with CP have an MRI 

at 2 years of age. This will facilitate injury detection in young children and neonates who 

might not show visible signs of motor or cognitive impairment, and enables interventions to 
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be implemented earlier in life. Studies in the literature have found qualitative MR findings 

to be a strong predictor of the pathogenesis of CP [Palmer, 2004; de Vries et al., 2011] 

that can be used to assess neuro-developmental risk [Ashwal et al., 2004; Mathur and 

Inder, 2009], and predict neurological deficits [Arnfield et al., 2013; Hoon and Vasconcellos 

Faria, 2010; Krägeloh-Mann and Horber, 2007]. 

Although qualitative classifications of injury into brain malformations, WM and GM lesions, 

and ventricular enlargement is the standard practice in the radiological assessment of 

children with CP, they are not sufficient to describe the large variability within each injury 

category [Feys et al., 2010]. Furthermore, the aetiology of CP in individual cases is often 

difficult to precisely establish [Paneth et al., 2006], and the variability in the cerebral injury 

covered by the term CP means that outcomes predicted by current diagnosis can be 

inconsistent [Bartlett and Palisano, 2002]. Multiple semi-quantitative scoring systems have 

been developed to address these issues and to standardise the assessment of MRIs 

[Cioni et al., 1997; Fiori et al., 2014; Inder et al., 2003; Kidokoro et al., 2013; Miller et al., 

2005; Shiran et al., 2014; Sie et al., 2005; Skiöld et al., 2013]. In these methods, specific 

criteria of brain injury are graded based on their severity, or anatomical regions are given a 

discrete score based on whether the region contained injury or was healthy, and then 

summed to provide a total measure of injury. Although such techniques allow for 

comparisons of injury between children, these methods still require manual work, and still 

only broadly classify the extent and location of injury in order to reduce the amount of 

manual effort required. 

Utilizing medical imaging in a quantitative manner, e.g. performing image segmentation to 

measure the extent, location and type of injury, is likely to be more revealing than the 

broad qualitative classifications of injury currently used in the assessment of CP [de Vries 

et al., 2011]. Quantitative assessment has the potential to assist diagnosis [Bax et al., 

2005], and also elucidate the underlying physiological relationship between the extent of 

brain injury and function [Arnfield et al., 2013; Krägeloh-Mann and Horber, 2007]. This 

quantitative assessment will assist in developing image-derived biomarkers predictive of 

functional outcomes, which has an important role in developing models linking image 

findings to patient outcomes. These models can be used to predict patient impairment 

from the image alone, acting as a decision-support tool that can guide clinical decisions 

and help tailor patient specific treatment strategies. Furthermore, these models can 
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potentially provide an insight into the complex relationship between structure and function 

in the brain [Arnfield et al., 2013; Krägeloh-Mann and Horber, 2007]. The link between 

imaging findings and functional outcomes is an important area of investigation in the CP 

setting [Arnfield et al., 2013], however this quantitative assessment is hampered by the 

current need for time intensive manual or semi-automated assessment.  

Automated approaches can alleviate manual effort and additionally benefit from 

repeatability, allowing for clinicians to instead focus on the interpretation of image findings 

and the decision of optimal treatment interventions. However, as yet, no automated tools 

are being used in the clinical assessment of children with CP. Although a number of U.S. 

Food and Drug Administration (FDA) approved medical device tools for the quantification 

of biomarkers of interest exist, such as NeuroQuant (CorTechs, Inc., La Jolla, CA, USA), 

they are mainly related to neurodegenerative disease, and not paediatric disorders. There 

is need for similar automated tools which are tailored to the specific challenges of children 

with CP, particularly the potential heterogeneity and severity of brain injury, to provide 

these benefits at the time of clinical assessment. 

1.3 Pathophysiology of lesions 

The disturbances in the developing brain indicative of CP manifest in a variety of 

characteristic ways in structural MRIs, depending on the aetiology and the presumed 

timing of the insult. Primary pathological entities include brain maldevelopments 

(particularly cortical malformations), that had occurred in the 1st and 2nd trimester of 

pregnancy, and WM and GM lesions that occur in the early and late 3rd trimester 

respectively. Ventricular enlargement and volume related changes are usually assumed to 

be secondary entities related to primary pathologies. These categories are based on their 

appearance in MRI scans, and from known classification schemes for CP [Krägeloh-Mann 

and Horber, 2007], and are shown in Figure 1.1 below. 
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Figure 1.1 Illustration of injury appearance in MRI 

 

Fig. 1.1 Illustration of three types of disturbances indicative of CP that are visible in 

structural MRI. Each column shows a different subject. All images are T1-weighted MRI, 

except for (b) which is T2-weighted FLAIR. The axial plane (a-c) of each subject is shown 

in the top row, sagittal plane (d-f) in the second and coronal plane (g-i) in the bottom row. 

In each case, disturbances are indicated by arrows on the MRI slices. Cortical 

malformations, specifically bilateral perisylvian polymicrogyria, are visible as excessive 

numbers of small gyri in (a, d, g). WM lesions resulting from PVL are shown as local 

regions of high intensity in (b), and regions of lower intensity in (e, h). In (c, f, g), 

periventricular hemorrhagic infarction leading to a severe loss of WM and secondary 

enlargement of the lateral ventricles, particularly on the left side of the image, is shown. 
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1.3.1 Brain malformations 

During the 1st and 2nd trimesters, the proliferation and migration of neuronal cells and the 

organisation of cortical sulci and gyri on the surface of the brain during development is 

controlled by several factors [Barkovich et al., 2012]. Malformations occur when this 

process is disrupted, either by genetic factors, physical or biochemical insults [Grant and 

Barkovich, 1997]. Brain maldevelopments represent a wide range of injury, including 

abnormalities of the cortical surface which constitute a large portion of brain malformations 

that commonly lead to CP. Disorders of cortical organisation can result in reduced cortical 

folding (lissencephaly), excessive numbers of small gyri (polymicrogyria), abnormally thick 

folds (pachygyria) and abnormal clefts (schizencephaly) [Barkovich et al., 2012; Legault et 

al., 2011]. Disorders of cortical migrations, termed dysplasia, is further subdivided into 

architectural dysplasia, cytoarchitectural dysplasia, Taylor-type cortical dysplasia [Tassi et 

al., 2002] and neuronal heterotopia [Hannan et al., 1999]. The clinical assessment of these 

malformations is typically performed with T1-weighted MRI, although the detection of 

cortical dysplasia was observed to be between 40-60% [Tassi et al., 2002]. An illustration 

of polymicrogyria is provided in Figure 1.1(a). Both polymicrogyria [Barkovich and Kjos, 

1992a] and schizencephaly [Barkovich and Kjos, 1992b] have been found to correlate with 

motor impairment in children with CP. The assessment of these injuries is performed in 

Chapter 6. 

1.3.2 White and grey matter lesions 

During the 3rd trimester when the architecture of the brain is established and key structures 

are formed, disturbances including hypoxic-ischemia and intraventricular haemorrhage 

most often result in lesions in the WM or GM, which are common in children with CP [Bax 

et al., 2006; Cioni et al., 1999]. These lesions represent a heterogeneous group, and 

include PWM lesions, occurring early in the 3rd trimester when the immature 

oligodendrocytes are more vulnerable, and cortical and deep grey matter (CDGM) lesions, 

occurring late in the 3rd trimester or around birth when CDGM areas are more susceptible 

to disturbances. PWM lesions are characterised on brain MRI by focal abnormal WM 

signal intensities [Argyropoulou, 2010], and were found to be the most common form of 

lesion in children with CP [Bax et al., 2006; Krägeloh-Mann and Horber, 2007]. Less 

common WM lesions, including Diffuse Excessive High Signal Intensity (DEHSI) lesions 

[Counsell et al., 2003] and punctuate WM lesions, have been found to have a possible 
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impact on clinical outcomes [Rutherford et al., 2010]. Although CDGM lesions were also 

found to be less common [Bax et al., 2006], severe motor impairment was observed in 

children with this kind of lesion [Krägeloh-Mann and Horber, 2007; Martinez-Biarge et al., 

2010], reflecting the physiological importance of the deep GM structures. Both lesion types 

appear hypointense in T1-weighted MRI, and hyperintense in T2-weighted MRI. 

Commonly, both T1- and T2-weighted MRI are used in clinical assessment of WM and 

CDGM lesions, specifically Fluid Attenuated Inversion Recovery (FLAIR) which provides a 

better contrast of PWM injury. Focal lesions indicative of CP are shown in Figure 1.1(b). 

The timing and extent of MRI lesions has been found to correlate with the severity of 

neurological defects [Bax et al., 2006; Krägeloh-Mann et al., 2002; Yin et al., 2000]. The 

assessment of these lesions is detailed in Chapter 7 of this thesis. 

1.3.3 Ventricular enlargement 

The PWM is particularly susceptible to injury in the early stages of the 3rd trimester, which 

is typically accompanied by tissue loss [Melhem et al., 2000; Palmer, 2004] and the 

enlargement of the ventricles. Excessive ventricular enlargement, termed 

ventriculomegaly, is defined as the atrial width of the ventricles exceeding 10 mm [Glenn, 

2009]. Ventriculomegaly is typified by the irregular angular appearance of the trigone and 

body of the lateral ventricle, often appearing asymmetric. T1-weighted MRI is sufficient for 

clinically assessing this type of lesion. Although FLAIR is commonly used to identify the 

underlying WM loss, in some cases ventricular enlargement may not have associated 

periventricular signal abnormalities. An example of ventricular enlargement is illustrated in 

Figure 1.1(c). There is a marked increase in lateral ventricle volume amongst children with 

CP [Grant and Barkovich, 1997; Sööt et al., 2008]. Enlarged ventricles are an indirect 

measure for loss in WM due to brain injury [Hoon and Vasconcellos Faria, 2010], and has 

been correlated with motor and cognitive impairment [Melhem et al., 2000]. The 

assessment of this secondary lesion is described in Chapter 5 of this thesis. 

1.4 Thesis aims and format 

In this thesis, new methods tailored to CP are developed to meet these challenges. This 

doctorate aims to: 
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1. to develop several automated segmentation approaches to delineate the three main 

classes of injury observed in children with CP; cortical malformations, WM and GM 

injury and ventricular enlargement; 

2. to establish a statistical methodology for modelling the relationship between brain 

injury, as measured by the image-derived measures of injury severity, and patient 

outcomes; 

3. to compare the automated results against a manual gold standard, as well as the 

current state of the art automated segmentation methods. 

Chapters 2 to 7 of this thesis is presented as a series of papers that have been published 

in international peer reviewed journals, while Chapter 8 is presented as yet unpublished 

results that are under peer review. All works are included in this thesis with permission 

from the publishing journals. The links between these publications as part of this thesis are 

outlined in Figure 1.2. 

 

Figure 1.2 Schematic of thesis chapters 

Fig. 1.2 A schematic outlining how the chapters of this thesis are linked together. 

Chapter 2 presents a systematic review of automated segmentation studies that identifies 

the main classes of lesions observed in children with CP. This review describes the current 

dearth of literature specific to the automated injury segmentation of children with CP, and 

details the current state of the art automated techniques used in other applications that 

could be modified for application to the CP setting. This review highlights the importance of 

obtaining measures for all lesion types, requiring the use of multiple methods, and the 

potential clinical utility of modelling the link between brain injury to patient outcome. 
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Chapter 3 is an original article that describes the statistical procedure used to model the 

extent to which image-derived measures of injury correlate with patient function. This 

method uses standard linear regression models, with a data-driven variable selection 

approach to maximise model generalisability and elucidate the key links between brain 

structure and function. The proposed approach was applied to measures of injury obtained 

from a manual template-derived scoring approach [Fiori et al., 2014] in this chapter, and 

then applied to the measures of injury obtained from automated methods in the 

subsequent chapters. 

Chapter 4, 5, 6 and 7 are original articles addressing Aims 1, 2 and 3, which detail the 

automated methods for detecting three main classes of injury observed in children with 

CP. Chapter 4 outlines an automated brain tissue segmentation approach robust to the 

presence of severe injury. Chapter 5 describes a method for measuring ventricular 

enlargement using a healthy ventricular shape model, and using the residual volume from 

this corresponded model to estimate the extent that critical adjacent anatomies are 

impacted. Chapter 6 details the process for analysing the shape of the cerebral cortex 

using a set of shape measures to detect a heterogeneous range of cortical malformations. 

Chapter 7 describes the methodology for segmenting WM and GM lesions as outlier 

classes to the healthy tissue distributions, using T2-weighted MRI to weight the healthy 

and lesion classes respectively, and computing lesion involvement into specific GM 

anatomies and WM tracts. Aim 3 has been addressed throughout these chapters by 

validating the performance of the methods against a ground truth assessment obtained 

from a manual expert, as well as comparing the methods against current gold standard 

techniques where applicable. 

These three automated methods are combined in Chapter 8 to characterise the extent of 

injury present in this cohort of children with CP. These measures of injury will be hereon 

referred to as “biomarkers”, as they are structural characteristics that can be objectively 

measures and evaluated as an indicator of normal biological processes, pathogenic 

disturbances related to CP, and potential responses to therapeutic intervention, which is 

consistent with previous definitions [Anon, 2001]. The biomarkers from all injury types 

were incorporated into the statistical methodology developed in Chapter 3, in order to test 

if they are independent predictors of function, and to identify the most predictive features 

for multiple types of clinical outcomes. 
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In Chapter 9, a review of the findings from the above chapters is given, and discusses the 

limitations and areas of future research. Specifically, it details the framework for producing 

a decision support tool that can acts as a second, independent reader in the future, which 

can guide clinical decision making and additionally build models of the brain that can 

predict outcomes, and tailor patient-specific treatment interventions. 
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2. Review of automated injury detection techniques in the 

CP setting 

2.1 Introduction 

In Chapter 1, it was highlighted that utilising medical imaging in a quantitative manner can 

facilitate in identifying the relationship between characteristics of brain injury and patient 

function. Through the use of automated algorithms, these quantitative models can be 

developed without the need for manual labelling. Although extensive automated 

quantitative image analysis methods exist to analyse structural MRI data, which have been 

applied to numerous diseases, including Alzheimer’s Disease (AD) [Ferrarini et al., 2008a], 

Schizophrenia [White et al., 2003], and Multiple Sclerosis (MS) [Van Leemput et al., 2001], 

none of these have been validated specifically on children with CP. The development of 

automated image segmentation techniques for CP would reduce the need for manual 

delineation of injuries, giving a finer assessment of injury by including characterisation of 

the location and extent of lesions. Furthermore the ability to measure the extent of 

anatomical injury and repeatability could enable correlations between injury and motor 

function impairment across very large cohorts, as has been performed for AD [Adaszewski 

et al., 2013; Villemagne et al., 2013].  

The dearth of automated approaches applied specifically to CP may be explained by the 

significant technical challenges present in this clinical setting. Firstly, all three major types 

of injury; including ventricular enlargement, focal WM and GM lesions, and malformations 

have different appearances, however all injury types need to be considered during 

assessment [Krägeloh-Mann and Horber, 2007; Sööt et al., 2008], necessitating the use of 

multiple segmentation techniques. The heterogeneity in lesion appearance within each 

class is also an important factor. For instance, injury may appear as subtle malformations, 

requiring algorithms highly sensitive to changes to cortical shape and robust to partial 

volume effects, or as excessive ventricular enlargement extending to the cortex, 

invalidating structural a priori assumptions on the brain, which are challenging for atlas 

based techniques to resolve [Northam et al., 2011]. The severity of injury is a significant 

challenge in the CP setting, requiring the exclusion of up to a quarter of data as the 

commonly used segmentation approaches remain error prone, and require substantial 

manual intervention. Segmentations obtained from three approaches commonly used in 
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neurological settings are illustrated in Figure 2.1. As shown, all the segmentation results 

degrade as the extent of malformations increases, with even the best method showing 

substantial mislabelled regions even for moderate malformations. Finally, as the MR 

images of children with CP may be taken between birth to 18 years of age, specific 

challenges relating to reduced contrast between WM and GM due to reduced myelination 

and higher levels of noise in neonates [Mewes et al., 2006; Prastawa et al., 2005], and the 

temporal development of complex structures, particularly the cortical surface [Dubois et al., 

2008a], need to be considered.  

The remainder of the chapter is organised as follows. In Section 2.2, a review of the 

strengths and limitations of the automated techniques for performing tissue segmentation 

is provided, as well as the segmentation of several lesion types observed in children with 

CP, providing focus on the challenges that exist in the CP setting. A discussion of future 

trends is made in Section 2.4, which highlights the current technical challenges in this 

area, proposes several developments to these methods which will be incorporated into the 

developed methods detailed in Chapters 4 to 6, and provides a focus on using these 

methods to develop quantitative biomarkers of injury that are predictive of patient outcome. 

This addresses Aim 1 of this thesis, as to “develop several automated segmentation 

approaches to delineate the three main classes of injury observed in children with CP; 

cortical malformations, WM injury and ventricular enlargement”, existing methods with 

potential application to CP must first be identified. This review has been published, and is 

available at doi:10.1016/j.ijdevneu.2015.08.004. 
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Figure 2.1 Segmentation algorithm performance on CP data 

 

Fig 2.1 Illustration of the robustness of three software packages commonly used for 

neurological assessment: FreeSurfer, fMRIB’s Automated Segmentation Tool (FAST), and 

Advanced Normalisation Tools (ANTs) Atropos, in brains of increasing injury severity. The 

cortical surface mesh deformation performed in FreeSurfer progressively deteriorates with 

increasing injury severity, failing to deform to the severely injured cortex in the most severe 

case. FAST achieves an accurate segmentation in the first two cases, however the 

severity of injury led to incorrect initial estimates of GM and WM, and hence incorrect 

tissue segmentation. Atropos, while providing the greater robustness to injury severity 

among all three methods, over segments the GM in the more injured cases, and under 

segments the WM in the second case. 
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2.2 Review of image lesion segmentation algorithms 

In this section, a review of the current automatic image segmentation techniques that can 

be used to segment injury related to CP is provided. This review is separated into four 

sections; first the fundamental problem of segmenting cerebral tissues in the presence of 

structural abnormalities is discussed in Section 2.2.1. These methods provide a basis for 

the review of techniques which segment local tissue injury, in Section 2.2.2, surface based 

analyses for identifying cortical malformations in Section 2.2.3, and shape based analyses 

for identifying morphological shape abnormalities, in Section 2.2.4. These later methods 

typically involve the tissue segmentation methods discussed in Section 2.2.1, either 

modified to incorporate lesion classes, or to provide preliminary segmentations for 

subsequent analyses. 

2.2.1 Tissue segmentation in the presence of structural abnormalities 

Robust automated tissue segmentation is a fundamental challenge, particularly in the 

application of CP. The segmentation of the GM, WM and cerebrospinal fluid (CSF), allow 

for measures of tissue volume to be computed, and can be used to detect abnormalities 

related to CP as well as preterm birth [Chou et al., 2012; Northam et al., 2011]. These 

segmentation approaches facilitate subsequent lesion and anatomical shape analyses to 

better identify injury, which are detailed in Section 2.2.2 to Section 2.2.4. Although several 

brain MRI segmentation reviews exist [Balafar et al., 2010; Bezdek, 1993], this review 

considers the technical challenges and the potential application of these techniques 

specifically in the CP setting. A summary of the studies reviewed in this section is provided 

in Table 2.1. 

Clustering algorithms are techniques that aim to identify natural groupings in unlabelled 

data, and do not rely on a priori information. Soft clustering techniques such as fuzzy c-

means (FCM) clustering [Bezdek et al., 1984], which associates each voxel with a 

membership probability to each tissue class [Brandt and Kharas, 1993; Pham and Prince, 

1999]. This approach finds groupings in the data without a priori knowledge, however often 

has reduced performance compared to supervised approaches, and may be more 

susceptible to noise, inhomogeneities and artefacts in the image, which is a major 

drawback in the CP setting. These approaches do have utility as robust, fast initialisation 

mechanisms for adaptive algorithms [Greenspan et al., 2006; Xue et al., 2007]. 
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Supervised methods utilise a priori information to assist in tissue classification. The k-

nearest neighbours (kNN) algorithm [Duda and Hart, 1973], have been frequently used to 

non-parametrically model tissue distributions [Hüppi et al., 1998; Inder et al., 1999], often 

utilizing labelled training data from atlas priors [Cocosco et al., 2003; Vrooman et al., 2007; 

Warfield et al., 2000] to assign a tissue class based on the most frequent label observed 

amongst a voxels kNN in the low dimensional space. Multiple MR modalities are often 

used to improve tissue classification, and to minimise the impact of noise. Robustness of 

supervised approaches to severe injury is dependent on the variability of injury in the 

training data, and may require semi-supervised selection of priors [Cocosco et al., 2003]. 

Several studies have proposed automated segmentation of the cerebral tissues using the 

Expectation Maximisation (EM) [Dempster et al., 1977] algorithm [Van Leemput et al., 

1999; Mortamet et al., 2005; Wells et al., 1996], which interleaves classifying each voxel to 

a specific distribution in the Expectation Step, and updating the distribution parameters 

based on the new clustering of the data in the Maximisation Step. Tissue distribution 

parameters are frequently initialised using registered a priori atlases [Weisenfeld and 

Warfield, 2009; Wells et al., 1996]. As the accuracy of registration may be affected by 

severe injury, this could lead to irrecoverable estimates of tissue distributions. This 

highlights the value of robust mechanisms, such as FCM or Otsu thresholding [Otsu, 

1975], to initialise EM [Avants et al., 2011; Greenspan et al., 2006; Xue et al., 2007]. 

Modelling of myelinated and unmyelinated WM separately has been performed for 

neonatal applications [Prastawa et al., 2005; Xue et al., 2007]. Robustness to parameter 

initialisation can be achieved by interleaving the EM method with Markov Random Field 

(MRF) models [Kindermann and Snell, 1980] to incorporate spatial information [Ashburner 

and Friston, 2005; Bricq et al., 2008b; Chai et al., 2015; Habas et al., 2010; Marroquin et 

al., 2002; Melbourne et al., 2012; Murgasova et al., 2006; Zhang et al., 2001]. Markov 

modelling has been performed for tissue segmentation without the EM assumptions, 

instead using non-parametric estimates of neighbourhood tissue distributions [Awate et al., 

2006]. 

Atlas-based image segmentation allows for the delineation of cerebral tissues and 

subcortical anatomies, using registered probabilistic atlases of tissue type [Fischl et al., 

2002; van der Lijn et al., 2008], and atlases with discrete anatomical labels [Ciofolo and 

Barillot, 2009; Klein and Hirsch, 2005]. As atlas-driven label propagation is sensitive to the 
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accuracy of registration, anatomical variability is accounted for by propagating labels from 

multiple atlases [Artaechevarria et al., 2009; Heckemann et al., 2006; Sabuncu et al., 

2010; Sanroma et al., 2015]. Multi-atlas segmentation approaches benefit from an efficient 

atlas selection strategy, choosing atlases that meet a threshold similarity metric to the 

target image [Aljabar et al., 2009] or nearby atlases in a lower dimensional projection [Li et 

al., 2015b; Wolz et al., 2010]. Further refinement of segmentations have been performed 

with incorporated EM approaches [Lötjönen et al., 2010; Rajchl et al., 2015], while 

relaxation of atlas priors was performed to better accommodate cerebral injury [Cardoso et 

al., 2009; Ledig et al., 2015], which could potentially account for the severe distortion, or 

absence, of brain tissue commonly observed in children with CP. Alternatively, approaches 

such as Large Deformation Diffeomorphic Metric Mapping (LDDMM) would allow for more 

significant deformations, and have been complemented with semi-automated 

segmentations of the ventricle to improve registration accuracy in children with 

ventriculomegaly [Djamanakova et al., 2013]. Atlas-based anatomical parcellation has 

been performed in the CP setting for tracking anatomical volumes and diffusion tensor 

measures during healthy development [Faria et al., 2010; Oishi et al., 2011] and also for 

quantifying anatomical injury [Faria et al., 2011; Oishi et al., 2013; Yoshida et al., 2013]. 

Voxel based morphometry (VBM) [Ashburner and Friston, 2000] has been used to perform 

tissue segmentation and compare regional tissue volumes [Giménez et al., 2006; Soria-

Pastor et al., 2008]. This approach performs voxel-wise statistical analyses using general 

linear models, allowing for comparisons between (healthy and unhealthy) sub-populations 

[Smith et al., 2007] or correlations with clinical outcomes. VBM software is supplied in the 

Statistical Parametric Mapping (SPM) package (Wellcome Trust Centre for Neuroimaging, 

UK) which utilises a priori information to perform tissue segmentation prior to VBM 

analysis [Chou et al., 2012; Giménez et al., 2006; Hutton et al., 2008; Soria-Pastor et al., 

2008]. As a priori constraints typically do not represent extensive injury, a Hidden Markov 

Model (HMM) was used to relax these constraints [Northam et al., 2011] and yield more 

accurate segmentations in the presence of gross disturbances. The VBM approach, 

however, has been found to be susceptible to false positive findings, particularly in the 

neocortex [Scarpazza et al., 2015]. 
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Table 2.1 Overview of tissue segmentation studies. 

Table 2.1 Overview of tissue segmentation studies. Green cells represent methods 

strengths that are suitable for application to CP, while red cells represent challenges that 

preclude these methods from this application. References highlighted in purple have 

applied these methods to children with CP or infants born preterm. 

Article  Method  Strengths Challenges Application 

Unsupervised methods 

Brandt and Kharas, 
1993; Pham and 
Prince, 1999 

Fuzzy c-
means 

 

No a priori 
information 
required 

Simple 
implementation 

Reduced 
accuracy 

Susceptible to 
image artefacts 

Segment 
cerebral 
tissues 

Supervised methods 

Hüppi et al., 1998; 
Inder et al., 1999; 
Warfield et al., 2000; 
Cocosco et al., 2003; 
Vrooman et al., 2007 

K-nearest 
neighbours 

Multiple prior 
selection strategies 

possible 

No assumptions on 
tissue distribution 

Require a priori 
information 

Registration of 
prior information 
critical 

Segment 
cerebral 
tissues 

Expectation-maximisation 

Mortamet et al., 2005 EM 
segmentation 

Fast, robust 
clustering method 

Susceptible to 
noise 

Registering atlas 
priors may fail in 
severe injury 

Segment 
cerebral 
tissues 

Van Leemput et al., 
1999; Wells et al., 
1996; Weisenfeld and 
Warfield, 2009; 
Prastawa et al., 2005; 
Xue et al., 2007; 
Ashburner and 
Friston, 2005; Bricq et 
al., 2008; Habas et 
al., 2010; Marroquin 
et al., 2002; 
Melbourne et al., 
2012; Murgasova et 
al., 2006; Zhang et 
al., 2001; Greenspan 
et al., 2006; Chai et 
al., 2015 

EM-MRF 
segmentation 

Fast, robust 
clustering method 
Can incorporate 
robust initialisation 
mechanism 

Robust to noise 

Registering atlas 
priors may fail in 
severe injury 

Segment 
cerebral 
tissues 

Markov modelling 

Awate et al., 2006 Nonparametric 
density 
estimation 

Robust to noise 
and inhomogeneity 

No assumptions on 
tissue distribution 

Require a priori 
information 

Uncommon 
neighbourhoods 

Segment 
cerebral 
tissues 
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poorly segmented 

Atlas-based methods 

Van der Lijn et al., 
2008; Fischl et al., 
2002; Cardoso et al., 
2009 

Probabilistic 
atlas 
propagation 

Can perform GM 
anatomy and WM 
tract parcellation  

Only requires 
alignment of 1 atlas 

Suitable for 
moderate 
anatomical 
variability 

Dependent on 
atlas selection 
and registration 
accuracy 

Complex model 
estimation 

Segment 
sub-cortical 
anatomies 

Djamanakova et al., 
2013; Ciofolo et al., 
2009; Klein and 
Hirsch, 2005; Faria et 
al., 2010; Faria et al., 
2011; Yoshida et al., 
2013 

Label 
propagation 

Can perform GM 
anatomy and WM 
tract parcellation  

Only requires 
alignment of 1 atlas 

Intuitive model 
segmentation 

Dependent on 
atlas selection 
and registration 
accuracy 

Only tolerates 
limited amounts 
of anatomical 
variability 

 

Segment 
cortical and 
sub-cortical 
anatomies 

Quantify 
development
al injury 

Classify CP 
type 

Sabuncu et al., 2010; 
Artaechevarria et al., 
2009; Heckermann et 
al., 2006; Aljabar et 
al., 2009; Wolz et al., 
2010; Lötjönen et al., 
2010; Rajchl et al., 
2015; Ledig et al., 
2015; Oishi et al., 
2011; Oishi et al., 
2013; Sanroma et al., 
2015; Li et al., 2015 

Multi-atlas 
propagation 

Can perform GM 
anatomy and WM 
tract parcellation  

Suitable for 
anatomical 
variability 

Can be refined with 
EM 

Require multiple 
registrations 

Atlas selection 
and label fusion 
challenging 

Segment 
cortical and 
sub-cortical 
anatomies 

Construct 
neonatal 
atlases 

Quantify 
development
al injury 

Voxel based morphometry 

Giménez et al., 2006; 
Soria-Pastor et al., 
2008; Smith et al., 
2007; Chou et al., 
2012; Northam et al., 
2011; Scarpazza et 
al., 2015 

VBM Can identify 
significant 
difference between 
sub-populations 

Can correlate 
image markers with 
outcome 

Susceptible to 
registration errors 

Confounded by 
anatomical 
variability 

Susceptible to 
false positives 

Identify local 
tissue 
volume 
differences 
between 
healthy and 
impaired or 
preterm 
cohorts 
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2.2.2 Segmentation of localised tissue injury 

Although the field of lesion detection is well-researched, there is no published work on the 

automatic segmentation of focal lesions related specifically to CP. Techniques that can be 

used to detect lesions from pathologies such as AD and MS can be modified for the 

detection of lesions in CP. One property of all reviewed methods is their use of intensity as 

a feature to discriminate lesions from healthy tissue. Due to the overlapping intensities 

between injured and healthy tissues, lesion segmentation techniques utilise multiple MRI 

modalities. While the detection of GM lesions requires specialised sequences [Nelson et 

al., 2007], T2-FLAIR images offer improved contrast of WM lesions [Herskovits et al., 

2001; Tan et al., 2002]. Consequently, correctly aligning multi-modal images is critical [He 

and Narayana, 2002]. 

Lesion detection techniques can be classified either as a modelled tissue class separate to 

WM, GM and CSF, or simply as outliers to these classes. This distinction can have 

implications for performance; a modelled lesion class may not be general enough, while 

lesion-as-outlier formulations may include many examples of non-lesions which must be 

filtered out as a post-process. Lesion outliers have been identified using FCM clustering, 

with T2-weighted MRI for refining lesion outliers [Boudraa et al., 2000; Shen et al., 2010]. 

The efficacy of unsupervised approaches depends on the availability of MR modalities to 

distinguish lesions that appear as another tissue type (e.g. WM lesions appearing as GM 

in T1-weighted MRI, or hyperintense in T2-weighted MRI). Supervised methods overcome 

this limitation using training data to identify lesions in the WM as voxels incorrectly labelled 

as GM [de Boer et al., 2009; Schmidt et al., 2012]. Supervised kNN classification is 

commonly used for lesion classification of multi-spectral data [Anbeek et al., 2004; 

Cárdenes et al., 2003; Wu et al., 2006]. Supervised artificial neural network have also 

been used to identify WM lesions [Zijdenbos et al., 2002]. However the variability of lesion 

appearance and location observed in children with CP requires that supervised 

approaches have large cohorts of training data containing many examples of injury. 

Models of healthy brain tissue intensities provided by the EM algorithm can be used to 

identify lesions, either based on aligned a priori tissue classes [Jain et al., 2015; Warfield 

et al., 1995], or as voxels with a high Mahalanobis distance from their assigned class 

[Dugas-Phocion et al., 2004]. An alternative to EM, called the Trimmed-Likelihood 

Estimation (TLE), was used for WM lesion segmentation [García-Lorenzo et al., 2011; 
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Souplet, 2009]. In another approach [Zacharaki and Bezerianos, 2012] use low-

dimensional statistical models of normality for image patches to delineate multiple 

abnormalities. The EM approach has significant potential for lesion detection in the CP 

setting, however its performance would crucially rely on the availability of multiple, specific 

MR modalities or prior information. 

Several studies utilise MRFs to smooth the tissue and lesion segmentations obtained 

using the EM method [Van Leemput et al., 2001; Sajja et al., 2006]. To avoid computing 

likelihood functions for MRFs, a Conditional Random Field (CRF) was implemented for 

lesion detection [Karimaghaloo et al., 2012], while a simplification of the MRF, called the 

Hidden Markov Chain (HMC) [Baum and Petrie, 1966], was used to classify outliers as 

lesion [Bricq et al., 2008a]. Alternatively, the Graph Cuts algorithm was then used to refine 

the MS lesion segmentations [García-Lorenzo et al., 2009], while a stochastic spatial 

approach was utilised to identify WM lesions as voxels sufficiently different to surrounding 

voxel intensities [Cheng et al., 2015]. Spatial priors that encode tissue transitions in a 

conditional transition probability matrix can play a pivotal role in achieving robustness in 

heterogeneous lesion segmentation. 

Atlas-based methods commonly utilise topological and statistical a priori information to 

classify outlier voxels as lesion [Lindemer et al., 2015; Prastawa and Guido, 2008; Shiee 

et al., 2008; Shiee et al., 2010]. Atlases have been applied to more extensive space-

occupying lesions, typically tumour delineation and simultaneous brain segmentation using 

lesion growth models [Bach Cuadra et al., 2006; Pollo et al., 2005], biomechanical models 

[Zacharaki et al., 2009] or graphical models [Njeh et al., 2015; Parisot et al., 2012; Parisot 

et al., 2014]. The ability to accommodate high deformation extends the use of these 

methods to cases of severe CP-related injury. For this purpose however, these methods 

need to segment brain tissue types within highly deformed regions as well as healthy 

regions of the brain, without misclassifying severely malformed regions as a separate 

tumour entity. A summary of these reviewed lesion segmentation studies is provided in 

Table 2.2. 
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Table 2.2 Overview of lesion detection studies. 

Table 2.2 Overview of lesion detection studies. Green cells represent methods strengths 

that are suitable for application to CP, while red cells represent challenges that preclude 

these methods from this application. References highlighted in purple have applied these 

methods to children with CP or infants born preterm. 

Article Method Strengths Challenges Application 

Unsupervised methods 

Boudraa et al., 
2000; Shen et 
al., 2010 

Fuzzy c-
means 

 

Lesion-as-outlier, or 
as separate class, 
definitions possible 

Simple 
implementation 

Requires multiple 
MR modalities 

Susceptible to image 
artefacts 

WM lesion 
detection 

Supervised methods 

De Boer et al., 
2009; Schmidt 
et al., 2012; 
Anbeek et al., 
2004; Cárdenes 
et al., 2003; Wu 
et al., 2006 

K-nearest 
neighbours 

Lesion as separate 
class definition 

A priori information 
enhance lesion 
specificity 

Requires a priori 
information from 
multiple modalities 

Lesion detection 
dependent on 
trained injury 

WM lesion 
detection in 
MS patients 

Zijdenbos et al., 
2002 

Artificial neural 
networks 

Can estimate non-
linear relationships 

  

Lesion detection 
dependent on 
trained injury 

Model relationship 
hidden 

WM lesion 
detection 

Expectation-maximisation 

Warfield et al., 
1995; Dugas-
Phocion et al., 
2004 

EM 
segmentation 

Lesion-as-outlier 
definition 

Robust to image 
noise and 
inhomogeneity 

Fast, robust 
clustering method 

Requires a priori 
information 

Requires multiple  

MR modalities 

WM lesion 
detection in 
MS patients 

Garcia-Lorenzo 
et al., 2011; 
Souplet et al., 
2009 

Trimmed-
likelihood 
estimation 

Less likely to 
converge to local 
optima  

Less sensitive to 
outliers 

Requires a priori 
information for 
initialisation 

Requires multiple 
MR modalities 

WM lesion 
detection in 
MS patients 

Zacharaki et al., 
2012 

Distribution 
estimation 

Lesion-as-outlier 
definition  

Can detect broad 
range of lesions 

No a priori 
information needed 

Lower specificity 
than models of 
pathology 

Segment 
multiple brain 
abnormalities 

Markov modelling 
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Sajja et al., 
2006; Van 
Leemput et al., 
2001; Jain et 
al., 2015 

EM-MRF Lesion-as-outlier, or 
as separate class, 
definitions possible 

Robust to image 
noise and 
inhomogeneity 

Requires multiple 
MR modalities 

Sensitive to 
registration errors 

WM lesion 
detection in 
MS patients 

Karimaghaloo et 
al., 2012 

CRF Avoids likelihood 
computations 

A priori information 
enhance lesion 
specificity 

Training data 
required for 
parameter learning 

Requires multiple 
MR modalities 

WM lesion 
detection in 
MS patients 

Bricq et al., 
2008 

HMC Lesions as outliers 
definition 

Less 
computationally 
intensive 

Requires multiple 
MR modalities 

Simpler 
neighbourhood 
model 

Required a priori 
atlas 

WM lesion 
detection in 
MS patients 

Garcia-Lorenzo 
et al., 2009 

Graph cuts Lesions as outliers 
definition 

Robust to image 
noise and 
inhomogeneity 

Requires multiple 
MR modalities 

Automated 
sink/source 
allocation 
challenging 

WM lesion 
detection in 
MS patients 

Cheng et al., 
2015  

Stochastic 
process 

Lesions as outliers 
definition 

No assumptions on 
tissue distribution 

Requires a prior 
information or atlas 
alignment to 
compute tissue 
segmentations 

Assumes lesion 
characteristics 

WM injury 
detection in 
preterm 
infants 

Atlas-based methods 

Shiee et al., 
2010; Shiee et 
al., 2011; 
Prastawa and 
Gerig, 2008; 
Lindemer et al., 
2015 

Focal WM 
lesion 
detection 

Lesions as outliers 
definition 

Suitable for 
anatomical and 
pathological 
variability 

Requires multiple 
MR modalities 

Requires a priori 
statistical and 
topological atlases 

WM lesion 
detection in 
MS and AD 
patients  

Bach Cuadra et 
al., 2006; Pollo 
et al., 2002; 
Zacharaki et al., 
2009; Parisot et 
al., 2012; 
Parisot et al., 
2014; Njeh et 
al., 2015 

Space-
occupying 
lesion 
detection 

Lesions as separate 
class/model 

Only requires 
alignment of 1 atlas 

Suitable for 
anatomical and 
pathological 
variability 

Regions of 
deformation 
mislabelled as 
tumour 

Dependent on atlas 
selection and 
registration accuracy 

Lesion modelling 
challenging 

Segment 
tumour, 
cortical and 
sub-cortical 
anatomies 



 

23 

 

2.2.3 Cortical surface based analysis 

The assessment of cortical malformations is essential, but delineating this type of injury 

remains technically challenging. Cortical GM segmentation can be performed using the 

methods described in Section 2.2.1, using parametric deformable models [MacDonald et 

al., 2000; Xu et al., 1999], or geometric deformable models [Malladi et al., 1995; Zeng et 

al., 1999] to delineate cortical surfaces. Parametric deformable models, including snakes 

[Kass et al., 1988], explicitly represent surfaces, while geometric deformable models 

implicitly represent this surface as the zero level set of a higher dimensional “level set 

function” [Osher and Sethian, 1988]. Both methods allow for relatively simple 

correspondences between surfaces, whereas mesh segmentations may require mapping 

the surface into a standard parameterisable surface, usually a sphere, to allow for point-

wise correspondences between subjects [Dale et al., 1999; Fischl et al., 1999], with 

exceptions such as CIVET. Although these comparisons can be used to measure 

deviations from normal anatomy [Thompson and Toga, 1997], point-wise correspondence 

and spherical transformations are difficult to obtain for children with severe cortical 

malformations. More recently, 4D regression models have been developed to track shape 

evolution of the cortex [Rekik et al., 2015], however this has only been demonstrated for 

children with healthy development.  

Although cortical volume measures can detect several malformations on a global scale, 

more advanced techniques that extract multiple shape measures of the cortical surface are 

needed to detect the spectrum of malformations observed in children with CP. Cortical 

thickness is an important developmental quantification of neural architecture [Chen et al., 

2008]. It has multiple definitions in the literature, including geometric distances 

[MacDonald et al., 2000; Martinussen et al., 2005], geodesic distances from the level set 

function [Tosun et al., 2004; Xue et al., 2007; Zeng et al., 1999], diffeomorphic distances 

[Das et al., 2009] and parametric correspondence distances [Lerch et al., 2005]. In 

contrast to these mesh-based measures, voxel-based measures of cortical thickness have 

been obtained with the Laplacian approach [Hutton et al., 2008; Jones et al., 2000], which 

computes topologically smooth streamlines across the cortex. FreeSurfer (Laboratory for 

Computational Imaging, US) [Fischl, 2012] has frequently been used to measure cortical 

thickness [Dierker et al., 2015; Fischl and Dale, 2000; Hatfield et al., 2011], and has been 

applied in the CP setting [Pannek et al., 2014; Rose et al., 2011]. Although it has been 
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found to be reliable when applied to relatively healthy data [Han et al., 2006; Iscan et al., 

2015], segmentation accuracy is significantly reduced for children with severe cortical 

malformations, as illustrated in Figure 2.1, and often requires manual correction. Unlike 

FreeSurfer, CIVET performs mesh segmentations initialised from the same polyhedron, 

allowing surface topology and point-wise correspondence to be inherently obtained [Ad-

Dab’bagh et al., 2006]. This software has been used to measure cortical thickness in 

children learning a second language [Klein et al., 2014]. As cortical thickness has been 

investigated in the context of cortical thinning due to AD [Haidar and Soul, 2006], it can be 

readily applied to the detection of pachygyria in children with CP. 

Cortical curvature, or folding, is an important developmental measure as the brain forms 

sulci and gyri to increase cortical volume. Cortical folding anomalies have commonly been 

investigated in infants born preterm [Dubois et al., 2008a; Dubois et al., 2008b; Rodriguez-

Carranza et al., 2008; Zhang et al., 2015]. Local curvature measures have been computed 

from cortical meshes [Chung et al., 2003; Joshi et al., 1999b; Schaer et al., 2008; Tosun et 

al., 2006; White et al., 2003], and from level set function topology [Han et al., 2004; Xue et 

al., 2007; Zeng et al., 1999]. Measures of local curvature, compared to the spatially 

corresponding cortical regions of controls, have the potential to quantify several 

malformations, including lissencephaly and polymicrogyria. 

Alternate parameterisations of the cortical surface, including the sulcal depth [Dierker et 

al., 2015; van Essen, 2005; van Essen et al., 2006; Nordahl et al., 2007; Zhang et al., 

2015], and geodesic depth [Rettmann et al., 2002; Tosun et al., 2004], have been used to 

quantify the Euclidean distance between sulci and gyri to corresponding points on a 

smooth template brain, and the geodesic distances from sulci to gyri following the cortical 

surface, respectively. Maps of sulcal depth [Alhazmi et al., 2015] have been computed 

using the BrainVoyager software (Brain Innovation, Netherlands) [Goebel, 2012]. Although 

these methods often require substantial manual input to correct errors in cortical 

segmentation, they capture critical information on sulcal depth that can identify 

schizencephaly. 
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A cortical shape measure closely related to both curvature and sulcal depth is the surface 

area of the cortex. It has been investigated in the context of schizophrenia [Rimol et al., 

2012], AD [Dickerson et al., 2009] and twin studies [Panizzon et al., 2009], which compare 

mappings of surface area provided by FreeSurfer between two populations. This measure 

could be extended to CP in order to identify several malformations, including lissencephaly 

and schizencephaly. 

Analyses of cortical shape has also been performed using statistical shape models (SSM), 

which represent a sample of shapes as a mean shape and estimates of shape variability 

provided by dimensionality reduction approaches [van der Maaten et al., 2009]. These 

methods have been used to characterise cortical shape [Caunce and Taylor, 2001; Joshi 

et al., 1997; Lohmann and von Cramon, 2000; Yu et al., 2007], however the need for 

dimensionality reduction may limit the modelling of fine topology, reducing the sensitivity of 

malformation detection using SSM approaches. A summary of the cortical modelling 

studies reviewed in this section is provided in Table 2.3. 

Table 2.3 Overview of cortical surface analyses. 

Table 2.3 Overview of cortical surface analyses. Green cells represent methods strengths 

that are suitable for application to CP, while red cells represent challenges that preclude 

these methods from this application. References highlighted in purple have applied these 

methods to children with CP or infants born preterm. 

Articles Method Strengths Challenges Application 

Cortical grey matter surface representation 

MacDonald et 
al., 2000; Xu 
et al., 1999 

Parametric 
deformable 
model 

Computationally 
efficient 

Simple 
correspondence 
between models 

Additional snake 
forces required to 
fit convoluted 
shapes 

Manual 
intervention of 
force weights 

Initialisation of 
surface critical 

Segmentation of 
cortical GM 

Malladi et al., 
1995; Zeng et 
al., 1999 

Geometric 
deformable 
model 

Robust to topological 
changes 

Suited to boundary 
representation 

Robust to 
initialisation 

Level set function 
can compute 

Computationally 
intensive 

Sensitive to partial 
volume effects 

Shape modelling 
Segmentation of 
cortical GM 
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volume, surface 
area, curvature and 
thickness 

Rekik et al., 
2015 

4D current 
representation 
of the cortex 

Current 
representation 
avoids requirement 
for point-to-point 
correspondence 

Can track thickness 
and gyrification 
longitudinally 

Only developed for 
healthy 
developmental 
trajectories 

 

Construction of 
spatiotemporal 
atlases of the 
cortex 

Predict temporal 
evolution of test 
subject cortices 

Cortical Thickness 

MacDonald et 
al., 2000; 
Martinussen 
et al., 2005 

Geometric 
definition of 
cortical 
thickness 

Simple measures Sensitive to 
segmentation 
errors 

Correspondence 
require surface 
inflation 

Not a topology 
preserving 
measure 

Measure cortical 
thickness in 
healthy children 
and in very low 
birth weight 
children 

Tosun et al., 
2004; Zeng et 
al., 1999; Xue 
et al., 2007 

Geodesic 
definition of 
cortical 
thickness 

Simple topologic 
measure 

Topology preserving 
measure 

Correspondence 
require surface 
inflation 
Computationally 
intensive 

Measure cortical 
thickness 

Das et al., 
2009 

Diffeomorphic 
registration 
definition of 
cortical 
thickness 

Topology preserving 
measure 

Sub-voxel estimate 
of thickness 

Accurately resolve 
subtle sulci 

Utilises thickness 
priors 

Requires 
registration 
normalisation 

Measure 
thickness on 3D 
phantoms and 
cortical GM 

Track thickness 
longitudinally in 
dementia patients 

Lerch et al., 
2005 

Parametric 
definition of 
cortical 
thickness 

Simple measure 

Simple inter-patient 
correspondence 

Dependent on 
parametric surface 
representation 

Measure cortical 
thickness in AD 
and healthy 
controls 

Hutton et al., 
2008; Jones 
et al., 2000; 
Haidar and 
Soul, 2006 

Cortical 
thickness using 
Laplacian 
approach 

Robust and reliable 
measure 

Provide topology 
preserving, one-to-
one mapping 

Robust to scanning 
parameters 

Sensitive to 
segmentation 
errors 

Complex inter-
patient 
correspondence 

Sensitive to partial 
volume effects 

Measure cortical 
thickness in 
healthy patients 
and patients with 
AD 

Han et al., 
2006; Hatfield 
et al., 2011; 
Dierker et al., 
2015 

Cortical 
thickness using 
FreeSurfer 

Robust to scanning 
parameters 

Simple geometric 
measure 

Correspondence 
require surface 
inflation 

Measure cortical 
thickness and 
perform 
regression with 
diagnosis of 
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infection 

Curvature/sulcation  

Dubois et al., 
2008a; Zhang 
et al., 2015 

Sulcation index 
measure of 
curvature 

Simple measure 

Correlates with 
functional outcomes 

Global measure of 
curvature 

Sensitive to partial 
volume effects and 
segmentation 
accuracy 

Correlate cortical 
surface measures 
with neurological 
outcomes 

Dubois et al, 
2008b; 
Rodriguez-
Carranza et 
al., 2008; 
Chung et al., 
2003; Joshi et 
al., 1999; 
Schaer et al., 
2008; Tosun 
et al., 2006; 
White et al., 
2003 

Mesh-based 
measure of 
curvature 

Simple measure 
Correlates with 
gestational age 

Measure 
independent of 
global size 

Sensitive to 
segmentation 
accuracy  

May require 
manual editing 

Complex inter-
patient 
correspondence 

Correlate 
curvature 
measure to 
gestational age  

Compare 
curvature 
between healthy 
children and 
children with 
disease, Williams 
syndrome (WS) 
or developmental 
disorders 

Han et al., 
2004; Zeng et 
al., 1999; Xue 
et al., 2007 

Geodesic 
measure of 
curvature 

Topologically 
preserving measure 

Robust measure 

Sensitive to 
segmentation 
accuracy 

Complex inter-
patient 
correspondence 

Compute 
curvature 
measure 

Sulcal/geodesic depth  

Van Essen et 
al., 2006; 
Nordahl et al., 
20007; Van 
Essen et al., 
2005; 
Alhazmi et 
al., 2015; 
Dierker et al., 
2015; Zhang 
et al., 2015 

Sulcal depth Unique 
morphological 
measure 

Correlates with 
neurological 
outcome 

Sensitive to 
segmentation 
accuracy 

Complex inter-
patient 
correspondence 

Compare sulcal 
depth asymmetry 
between controls 
and children with 
WS, autism and 
Asberger’s 
syndrome 

Rettman et 
al., 2002; 
Tosun et al., 
2004; 

Geodesic 
depth 

Unique 
morphological 
measure 

 

Complex inter-
patient 
correspondence 

Classification of 
sulci  

Surface area  

Rimol et al., 
2012 

Surface area 
using 
FreeSurfer 

Simple measure 

Correlates with 
gestational age 

Sensitive to 
segmentation 
errors 

Complex inter-
patient 
correspondence 

Compare surface 
area between 
healthy patients 
and patients with 
schizophrenia, 
bipolar disorder, 
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Sensitive to partial 
volume effects 

AD, and across 
twins 

Statistical shape models 

Yu et al., 
2007; Caunce 
and Taylor, 
2001; 
Lohmann and 
von Cramon, 
2000; Joshi et 
al., 1997 

Statistical 
shape model 

Harmonic shape 
model suited to 
cortical shape 

Low dimensional 
shape representation 
can construct 
healthy manifold 

Correlates with 
neurological 
outcome 

Sensitive to 
segmentation 
accuracy 

Correspondence 
sensitive to initial 
alignment 

Characterise 
cortical 
development 

Classification of 
sulci 

Compare shape 
between healthy 
patients and 
patients with 
schizophrenia 

2.3.4 Shape analysis of subcortical structures  

The shape analysis of anatomies is an important facet of lesion detection in children with 

CP, as developmental disturbances typically impact the shape of cerebral structures. A 

common instance of shape variation is the enlargement of the ventricles as a result of 

periventricular injury, which is present in up to 70% of children with CP [Sööt et al., 2008]. 

Unlike other lesion types, this does not manifest as an intensity change, but as a 

morphological change. As the ventricle borders critical deep WM and GM structures, which 

have a significant influence on outcome, this motivates the characterisation of shape. A 

summary of these shape modelling studies reviewed in this section is provided in Table 

2.4. Additionally a summary of freely available software used by studies in this review is 

provided in Table 2.5. 

Measurements of ventricular enlargement have been used in investigations of several 

cerebral diseases such as AD and schizophrenia. In these studies, variation in ventricle 

shape is frequently modelled using SSMs, with shape being represented either as 

landmarks on the ventricular surface [Graham et al., 2006; Narr et al., 2001], as multiple 

central points and surface-to-core radial measurements [Chou et al., 2007; Thompson et 

al., 2004], or as spherical harmonics [Gerig et al., 2001; Styner et al., 2003]. Typically, 

these studies construct separate models of healthy and enlarged ventricular shape 

[Ferrarini et al., 2006; Ferrarini et al., 2008a], in order to identify significant shape 

differences. However this requires machine learning approaches, such as the Self-

Organised Map (SOM) [Kohonen, 1990] and Support Vector Machines (SVM) [Cortes and 

Vapnik, 1995], to find point correspondence between the two models, and to classify 

ventricles based on trained shape features, respectively. This is not feasible for CP, where 
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although more recent methods for estimating correspondence exist [Ravikumar et al., 

2015], the variability in ventricular enlargement complicates finding the correspondences 

between enlarged ventricle surfaces, necessary to construct a model of injury, as well as 

point-wise correspondences from ventricular surfaces to this model of injury. Furthermore, 

it is of interest in CP to quantify the severity of enlargement and the impingement of 

periventricular anatomies. 

Shape modelling can also be used to identify morphological changes to subcortical 

anatomies, which are secondary lesions arising from various developmental disturbances. 

Shape models have also been used to segment deep GM structures, such as the 

hippocampus [Hong et al., 2015; Kelemen et al., 1998; Shen et al., 2012a; Styner et al., 

2004] and the thalamus [Patenaude et al., 2011], by transforming an SSM constructed 

from training segmentations to a registered image volume [Heimann and Meinzer, 2009]. 

An extension of SSMs that incorporates the texture on the surface boundary into the 

model, called the Active Appearance Model (AAM) [Cootes et al., 2001], was used to 

refine the segmentation of deep GM structures with adjacent boundaries [Babalola et al., 

2008]. Although these techniques focus more on the segmentation of these structures, the 

shape model method additionally allows for the quantitative evaluation of morphological 

deformation, in comparison to healthy shapes. This has significant potential for detecting 

injury and for identifying biomarkers linked to the outcome of children with CP. 

Table 2.4 Overview of anatomical shape analysis methods. 

Table 2.4 Overview of anatomical shape analysis methods. Green cells represent 

methods strengths that are suitable for application to CP, while red cells represent 

challenges that preclude these methods from this application. References highlighted in 

purple have applied these methods to children with CP or infants born preterm. 

Articles Method Strengths Challenges Application 

Lateral ventricles 

Graham et 
al., 2006; 
Narr et al., 
2001; 
Ferrarini et 
al., 2006; 
Ferrarini et 
al., 2008; 
Ravikumar 
et al., 2015 

Statistical 
shape model - 
landmark 
representation 

Clear ventricle 
boundary assists 
segmentation 

Can quantify extent 
of enlargement 

Correspondence to 
model of injury 

Comparison 
between healthy 
controls and 
patients with 
schizophrenia, AD 
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Chou et al., 
2007; 
Thompson 
et al., 2004 

Statistical 
shape model - 
medial 
representation 

Clear ventricle 
boundary assists 
segmentation 

Quantify extent of 
enlargement 

Correlate 
enlargement to 
outcome 

Correspondence to 
model of injury  

Only model 
ventricular horn 

Compare shape 
between healthy 
and AD groups 

Gerig et al., 
2001; Styner 
et al., 2003 

Statistical 
shape model - 
spherical 
harmonics 
representation 

Clear ventricle 
boundary assists 
segmentation 

Robust shape 
alignment 

Can quantify 
distances between 
models 

Correspondence to 
model of injury 

Non-intuitive shape 
descriptors 

Compare shape 
between twins 

Deep grey matter structures 

Kelemen et 
al., 1998; 
Styner et al., 
2004 

Statistical 
shape model - 
spherical 
harmonics 
representation 

Robust shape 
alignment 

Accurate 
segmentation 
challenging  

Correspondence to 
model of injury 

Non-intuitive shape 
descriptors 

Segment deep GM 
structures with 
deformation of 
shape model 

Compare shape 
models between 
healthy and 
schizophrenia 
groups 

Shen et al., 
2012; Hong 
et al., 2015 

Statistical 
shape model - 
landmark 
representation 

Trained shape 
features based on 
training shapes 

May not require 
point-to-point 
correspondence 

Hippocampus 
segmentation may 
require semi-
automated 
approach 

Method relies on 
representative 
training set 

Classify 
hippocampus 
shape as healthy 
or AD 

Patenaude 
et al., 2011 

Bayesian 
appearance 
model - 
landmark 
representation 

Intensity information 
included 

Allow for 
correspondence to 
injury 

Elastic registration 
and model 
optimisation 
computationally 
intensive 

Affected by MR 
contrast 

Segment deep GM 
structures with 
elastic deformation 
of shape and 
intensity model 

Babalola et 
al., 2008 

Active 
appearance 
model 

Intensity information 
included to refine 
segmentation 

Affected by MR 
contrast 

Segment deep GM 
structures with 
shape and intensity 
model 

 

 

 

 



 

31 

 

Table 2.5 List of software packages used by studies in this review. 

Table 2.5 List of software packages used by studies in this chapter. 

Software  Website Papers 

ANTs http://stnava.github.io/ANTs/ Avants et al., 2011; Das et al., 2009 

BrainVISA http://brainvisa.info/ Dubois et al., 2008a; Dubois et al., 2008b 

BrainVoyager http://www.brainvoyager.com/ Goebel, 2012; Alzhami et al., 2015 

CIVET http://mcin-

cnim.ca/neuroimagingtechnologies/civ

et/ 

Ad-Dab’bagh et al., 2006; Klein et al., 2014 

CRUISE https://www.nitrc.org/projects/toads-

cruise/ 
Xue et al., 2007; Han et al., 2004 

FreeSurfer http://surfer.nmr.mgh.harvard.edu/ Hatfield et al., 2011; Rose et al., 2011; 
Pannek et al., 2014 

FSL http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ Zhang et al., 2001; Patenaude et al., 2011 

ITK http://www.itk.org/ Avants et al., 2011; Prastawa et al., 2005; 
Garcia-Lorenzo et al., 2009; Cabezas et al., 
2011; Mortamet et al., 2005 

NifTK http://cmic.cs.ucl.ac.uk/home/software

/ 
Cardoso et al., 2011; Melbourne et al., 
2012; Rajchl et al., 2015 

SPM http://www.fil.ion.ucl.ac.uk/spm/ Ashburner and Friston, 2005; Schmidt et al., 
2012; Sajja et al., 2006; Soria-Pastor et al., 
2008; Gimenez et al., 2006; Hutton et al., 
2008 

VBM http://dbm.neuro.uni-jena.de/vbm/ Northam et al., 2012 

VTK http://www.vtk.org/ Avants et al., 2011; Rajchl et al., 2015 

2.3 Future trends 

Although most of the techniques covered in the review were applied to other cerebral 

pathologies, they have utility when assessing children with CP. However, the particular 

attributes of CP and its clinical assessment have associated technical challenges that 

need to be surmounted. Firstly, the severity of lesions in CP is heterogeneous in 

appearance, requiring techniques that can identify subtle and extensive lesions. 

Additionally, it is important to delineate all of the types of injury involved in clinical 

assessment, which will require multiple segmentation techniques. This is essential for 

examining the link between changes in anatomical structure and patient outcome. To 

frame the following discussion of recommended approaches for lesion segmentation in 

CP, Table 2.6 summarises the reviewed studies that have been applied to children with 

CP, or children born preterm, which is an intrinsically linked condition that leads to CP in 

almost half of all cases [Beaino et al., 2010]. 

 

http://stnava.github.io/ANTs/
http://brainvisa.info/
http://www.brainvoyager.com/
http://mcin-cnim.ca/neuroimagingtechnologies/civet/
http://mcin-cnim.ca/neuroimagingtechnologies/civet/
http://mcin-cnim.ca/neuroimagingtechnologies/civet/
https://www.nitrc.org/projects/toads-cruise/
https://www.nitrc.org/projects/toads-cruise/
http://surfer.nmr.mgh.harvard.edu/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.itk.org/
http://cmic.cs.ucl.ac.uk/home/software/
http://cmic.cs.ucl.ac.uk/home/software/
http://www.fil.ion.ucl.ac.uk/spm/
http://dbm.neuro.uni-jena.de/vbm/
http://www.vtk.org/


 

32 

 

 

Table 2.6 Summary of reviewed studies applied to children with CP 

Table 2.6 Summary of reviewed lesion segmentation approaches using structural MRIs 

that have been applied to children with CP or infants born preterm. Studies with (n > 25) 

images and using a scanner strength 3T of above has been bolded. 

Articles
  

Description Data Result 

Tissue segmentation in the presence of structural abnormalities 

Weisenfeld 
and Warfield, 
2009 

Automatically 
segment brain tissue 
volumes of preterm 
infants 

10 T1- and T2-
weighted MRI 

1.5T 

Tissue Dice similarity 
coefficients ~0.9 compared to 
manual segmentation. 

Prastawa et 
al., 2005 

Automatically 
segment brain tissue 
volumes 

4 T1- and T2-weighted 
MRI 

3T 

Tissue Dice similarity 
coefficients ~0.7 compared to 
manual segmentation. 

Faria et al., 
2010 

Quantify healthy brain 
development and CP-
related injury 

13 T2-weighted MRI 

1.5T 

 

Identify volumetric measures 
discrepancy from healthy 
development in a cohort of 
children with CP 

Oishi et al., 
2011 

Quantify healthy brain 
development 

14 T1- and 20 T2-
weighted MRI 

3T 

Anatomical parcellation 
achieved greater than 0.75 
Dice similarity for all 
anatomies. 

Faria et al., 
2011 

Quantify healthy brain 
development and CP-
related injury 

13 T2-weighted MRI 

1.5T 

Identify volumetric measure 
discrepancy from healthy 
development in a cohort of 
children with CP 

Oishi et al., 
2013 

Quantify healthy brain 
development and CP-
related injury 

13 T1- and T2-
weighted MRI 

3T 

Identify volumetric measure 
discrepancy from healthy 
development in a cohort of 
children with CP 

Yoshida et 
al., 2013 

Quantify anatomical 
differences between 
CP sub-types 

38 T1- and T2-
weighted MRI 

1.5T 

 

Identify volumetric measures 
that are reflected in functional 
findings for two CP types.  

Giménez et 
al., 2006 

Track WM density and 
volume during 
development. 

50 T2-weighted MRI 

1.5T 

Regional WM density 
significantly correlated with 
gestation age and weight (p < 
0.0001). 

Soria-Pastor 
et al., 2008 

Automatically 
segment brain tissue 
volumes of preterm 
infants 

68 T1-weighted MRI 

1.5T 

WM volume correlated with 
intelligence quotient (r = 0.32, 
p = 0.036). 

Northam et 
al., 2011 

Automatically 
segment brain tissue 
volumes of preterm 
infants 

49 T2-weighted MRI 

1.5T 

WM and corpus callosum 
significant predictors of 
intelligence quotient (adjusted 
r2 = 0.7, p < 0.001). 
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Segmentation of localised tissue injury  

Cheng et al., 
2015 

Automatically 
segment WM injury in 
preterm neonates 

177 T1-weighted MRI 

1.5T 

Automatic segmentation 
difference from ground truth < 
0.2cm2 

Cortical surface based analyses 

Martinussen 
et al., 2005 

Identify disruptions to 
cortical development 
in preterm infants  

157 T1-weighted MRI 

1.5T 

Identified regions of significant 
differences in cortical thickness 
between healthy and preterm 
infants. 

Obtain significant correlations 
between cortical measure and 
intelligence quotient (r = 0.30-
0.48, p < 0.05). 

Xue et al., 
2007 

Automatically 
segment brain tissue 
volumes and 
characterise healthy 
cortical development 

25 T1- and T2-
weighted MRI 

3T 

Tissue Dice similarity 
coefficients ~0.75 compared to 
manual segmentation. 

Identify linear relationship 
between cortical measures and 
gestational age.  

Dubois et al., 
2008a 

Quantify healthy 
cortical development  

45 T1- and T2-
weighted MRI 

1.5T 

Obtain significant correlations 
between cortical surface 
measure and volume at term 
equivalent age (r2 = 0.48-0.49). 

Obtain significant correlations 
between cortical surface 
measure and multiple 
neurological outcomes (r2 = 
0.33-0.38). 

Dubois et al., 
2008b 

Quantify healthy 
cortical development, 
and development 
when lesions were 
present 

35 T1- and T2-
weighted MRI 

1.5T 

Obtained significant 
correlations between cortical 
surface and tissue volume 
measures with gestational age 
(r2 = 0.60-0.97). 

Rodriguez-
Carranza et 
al., 2008 

Quantify healthy 
cortical development 

15 T1-weighted MRI 

1.5T 

Quantify several cortical 
folding measures, all 
significantly correlated with 
age. 

Zhang et al., 
2015 

Compared cortical 
shape measures 
between healthy term-
born children and 
children born preterm 

249 T1- and T2-
weighted MRI 

3T 

Identified significant cortical 
shape differences between the 
two cohorts. 

Shape analysis of subcortical structures 

No studies found. 
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The classification of cerebral tissue types is a fundamental problem in the analysis of 

disturbances observed in children with CP. Utilizing a priori information is critical for 

achieving accurate anatomical segmentations [Ledig et al., 2012; Sabuncu et al., 2010; 

Wolz et al., 2010] or overcoming contrast limitations in the newborn brain [Prastawa et al., 

2005]. To accommodate the severity of injury typical of CP, atlas-based approaches 

should incorporate a priori relaxation [Cardoso et al., 2009], or alternatively (or in addition) 

implement registration approaches that allow for more significant deformations 

[Djamanakova et al., 2013; Faria et al., 2011], an approach that has been applied to CP 

setting. Furthermore these segmentation approaches should incorporate adaptive EM 

approaches [Chai et al., 2015; Van Leemput et al., 1999; Lötjönen et al., 2010; Rajchl et 

al., 2015; Weisenfeld and Warfield, 2009; Wells et al., 1996], augmented with spatial MRF 

models [Zhang et al., 2001], an approach which has been validated on challenging 

neonatal and newborn MRIs [Prastawa et al., 2005; Weisenfeld and Warfield, 2009]. 

Initialising this EM approach with robust estimates of tissue distributions using FCM 

[Bezdek et al., 1984] or Otsu thresholding [Otsu, 1975] is recommended. In support of this 

proposal, these initialisation approaches which are implemented in Atropos [Avants et al., 

2011], provided greater robustness to injury illustrated in Figure 2.1 compared to 

FreeSurfer and FAST, as the latter rely to a greater extent on prior information. Additional 

modifications are required to further reduce reliance on prior information and better 

accommodate injury, for instance by modifying spatial clique potentials based on certain 

tissue or spatial characteristics, in order to enhance segmentation accuracy in cases such 

as those presented in Figure 2.1. Although measures of tissue volume can be computed 

from the tissue segmentations obtained using this approach, [Chou et al., 2007; Dubois et 

al., 2008b; Northam et al., 2011], volume alone is not sufficient for identifying the 

heterogeneous range of injury observed in children with CP. Furthermore, although 

several studies use anatomical parcellation to track measures from diffusion MRI 

throughout healthy development [Faria et al., 2010; Faria et al., 2011; Oishi et al., 2011; 

Oishi et al., 2013; Yoshida et al., 2013], the long scanning times for diffusion MRI 

complicate the imaging of young children, and are currently not the standard for clinical 

assessment [Saunders et al., 2007]. Instead it is advantageous to assess individual focal 

lesions from structural MRI. 
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Statistical models that identify lesions as outliers to healthy tissue classes [Dugas-Phocion 

et al., 2004; Zacharaki and Bezerianos, 2012] may be best suited for identifying the 

heterogeneous range of lesions, and can be readily extended onto EM-based 

segmentation approaches [Van Leemput et al., 2001]. For the CP setting, detection of both 

WM and GM lesions are important, the latter of which remains a particular challenge 

[Pannek et al., 2014]. Lesions-as-outliers detection should be complemented with 

additional MR modalities where lesions appear as hyper-intense regions [Herskovits et al., 

2001; Jain et al., 2015; Nelson et al., 2007; Tan et al., 2002], to avoid false negatives 

when lesion voxels resemble healthy tissue distributions. Spatial information should again 

be incorporated using spatial models [Bricq et al., 2008a; Karimaghaloo et al., 2012; Van 

Leemput et al., 2001; Sajja et al., 2004], or with matrices of expected tissue transitions 

within neighbourhoods that has been applied to lesion detection in preterm neonates 

[Cheng et al., 2015], which can enhance the specificity of lesion detection. For lesion 

detection in neonatal images, it is likely necessary to include healthy tissue models of 

myelinated and unmyelinated WM, which often have ambiguous contrast in MR images 

[Prastawa et al., 2005].  

Analysis of cortical shape is necessary to identify the range of cortical malformations 

observed in children with CP. While several shape parameterisations exist, they critically 

rely on an accurate segmentation of the cortex. This remains a non-trivial task, despite 

several software packages being freely available (Table 2.5). The complex structure of the 

cortical surface challenges cortical segmentation [Hatfield et al., 2011], and surface 

inflation [Fischl et al., 1999]. These difficulties are exacerbated for CP, which can be 

typified by highly abnormal anatomy. The relaxation of atlas priors using EM approaches 

and spatial models may yield a robust cortical segmentation, while deformable models 

such as snakes [Kass et al., 1988] or level sets [Osher and Sethian, 1988] assist in 

identifying topological correspondences between cortical surfaces [Han et al., 2004; Zeng 

et al., 1999]. If an accurate mesh of the cortical surface can be provided, multiple 

characteristics of shape can be obtained, including cortical thickness [Hutton et al., 2008; 

Jones et al., 2000; Lerch et al., 2008; Martinussen et al., 2005] to identify pachygyria, and 

cortical folding [Chung et al., 2003; Joshi et al., 1999a; Tosun et al., 2006; White et al., 

2003] and sulcal depth [Dierker et al., 2015; van Essen et al., 2006] to quantify the extent 

of several malformations, including schizencephaly, lissencephaly and polymicrogyria. All 
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three of these cortical measures have been used to characterise healthy cortical 

development or quantify interrupted development in children born preterm [Dubois et al., 

2008a; Dubois et al., 2008b; Martinussen et al., 2005; Rodriguez-Carranza et al., 2008; 

Xue et al., 2007; Zhang et al., 2015], illustrating the potential use of these measures in the 

CP setting. Comparison of these shape measures to the spatially corresponding regions of 

healthy brains may assist in the identification and quantification of cortical injury in children 

with CP. 

Although no study has applied shape models to the CP setting, the analysis of anatomical 

shape is important for detecting the enlargement of the lateral ventricles. Reviewed studies 

use the SSM method to construct separate healthy and pathologic models to ascertain 

shape differences between the cohorts [Ferrarini et al., 2008a; Gerig et al., 2001; 

Thompson et al., 2004]. Unlike degenerative pathologies, developmental disturbances 

cause highly irregular changes in ventricular shape [Truwit et al., 1992]. Hence obtaining 

point-wise correspondences between injured ventricular shapes is challenging. The use of 

normative models, constructed solely from healthy shapes, in order to minimise 

correspondence errors, is recommended. As normative models contain information on the 

natural variability in anatomical shape, the location and the extent of enlargement may be 

characterised as either as large deformations from this healthy model, or as regions that 

are not described by the healthy manifold contained in shape model. Shape modelling of 

subcortical anatomies [Hong et al., 2015; Kelemen et al., 1998; Patenaude et al., 2011; 

Styner et al., 2004] could reveal morphological injury in these physiologically important 

structures, which profoundly impact functional impairment [Rose et al., 2011]. 

Heterogeneity in anatomical shape suggests an explicit model for injured anatomies 

should be eschewed in favour of characterizing the extent of abnormality relative to 

normative shape models [Yu et al., 2007]. 

The clinical value of the reviewed techniques is the identification and quantification of 

image-derived biomarkers of brain injury, which can be correlated with clinical measures of 

outcomes [Dubois et al., 2008a; Martinussen et al., 2005; Nordahl et al., 2007; Northam et 

al., 2011; Soria-Pastor et al., 2008]. This may help provide more refined prognoses and 

treatments for children with CP, by providing links between brain structure and patient 

function to reduce inconsistencies in observed outcomes. Future studies should look to 

provide correlations between image findings and clinical outcomes, specifically motor 
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outcomes, which are the main type of limitation in children with CP. This understanding will 

assist in the accurate prediction of functional outcomes, which can support clinical 

assessment and the tailoring of treatment to individual children. 

2.4 Conclusion 

A review of algorithms for segmenting brain injury observed in the MRIs of children with 

CP has been presented in this chapter. Due to the complexity of CP, it is crucial to assess 

all three types of brain injury, including ventricular enlargement, cortical malformations and 

WM and GM lesions, which requires the use of several segmentation algorithms that will 

be discussed in the following chapters. In this chapter, SSMs have been identified as a 

method to analyse anatomical shape and to detect morphological changes caused by 

injury, specifically ventricular enlargement. This proposed analysis of ventricular shape 

using healthy SSMs to detect injury in critical periventricular anatomies is provided in 

Chapter 5. Additionally, multiple geometric measures of cortical shape obtained from a 

mesh-based model of the cortical surface are recommended from this chapter to identify of 

the spectrum of possible developmental malformations of the GM, which have serious 

implications for outcome. Critical to this method is to have a robust segmentation 

algorithm, incorporating relaxation strategies of atlas-based priors, and instead relying on 

adaptive EM algorithms with interleaved contextual spatial information via MRFs to provide 

robustness to injury severity. The developed brain segmentation and cortical shape 

analysis as part of this thesis are in provided in Chapters 4 and 6 respectively. This review 

has also recommended the detection of heterogeneous lesions with lesion-as-outliers 

approaches using multiple MR modalities. The lesion detection strategy developed during 

this thesis is detailed in Chapter 7 in order to correlate lesion burden with patient 

impairment. These automated methods are combined in Chapter 8 to assess whether the 

different biomarkers of injury are independent. In order to elucidate the relationships 

between quantifications of injury and clinical function, statistical models are first required. 

Therefore, in Chapter 3, a potential statistical methodology for constructing these models 

is discussed. Crucially, such algorithms can assist clinicians in tailoring effective, patient-

specific treatment for children with CP. 
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3. Statistical methodology to model the relationship between 

brain injury and patient motor outcomes 

3.1 Introduction 

The automated quantification of injury from MRI allows for the construction of statistical 

models relating biomarkers of injury to patient outcome. This allows such approaches to 

provide an estimate of patient function for motor, cognitive, visual or communication tasks, 

to name a few, guiding clinical decisions around what type of interventions may be 

needed, and how intensive these interventions should be, for individual children. However, 

the selection of the statistical methodology in this chapter was performed using manual 

measures of injury based on MRI assessment, instead of using automated quantifications 

of injury as described in Chapters 4-7, in order to focus on the methodology itself. The 

work in this chapter has been published, and is available at doi:10.1007/s00247-015-3473-

y. 

Several manual scoring systems have been developed to standardise the radiological 

assessment of MRIs [Fiori et al., 2014; Inder et al., 2003; Kidokoro et al., 2013; Miller et 

al., 2005; Shiran et al., 2014; Sie et al., 2005; Skiöld et al., 2013]. In these methods, 

specific criteria of brain injury are graded based on their severity [Inder et al., 2003; 

Kidokoro et al., 2013; Miller et al., 2005; Shiran et al., 2014; Sie et al., 2005; Skiöld et al., 

2013], or anatomical regions are given a discrete score based on whether the region 

contained injury or was healthy [Fiori et al., 2014; Shiran et al., 2014]. The sum of these 

individual sub-scores of injury provides a total measure of injury. Such techniques allow for 

comparisons of injury between children, which can help elucidate links between brain 

injury and patient function, and facilitate the prediction of patient function from imaging 

findings. 

Although several of these MRI scoring methods were compared with clinical scores of 

patient function [Shiran et al., 2014; Sie et al., 2005], they inherently weight the sub-scores 

through separate injury scales. As with automatically computed biomarkers, there is a 

need to optimise the weights of these manual clinical scores in order to account for the 

relative impact that different injuries have on patient function, which would provide a more 

accurate prediction of patient outcome. It is also important for any scoring system to 
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consist of a succinct set of the most relevant scores of injury for a particular neurological 

outcome. This can improve the clinical expediency of MRI scoring methods, while 

maintaining its value as a predictive tool. 

In this chapter, standard linear regression models are used to optimise these scoring 

systems in two ways. The first of these developments was to weight the individual injury 

scores in order to minimise the residual variance between the predicted score of function 

with measures of bimanual coordination. These model weights take into account that the 

various parts of the brain have different degrees of impact on the overall neuro-cognitive 

and motor function of children with cerebral palsy. The second development was to reduce 

the number of individual injury scores in the scoring method. A major risk of using a large 

number of independent variables is overfitting, which while giving good results on training 

data will not generalise to unseen data. Reducing the number of injury scores minimises 

the risk of over-fitting the linear models, with the aim of improving both the accuracy of 

predicting impaired motor function in unseen data as well as the clinical expediency of 

injury quantification in children with CP. These developments are applied to the semi-

quantitative scale for brain lesion severity introduced by Fiori et al. [Fiori et al., 2014], and 

relate these measures of injury to the AHA clinical score for bimanual hand function. 

However these developments can be applied on any quantitative radiological scoring 

scale, or extended to any correlation analyses between image-derived measures and 

patient outcome [Cioni, 2000; Kulak et al., 2007; Mercuri et al., 1999; de Vries et al., 1998; 

Yokochi et al., 2008]. This addresses Aim 2 of the thesis, “establish a statistical 

methodology that translates image-derived measures of injury severity to patient functional 

impairment, and thus determine the elucidated impact between brain injuries to patient 

outcomes”. 

3.2 Materials and Methods 

3.2.1 Study Participants 

Image data used in this chapter, and throughout the rest of this thesis, were obtained from 

The University of Queensland Cerebral Palsy and Research Rehabilitation Centre 

(QCPRRC), Brisbane, Australia, and the Stella Maris Fondazione, Pisa, Italy. Study 

participants included children who were recruited as part of ongoing studies of children 

with unilateral CP [Boyd et al., 2013a; Boyd et al., 2013b]. For both studies, ethical 
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approval was granted from the appropriate ethics committees. Informed parental consent 

was obtained for all participants from both studies. Data were included based on the 

clinical phenotype of unilateral CP, diagnosed by the same experienced clinician. Children 

with the clinical phenotype of bilateral CP were excluded from this study.  

Of the total children recruited in these ongoing studies, a total of 139 children were 

included for the studies constituting Chapters 3 through to 8 of this thesis. This includes 95 

children with clinically diagnosed CP (50 male, 45 female, mean age 11.4, age range 5-

17), and 44 typically developing children (TDC) with no observed diagnosis of injury (15 

male, 29 female, mean age 10.7, age range 7-16). Chapters 5, 6 and 8 include this entire 

cohort, while only a subset of this data were used in the remaining chapters, which is 

defined within the specific chapters. 

3.2.2 MRI acquisition  

T1-weighted magnetisation-prepared rapid acquisition with gradient echo (MPRAGE) 

images for the whole cohort (n = 139) detailed in Section 3.2.1 were acquired from one of 

two scanners, and one of three sets of scanning parameters: including 106 images 

acquired with a 3T MR-system (Siemens, Germany) scanner (TR = 1900 ms, TE = 2.32 

ms, flip angle = 9 degrees), 19 images acquired with a 1.5T system (General Electric, 

USA) scanner (TR = 12.36 ms, TE = 5.17 ms, flip angle = 13 degrees) and 14 images 

acquired with a 1.5T system (General Electric, USA) scanner (TR = 124.29 ms, TE = 4.37 

ms, flip angle = 10 degrees).  

A subset of recruited children (n = 125) also underwent either T2 Turbo Inversion 

Recovery Magnitude (TIRM) (TR = 7000 ms, TE = 79 ms, flip angle = 120 degrees, slice 

thickness = 4 mm, n = 116) or T2 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo 

(HASTE) (TR = 1500 ms, TE = 81 ms, flip angle = 150 degrees, slice thickness = 4 mm, n 

= 112), acquired using a 3T Siemens’ scanner. 

3.2.3 Magnetic Resonance Imaging scoring technique 

Out of the entire cohort described in Section 3.2.1, a subset of 76 children were scored 

using the semi-quantitative brain lesion severity scale by a single child neurologist [Fiori et 

al., 2014]. For each child, the MPRAGE and TIRM images were used for scoring injury. 

Both modalities are important for assessing the full range of injury observed in children 

with CP, to avoid incorrect estimates of injury severity. In this scoring technique, after 
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visually assessing the MRI scans, any observed tissue abnormality was manually drawn 

onto the closest of the six representative slices from the brain on the graphical template. 

The cerebral lobes (temporal, frontal, parietal and occipital) were traced according to the 

Talairach atlas [Talairach and Tournoux, 1988], on the graphical six-axial-slice template, 

and further divided into periventricular, middle and cortico/subcortical WM layers. Each of 

these regions were scored either '0' if the anatomy was not impacted on any slice, '0.5' if 

the anatomy was impacted on less than half of the axial slices it was present, '1' if the 

anatomy was impacted on more than half of the axial slices it was present. Subcortical 

structures (e.g. basal ganglia, thalami, brainstem and posterior limb of the internal capsule 

(PLIC)), corpus callosum and cerebellum were scored either ‘0’ or ‘1’ if not impacted or 

impacted respectively. Anatomical scores were added together to produce aggregated 

measures of hemispheric (contralateral or ipsilateral to the clinical side of hemiplegia) and 

of global injury. This scoring technique was found to be a reliable measure of injury, and 

both the intra-rater and inter-rater reliabilities exceed 0.85 observed from the global scores 

from 34 children [Fiori et al., 2014]. An example of a completed form is provided in Figure 

3.1. 
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Figure 3.1 Template used to manually quantify injury observed on MRI 
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Fig. 3.1 (a) The template used in the semi-quantitative scale for brain lesion severity introduced by Fiori et al. [Fiori et al., 2014]. Patient 

details and available MR-sequences are filled in at the top of the template. Six representative axial slices are portrayed below, to allow 

any observed injury from the MRI to be translated onto this form. This injury is quantified in the boxes below. Left and right hemispheres 

of the frontal (F), temporal (T), parietal (P) and occipital (O) lobes are split in to periventricular (PV), middle (M) and cortical/subcortical 

(CSC) regions. These regions are scored ‘0’ if the region is uninjured on any of the axial slices that it is present, ‘0.5’ if the region is 

affected in fewer than half of the axial slices that the region is present, or ‘1’ if the region is affected in more than half of the axial slices 

that the region is present. The lenticular nucleus, caudate nucleus, PLIC, thalamus and brainstem are scored dichotomously, ‘0’ if 

uninjured or ‘1’ if injured. The corpus callosum is divided into three parts; anterior, middle and posterior, and the brainstem is divided into 

left and right hemispheres, and the cerebellar vermis, as shown at the bottom of the template. These scored regions are then added in 

the set of boxes on the lower right of the form, to give a total measure of injury that is out of 40 (the maximum score). (b) Shows an 

example of a completed template. Observed injury from the MRI is drawn in red, with filled in red regions showing PWM injury, and the 

red outline from the ventricle illustrating ventricular enlargement. The red numbers below the axial slices denote with axial slice of the 

image each slice corresponds to. Scores of ‘0’ are left blank, scores of ‘0.5’ are denoted with a dot and scores of ‘1’ with a cross. The 

sum of these scores to produce a total injury score are shown in the bottom right of the template. 
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3.2.4 Patient function scoring 

For most of the children involved in this study (n = 89), several clinical scores of patient 

function were measured 0-22 weeks after MRI scanning as part of the ongoing studies on 

children with CP [Boyd et al., 2013a; Boyd et al., 2013b], in order to provide an overview of 

patient function. In this thesis, six of those clinical scores were utilised to represent patient 

motor, cognitive, visual and communicative function. The Assisting Hand Assessment 

(AHA) was used to quantify the motor capabilities of children with CP, specifically the 

function of the impaired hand as an assisting hand in bimanual tasks. The AHA score 

ranges from 0 and 100, with larger scores indicating greater ability from the impaired hand 

during these tasks. Although not a measure of gross motor function, the Rasch measured 

AHA score was used for several reasons. Firstly, this score has a wide dynamic range 

(from 0 to 100) making it more suitable for regression analyses compared to the GMFCS, 

which only has five levels. Furthermore, most study participants had a GMFCS level of 

either I or II, making the measure of upper limb manual ability more relevant for this cohort. 

Additionally, this measure has been shown to be a reliable and responsive measure for 

children with unilateral CP [Krumlinde-Sundholm et al., 2007]. Finally, it does not contain 

information on laterality, referring solely to the assisting hand. In this chapter, the multiple 

correlation between the optimised MRI-based score and the AHA measure was used as a 

measure of goodness of fit of the model. 

Other measures of patient function were also recorded, and are utilised in the following 

chapters of this thesis. Measures of patient cognition, although difficult to quantify, is 

measured in this study using two parent reported questionnaires scoring their child’s 

behavioural and emotional function in daily life; the Behaviour Rating Inventory of 

Executive Function (BRIEF) [Gioia et al., 2002] and Strengths and Difficulties 

Questionnaire (SDQ) [Bourdon et al., 2005]. To quantify visual acuity in this study, the Test 

of Visual Perception Skills (TVPS) measure [Frostig et al., 1961] was utilised to assess the 

child’s ability to discriminate and memorise visual cues. Communicative ability was 

quantified in this study using the vocabulary (VOC) and word reasoning (WR) subtests of 

the Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III) [Wechsler, 1967], 

which assess the child’s ability to express and comprehend language, respectively. 
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3.2.5 Template pre-processing 

Since the cohort was recruited on the basis of unilateral symptoms, it was assumed that 

the contralateral/ipsilateral relationship was more relevant to motor function than left/right 

handedness, accounting for the brain’s strong bilateral symmetry [Rickard et al., 2000]. 

Hence, prior to analysis, the anatomical scores on the template were left-right flipped to 

align the side of the brain with greater injury, termed the ipsilesional side. The anatomical 

regions on the side of less damage, termed the contralesional side, were removed from 

the subsequent analysis. Considering ipsilesional injury only makes the assumption that 

the more injured side is associated with the assisting hand, in line with current knowledge 

[Holmström et al., 2010], and hence is more predictive of performance. This step halves 

the number of features considered, increasing the power of the analysis to better support 

the conclusions, and reducing the risk of overfitting. Moreover, despite the cohort 

containing 20 children with bilateral injury, injury is relatively infrequent on the 

contralesional side. The extent of injury laterality is investigated in both cohorts using a 

laterality index, which was computed using the template-derived score of injury of the left 

hemisphere, 𝑆𝐿, and right hemisphere, 𝑆𝑅, as shown in the following equation.  

𝐿𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝑆𝐿 − 𝑆𝑅
𝑆𝐿 + 𝑆𝑅

                                               𝐸𝑞 3.1 

Children were divided into PWM and CDGM cohorts by a child neurologist according to the 

classification of pathogenesis [Krägeloh-Mann and Horber, 2007]. These classes of injury 

differ in both their aetiology and the presumed timing of the insult during development, and 

have different impacts on functional outcomes [Aisen et al., 2011]. 

3.2.6 Statistical Methodology 

The relationship between anatomical measures of injury and patient outcomes were 

investigated using multivariable linear regression models. In these models, the injury 

scores for each anatomy are the independent (predictor) variables, and the AHA motor 

score is the dependent (criterion) variable. The partial regression coefficients of these 

regression models encode the optimal, relative weights of the individual template-derived 

anatomical injuries in impacting AHA. This analysis was performed using R statistical 

software Version 3.1.1 [The R Development Core Team, 2008]. To test the normality 

assumption of the linear models, a normal quantile plot is constructed for each regression 

model. This result is supplemented with the Shapiro-Wilk [Shapiro and Wilk, 1965] test of 
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normality for the normalised residuals of each model. This tests the null-hypothesis that 

the residuals are normally distributed.  

As cerebral injury may impact adjacent areas, a data-driven analysis was performed using 

the ‘stepAIC’ package in R. Variables are successfully added and removed in a greedy 

fashion to minimize the Akaike Information Criterion (AIC) function. The number of 

variables is controlled by the regularization coefficient, leaving a parsimonious set of 

anatomical regions that best describe the variance in the AHA measure. For this work the 

default value of 2 was used for this penalty term. This method was chosen as feature 

selection can be robustly performed using AIC [Ronchetti, 1985], minimising the effect of 

model overfitting. In this approach, the default ‘stepAIC’ parameters were chosen. To limit 

sensitivity of the data-driven approach in both cohorts, anatomical regions that were 

impacted in five or fewer children were removed prior to constructing the linear model. 

Interaction effects, which describe when the simultaneous influence of two injury measures 

on the AHA measure is also multiplicative, were not included in these models due to the 

limited amount of data available relative to the large number of parameters needed to 

model them.  

The bootstrapping approach was used to assess how well the model generalised, by 

measuring the extent of variance in the partial regression coefficients in response to 

selecting a different subset of data. This method repeatedly samples a random subset of 

the data from the linear model, and constructs a regression model with the corresponding 

predictor variable for each chosen subset. This yields a standard error for each partial 

regression coefficient. In this analysis, 1500 subsets were sampled for each linear model. 

A power analyses was performed to quantify the risk of not detecting the relationship 

between injury score and patient outcome when such a relationship exists, given the 

available data (52 and 24 cases for each cohort). For these analyses, the desired 

significance level was chosen to be the standard P = 0.05. As an estimate of effect size, 

Cohen’s 𝑓2 formula for multivariable regression models was used, which depends on the 

squared multiple correlation of the linear model, 𝑅2, and is defined as: 

𝑓2 =
𝑅2

1 − 𝑅2
                                                              𝐸𝑞 3.2 
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Using a conservative multiple correlation value of 0.15, which is sufficient to detect small 

relationships between the anatomical scores and the AHA measure, gives an 𝑓2 measure 

of 0.18. This measure represents the strength of the associations in the regression model, 

and falls within the small to medium range for the 𝑓2 measure (0.1 - 0.25) [Cohen, 1988]. 

The chosen power for this analysis was also set to a conservative value of 0.8, which 

indicates that there is a 20% chance of committing a Type II error, i.e. a false negative.  

3.3 Results 

3.3.1 Cohort demographics 

Seventy six T1-weighted and fluid-attenuated inversion recovery MRIs were obtained from 

76 children. The demographics of the PWM, CDGM and combined cohorts are outlined in 

Table 3.1. A histogram characterizing the extent of laterality of injury in this combined 

cohorts is given in Figure 3.2. 

Table 3.1 Demographics of the cohort of children with CP 

Table 3.1. Demographic characteristics for the PWM, CDGM, and the total combined 

cohort of children with unilateral cerebral palsy. 

Cohort PWM CDGM Total 

Total No. Samples 52 24 76 

    

Gender    

Male 29 12 41 

Female 23 12 35 

    

Age at scan (years)    

Mean ± standard deviation 11.1 ± 3.3 12.3 ± 2.3 11.6 ± 2.8 

Range (minimum - maximum) 5 - 17 7 - 17 5 - 17 

    

Global brain injury severity score [Fiori 
et al., 2014] 

   

Mean ± standard deviation 7.7 ± 4.4 13.1 ± 4.1 9.4 ± 5.0 

Range (minimum - maximum) 0 - 21 2 - 18.5 0 - 21 

Number with bilateral lesions 18 2 20 

    

Assisted Hand Assessment Score    

Mean ± standard deviation 68.5 ± 18.8 52.2 ± 23.5 63.4 ± 21.6 

Range (minimum - maximum) 27 - 98 8 - 98.8 8 - 98.8 
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Figure 3.2 Histogram of laterality indices of injury 

 

Fig. 3.2 A histogram of laterality indices, measuring the lateral asymmetry of injury in the 

children included in this analysis. A score of -1 indicates lesions were solely in the right 

hemisphere, +1 indicates lesions were solely in the left hemisphere. Measures close to 0 

indicate symmetrical lesions. 

3.3.2 PWM cohort findings 

The data-driven approach identified six important regions, including the thalamus, the 

caudate nucleus, and the vermis of the cerebellum. Four of these variables were found to 

be statistically significant, including the cortical/subcortical region of the occipital lobe, 

caudate nucleus, thalamus, and the vermis of the cerebellum (p < 0.05). The full list of 

regions and the corresponding coefficients of this linear model are shown in Table 3.2. The 

standard errors of both the complete and bootstrapped models were comparable. 
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Table 3.2 Retained variables for the PWM phenotype 

Table 3.2. Retained data-driven anatomical regions, and their respective weights, for the 

PWM phenotype. Statistically significant variables are shown in bold. 

Brain region Partial 
regression 
coefficient 

Standard 
error 

p-value Bootstrap 
standard 
error 

(Intercept) 69.95 6.92 <0.0001 6.88 

Medial frontal lobe 25.30 12.66 0.0519 12.18 

Cortical/subcortical frontal 
lobe 

-37.04 18.69 0.0538 18.54 

Cortical/subcortical 
occipital lobe 

46.98 17.99 0.0123 18.17 

Caudate -15.68 6.69 0.0236 6.47 

Thalamus -19.10 4.77 0.0002 4.62 

Cerebellum vermis 29.22 11.42 0.0140 11.04 

The features obtained from the data-driven approach explained 45% of the variance seen 

in the AHA score (p < 0.0001), while less than 1% of the variance in the AHA score was 

explained by the unweighted score (R squared < 1%, p = 0.9). 

3.3.3 CDGM cohort findings 

The data-driven approaches identified seven important anatomical regions, which included 

the PLIC, the caudate nucleus and the brainstem. The complete list of variables retained 

by the data-driven approach, and the corresponding partial regression coefficients, are 

provided in Table 3.3. All features retained by the data-driven approach were significantly 

associated with the AHA measure (p < 0.05). Table 3.3 highlights the standard error for 

these coefficients, obtained from bootstrapping, which were comparable to the standard 

error of the data-driven model.  
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Table 3.3 Retained variables for the CDGM phenotype 

Table 3.3. Retained data-driven anatomical regions, and their corresponding weights, for 

the CDGM phenotype. Statistically significant variables are shown in bold. 

Brain region Partial 
regression 
coefficient 

Standard 
error 

p-value Bootstrap 
standard 
error 

(Intercept) 18.38 15.70 0.2588 7.63 

Periventricular temporal 
lobe 

-25.13 7.67 0.0047 11.07 

Medial occipital lobe -39.41 12.27 0.0054 18.82 

Cortical/subcortical 
occipital lobe 

53.60 14.86 0.0023 21.23 

Caudate -18.72 6.78 0.0139 10.22 

Posterior limb of the 
internal capsule 

67.72 15.34 0.0004 N/A 

Brainstem -27.24 7.63 0.0026 10.04 

Middle corpus callosum 16.57 5.78 0.0112 8.85 

The partial regression coefficients for the data-driven variables for the PWM and CDGM 

cohorts are visually portrayed in Figure 3.3. In this figure, the ipsilesional side is portrayed 

visually as the left side. 

Figure 3.3 Illustration of regression coefficients for PWM and CDGM phenotypes 

 

Fig. 3.3 An illustration of the partial regression coefficients obtained for the linear models 

fitted using the data-driven variables, for the (a) PWM and (b) CDGM cohort. Black colours 

represent a zero value. 
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Regions selected by the data-driven approach explained 84% of the variance in AHA (p < 

0.0001), while the unweighted, complete template score explained 44% of the variance in 

AHA (p = 0.0004). A summary of the squared multiple correlations of both linear models 

for the PWM and CDGM cohorts are shown in Table 3.4.  

Table 3.4 Multiple correlations of optimised models 

Table 3.4. Summary of the squared multiple correlations between both the template-

derived score and the optimised regression models with the AHA measure. 

Cohort PWM CDGM 

 R squared P Value R squared P Value 

All anatomical regions, unweighted <0.001 NS 0.44 <0.001 

Subset of regions, weighted 0.45 <0.001 0.84 <0.001 

NS not significant. 

3.3.4 Assessment of normality 

To assess the normality assumption of both linear models, a normalised quantile plot of 

the model residuals is presented in Figure 3.4. Normalised distributions visually appear in 

this plot close to the theoretical 𝑦 = 𝑥 line. Both quantile plots appear visually close to this 

line. A Shapiro-Wilk normality test is also applied to these model residuals. For both PWM 

(W = 0.975, p = 0.352) and CDGM (W = 0.983, p = 0.947) cohorts, the lack of statistical 

significance implies that the null hypothesis is retained, i.e. that the residuals from both 

models are normally distributed. Both these results imply the normality assumption of the 

regression models is not violated, indicating the distributions of both dependent and 

independent variables are normally distributed. 
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Fig. 3.4 Normal quantile plots of the regression model residual from the (a) PWM and (b) 

CDGM cohorts. 

Figure 3.4 Normal quantile plots of model residuals 

3.3.5 Model stability 

For the linear models of both PWM and CDGM cohorts, the error associated with each 

partial regression coefficient was similar to the error of the bootstrapped model, as shown 

in Tables 3.2 and 3.3. The slightly larger discrepancy between these two errors observed 

in the CDGM cohort aligns with the fewer children in this clinical phenotype. Similarity in 

model and bootstrap errors demonstrates that the fitted models are an accurate 

representation of the structure-function relationship evident in this cohort, and hence 

should accurately predict impaired motor function in previously unseen MRI data. 

3.3.6 Power analysis 

Computing the statistical power of using all ipsilesional template anatomies, given the 

number of samples in both cohorts and a statistical significance of p = 0.05, was 0.18 and 

0.06 for PWM and CDGM cohorts respectively. This indicates that there is an 84% and 

94% chance of committing a Type II error. Performing the same power analysis for the 

optimised models which contained fewer anatomical regions, as well as a different 𝑓2 

measure based on the squared multiple correlations of the models (0.45 and 0.84, 

respectively), the model power was 0.85 and 0.79 for PWM and CDGM cohorts 
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respectively. The reduced number of anatomical regions (6 and 8, respectively) lowered 

the chance of a Type II error among these optimised models. 

The power analysis revealed that a sample size of 141 is required for either cohort to 

produce a linear model able to correctly detect a relationship between all scored 

anatomies (when not discarding any regions on the template) and AHA score 

(corresponding to an overall 𝑅2 of 0.15 for the model) with a power of 80% and a statistical 

significance of p = 0.05. 

3.4 Discussion 

In this chapter, two developments for the semi-quantitative MRI scale of brain injury 

severity for children with CP proposed by Fiori et al. [Fiori et al., 2014] were demonstrated, 

which will be used as the statistical methodology for the rest of this thesis. This 

methodology includes reducing the number of regions on the template for both PWM and 

CDGM phenotypes, which is desirable to avoid over-fitting the data, and weighting these 

regions using linear models, which allows the relative importance of anatomical regions to 

be accounted for. Although this weighting introduces additional work for clinicians using 

the template, it is offset by the reduced number of anatomical features considered. Since 

the two cohorts considered in this analysis had a clinical phenotype of hemiplegia, this 

initial reduction in variables was achieved by discarding regions on the contralesional side. 

The ability to report on children by hand also means that the modelling of interactions 

should be avoided, as the number of calculations would increase with the square of the 

number of features considered. Hence, care must be taken to select anatomical regions 

that are relatively independent of each other. The results shown here demonstrate that, 

using a small number of independent anatomical features, equal or better prediction of 

functional AHA score can be obtained.  

The greater multiple correlation obtained for the data-driven selected variables was 

expected, as the step-wise selection method attempts to maximise the association by 

selecting a set of variables that best explain the variance in the AHA score. This set of 

anatomical regions for the PWM phenotype consisted of regions known to be important for 

motor function, including the caudate nucleus, thalamus and the cerebellar vermis [Doya, 

2000; Herrero et al., 2002; Hikosaka et al., 1989]. These regions are consistent with the 

known clinical phenotype of periventricular leukomalacia (PVL), with both caudate nucleus 
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and thalamus being strongly associated to injury in the adjacent WM fibres. Additionally, 

this data-driven approach led to a large and significant increase in squared multiple 

correlations between the image-based score and the AHA score over the unweighted, 

complete template. This demonstrates the better predictive performance of the proposed 

approach, particularly for the PWM phenotype where the unweighted template score 

explained little of the variance in the AHA score. Furthermore, this approach suggests that 

the template can be reduced from 40 to 6 anatomical regions for this phenotype.  

Similar to the PWM cohort, substantial co-dependence between anatomical regions exists 

in the CDGM cohort, enabling a substantial improvement in multiple correlation to be 

obtained. The data-driven approach indicated that the template can be simplified to 7 

anatomical regions for the CDGM phenotype. The anatomical weightings were estimated 

with greater confidence than the PWM phenotype, and highlighted regions such as the 

caudate nucleus, brainstem and corpus callosum that are known to be important for motor 

function [Hikosaka et al., 1989; Takakusaki et al., 2004; Wahl et al., 2007]. Note that the 

PLIC was removed in the bootstrap method for this cohort as it was impacted in the 

majority of children with CDGM injury, preventing a standard error to be computed for 

many of the randomly chosen subsets. This highlights the importance of having data that 

contains a diverse range of injury for each anatomical region. 

The linear models of both cohorts highlighted deep GM structures as significant, which 

highlights their known role in motor function. However the greater number of anatomical 

regions retained in the model for the CDGM cohort reflects the typically larger anatomical 

involvement of this phenotype, where injury arises from disturbances in cortical 

organisation and migration [Barkovich et al., 2012]. In addition, the wider extent of injury 

among this cohort and the understanding that this form of injury arises from migrational 

disturbances earlier in development, likely resulted in the inclusion of the corpus callosum 

and brainstem respectively [Hetts et al., 2006; Leong, 1997]. The involvement of the 

occipital lobe in both linear models suggests that the children’s visual impairment may 

have impacted their bimanual tasks during motor assessment [Stoerig, 2006]. There are 

further differences in which cerebral lobes were retained from the data-driven approach 

between the cohorts, for instance the medial frontal lobe was retained the PWM cohort 

and the temporal lobe was retained in the CDGM cohort. While these regions do not have 

a solely motor role, they are associated with perception and recognition [Eichenbaum et 
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al., 2007; Owen et al., 1990], which may influence performance in the children’s motor 

assessment and thus be retained in the linear models. 

The data-driven method was unexpectedly found to discard anatomical regions that 

medical knowledge suggest as important for impacting upper limb motor function. This 

inconsistency arises from the presence of associated injuries occurring in multiple 

anatomical regions, and the efforts of the data-driven approach to select regions that 

explain a unique portion of variance in the AHA score. In the PWM cohort, this is illustrated 

in the exclusion of the PLIC capsule using the data-driven approach. Although the PLIC is 

known to be important for motor function, injury in this region was strongly correlated with 

injuries in the thalamus, so only one of these anatomical regions was selected. It has 

recently shown using diffusion weighted MRI and probabilistic tractography that 

sensorimotor thalamic WM pathways have more influence on motor function control of the 

paretic hand than does preservation of PLIC based corticospinal tracts [Rose et al., 2011], 

highlighting the role of injury to the thalamus in cerebral palsy.  

A limitation of this analysis was the relatively low number of participants in each of the two 

clinical phenotypes. Despite the bootstrapping method illustrating comparable standard 

errors to the linear models fitted using all children for both PWM and CDGM cohorts, future 

studies should look to perform similar analyses on a greater set of data for both PWM and 

CDGM phenotypes. This will assist in identifying the relative importance of anatomical 

regions that are more representative of the structure-function relationships of all children 

with a specific CP phenotype, which would lead to improved predictions of clinical 

outcomes from image-derived measures. Another limitation of this proposed methodology 

is that it does not account for the effect of plasticity, the capability of the brain to 

reorganise and regain certain functions after injury through alternate WM pathways, which 

depends on a multitude of factors [Belsky and Pluess, 2009; Chapman et al., 2003]. The 

translation of specific patient functions to other spatial regions of the brain confuses the 

underlying structure-function relationship of the healthy brain, and will appear as noise 

within the linear model. This may also be overcome by utilizing diffusion MRI, which can 

elucidate altered WM connections arising from neuroplastic mechanisms. Structural and 

diffusion MRI was used in conjunction with the semi-quantitative brain lesion severity scale 

to explore the relationship between brain injury and motor and sensory function with 

insights into the mechanisms of plasticity [Fiori et al., 2015]. 
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The results have several potential implications. Firstly, when the CP phenotype is known, 

the utilisation of weighting enables the number of anatomical regions scored during 

evaluation of MRIs to be reduced from more than 40 to 6-7. This has the effect of not only 

simplifying the clinical evaluation of children with CP, but substantially improving the 

squared multiple correlation between lesions observed on MRI images and the clinical 

assessments of motor function. The greater prediction of a clinical outcome using fewer 

scored anatomies motivates the clinical use of quantitative approaches as suggested by 

Fiori et al. [Fiori et al., 2014], and highlights the value that can be captured by quantifying 

injury in this manner. Future developments of this scoring method should focus on two 

areas. Firstly, this method may be optimised to any functional outcome of interest, such as 

Gross Motor Function Measure, a more general measure of overall motor function. 

Measures of cognitive function, communicative ability and vision acuity would also be of 

interest. Producing models which correlate scores of injury with multiple clinical scores 

allow for a more encompassing prediction of patient outcome. Secondly, the use of 

computer-based tools could further enable enhanced injury segmentation and volume 

assessment, allowing for large scale population analyses of MRIs. These enhanced 

characterisations of injury may help elucidate the relationship between brain lesion 

severity and functional correlates for each phenotype, which would enable better 

prediction of future outcomes and inform the tailoring of interventions. 
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3.6 Conclusion 

This chapter has presented a statistical methodology for finding a succinct set of brain 

injuries strongly associated with motor outcome in children with CP. This method was 

applied to the standardised, semi-quantitative scale of brain lesion severity for assessing 

MRIs of specific CP injury phenotypes, weighting individual anatomical regions, allowing 

for a simplification of the scoring system, reducing the number of scored regions examined 

from 40 to fewer than 8. This led to an improved prediction of the clinical AHA measure, 

compared to the unweighted, complete template score (R squared 0.45 from <0.01 for the 

PWM cohort, 0.84 from 0.44 for the CDGM cohort). Optimisation of MRI scoring systems 

using this approach reduces the time taken to manually score each image, and can 

potentially provide important insights on the relationship between the topography of brain 

lesions and clinical function in children with CP. These developments provide a framework 

for the biomarkers of injury, computed using the automated approaches detailed in 

Chapters 4 to 8, to not just quantify injury but model the brain’s structure-function 

relationship, and produce estimates of patient impairment and function. Consequently, 

these predictions of outcome has many implications for the selection of what interventions 

may be necessary, targeting motor, cognitive, communicative or visual function, unilateral 

or bilateral inventions, and how intensive these therapies should be. 
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4. Brain tissue segmentation in the presence of severe injury 

4.1 Introduction 

Brain tissue segmentation is an important preliminary step before the modelling of ventricle 

shape, measuring of cortical morphology or segmentations of lesions can be performed. 

For instance, an accurate segmentation of the GM is necessary to compute meaningful 

measures of the cortical surface that can be used to predict patient outcome and aid in 

implementing effective interventions. Automated segmentation methods are required in 

these instances, as a manual segmentation of this surface is infeasible on large data sets. 

Despite the wealth of automated techniques presented in Chapter 2, this remains a 

challenging task as the organization of the cortical surface or subcortical regions can be 

significantly different in children with severe developmental injury. 

The EM algorithm [Dempster et al., 1977] has frequently been used for the automated 

segmentation of brain MRI data [Van Leemput et al., 1999; Wells et al., 1996]. This 

approach allows for iteratively interleaved image bias correction [Pohl et al., 2002], and a 

spatial consistency of labels through the MRF [Zhang et al., 2001]. It has been frequently 

applied to neonatal data sets [Cardoso et al., 2011; Makropoulos et al., 2012; Murgasova 

et al., 2006] due to the robustness of the segmentation in the presence of high noise, 

significant partial volume effects, lack of tissue contrast, and extensive anatomical 

variability typical of these data sets. Despite EM being an adaptive approach, these 

studies typically utilize atlases to initialize the EM parameters, or iteratively scale the tissue 

probability of each voxel by the expected tissue prior from an atlas. To deal with 

anatomical variability, a non-rigid registration is performed to align the atlas priors to the 

data, and the influence of the atlas is subsequently reduced with a relaxation parameter 

that allows for more data-driven segmentation in later iterations [Cardoso et al., 2011; 

Makropoulos et al., 2012]. However in cases of severe injury, non-rigid registration 

typically fails and even with partial relaxation of the atlas priors, the discrepancies between 

the anatomical assumptions of the normative atlases and children CP are too great to 

provide a robust initialization. 

The limited relevance of atlas based priors for this application places more of the burden of 

accuracy on non-atlas priors defined by the clique potentials, which is a term that 

describes the relative cost on the frequency of tissue labels appearing in a small 
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neighbourhood of voxels. Hence, in this chapter, a modification to the formulation of the 

local clique potentials within the adaptive EM algorithm is proposed, to enable an improved 

segmentation of the cerebral cortex in the structural MRI of children with CP. Using 23 T1-

weighted MRIs of children, of which 17 were children CP exhibiting severe cortical 

malformations, the proposed approach was compared to four widely used methods: 

FreeSurfer [Fischl, 2012], NiftySeg [Cardoso et al., 2011], FSL’s FAST [Zhang et al., 

2001]) and ANT’s Atropos [Avants et al., 2011]. The FreeSurfer software uses a data-

driven deformable surface approach, initialized by registration to an atlas, to detect the 

inner and outer surfaces of the cortical GM, while NiftySeg, FAST and Atropos use an EM 

segmentation algorithm with an incorporated MRF and interleaved bias correction. The 

proposed approach is demonstrated to be able to accurately model the cerebral cortex in 

the presence of large injury variability, in comparison to FreeSurfer, NiftySeg, FAST and 

Atropos. This work addresses Aim 1 of this thesis, “develop several automated 

segmentation approaches to delineate the three main classes of injury observed in 

children with CP; cortical malformations, WM injury and ventricular enlargement”, as well 

as Aim 3, “[comparing] the automated results against a manual gold standard, as well as 

the current state of the art”. The work in this chapter has been published, and is available 

at doi:10.1109/DICTA.2015.7371257. 

4.2 Materials and methods 

4.2.1 Study Participants 

The entire cohort described in Section 3.2.1 was included in this chapter for brain tissue 

segmentation. Method validation was performed on a subset of this cohort, including 23 

T1-weighted volumes, of which 17 were children with CP and severe alterations observed 

from the MRI. The mean age at the time of the scan was 12.04 ± 2.40 years (range 7-15 

years), while the male to female ratio was 9/14. These images were manually segmented 

on the hemisphere of injury by two raters. 

4.2.2 Image pre-processing 

Several pre-processing steps for the T1- and T2-weighted MRIs were implemented to 

assist downstream methods. Bias correction was performed using the N4 algorithm 

[Tustison et al., 2010]. An affine transform was used to register the MRIs to the Colin 27 

Average Brain Atlas [The McConnell Brain Imaging Centre, 2012] using a block-matching 
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registration approach [Rivest-Hénault et al., 2015]. Intensity normalisation and image de-

noising, using anisotropic diffusion [Perona and Malik, 1990] with modified curvature 

diffusion equation [Yezzi, 1998], was performed with the Insight Toolkit (ITK) in order to 

minimise the effect of Rician-distributed noise in the MR image, while attempting to 

preserve high resolution features within the image. Skull stripping was performed using an 

in-house algorithm developed in MATLAB 2015a (Mathworks, Natick, MA). In this 

approach, intradural CSF was identified using thresholding and morphological operations, 

following which brain tissues were isolated. By identifying CSF internal to the skull 

boundary, this approach is capable of accurately segmenting the brain in cases of large 

lesions, which may be present in children with CP. An example of a MRI with a large injury 

is shown in Figure 4.1.  

Figure 4.1 Illustration of brain mask containing severe injury 

 

Fig. 4.1 The computed brain mask obtained from an MR image of a 5 year old male, 

clinically diagnosed with CP, using the in-house developed brain masking algorithm. This 

MRI shows severe ventricular enlargement, particularly in the right hemisphere. (a) Axial, 

(b) sagittal and (c) coronal views are shown. 

Additionally, tissue probability maps (TPM) from the Colin 27 Atlas and the ICBM DTI-81 

Atlas (International Consortium for Brain Mapping, CA) were registered to the T1-weighted 

MRIs of each patient using the fast free-form deformation registration algorithm [Modat et 

al., 2010] to assist the downstream lesion segmentation presented in Chapter 7. 

4.2.3 Expectation Maximisation algorithm 

The adaptive EM algorithm [Dempster et al., 1977] has frequently been used for the 

automated segmentation of brain MRI data [Van Leemput et al., 1999; Wells et al., 1996], 
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often with interleaved methods for enforcing spatial homogeneity using MRF [Zhang et al., 

2001]. For neonatal data sets, EM provides robust segmentations even in the presence of 

high noise, significant partial volume effects, lack of tissue contrast, and extensive 

anatomical variability typical of these data sets [Cardoso et al., 2011; Makropoulos et al., 

2012; Murgasova et al., 2006], highlighting its potential application to CP.  

The limitation of the EM approach, particularly in the presence of severe injury, is its 

reliance on atlas priors during initialisation, and when iterative scaling voxel-wise tissue 

likelihoods based on the expected tissue type. Although non-rigid alignment of the atlas 

priors to the data is performed, non-rigid registration typically fails in cases of severe 

injury. Additionally, while a number of a priori relaxation strategies allow for more data-

driven segmentation in later iterations [Cardoso et al., 2011; Makropoulos et al., 2012], the 

discrepancies between the anatomical assumptions of the normative atlases and CP 

patients are too great to provide a robust initialisation [Pagnozzi et al., 2015].  

To avoid making assumptions about the volume of different tissues, the segmentation was 

initialised using an in-house developed, 1-dimensional peak finding algorithm that 

searches the smoothed intensity histogram for two sufficiently separated second derivative 

minima with an associated sign change in the first derivative, which are then labelled as 

GM or WM. The mean intensity of the CSF distribution was estimated by searching 

backwards from the GM mode, looking for a minima in either the first or second derivative. 

The standard deviation of each distribution is computed from the gradient of the Gaussian 

intensity histogram on either side of the respective maximum. An illustration of the 

initialisation provided by this peak-finding algorithm is given in Figure 4.2 below. 
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Fig. 4.2 Shows a structural MRI in (a), and the initialisation of CSF, GM and WM 

distributions obtained from the peak-finding algorithm on the intensity histogram of the 

image in (b). The resulting segmentation using this initialisation is shown in (c). 

Figure 4.2 Illustration of EM tissue segmentation 

In the EM approach, the segmentation problem is formulated as an incomplete data 

problem where given the set of 𝑛 voxel intensities in the image, 𝒚 = {𝑦𝑖|𝑖 𝜖 [1;  𝑛]}, the 

algorithm attempts to compute a set of labels, 𝒛 = {𝑧𝑖 𝜖 [1; 𝐾]}, describing which of 𝐾 tissue 

classes each voxel belongs to, with 𝑘 denoting a specific tissue class 1 ≤ 𝑘 ≤ 𝐾. Voxels 

are indexed by 𝑖. Intensity distributions for each tissue class 𝑘 are assumed to be normally 

distributed, with mean and standard deviation Φ𝑘 = (𝜇𝑘, 𝜎𝑘). The estimation of the 

maximum likelihood parameters, Φ̂, is obtained by interleaving the estimation of the hidden 

segmentation, �̂�, (E-step), followed by the update of the class distributions, Φ, based on 

the observed image 𝑦 and segmentation 𝒛 (M-step). 

In the E-step, tissue labels at each voxel, 𝑖, were selected as the tissue class 𝑘 that has 

the minimum posterior likelihood 𝑝𝑖𝑘, which at iteration 𝑚 + 1 takes the form: 

𝑝𝑖𝑘
(𝑚+1)

=

1

√2πσk
2

𝑒𝑥𝑝 (−
𝑦𝑖 − 𝜇𝑘
2𝜎𝑘

2 ) 𝑓(𝑧|Φ𝑧)

∑

[
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𝑦𝑖 − 𝜇𝑘
2𝜎𝑘

2 ) 𝑓(𝑧|Φ𝑧)

]
 
 
 

K
j=1

                                                𝐸𝑞 4.1 

Given a set of labels 𝒛, the parameters were updated in the M-step as follows: 
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                                                        𝐸𝑞 4.3 

4.2.4 Gradient weighted Markov Random Fields 

The form of 𝑓(𝑧|Φz) in Eq 4.1, which is related to the MRF implementation, is critical to the 

performance of the algorithm. This modification is proposed in order to provide necessary 

robustness to the segmentation of MRI scans with extensive CP-related injuries. 

Commonly, the spatial relationship between a voxel and its six adjacent neighbours is 

assumed to be a random field following a Gibbs distribution: 

𝑓(𝑧|Φ𝑧) = 𝑍(Φz)
−1exp(−𝑈𝑚𝑟𝑓),                                                            𝐸𝑞 4.4 

where 𝑍(Φz) = ∑ exp(−𝑈𝑚𝑟𝑓)z  is called the partition function and 𝑈𝑚𝑟𝑓 is the energy 

function. The energy function is the sum of clique potentials 𝑉𝑐(𝒛) over all possible cliques, 

𝐶: 

𝑈𝑚𝑟𝑓(𝒛) =  ∑𝑉𝑐(𝒛)

𝑐∈𝐶

.                                                                       𝐸𝑞 4.5 

Traditionally, clique potentials compute the sum of mismatched labels between the voxel 

𝑥𝑖 and its clique neighbours: 

𝑉𝑐(𝑧𝑖, 𝑧𝑗) = {   

1

2
             𝑖𝑓 𝑧𝑖 ≠ z𝑗

0             𝑖𝑓 𝑧𝑖 = 𝑧𝑗

.                                                             𝐸𝑞 4.6 

This standard formulation of the clique potential is implemented in the Atropos software 

[Avants et al., 2011], although several other modulations of the MRF parameters have 

been proposed [Geman and Geman, 1984; Mumford and Shah, 1989]. These techniques 

modulate clique potentials based on gradients or smooth edges in the label field, 𝒛. Both 

FSL’s FAST and NiftySeg use a clique potential discretely weighted by gradients in the 

label field [Geman and Geman, 1984].  

To compensate for the lack of an informative atlas-based prior, the proposed modification 

instead incorporates a new assumption in the model, that a mismatch of labels at a clique 

edge will have an associated mismatch of intensity at defined tissue boundaries. In 

comparison to previous studies, in the proposed modification the cost of neighbouring 

voxels with different labels is down scaled by the presence of intensity gradients between 
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the voxels in the image, 𝒚. Correspondingly, the cost of neighbouring voxels with identical 

labels is up-scaled in the presence of intensity gradients between the voxels. Hence, in the 

modified MRF the cost of neighbouring labels is weighted by the gradient of intensity 

between the neighbouring voxels, which is congruous with the concept that different labels 

in a clique should have a different intensity, and vice versa. Therefore the cost of 

neighbouring voxels as follows: 

𝑉𝑐(𝑧𝑖, 𝑧𝑗) =

{
 
 

 
 

 

1

2
(exp (−

|𝑦𝑖 − 𝑦𝑗|

𝑤
))                 𝑖𝑓 𝑧𝑖 ≠ 𝑧𝑗

1

2
(1 − exp(−

|𝑦𝑖 − 𝑦𝑗|

𝑤
))         𝑖𝑓 𝑧𝑖 = 𝑧𝑗

                                             𝐸𝑞 4.7 

In (7), 𝑤 is a global parameter to control the influence of the gradient across tissue 

boundaries present in the MRI, typically based on the expected difference between 

classes 𝑦𝑖 and 𝑦𝑗. In the experiments, this parameter was chosen to be half of the 

difference in intensity between WM and GM at initialisation, which was consistent due to 

intensity normalisation in MRI pre-processing. A practical illustration of this weighted MRF 

is provided in Figure 4.3 below. 

Figure 4.3 Example of weighted MRF influence 

 

Fig. 4.3 An illustration of a WM voxel (highlighted in maroon), surround mostly by GM 

voxels (shown in yellow). Standard MRF’s would impose a cost on the maroon voxel being 

classified as WM based on its neighbourhood, however the weighted MRF would down 

weight the cost of being associated with neighbouring GM voxels by the difference in 

intensity between WM and GM. 
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4.3 Results 

To assess the accuracy of the cortical GM segmentations using the proposed EM 

approach with the gradient weight MRF, these segmentations were compared to the 

manual segmentations performed by two manual raters, one of whom was an expert 

experienced at assessing MRIs of children with CP, using the DSC metric [Dice, 1945]. 

Manual segmentations were obtained on 23 of the 139 T1-weighted MRIs, 17 of these 

were the MRIs of the children with severe cortical alterations, and the remaining 6 were 

from children with healthy development. Furthermore, these segmentations were 

compared to the segmentations obtained from several automated software packages. 

including FreeSurfer (Laboratory for Computational Neuroimaging, Massachusetts, USA) 

[Fischl, 2012], NiftySeg [Cardoso et al., 2011], FSL’s FAST [Zhang et al., 2001] and ANT’s 

Atropos [Avants et al., 2011]. FreeSurfer uses a data-driven deformable surface approach, 

initialized by registration to an atlas, to detect the inner and outer surfaces of the cortical 

GM. Many studies utilise FreeSurfer to measure cortical thickness [Ronan et al., 2011], 

which is computed from the deformable surface representation of both surfaces of the 

cortical GM [Fischl and Dale, 2000]. NiftySeg, FAST and Atropos all use an EM 

segmentation algorithm with an incorporated MRF and interleaved bias correction. In 

addition to these, the segmentations obtained from the EM approach with the standard 

MRF formulation of (6) were also compared to assess the difference of the proposed 

weighted MRF modification. The NiftySeg algorithm was run once using the default 

relaxation of the atlas priors, and once with the relaxation parameter set to its maximum. In 

this second implementation, atlas priors are still used to initialize tissue distributions, but 

the atlas priors were subsequently given zero weight during EM optimization.  

The proposed approach gave the best DSC for both healthy (0.825) and injured data 

(0.783). Atropos obtained the second-best performance for both healthy data (0.814) and 

injured data (0.762). NiftySeg with 100% relaxation gave the third-highest performance in 

healthy and injured, consistently better than NiftySeg with default relaxation. FAST was 

among the best performing approaches in the healthy set, but had significantly reduced 

performance in the injured set. Neither FreeSurfer nor the classic MRF implementation 

demonstrated comparative performance. Overall, the proposed modified EM segmentation 

approach consistently had the best performance: in 14 of the 23 cases, versus 5 cases for 

Atropos, one case for NiftySeg with 100% relaxation and one case for FAST. 
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Table 4.1. Mean DSC results comparing the segmentations obtained from the proposed 

EM-weighted MRF approach, EM with the standard MRF, FreeSurfer, NiftySeg with default 

and 100% relaxation of atlas priors, FAST and Atropos with the manual segmentations 

obtained from two raters. Inter-rater reliability is provided based on the DSC overlap 

between the segmentations from the two raters. For each patient, the best DSC is in bold. 

Patient 
ID 

EM -
weighted 
MRF 

EM - 
standard 
MRF 

Free- 

Surfer 
NiftySeg 

NiftySeg 
100% 
relaxation 

FSL’s 
FAST 

ANT’s 
Atropos 

Inter-
rater 
reliability 

Healthy cases 

1 0.820 0.818 0.750 0.761 0.795 0.798 0.812 0.772 

2 0.783 0.724 0.767 0.772 0.785 0.790 0.791 0.837 

3 0.807 0.766 0.776 0.769 0.796 0.796 0.819 0.821 

4 0.852 0.843 0.794 0.794 0.835 0.822 0.834 0.869 

5 0.825 0.720 0.790 0.779 0.811 0.771 0.783 0.820 

6 0.862 0.810 0.781 0.823 0.835 0.828 0.845 0.865 

Mean 
DSC 

0.825 0.780 0.776 0.783 0.810 0.801 0.814 0.831 

Cases with cortical injury 

7 0.790 0.712 0.589 0.631 0.677 0.657 0.730 0.765 

8 0.772 0.793 NaN 0.693 0.729 0.706 0.746 0.810 

9 0.834 0.845 0.709 0.759 0.771 0.745 0.827 0.842 

10 0.749 0.650 NaN 0.663 0.735 0.240 0.746 0.714 

11 0.766 0.675 0.649 0.741 0.765 0.720 0.768 0.788 

12 0.726 0.733 0.689 0.742 0.761 0.761 0.781 0.811 

13 0.735 0.635 0.680 0.709 0.733 0.717 0.765 0.766 

14 0.819 0.794 0.751 0.761 0.791 0.798 0.755 0.837 

15 0.763 0.705 0.363 0.747 0.769 0.685 0.740 0.803 

16 0.788 0.725 0.691 0.712 0.737 0.701 0.776 0.783 

17 0.813 0.673 0.686 0.725 0.751 0.744 0.794 0.796 

18 0.831 0.739 NaN 0.763 0.776 0.779 0.782 0.820 

19 0.715 0.767 0.474 0.765 0.793 0.774 0.759 0.810 

20 0.822 0.780 NaN 0.726 0.778 0.624 0.720 0.805 

21 0.811 0.679 NaN 0.763 0.777 0.699 0.777 0.802 

22 0.771 0.726 NaN 0.723 0.745 0.658 0.696 0.800 

23 0.812 0.756 0.668 0.727 0.747 0.732 0.797 0.801 

Mean 
DSC 

0.783 0.728 0.631 0.726 0.757 0.691 0.762 0.797 

Table 4.1 Segmentation performance of different brain segmentation algorithms 
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In all cases, the inter-rater reliability was greater than the DSC obtained for any of the 

methods. The agreement between the raters went as low as 0.714. The discrepancy 

between the two raters was largely due to local reductions in the contrast between the GM 

and WM, obscuring the tissue boundary, which was more prevalent in the injured data, as 

well as ambiguous partial volume voxels affecting the agreement between raters. This may 

account for the reduced reliability computed in the injured data (0.797) compared to the 

healthy data (0.831), and highlights the difficulty in obtaining an accurate segmentation in 

severely injured cases. An illustration of the segmentations obtained from the several 

methods from two images containing severe injury is shown in Figure 4.4. 

Figure 4.4 Examples of segmentation accuracy of multiple segmentation methods 

 

Fig. 4.4. (a) An axial slice of a patient with cortical injury, and the cortical GM 

segmentations obtained from the (b) manual rater, (c) EM-weighted MRF (proposed 

approach), (d) EM-standard MRF, (e) FreeSurfer software, (f) NiftySeg, (g) NiftySeg with 

fully relaxed priors, (h) FAST and (i) Atropos. 

4.4 Discussion 

The proposed segmentation approach outperformed all the other state-of-the-art EM 

methods with integrated atlas priors on the cases with cortical injury, demonstrating the 

potentially deleterious effect of incorporating atlas-based priors when segmenting scans 

with severe injury. A fraction of this improvement is the result of the weighted MRF, which 
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provides additional robustness by forcing the labelling to be consistent with intensity 

gradients in the image. The benefit of the modified MRF is demonstrated by the reduced 

DSC’s obtained using the EM with the standard MRF, as this approach computes high 

neighbour costs at tissue boundaries. Consequently, thin extensions of WM or CSF are 

smoothed over and labelled as GM using this method, as is shown in Figure 4.4(d). 

Although existing approaches exist, their reduced robustness of severe injury limits their 

efficacy in identifying structure-function relationships of the cortex, as illustrated in Figure 

4.4(e-h). For instance, in Fig. 4.4(g, top row), due to the extreme anatomical 

malformations, much of the CSF was incorrectly labelled as GM during initialization, 

resulting in poor and irrecoverable initial estimates of distribution. The same limitation 

resulted in Case #10 where the DSC=0.240 was observed for FAST. FreeSurfer failed to 

produce a result (NA in Table 4.1) on six of the 23 MRI scans, corresponding to data sets 

exhibiting more severe injury causing failure in the deformation of the cortical surface. For 

the remaining scans, the presence of injury was observed to impact the deformation of the 

cortical surfaces, as illustrated in Figure 4.4(e). The most robust approaches were those 

that had reduced reliance on atlas priors, NiftySeg performed 100% relaxation of priors 

during the EM iteration, Atropos utilizes robust data-driven initialization approaches 

[Avants et al., 2011], such as Otsu thresholding [Otsu, 1975] or fuzzy c-means [Bezdek et 

al., 1984], and the proposed approach performs both of the above, initialized with a data-

driven peak-finding algorithm and not weighted by atlas priors.  

Although this highlights the limitation of atlases to initialize prior tissue distributions, many 

atlas-based segmentation algorithms accommodate pathologies using a local relaxation of 

atlas priors [Parisot et al., 2012; Parisot et al., 2014]. These approaches, while validated 

on data with brain tumours, have unique challenges in the CP setting, where the region of 

severe malformation may include GM that needs to be continuously segmented along with 

healthy regions of GM, and not as a separate tumour entity. In the proposed EM-weighted 

MRF implementation, a straightforward peak-finding algorithm was instead used to 

robustly estimate initial tissue distributions, assisting an accurate segmentation of cortical 

GM in injured cases. Alternative approaches, such as Otsu thresholding [Otsu, 1975] or 

fuzzy c-means [Bezdek et al., 1984], could similarly provide robust tissue distribution 

initializations. These methods are used for initialization in the Atropos software [Avants et 
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al., 2011], potentially accounting for its second-highest performance among the injured 

cases.  

A limitation of this work is that the accurate segmentation of cortical GM remains 

challenging, even in healthy brains, with DSC’s of ~0.8 reported in the few available 

references [Makropoulos et al., 2012; Melbourne et al., 2012; Murgasova et al., 2006], due 

to the narrow and complex morphology of cortical GM and partial volume effects. The 

extensive injuries typical of CP compound this, making the distinction between GM and 

WM ambiguous and impacting on the DSC. Finally, the proposed adaptive algorithm does 

trade off sensitivity in segmenting fine structures for robustness to injury (although the 

weighted MRF attempts to minimise the consequence of this trade-off). Another limitation 

of the proposed modification is that it has only been applied to the segmentation of tissue 

types, with specific focus on improving cortical GM segmentations. As shown in Figure 

4.4(c), the proposed modification mislabels the caudate nucleus, and has been observed 

to mislabel partial volume voxels around the ventricles. Anatomical parcellation requires 

the use of a priori information provided by atlas-based methods, while errors caused by 

partial volumes can be addressed using a priori partial volume maps, or modification of the 

clique potential to down-weight WM to CSF transitions. Future work will investigate 

registering a priori partial volume maps to healthy regions of the brain, relaxing the prior 

constraints in regions of injury. 

In summary, the results highlight the challenges of using atlas-based priors in cases of 

severe injury, as healthy atlases do not generalize to unhealthy cases and even 

sophisticated non-rigid registration algorithms like that used by NiftySeg, FAST or Atropos 

cannot compensate for severe changes in anatomy. This places the burden of obtaining 

robust segmentations on the design of the clique weighting function as opposed to 

dictating a need for more training data. Although relatively simple adaptive approaches 

such as the proposed modified MRF can yield a robustness to severe pathology or injury, 

additional approaches are still required to segment cortical regions in this setting, which 

will be addressed in a later chapter. 
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4.5 Conclusion 

In this chapter, a modification to the EM-MRF approach tailored specifically for the 

automated cortical GM segmentation of MRI of children with CP has been described. The 

extensive anatomical malformations caused by injury related to CP limit the utility of atlas 

based priors. To impart robustness to the formulation of the posterior likelihood, and to 

compensate for the limited relevance of atlas priors, the clique potentials in the MRF were 

modified to include penalization for mismatched labels over low intensity gradients, and 

matched labels over high intensity gradients. The result is an improved segmentation at 

the boundary of cerebral tissues in a cohort of patients with severe CP-related injury (DSC 

0.783 across 17 children with severe cortical injury) in comparison to four state-of-the-art 

segmentation methods: FreeSurfer (0.631), NiftySeg (0.757), FAST (0.691) and Atropos 

(0.762). This segmentation approach is utilised for the robust segmentation of the lateral 

ventricles and cortical GM in Chapters 5 and 6 respectively. Further modifications to this 

approach were then implemented to perform lesion segmentation in Chapter 7. 

  



 

71 

 

5. Quantifying ventricular enlargement using statistical 

shape models 

5.1 Introduction 

One class of injury discussed in the review of the literature in Chapter 2 is the enlargement 

of the ventricles. The challenge for implementing automated image analysis tools for 

detecting injuries observed in children with CP is the substantial heterogeneity in the 

appearance and location of injury. An advantage of the lateral ventricles is their clearly 

defined boundary, which assists the segmentation of these structures, even in cases of 

severe enlargement. Furthermore, their proximity to key deep GM structures, and the 

observations that ventricular enlargement occurs in up to 70% of CP cases [Kulakowski 

and Larroche, 1980; Sööt et al., 2008; Truwit et al., 1992], suggests that surrogate 

markers of deep GM injury based on ventricular enlargement are likely to be relevant to 

the clinical assessment of children with CP. 

The ventricles are spaces filled with CSF in the centre of the brain that transport nutrients 

to the brain and act as a cushion to movement. They may enlarge due to an abnormal 

accumulation of CSF in the brain, or following a hypoxic-ischemic event in the 

periventricular WM or GM. As this expansion of the ventricles is caused by developmental 

disturbances, it is fundamentally different from degenerative pathologies like AD where 

there is a global expansion of the ventricular space [Gado et al., 1983]. Instead, this 

enlargement is typified by the local, irregular, or angular appearance of the lateral 

ventricles and ventricular trigones, and may impact one or both hemispheres of the brain 

[Truwit et al., 1992]. Expansion of the ventricles into the adjacent WM and key sub-cortical 

GM structures of the brain has been shown to provide an indirect measure of tissue loss 

[Hoon and Vasconcellos Faria, 2010], and has been shown to correlate with the degree of 

patient impairment [Maunu et al., 2011; Melhem et al., 2000]. 

Several techniques for assessing ventricular enlargement have been proposed, albeit in 

the context of degenerative diseases, rather than developmental ones, such AD [Horga et 

al., 2011; Nestor et al., 2008] and schizophrenia [Kempton et al., 2010]. Of these, global 

ventricular volume is the most common biomarker extracted from structural MRIs, which 

have been computed using automatic edge-detection [Shenton et al., 1991], fuzzy tissue 

segmentation [Barra et al., 2002] and region growing techniques [Nestor et al., 2008]. Less 
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frequently, this biomarker has also been measured in the setting of CP, [Melhem et al., 

2000]. Although straight forward to measure, ventricular volume varies significantly 

amongst the healthy population [Wright et al., 2002], complicating the identification of 

subtle ventricular enlargement due to injury. 

More complex biomarkers based on the shape of ventricles have been developed in other 

studies. Several studies have reported linear measures of ventricular dilation [Maunu et 

al., 2011; Northam et al., 2011]. The distance between the approximate centroid of the 

ventricle, to the surface, was found to be sensitive to local atrophy [Apostolova et al., 

2012]. SSMs area a common technique used to model ventricular shape, as it provides a 

more detailed description of how the shape of ventricles varies. These models have been 

used to identify the pathological enlargement of ventricles due to AD [Chou et al., 2007; 

Ferrarini et al., 2006; Ferrarini et al., 2008a; Thompson et al., 2004] and schizophrenia 

[Graham et al., 2006; Narr et al., 2001; Styner et al., 2003]. The extent of atrophy can thus 

be identified as the distance of the ventricle surface from corresponding points on a 

healthy SSM. These measures were correlated to measures of cognition in the context of 

AD [Ferrarini et al., 2008b]. Although this local shape based analysis would allow for a 

more informative assessment of ventricular enlargement in children with CP, there has 

been little focus on applying these methods in this setting. This is due to the large 

variability in the appearance and severity of injury observed in children with CP, leading to 

technical difficulties obtaining vertex-wise correspondences between meshes of enlarged 

ventricles. 

In this chapter a novel biomarker of deep GM injury is presented. This marker is extracted 

from an automated method for identifying and quantifying the extent of ventricular 

enlargement observed in structural MRIs of children with CP. The key contribution of this 

work is to use local deformation as a surrogate marker for ventricular impingement upon 

adjacent surrounding anatomy. The relationship between the proposed measure and 

several functional outcomes is examined to evaluate the extent to which the proposed 

method can assist clinicians in identifying injury indicative of CP, and hence guide the 

selection of treatment strategies. This work addresses Aim 1 of this thesis, “develop 

several automated segmentation approaches to delineate the three main classes of injury 

observed in children with CP; cortical malformations, WM injury and ventricular 
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enlargement”, as well as Aim 3, “[comparing] the automated results against a manual gold 

standard”. This work has been published, and is available at doi:10.1002/hbm.23276. 

5.2 Materials and methods 

5.2.1 Study Participants 

All 139 children recruited as part of the studies detailed in Section 3.2.1 have been 

included in this chapter: 95 patients with clinically diagnosed CP (50 male, 45 female, 

mean age 11.4, age range 5-17), and 44 TDC with no observed diagnosis of injury (15 

male, 29 female, mean age 10.4, age range 7-16). Of the 95 children with CP, 68 exhibited 

ventricular enlargement while the remaining 27 did not. 

5.2.3 Overview of scoring method 

The surrogate marker of injury is generated in two steps as outlined in Fig. 5.1. In the first 

step a set of impingement volumes are generated using a SSM, shown in Fig. 5.1(a). In 

the second step the impingement volumes are converted into a scalar estimate of clinical 

function using a linear regression model, shown in Fig. 5.1(b). 

The SSM describes the typical shape and variability of the lateral ventricles in healthy 

children. The SSM was constructed from the available cohort of 44 healthy children. The 

constructed SSM was subsequently fitted to the ventricles of individual unhealthy patients 

to generate an estimate of the volume of (atypical) enlargement. The volume of 

enlargement is partitioned into a set of volumes associated with nearby anatomical 

regions, referred to as impingement volumes. 

The regression model was constructed using the cohort of unhealthy patients. The 

impingement volumes, patient age and patient gender were used as the independent 

variables in the regression model, with the dependent variables consisting of the clinical 

scores. A separate regression model was constructed for each clinical score. Correlations 

between the estimated clinical function from the regression model and the actual clinical 

measures were measured to test the accuracy of the entire method. 

Finally, for new data, ventricular enlargement is computed. After alignment with the 

normative atlas, impingement of subcortical GM structures is computed. The values are 

combined with age and gender and weighted by the coefficients of the regression model, 

to obtain a predictive image score, shown in Fig. 5.1(c).  
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Figure 5.1 Pipeline of the ventricular enlargement detection 

 

Fig. 5.1 The pipeline of the (a) healthy ventricular shape model construction, (b) 

multivariable linear regression model construction relating image-derived marker of injury 

to outcome, and (c) computing image derived measures of injury from a target image. 

5.2.4 Ventricle segmentation 

The automated segmentation of the ventricles was performed using the segmentation 

approach detailed in Chapter 4. This segmentation includes the third ventricle and the 

cerebral aqueduct, however only the lateral ventricles were retained for the subsequent 

analysis using several atlas-derived seed points, and morphological opening was utilised 

to ensure that any connections of ventricular CSF to the subarachnoid space due to injury 

were contained. Subsequent morphological closing operations were applied to ensure that 

internal gaps in the segmented ventricles that were left out due to partial volume effects 

were filled in, and to ensure that if a ventricle appeared as a number of disconnected 

pieces, they were connected into a single structure. All morphological operations were 

performed with a fixed radius across all subjects. The segmented ventricles were divided 
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into the left and right lateral ventricles based on the position of the third ventricle 

segmentation, and the right lateral ventricle was mirrored to align it to the left lateral 

ventricle yielding 88 (single) lateral ventricles for statistical analysis and training. The 

aligned lateral ventricles were used to generate a single SSM, which was flipped to test for 

enlargement in each lateral ventricle independently. This, as opposed to constructing two 

separate SSMs for each lateral ventricle, ensures the same statistical assessment of 

enlargement can be applied to either lateral ventricle, of which one or both may be 

enlarged.  

5.2.5 Mesh point-correspondences 

The segmented ventricles were converted to meshes using the marching cubes algorithm 

[Lorensen and Cline, 1987]. Decimation was then performed on the meshes, removing 

65% of the triangles [Knapp, 2002]. Smoothing was subsequently performed on these 

meshes using a windowed sinc filter [Gabriel et al., 1996]. Each ventricle surface is 

represented by the coordinates of its 𝑛 landmarks, concatenated into a 3𝑛-vector. Note 

that initially the number n of landmarks in each ventricle surface is not necessarily the 

same for each mesh. The median reference ventricle was selected from the subset of 88 

healthy lateral ventricles by selecting the ventricle with the minimum row sum from the 

matrix of residuals between each mesh pair. This shape surface was then registered to the 

remaining 87 healthy lateral ventricles using the Expectation Maximisation – Iterative 

Closest Point (EM-ICP) method [Combès and Prima, 2010]. This method interleaves 

estimating the non-rigid transformation between two surfaces that minimises the sum of 

squared distance (SSD) between corresponding surface points, and updating the expected 

correspondence between surface points using the EM algorithm. A term enforcing 

symmetry of the forward and reverse transformations, and a regularisation term were 

included in the cost function to ensure inverse consistency and regularity of the 

transformation. This method allows the points corresponding to each vertex on the 

reference mesh to be located on every other mesh. The point correspondences allow the 

remaining meshes to be represented by vectors of the same size as the reference mesh. 

5.2.6 Statistical shape model construction 

The meshes of the registered healthy lateral ventricles with point correspondences were 

represented by concatenating the landmark points into vectors of equal length. The mean 

shape, �̅�, and covariance matrix, Σ, were computed from the 𝑠 shapes in the sample. A 
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Principal Component Analysis (PCA) [Joliffe, 2005] was performed to obtain eigenvectors 

𝜙𝑚, and their corresponding eigenvalues 𝜆𝑚. The eigenvectors capture the principal 

modes of variation in the sample of shapes. Only the first 𝑐 eigenvectors were used, such 

that the ranked 𝑐 eigenvalues with largest magnitude eigenvalues described more than 

90% of the total variance. As a result, the first six ranked eigenvectors were used in this 

shape modelling approach. Each individual shape 𝒙𝑖 can be represented by both the mean 

shape �̅�, and a 𝑐-length vector describing the projection of the shape along each of the 

main modes of variation using the shape descriptor 𝑏: 

𝒙𝑖 ≈ �̅� + ∑ 𝑏𝑖,𝑚𝜙𝑚                                                                 𝐸𝑞 5.1

𝑐

𝑚=1

 

To accurately describe the high degree of healthy variation in shape of the ventricles, an 

iterative method was used to estimate the SSM [Hufnagel et al., 2009] in which the current 

estimated SSM was registered back to the original 87 healthy ventricles using the EM-ICP 

based shape estimation method [Shen et al., 2012b], which is formulated in the Bayesian 

setting. In this approach two parameters are iteratively updated, the vertex-wise 

correspondence between the SSM and the ventricular mesh in the E-step, and the 

transformation of the SSM constrained to its six eigenvectors to minimise the Euclidean 

distance between corresponding vertices in the M-step. This method produces an updated 

SSM at each iteration, for five iterations. In this Bayesian framework, Tikhonov 

regularisation was used on the estimator to penalise large deviations from the mean 

shape, i.e. the objective function included a regularisation term consisting of the weighted 

sum of square parameters. The default regularisation parameter (𝛽 = 1), equivalent to a 

Bayesian estimation informed by the shape priors, was used here. Previous results show 

robustness of regularising the hippocampal shape parameters (provided it is non-zero) in 

estimating the shape of the hippocampus [Shen et al., 2012b]. The process of iteratively 

corresponding the SSM back to the original shapes reduces the residual error of the fit of 

the SSM to the original healthy shapes, making the computed eigenvectors more 

representative of the majority of the population. 

The mean shape and the first three modes of variation (of the six eigenvectors contained 

in the SSM), within 2 standard deviations, of the final SSM are illustrated in Figure 5.2. The 

first three modes were illustrated as these modes explain the greatest amount of shape 
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variation. The first mode approximately describes variations along the lateral aspect of the 

ventricle, the second describes an anterior to posterior shifts, while the third defines 

changes in size of the anterior horn. Note that care should be taken not to assign too much 

meaning to the principle components by conflating them with physical effects. 

Figure 5.2 Mean ventricle shape and three modes of variation 

 

Fig. 5.2 Mean shape and first three modes of variation (+/- 2 S.D.) of the SSM. 

5.2.7 Identifying age-related changes in ventricular shape 

To identify any changes in ventricle shape due to patient age, and potentially account for 

this in the SSM, two groups of corresponding meshes were isolated, those belonging to 

patients between 5 and 9 years (n = 8, 4 male, 4 female), and between 12 to 17 years of 

age (n = 8, 5 male, 3 female) respectively. Following initial ICP matching, Procrustes 

analysis was performed [Gower, 1975], i.e. the ventricles were uniformly scaled to obtain 

an optimal match, followed by discriminant analysis between the ventricle shapes of both 

groups. From this analysis, a map of significance was generated which illustrates the 

statistical significance of the difference of each corresponding point between the two 

groups. In addition, the first three shape descriptors of the constructed SSM corresponding 

to these meshes were analysed using Hotelling’s T-squared test [Styner et al., 2007], 

providing a shape descriptor comparison for each age group with a Hotelling’s T-squared 

statistic [Shen et al., 2011]. 

5.2.8 Multiple statistical shape model construction 

To account for the deviation of ventricle shapes observed from the healthy children, three 

additional SSMs were constructed, using subsets of the 88 cases, with the aim of using 

the most appropriate SSM to fit to a given unclassified ventricle. To identify the separate 

groups of shapes, the initially constructed SSM was transformed to fit the original healthy 

ventricles, providing a vector of shape descriptors. FCM [Bezdek et al., 1984] clustering 
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was performed on the first two shape descriptors, which combined describe the gross 

anatomical shape, identifying three shape groups. Individual SSMs were constructed for 

each of these groups, as detailed in Section 5.2.6.  

To determine the differences between these three groups, the meshes were Procrustes 

aligned and discriminant analysis was performed between the three possible pairs. This 

generates a map of the statistical significance of the difference between the corresponding 

points between the compared groups. Additionally, the SSM constructed from all healthy 

ventricles was transformed to the remaining 87 ventricles, and the first three shape 

descriptors from the transformation were obtained and grouped based on the shape 

grouping of the target healthy ventricle. Shape descriptors were again analysed using the 

Hotelling’s T-squared test between the different shape groups, correcting for multiple 

comparisons using Bonferroni correction. 

5.2.9 Measuring SSM correspondence 

The EM shape estimation method [Shen et al., 2012b] was further used to transform the 

iteratively improved single and multiple SSMs to the remaining ventricles obtained from the 

MRIs of the 95 children with CP. In this step, the SSM transforms along the six largest 

eigenvectors to best fit the target ventricle. Tikhonov regularisation was used to constrain 

the shape descriptors fitting the SSM to a given lateral ventricle, xi, which can be 

described as: 

𝒙𝑖 = �̅� + 𝑏𝜙 + 𝜖 = 𝒙 + (𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 + 𝑏𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟)𝜙 + 𝜖,                             𝐸𝑞 5.2 

where �̅� is the mean SSM shape, 𝜙 contains the SSM eigenvectors, 𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 contains 

the constrained shape parameters obtained from the SSM fitting process, 𝑏𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 

contains the difference between unconstrained and constrained shape descriptors, and 𝜖 

contains the residual that cannot be described by the model. As a result, the SSM provides 

the closest healthy shape to a target (healthy or injured) ventricular shape, with regions of 

ventricular enlargement caused by injury not modelled by the SSM. Hence, for the 

function, 𝑉(𝑥), that converts a mesh model 𝑥 into its volumetric representation, the 

enlarged volume mask, 𝑉𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑑, is: 

𝑉𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑑 = 𝑉(𝒙𝑖) − 𝑉(�̅� + 𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝜙) = 𝑉(𝑏𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝜙 + 𝜖)                         𝐸𝑞 5.3 
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Here, the term 𝑉(�̅� + 𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝜙) represents the assumed maximum natural variation in 

ventricle shape. The remaining volume 𝑉(𝑏𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝜙 + 𝜖) is assumed to represent the 

atypical shape variation arising from injury. The volume mask 𝑉𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑑 was termed the 

volume of enlargement. 

As the constrained SSM models the closest healthy shape, with a volume mask 𝑉𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑑 

representing the difference to the volume of the actual shape 𝑉(𝒙𝑖), in cases of severe 

enlargement, as shown in Figure 5.3, the SSM can be up to 3.5cm away from the 

segmented ventricle. 

Figure 5.3 Illustration of a severely enlarged ventricle distance from healthy variation 

 

Fig. 5.3 A structural MRI displaying severely enlarged lateral ventricles, and the measured 

Euclidean distance between the transformed healthy SSM and the segmented ventricle 

displayed on the ventricle mesh. This distance revealed up to 3.5cm of enlargement due to 

injury, observed in the superior portion of the ventricle. 

This approach, along with its inherent assumptions of healthy anatomy lying within the 

constraints of the eigenspace defined by the six components of the healthy SSM, was 

taken because the parameters obtained from fitting (i.e. 𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑), which represent the 

distance of the transformed SSM from the mean shape, may not adequately describe the 

magnitude of injury. Although enlarged ventricles are generally larger than the mean, 

regions of enlargement may not be accurately described using the eigenvectors of the 

healthy SSM, and as such are not captured with the 𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 parameters. Even so, for 
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completeness, the utility of distance from the mean, ∑𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑
2  was tested as another 

potential measure of injury. 

A Receiver Operator Characteristic (ROC) analysis was performed to determine the 

performance of both the volume of enlargement and sum of squares of the constrained 

shape parameters to correctly identify cases of ventricular enlargement caused by 

disturbances during development, compared to the gold standard diagnosis of ventricular 

enlargement obtained from a medical expert. From these ROC analyses for each measure 

of enlargement, the Area Under the Curve (AUC) and the Standard Error (SE) were 

computed using the trapezoidal integration approach [Bradley, 1997]. In addition, at the 

optimal location, the positive and negative predictive values were computed. ROC 

analyses were performed using a single SSM, constructed from all healthy ventricles, for 

correspondence, as well as for multiple SSMs, each representing a specific sub-group of 

ventricular shape in the healthy population. In the latter case, the SSM that most closely 

matched the target ventricle was used to obtain correspondence. 

5.2.10 Measuring anatomical biomarkers of injury 

From the ventricles classified as enlarged by the SSM, the volume of enlargement was 

identified from the correspondence of the SSM, and impingement volumes quantifying of 

the extent of deep WM and GM impact was measured. This was computed as the overlap 

of the enlarged ventricular volume, and the labelled deep GM structures obtained from the 

Automated Anatomical Labelling (AAL) atlas registered to the Colin 27 atlas. The overlap 

with the PLIC and the anterior limb of the internal capsule (ALIC) were also computed, 

which was achieved by manually labelling the respective limbs of the internal capsule on 

the Colin 27 atlas.  

A voxel-wise weighting was applied to these labelled anatomies, to down-weight voxels in 

regions where correspondence errors were observed among the healthy ventricles. Figure 

5.4(a) shows the frequency and location of correspondence errors among the set of 

healthy ventricles used to construct the SSM. Figure 5.4(b) shows the corresponding 

weights of this region in the atlas, illustrating the down weighted regions with high 

correspondence errors. This was performed by linearly scaling the correspondence errors 

shown in Figure 5.4(a) to have a maximum of 1, inverting this result, and reflecting the 

minimum value observed on either side of the medial line, in effect copying the greatest 
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correspondence error observed on either lateral ventricle to both hemispheres. Figure 

5.4(c) shows a cumulative map of ventricular enlargement, identified from the set of 

children with CP having either healthy or enlarged ventricles, using the multiple healthy 

SSMs. This map shows the frequency of injury at locations in the adjacent deep WM and 

GM anatomies, scaled by the weights from Figure 5.4(b). 

Figure 5.4 Map of model correspondence errors 

 

Fig. 5.4 (a) The frequency of correspondence errors observed among the healthy 

ventricles used to construct the SSM. (b) The corresponding atlas weights used to down 

weight regions with high correspondence errors. (c) The frequency of ventricular 

enlargement observed in the set of unclassified ventricles (containing both healthy and 

enlarged ventricles), weighted by the atlas weights in (b). 

5.2.11 Statistical methodology 

Statistical analysis was performed using R statistical software Version 3.1.1 [The R 

Development Core Team, 2008]. Multivariable linear regression was used to quantify the 

relationship between the computed impingement volumes into five key structures, as well 

as patient age and gender, to several clinical scores of function. The structures analysed 

comprised of the thalamus, lenticular nucleus, caudate nucleus, PLIC and ALIC. The 

regression coefficients for the independent variables were standardised to a variance of 

one to allow for more intuitive comparisons between coefficients. The covariance between 

the measured impingement volumes for each anatomy was also computed, to observe the 

extent to which these measures co-vary. Measures of statistical significance were 

corrected for multiple comparisons using Bonferroni correction, comparing the calculated 

p-values against the adjusted alpha (=0.05/6, 0.008). 
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5.2.12 Comparison to direct measure of injury 

To address concerns that the volume of local ventricular enlargement is an indirect 

measure of injury to sub-cortical anatomies, an additionally a set of regression models 

were computed using the volumes of these anatomies as a direct measure of possible 

injury to these structures, for comparison. Deep GM anatomies were segmented using 

FIRST [Patenaude et al., 2011], providing volumes of the lenticular nucleus, caudate 

nucleus and thalamus for 70 out of the 95 CP patients.  

5.3 Results 

5.3.1 Age Comparisons 

The Hotelling’s T-squared statistic, which quantifies the difference in the shape descriptors 

obtained from the two age groups, was 5.31 (p = 0.746). The low T-squared value implies 

that the effect of age was not a significant factor influencing ventricular shape. Hence 

subject age was not controlled for in the SSM. 

5.3.2 Shape sub-population comparisons 

Significant shape differences were observed between the three shape groups, with the 

significance map of the point-wise comparison between the first and second identified 

shape groups, as well as the first and third shape groups, is illustrated in Figure 5.5. These 

maps highlight extensive regions along the ventricle shape that are statistically significantly 

different between the three shape groups. Furthermore the Hotelling’s T-squared statistic 

showed statistically significant differences between the first and second shape groups (T = 

142.5, p < 0.0001), the second and third shape groups (T = 68.1, p < 0.0001), and then 

first and third groups (T = 56.6, p < 0.0001), motivating for the use of multiple SSMs. The 

three SSMs were observed to have a similar variation in healthy ventricle shape i.e. 

eigenvectors, including the global lateral widening, and anterior/posterior thickening, and 

mainly differed in their mean shape. 
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Figure 5.5 Map of significantly different points between three shape groups 

 

Fig. 5.5 The p-map of statistical significance between corresponding points between the 

(a) first and second shape, and (b) first and third shape groups, which were identified from 

fuzzy c-means clustering, obtained from the discriminant analysis. The comparison 

between the second and third shape groups is not shown. 

5.3.3 ROC analysis 

The results of the ROC analysis are illustrated in Table 5.1. Two measures of SSM 

correspondence were computed, the sum of squares of the shape descriptors and the 

volume of enlargement, in order to identify the optimal biomarker for the classification of 

ventricular enlargement compared to the manual gold standard. In this table, the top row 

shows the ROC results using measures computed from the single SSM transformed to the 

unclassified ventricles, and the bottom row shows the ROC results from using the three 

SSMs constructed from each shape group. In the latter case, only the SSM that was most 
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similar to the unclassified shape, as determined by the Dice overlap [Dice, 1945], and the 

correspondence measures obtained from this transformation were used. The computed 

performance measures include the AUC, SE, positive predictive value (PPV) and negative 

predictive value (NPV) for both measures. These performance measures quantify how 

closely the classification of ventricular enlargement by the SSM agrees with the gold 

standard classification obtained from a medical expert, with the AUC measure 

representing the probability of correctly classifying ventricles as healthy or enlarged. As 

expected, the SSM shape descriptors showed reduced performance compared to the 

volume of enlargement, hence only the volume of enlargement was used to measure the 

magnitude of injury in individual anatomical regions. 

Table 5.1 The ROC performance measures for the two measures of enlargement 

Table 5.1. The computed AUC, SE, PPV and negative predictive value NPV for each of 

the three measures of model correspondence, obtained from the ROC analysis. 

ROC Measure Sum of squares of the shape 
descriptors 

Volume of enlargement 
(mm3) 

Single SSM AUC ± SE 0.680 ± 0.050 0.889 ± 0.029 

PPV 0.629 0.798 

NPV 0.629 0.800 

Multiple 
SSMs 

AUC ± SE 0.545 ± 0.057 0.925 ± 0.023 

PPV 0.489 0.830 

NPV 0.486 0.829 

5.3.4 Performance of biomarkers 

The linear regression models of the impingement volumes in the periventricular WM and 

GM structures with the multiple clinical scores are detailed in Table 5.2. The variables 

incorporated into each regression mode, which include the impingement volumes into 

each labelled anatomy as well as subject age and gender, are shown in the rows of Table 

5.2. Each column of this table describes the standardised regression coefficients of each 

variable with the AHA, BRIEF, SDQ, TVPS, WR or VOC clinical scores respectively. The 

amount of variation in each clinical measure explained by the regression models is 

described by the R-squared value. In addition, the amount of variation explained by the 

two covariates, age and gender, alone were computed from regression models 

constructed using only these variables. The likelihood of the regression coefficients being 

erroneously found to have a non-zero relationship with the outcome variable is shown by 

the associated p-value.  
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All deep WM and GM structures, except the caudate nucleus, were significantly associated 

with the AHA clinical score for motor function. The PLIC was significantly associated with 

both scores of executive function (BRIEF and SDQ), while the ALIC was also associated 

with the SDQ score. No significant anatomical associations were observed for the TVPS 

score for visual perception or the VOC score for vocabulary. The caudate nucleus, ALIC, 

and lenticular nucleus were strongly associated with the word reasoning (WR) score. 

Table 5.2 Model details between regional enlargement and clinical outcome 

Table 5.2. The standardised regression coefficients and associated p-value for each of the 

linear models, which show the relationship between the volume biomarkers of enlargement 

into key structures surrounding the ventricle, and the AHA, BRIEF, SDQ, TVPS, WR and 

VOC clinical scores of outcome. The resulting r-squared of the complete linear models, as 

well as linear models of just the covariates (patient age, in years, and gender) are shown 

at the bottom. 

 AHA BRIEF SDQ TVPS VOC WR 

Variable Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Caudate 
nucleus 

-0.20 0.14 0.49 0.20 -0.09 0.59* 

Thalamus 1.15*** 0.40 -0.45 0.10 -0.08 0.18 

PLIC -1.77*** -0.78* 1.06* 0.02 0.59 -0.47 

ALIC 0.76* 0.19 -1.13* -0.32 0.03 -0.99* 

Lenticular 
nucleus 

-0.48* 0.03 -0.03 0.24 -0.42 0.78** 

Age 0.25* -0.06 0.42** -0.21 0.33 0.49*** 

Gender -0.01 0.49** 0.46* 0.08 -0.08 -0.21 

Multiple r-
squared 

0.62*** 0.33* 0.55*** 0.09 0.20 0.50*** 

Multiple r-
squared of 
covariates 
(age, 
gender) 

0.08 0.24** 0.24* 0.05 0.10 0.28*** 

Asterisked correlations were found to be statistically significant: * p < 0.008; ** p < 0.0016, 

*** p < 0.00016. Correlations in bold have a statistical significance of p < 0.08. 

Gender was observed to have a significant effect on both the BRIEF and SDQ measures 

of executive function (p < 0.008), while age was strongly associated with the AHA, SDQ 

and WR scores (p < 0.008). This latter observation of age being strongly associated with 

these functional scores is expected from the literature [Henry and Millar, 1991; Morris et 
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al., 1982], even though age was not found to be associated to lateral ventricle shape and 

hence not incorporated into the SSM. Overall, these covariates explained relatively less 

variation in the AHA score than the measured impingement volumes. However they 

explained most of the variance in the BRIEF measure, and explained roughly half of the 

variation in the SDQ, TVPS, VOC and WR measures. 

Regression models explained between 9% of the variance in the clinical score (for the 

TVPS measure) to 62% (for the AHA measure). Four of the regression models (for the 

AHA, BRIEF, SDQ and WR scores) reached significance (p < 0.008). A visual 

representation of the regression coefficients from the regression models in Table 5.2 is 

illustrated in Figure 5.6. In this figure, the deep GM structures, and the ALIC and PLIC, are 

illustrated adjacent to the outlined lateral ventricles.  

Figure 5.6 Illustration of regression coefficients 

 

Fig. 5.6 A visual illustration of the regression coefficients of the linear models computed 

between the impingement volumes, and the (a) AHA, (b) BRIEF, (c) SDQ, (d) TVPS, (e) 

VOC and (f) WR. Blue colours indicate a larger negative regression coefficient, red 

represents a larger positive regression coefficient. Non-significant regression coefficients 

(p > 0.008) are indicated in white. 

5.3.5 Performance of anatomical volumes 

The regression models constructed with the deep GM anatomical volumes obtained from 

FIRST are detailed in Table 5.3. These regressions explained between 5 and 25% of the 
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variance in the six clinical measures, with only the regression model of the AHA score of 

motor function reaching clinical significance following Bonferroni correction. The thalamus 

and lenticular nucleus volumes were found to be significant in the BRIEF measure, 

however no other anatomical volumes were found to be significant in any of the other 

regression models. Patient age was found to be a significant factor for three of the six 

clinical scores. Overall, these regression models explained less of the variance in the 

clinical scores compared to the corresponding regression models containing the identified 

volume of local ventricular enlargement, shown in Table 5.2. 

Table 5.3 Model details between total enlargement volume and clinical outcome 

Table 5.3. The standardised regression coefficients and associated p-value for the linear 

models which show the relationship between the anatomical volumes and the AHA, 

BRIEF, SDQ, TVPS, WR and VOC clinical scores. The resulting r-squared of the model, 

and of the covariates (patient age and gender) alone are shown at the bottom. 

 AHA BRIEF SDQ TVPS VOC WR 

Variable Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Regression 
coefficient 

Caudate 
nucleus 

-0.18 -0.08 0.22 -0.28 -0.28 0.22 

Thalamus -0.30 -0.95* 0.05 0.13 0.13 0.05 

Lenticular 
nucleus 

0.35 1.07** -0.46 0.29 0.29 -0.46 

Age -0.43* 0.24 -0.43 0.47 0.47* -0.43* 

Gender 0.93 0.15 0.09 -0.08 -0.08 0.09 

Multiple r-
squared 

0.25* 0.16 0.13 0.05 0.15 0.13 

Multiple r-
squared of 
covariates (age, 
gender) 

0.22 0.02 0.10 0.04 0.14 0.10 

Asterisked correlations were found to be statistically significant: * p < 0.008; ** p < 0.0016, 

*** p < 0.00016. Correlations in bold have a statistical significance of p < 0.08. 

5.4 Discussion 

In this chapter, an automated tool to quantify ventricular enlargement and demonstrated its 

correlation to clinical function has been described. The proposed automated method uses 

SSMs to model the healthy variation in ventricular shape, which provide a surrogate 

marker of sub-cortical GM tissue damage that can be measured robustly. The robustness 
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of measuring ventricular enlargement was demonstrated with a ROC analysis, with 

showed the healthy SSM was frequently able to identify the regions of ventricular 

enlargement symptomatic of injury (AUC = 0.925). Additionally, significant correlations 

were observed between the computed anatomical impingement volumes and multiple 

clinical scores of function. This demonstrates the clinical utility of these predictive 

regression models of function using the proposed impingement volumes to predict patient 

outcome from MR images alone, and subsequently tailor patient-specific treatment. 

Furthermore, these regression models provide a tool to elucidate the relationship between 

observable injury and clinically observed symptoms, which can help improve the 

understanding of the brain’s structure-function relationship. 

The high variability in the shape of healthy ventricles presents a technical challenge in the 

modelling and correspondence of the SSM approach, so several additional steps were 

included in the methodology. Firstly, to avoid errors in obtaining correspondences between 

healthy ventricles and the highly variable shapes of enlarged ventricles, a healthy SSM 

was constructed, which allows injured areas to be identified as the volume of enlargement 

outlined by the transformed SSM. To further account for the high variability in shape of 

healthy ventricles, point correspondences between the constructed SSM and the training 

data were iteratively recomputed to further reduce the reconstruction error of the SSM, 

resulting in a better representation of these healthy ventricle shapes. Secondly, multiple 

diverse SSMs were generated, to describe sub-populations of healthy ventricle shapes. 

The utilisation of multiple SSMs led to improvements in the binary classification of 

ventricular enlargement compared to the manual gold standard from 0.889 to 0.925 (Table 

5.1). Although using multiple SSMs requires greater computational resources, it minimises 

errors in the SSM construction and transformation processes, which critically rely on an 

accurate correspondence match between shapes. 

The sum of squares of the shape descriptors was observed to not be predictive of 

enlargement whether one or multiple references were used (respective AUCs of 0.68 and 

0.545). The greater than random classification performance of this measure reflects that 

enlarged ventricles are typically larger than the mean, however its reduced performance 

compared to enlargement arises as instances of ventricular enlargement do not lead to the 

ventricles extending significantly along healthy eigenmodes, but rather this enlargement 

typically occurs along eigenmodes not contained within the healthy SSM. For instance, in 
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cases where small ventricles were locally enlarged due to injury, appearing as a subtle 

irregularity, the computed shape descriptors would be small as the global ventricle size is 

small, however the subtle irregular enlargement is still captured by the volume mismatch 

measure. Furthermore, the drop in performance of the sum of squares descriptor on 

multiple SSMs compared to one SSM is the result of this descriptor relying on the 

“distance from the mean shape” to be indicative of enlargement. When multiple SSMs are 

used, each with their own mean shape, the closest mean to the target shape will be 

selected, in effect underestimating the 𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 parameters and leading to the poorer 

prediction of enlargement based on 𝑏𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 alone. 

The impingement volumes quantifying the extent to which deep WM and GM structures 

adjacent to the ventricle were impacted by the change in shape were found to be 

significantly associated with four of the six measured clinical scores of functional 

outcomes. The known importance of the thalamus, PLIC and basal ganglia (which includes 

the putamen of the lenticular nucleus) in relaying motor information [Hoon Jr et al., 2009; 

Rose et al., 2011; Rutherford et al., 1996] is reflected in the strong association of all 

structures with the AHA score, and the explanation of over 60% of variance in the AHA 

score in the regression model. WM abnormalities in the PLIC and ALIC were strongly 

associated with both scores of executive function (BRIEF and SDQ), which is consistent 

with the literature [Edgin et al., 2008; Kurowski et al., 2009]. However the known role of the 

thalamus and caudate nucleus in executive function [Grahn et al., 2008; Van der Werf et 

al., 2003] has not been identified in these regression models. There were few significant 

associations between impacted periventricular anatomies and the clinical scores for visual 

perception and communication (TVPS and VOC respectively), which may be due to the 

larger role the cortical GM plays in both visual processing as well as the comprehension 

and production of language. Despite this, the second score for communication (WR) 

showed a significant association with the caudate nucleus, ALIC and lenticular nucleus. 

The association between these anatomies with language comprehension has been 

demonstrated in the literature [Giroud et al., 1997; Watkins et al., 2002]. Gender was 

observed to be a factor for both scores of executive function, indicating that females 

performed better than males in these tasks within the age range of 5-17, which was 

expected. Similarly age was found to have a positive association with several scores 

including AHA, SDQ and WR, indicating that older patients performed better in these 
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tasks. The strong relationship to several clinical outcomes highlights that the impact of 

ventricular enlargement on adjacent structures plays an important role in influencing 

patient outcome.  

There was a positive covariance observed between the computed impingement volumes 

for all pairs of anatomical structures. This was expected as injury to one anatomy due to 

ventricular enlargement is likely to lead to greater impact to adjacent structures as well. 

These associations between anatomies explain why there are positive regression 

coefficients in the constructed regression models, as shown in Table 5.2. In all the 

regression models, the largest regression coefficient was negative, and the association of 

injury measures in adjacent regions caused other coefficients to have smaller positive 

values in order to maximise the fit to the clinical score. Including interaction effects into the 

regression was considered to help minimise this effect, and will produce regression 

models with better correlations to clinical outcomes, however the risk of over-fitting by 

including too many interaction terms was deemed to outweigh the potential benefit. 

Therefore although the positive regression coefficients imply that there is a positive 

relationship between extent of injury and patient function, it is important to note that these 

positive coefficients should be considered as part of the regression model, with all 

anatomies included, and not in isolation with the clinical score. 

The volume of ventricular enlargement, identified using multiple SSMs, was found to 

explain a greater percentage of variance in all of the clinical scores compared to the 

computed volume of the entire sub-cortical structures obtained from FIRST. The 

regression models constructed using the volume of these anatomies was not strongly 

indicative of any measure of patient function, with patient age being the only significant 

variable identified across multiple regression models. This suggests either that anatomical 

volume does not represent injury or that the estimation of anatomical volumes is too error 

prone in the presence the large anatomical injuries typical of CP. As a result, the proposed 

method of identifying a volume of enlargement using healthy ventricular SSMs provides 

measures that are more representative of the underlying injury due to ventricular 

enlargement, and yields regression models that can more accurately predict patient 

function given this type of injury. This performance benefit stems directly from the 

method’s use of ventricle segmentations, lending it robustness in the face of extensive 

anatomical malformation. 
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The limitation of this work was that the proposed method only analyses the shape of the 

ventricles, so the measure is fundamentally a surrogate measure of injury, albeit one that 

can be reliably characterised. Although this is a common type of injury in children with CP, 

it does not consider lesions and cortical malformations that do not influence ventricular 

shape. Consequently, these forms of injury are investigated using different methods, which 

are detailed in the following chapters. Another limitation is that the areas labelled as deep 

WM and GM anatomies were only defined from the Colin 27 atlas, and not identified 

individually for each patient. Therefore there may be inaccuracy in the computed 

impingement volumes as it does not account for the translation of these anatomies due to 

ventricular enlargement.  

The main strength of this proposed surrogate biomarker is that it avoids quantifying deep 

GM volumes directly, an error prone approach when injuries are large. This is an important 

consideration, as extreme anatomical variations which are commonly observed in children 

with CP are a critical limitation of atlas-based approaches for segmenting anatomical 

structures for subsequent estimations of volume. Additionally, the proposed method only 

requires one structural MR image, and does not require additional modalities such as 

diffusion or functional MRI, which facilitates the potential translation of such automated 

techniques to clinical practice. The advantages of this approach for assessing children with 

CP are highlighted by the improved correlations compared to the more sophisticated 

approach used in FIRST. Future work will involve devising methods for robustly 

segmenting the subcortical anatomies for each patient, allowing more accurate measures 

of enlargement to be derived.  
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5.5 Conclusions 

This chapter presented an automated method for robustly detecting and quantifying a 

subset of CP associated injuries, by quantifying ventricular enlargement and its 

impingement upon local anatomical structures. Using the SSM method, a model describing 

the variability in the shape of healthy ventricles was used to identify regions of 

enlargement related to developmental disturbances in ventricles segmented from 

structural MRIs. A ROC analysis showed that this SSM accurately classifies ventricles as 

enlarged or healthy (AUC 0.889 using a single SSM, 0.925 for three SSMs). 

Quantifications of the effect of ventricular enlargement on adjacent deep WM and GM 

structures were shown to have a strong correlation with multiple clinical scores, including: 

motor (R squared 0.62, p < 0.008), executive (0.55, p < 0.008) and communicative 

function (0.50, p < 0.008), especially in comparison to more standard atlas based 

segmentation approaches (R squared 0.25, 0.13 and 0.13 for the same clinical scores, p < 

0.008 for the first value, p > 0.008 for the remaining values). These results illustrate the 

potential for quantification of MRIs for further elucidating the relationship between 

observable physical brain injury and clinically observed symptoms, with potential to better 

tailor treatments for patients. In the following chapters, automated strategies for the 

segmentation of other types of injury observed in children with CP are detailed, including 

cortical malformations and WM or GM lesions, and assess their impact on clinical 

outcomes. 
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6. Characterising cortical morphology in a cohort of children 

with unilateral cerebral palsy 

6.1 Introduction 

An important class of injury in children with CP are cortical malformations, as they crucially 

impact the cortical GM responsible for the generation of neural signals. Alterations of the 

cortical surface are the result of several types of lesions observed in children with CP [Bax 

et al., 2006], as it relates to either environmental or genetic insult [Barkovich et al., 2012; 

Leventer et al., 2008] to the neuronal architecture critical for brain function [Collin et al., 

2014]. The injury appears as a heterogeneous group of congenital cerebral alterations, 

which results in several clinical types. In particular, in unilateral CP, the type of injury 

includes (by frequency): PWM lesions (45%), GM lesions (30%) and brain 

maldevelopments (14%) [Cioni et al., 1999].  All these abnormalities can result in abnormal 

cortical folding, altered gyri, abnormally thick folds (pachygyria) and abnormal fluid filled 

clefts arising from primary (for cortical GM involvement) or secondary (for WM 

involvement) origin, which contribute to functional impairments irrespective of aetiology. 

MRI is pivotal for defining alterations due to cerebral injury, however the current qualitative 

clinical assessments based on aetiology [Cioni et al., 1999; Krägeloh-Mann and Horber, 

2007] are too broad, and not sufficient to describe the large variability in appearance or 

impact of these alterations [Feys et al., 2010]. Quantitative image analysis techniques are 

needed to develop models which can quantify the severity of abnormalities due to injury, 

and to link cortical structure to patient function.  

An automated quantitative analysis of cortical shape has the potential to comprehensively 

characterise the shape of the cortex and relate this shape to a range of functional 

outcomes. In the CP setting, the heterogeneity of possible alterations due to lesions 

necessitates the use of several measures of shape to fully characterise cortical 

morphology. Cortical thickness is one important measure that increases during 

development [Shaw et al., 2006], which can be used to detect and quantify primary or 

secondary pachygyria. Cortical thickness has been used in many studies in order to 

characterise healthy development [Sowell et al., 2004], abnormal development [Moeskops 

et al., 2015], and to investigate cortical thinning due to schizophrenia [Rimol et al., 2012] 

and Alzheimer’s disease [Haidar and Soul, 2006]. The curvature of the cortex [Rodriguez-
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Carranza et al., 2008] and sulcal depth [van Essen, 2005] are alternative measures that 

reflect the changes in cortical surface area arising from gyrification during development 

[Dubois et al., 2008a]. Consequently, these measures are important for identifying 

changes in cortical folding related to several brain malformations such as lissencepahly, 

polymicrogyria or schizencephaly, with multiple studies highlighting the sensitivity of these 

measures in detecting cortical abnormalities [van Essen et al., 2006; Nordahl et al., 2007; 

White et al., 2003; Zhang et al., 2015]. 

Current cortical analyses typically use combinations of these shape measures within 

surface-based morphometry frameworks to identify statistically significant differences 

between diseased or injured brains and healthy controls [Dierker et al., 2015; Park et al., 

2009; Schaer et al., 2008]. However, the severity of alterations observed in children with 

CP, such as those illustrated in Figure 6.1, introduces significant errors into the registration 

of cortical surfaces required by morphometric analyses. In the CP setting, FreeSurfer is 

frequently used to extract and parcellate the cortical surface [Kelly et al., 2015; Papadelis 

et al., 2014; Rose et al., 2011] and to compute multiple measures of cortical shape [Danti 

et al., 2015; Ma et al., 2015; Shollenbarger et al., 2015]. This method however relies on an 

accurate deformation of a surface mesh, necessitating manual intervention or the 

exclusion of severely injured data. VBM [Ashburner and Friston, 2000] is also a commonly 

used approach for assessing cortical GM changes between healthy and unhealthy groups 

[Giménez et al., 2006], correlating image features to outcome [Northam et al., 2011; Soria-

Pastor et al., 2008], and investigating longitudinal changes in structure related to plasticity 

[Giuliani et al., 2011; Sterling et al., 2013; Thomas et al., 2009]. This approach has been 

found to be susceptible to false positives due to the complicated structure of the neocortex 

[Scarpazza et al., 2015], and is similarly hindered by severe injury, which affects the 

accuracy of the image registration. Additionally, although a combination of these cortical 

shape measures have been correlated with brain volume [Im et al., 2008], Intelligence 

Quotient (IQ) [Im et al., 2006] and cognitive scores [Dubois et al., 2008a; Jouvent et al., 

2008], and have been tracked longitudinally over the development of pre-term infants 

[Chung et al., 2003; Dubois et al., 2008b], no such correlations have been made for CP 

specifically, primarily due to the difficulty in segmenting and labelling GM tissue on regions 

of severe injury.  
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Figure 6.1 Illustration of severe injury in children with CP 

 

Fig. 6.1 An illustration of the extensive injury common in CP patients resulting in abnormal 

folding and abnormal fluid filled areas (bilateral perisylvian polymicrogyria (arrow, a), 

ventriculomegaly (b-d) and abnormal fluid filled clefts (arrow, b-c) or cysts (arrowhead, d-

e). Secondary alterations of the cortical surface were caused by: (b-c) PWM lesions and 

(d-e) CDGM lesions. 

Provided these technical difficulties can be overcome and a robust and sensitive 

characterisation of the cortical surface can be obtained, several hypotheses related to 

cortical injury and compensatory mechanisms in children with CP can be investigated. 

Firstly, since cortical shape is an important consideration of clinicians reviewing 

abnormalities that are visible in MRIs [Guerrini and Dobyns, 2014; Leventer et al., 2008], 

automated measures of cortical shape could readily be applied to identify and quantify the 

differences between children with cortical alterations and TDC. Secondly, in cases with 

unilateral injury, abnormalities in the uninjured hemisphere relative to the typical population 
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will occur as a result of either secondary microstructural damage due to altered influences 

of the injured hemisphere, or potential plasticity mechanisms which have been observed in 

animal models [Kolb and Gibb, 2007], stroke patients [Ward, 2005] and children with CP 

[Krägeloh-Mann, 2004]. It could also help establish whether subtle cortical alterations exist 

in children with other forms of injury such as PWM lesions (i.e. PVL or ventricular 

enlargement due to loss of PWM injury). Finally, measures of healthy (or unhealthy) 

cortical shape taken from multiple cortical regions with a known functional role could be 

correlated to patient function, revealing the structure-function models of the brain. 

In this chapter, it is hypothesised that shape measures in the injured classes (alterations 

present within the ipsilateral hemisphere or bilateral alterations due to brain injury in 

clinically unilateral CP), are different from TDC. It is also hypothesised that cortical shape 

contralateral to the side of injury differs from TDC, potentially due to mechanisms of 

plasticity. Finally, it is hypothesised that children with clinically diagnosed unilateral CP but 

with other (non-cortical) forms of injury will nevertheless contain subtle changes in cortical 

measures relative to the TDC. To test these hypotheses, the differences in shape 

measures between healthy and altered brains of children with unilateral CP were 

investigated. The extent of the relationship between the severity of cortical alteration and 

multiple clinical scores of function in a cohort of patients diagnosed with unilateral CP are 

also established. To achieve this, the EM segmentation algorithm with a modified MRF 

implementation which removes the reliance on atlas based priors in order to obtain 

segmentations that are robust in the presence of injury [Pagnozzi et al., 2015] was used. 

Such robustness is necessary when alterations are as severe as those often observed in 

patients with CP. Using the segmented regions, measures of cortical thickness, curvature 

and sulcal depth are computed in order to capture the heterogeneous range of values 

observed in children with CP and TDC. Comparisons were performed between the TDC 

and children with unilateral alterations, bilateral alterations, and CP cases without visible 

cortical alterations. Subsequent correlation to clinical performance scores including motor 

function, cognitive function, visual acuity and communicative ability were performed using 

the cortical measures in units of z-score normalised by the variance of individuals within 

the healthy population. The derived models of structure and function are intended to 

facilitate future improvements to the selection of therapies tailored to individual patients, 

and addresses Aim 1 of this thesis, “develop several automated segmentation approaches 
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to delineate the three main classes of injury observed in children with CP; cortical 

malformations, WM injury and ventricular enlargement”. This work has also been 

published, and is available at doi: 10.1002/hbm.23262. 

6.2 Materials and Methods 

6.2.1 Study Participants 

All 139 children recruited as part of the studies detailed in Section 3.2.1 have been 

included in this chapter. 

6.2.2 Shape analysis of cortical segmentations 

Segmentation of the cerebral tissues on all 139 T1-weighted MRIs was performed using a 

modified EM-MRF, from which cortical GM segmentations were subsequently identified. 

Three measures of cortical shape; cortical thickness, sulcal depth and curvature were 

computed for all GM segmentations obtained using the proposed EM-weighted MRF 

method described in Chapter 4. An illustration of these three cortical measures, illustrated 

on the cortical mesh of a patient with an observed unilateral malformation, is shown in 

Figure 6.2. A description of how these shape measures were computed, and how cortical 

regions were segmented, is given below. 

Figure 6.2 Illustration of three cortical shape measures on a children with alterations 

 

Fig. 6.2 The structural MRI of a patient with a unilateral malformation, and the measured 

cortical thickness, curvature and sulcal depth, displayed on the VTK mesh for the injured 

hemisphere. 
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As the methodology presented in this chapter is primarily focused on identifying primary 

cortical malformations and no other primary lesion types, including WM and GM lesions, 

as well as secondary ventricular enlargement, the effects of these other lesion types were 

removed from the shape analysis. Specifically, secondary ventricular enlargement was 

removed by masking out the segmented lateral ventricles from the brain mask, which 

otherwise could influence measures of sulcal depth if the ventricle extended to the skull. In 

cases where entire cortical regions are missing due to tissue loss, resulting in secondary 

enlargement of the ventricles, shape measures from these cortical regions would be 

subsequently be masked out in this process, and treated as a missing value in the 

statistical methodology. Additionally, the presence of lesions was not accounted for in the 

brain segmentation, as the presence of GM lesions could affect measures of cortical 

thickness and curvature. 

6.2.2.1 Computing cortical thickness and sulcal depth 

For all 139 MRIs, cortical thickness and sulcal depth measures were computed by solving 

Laplace’s equation [Jones et al., 2000]. This voxel-based approach for measuring the 

distance between non-intersecting surfaces was used, primarily due to its robustness to 

severe injury as it does not rely on accurate mesh registration. Additionally, this approach 

is more computationally efficient compared to the relatively time-consuming surface based 

methods [Das et al., 2009]. To measure cortical thickness, the voxels adjacent to the 

WM/GM boundary were labelled as such, as were the voxels adjacent to the GM/CSF 

boundary. The remaining voxels from this segmentation were iteratively recomputed as the 

average of its six adjacent neighbouring voxels. After several iterations, a local gradient 

was computed for every voxel within the segmentation and normalised to have unit 

magnitude. Subsequently, each location of the outer surface was propagated along the 

gradient field until the inner surface was reached, forming one path per voxel. This 

approach yields a smooth topological one-to-one mapping between each surface of the 

cortex, allowing thickness measures to be computed as the cumulative distance from the 

interior of the cortex to its corresponding point on the exterior of the cortex. Similarly, both 

sides of the subdural CSF segmentation were identified from the EM-MRF segmentation, 

and Laplace’s approach was used to compute a smooth mapping between the CSF 

adjacent to the skull and the CSF adjacent to the sulci and gyri of the cortical surface. The 
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distance between these two regions (i.e. surfaces) of CSF was called the sulcal depth. 

These two measures are illustrated in Figure 6.3. 

Figure 6.3 Illustration of the cortical thickness and sulcal depth streamlines 

 

Fig. 6.3 An illustration of the cortical thickness and sulcal depth shape measures on a 

region from a healthy brain shown in (a). In (b), the outer (subdural) surface of the CSF is 

shown in yellow, the CSF/GM interface is shown in green, and the GM/WM interface is 

shown in red. Examples of measures of cortical thickness and sulcal depth are illustrated 

as white arrows between the yellow and green, and green and red contours, respectively. 

Cortical thickness and sulcal depth measures computed from the 44 healthy MR scans 

were isolated, and the mean and standard deviation was identified for each cortical region 

labelled on the Colin 27 AAL atlas. This models the healthy variation of these shape 

measures in each cortical region as a Gaussian distribution. The computed shape cortical 

thickness and sulcal depth measures obtained from target MR scans, which may or may 

not have a malformed cortex, were converted to a z-score using the distribution of 

parameters obtained from the TDC, as shown in Eq 6.1. The signed value of the z-score 

was then used as independent variables in the subsequent linear regression models, .e.g. 

for cortical thickness: 

𝑧𝑡ℎ𝑖𝑐𝑘 =
𝑥𝑡ℎ𝑖𝑐𝑘,𝑡𝑎𝑟𝑔𝑒𝑡−𝜇𝑡ℎ𝑖𝑐𝑘,ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝑡ℎ𝑖𝑐𝑘,ℎ𝑒𝑎𝑙𝑡ℎ𝑦
                                                      𝐸𝑞 6.1 

6.2.2.2 Computing exterior surface mesh and cortical curvature 

The 139 GM segmentations were also converted to meshes using VTK [Shroeder et al., 

2006]. This mesh was decimated and smoothed, before measures of curvature are 
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computed using the Gauss curvature from VTK. The Gaussian curvature (𝐾) at a vertex 𝑣 

is defined below: 

𝐾(𝑣) = 2 ∗ 𝜋 − ∑ 𝑎𝑛𝑔𝑙𝑒𝑓 𝑎𝑡 𝑣
𝑓𝑎𝑐𝑒𝑡 𝑓 𝑜𝑓 𝑣

                                                      𝐸𝑞 6.2 

where the contribution of each facet is weighted by 𝐴𝑟𝑒𝑎(𝑓𝑎𝑐𝑒𝑡)/3, and is in units of 

𝑚𝑚−2. Using this 3D mesh, absolute curvature measures computed from the 44 healthy 

MR scans were extracted, and the standard deviation was identified for each cortical 

region labelled on the AAL atlas. The mean and standard deviation of the measured 

curvature from MR scans of children with CP is computed in each cortical region. As 

alterations may appear as either excessively folded gyri or an excessively smooth cortex, 

a signed z-score was again used for curvature. 

6.2.3 Anatomical labelling of cortical regions  

Cortical regions, such as the precentral and postcentral gyri, were identified on all 139 

MRIs by propagating the cortical labels from the AAL atlas to the cortical GM of each 

patient using level sets [Adalsteinsson and Sethian, 1995; Osher and Sethian, 1988]. 

Traditionally, this approach is used to compute the propagation of fronts by solving the 

Eikonal equation [Sethian, 1996], which inherently accounts for topological changes such 

as branching. In this application, the method yields a 4D level set function, which contains 

the topological mapping between the outer GM surface of the subject and the outer GM 

surface of the atlas. Additionally, unlike the Laplacian approach, the level set function can 

produce a topological mapping between intersecting surfaces, which occurs frequently in 

the comparison between atlas and subject. Furthermore this mapping can extend across 

large distances, allowing for correspondences between healthy and severely malformed 

cortical surfaces, as illustrated in Figure 6.4. Using a MATLAB implementation of level sets 

[Li et al., 2011], the AAL cortical labels were propagated down the gradient of the level set 

function to the outer GM surface of each subject. 
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Figure 6.4 Long distance propagation of cortical labels using level sets 

 

Fig. 6.4 The propagation of the AAL GM labels using the level set function for an image 

with severe alteration. The in-plane gradient of the level set is illustrated with the white 

contour lines, and the multi-coloured cortical surface represents the cortical labels from the 

AAL atlas. Propagation of three points from the atlas label to locations on the subject’s 

cortex is shown, with two points being close to their target and the third being relatively 

distant from its target, yet still generating a successful labelling. 

6.2.4 Selection of cortical grey matter regions 

A succinct set of 12 cortical regions related to each of the six clinical scores were chosen 

from the AAL atlas for the subsequent statistical analyses. For the AHA test of bimanual 

hand function, areas critical to motor tasks such as the primary motor cortex, 

supplementary motor area and the primary somatosensory cortex [Shibasaki et al., 1993] 

were included, as well as the posterior parietal cortex which has a role in reaching tasks 

[Kertzman et al., 1997]. These regions have also been identified as important for hand 

motor function from several functional MRI studies examining cortical activation following 

hand tapping tasks [Jäncke et al., 2000; Lotze et al., 1999; Lutz et al., 2005]. 

For the BRIEF score of executive function, the insular and cingulate cortices were chosen 

based on their known role in both cognitive tasks [Sridharan et al., 2008] and emotional 

processes [Bush et al., 2000] respectively. Regions selected for the TVPS test for visual 
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perception include the primary visual cortex which is involved in visual processing [Lee et 

al., 1998], the inferior temporal gyrus which is involved in visual memory [Eskandar et al., 

1992], and both the lingual and fusiform gyri which have a role in processing letters 

[Mechelli et al., 2000] and faces [Gorno-Tempini et al., 1998]. The inferior frontal gyrus 

was included for the VOC score as it contains Broca’s area, which has a known role in 

speech production [Papoutsi et al., 2009], and the superior temporal gyrus which contains 

the primary auditory cortex and has a known role in speech perception and production 

[Buchsbaum et al., 2001]. An outline of the selected cortical regions for each clinical score 

is outlined in Table 6.1. 

Table 6.1 Manually selected cortical regions for regression models 

Table 6.1. The manually selected cortical regions from the AAL atlas used as predictor 

variables for the linear models. 

Motor regions 

(AHA) 

Executive function 
regions (BRIEF) 

Visual regions 

(TVPS) 

Vocabulary regions 
(VOC) 

Primary motor cortex Insular cortex Primary visual cortex Inferior frontal gyrus 

Supplementary motor 
area 

Cingulate cortex Lingual gyrus 
Superior temporal 
gyrus 

Primary 
somatosensory cortex 

 Fusiform gyrus  

Posterior parietal 
cortex 

 Inferior temporal gyrus  

6.2.5 Statistical methodology 

To investigate the differences in measured cortical shape between scanner sequences, a 

Hotelling’s T-squared test was performed on the mean cortical thickness, mean curvature 

and mean sulcal depth of each patient with each of the three scanner sequences. 

A linear mixed-effects model was fitted in order to examine differences in cortical shape 

measure based on the categorical class of injury, as detailed below, controlling for cortical 

region, scanner and sequence, patient age and gender. Twelve models were constructed, 

one for each of the three cortical shape measures, and stratified by the four functional 

groupings of cortical regions, as outlined in Table 6.1. Bonferroni correction (𝛼 = 0.05/12 

tests, 0.004) was performed to account for multiple comparisons. In each model, a 

categorical predictor variable describing the aetiological class of injury was included, as 

well as three covariates, patient age, gender and cortical region defined in the previous 

section. Patient ID was included in the model as a mixed effect, to account for the fact that 
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shape measures of each cortical region are quantified for individual patients. The five 

defined categories for the class of injury include cortical measures obtained from the TDC 

(n = 44), cortical measures obtained from the ipsilateral hemisphere of children with 

unilateral alterations (n = 34), cortical measures obtained from the contralateral 

hemisphere of children with unilateral alterations (n = 34), cortical measures obtained from 

children with bilateral alterations (n = 7), and cortical measures obtained from children 

diagnosed with CP but with other (non-cortical) forms of injury (n = 54). This latter class 

included children with PWM injury and ventricular enlargement.  

Multivariable regression analyses were constructed using the R statistical software 

environment, version 3.2.2 [The R Development Core Team, 2008], to identify the 

significant cortical shape predictors of multiple patient outcomes. Using the three 

measures of cortical shape in the cortical regions propagated from the AAL atlas, four 

models were constructed with the absolute z-scores of the shape measures (relative to the 

cortical regions of the TDC) being the independent (predictor) variable, and the four clinical 

scores of patient function being the dependent variable in each model. Patient age, gender 

and scanner sequence were also included as covariates in the models. To identify optimal 

sets of markers associated with outcome, data-driven variable selection using the 

‘stepAIC’ package in R was utilised. This package aims to remove variables that do not 

explain sufficient variance in the clinical score based on their AIC [Sugiura, 2007]. Note 

that variable selection was performed on different sets of independent variables, based on 

the different groups of cortical regions shown in Table 6.1, and used different outcome 

variables also highlighted by this table, hence there was no overlap between the models. 

This process was completed using 75% of the data (training), with optimal sets of markers 

then used to validate the models performance using the remaining test data set (25%). 

Multiple comparisons on the trained regression models was accounted for using 

Bonferroni correction (𝛼 = 0.05/4 tests, 0.0125). Optimal training models yielded partial 

regression coefficients, indicating the relative influence of each shape measure and 

cortical region affecting the neurological outcome used in the model, and a multiple R-

squared, which describes the amount of variance in the clinical score explained by the 

weighted measures of cortical shape.  
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As the data used in this and the two subsequent chapters include different numbers of 

subjects, albeit with patient overlap between the chapters, train-test partitions were 

performed separately in each chapter. This separation was performed using a random 

selection of the data available in each analysis, followed by a manual check to ensure both 

partitions were age-matched and showed no significant gender bias. 

These model results are compared against the next best performing segmentation 

software, Atropos, as observed in Chapter 4. Cortical GM segmentations from this 

software underwent the same processes to measure cortical thickness, sulcal depth and 

curvature, and the same regression analyses.  

6.3 Results 

6.3.1 Investigating cortical shape differences between MR scanner sequence 

Hotelling’s T-squared statistics quantifying the differences in mean cortical shape 

measures between the 3T Siemen’s scanner sequence and the first 1.5T GE scanner 

sequence was 1.425 (p = 0.258), between the 3T scanner sequences and the second 1.5T 

scanner sequence was 1.764 (p = 0.197), and between the two different 1.5T scanner 

sequences was 1.764 (p = 0.178). None of these differences was found to be significant, 

signifying that despite the differences in scanner sequence and image quality, these 

differences were resolved by the image alignment and resampling pre-processing steps of 

the proposed pipeline, hence the computed cortical shape measures were not significantly 

different. 

6.3.2 Measured cortical shape changes due to alteration 

The three measures of cortical shape compared between the five aetiological classes of 

injury are outlined in Table 6.2. Note that all comparisons between these groups have 

been performed taking into account cortical region, patient age and gender. 

Table 6.2 shows that there were significant decreases in cortical thickness observed for 

children with ipsilateral alterations on the side of injury, compared to the TDC, for the 

motor and visual regions (p < 0.004). In contrast, there were significant increases in 

cortical thickness observed on the contralateral side for both motor regions compared to 

TDC (p < 0.004), with executive function and vocabulary regions also being thicker than 

the corresponding healthy measure, however this latter finding was not significant (p > 
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0.004). No significant differences were observed between children with CP but without 

cortical alterations, and the TDC. 

Table 6.2 also shows that there were significant reductions in the curvature of the 

ipsilateral hemisphere of children with unilateral injury compared to the TDC for executive 

function regions (p < 0.004). In many of the remaining cases, the curvature of children with 

any type of observed radiological injury where also less curved than the TDC, albeit these 

did not reach significance (p > 0.004). 

There were significant increases in sulcal depth observed for children with ipsilateral 

cortical alterations (on the side of injury) compared to the TDC for motor, executive 

function and visual cortical regions (p < 0.004). Sulcal depth on the contralateral side, 

however, was significantly decreased compared to the TDC, for vocabulary regions (p < 

0.004). 

Table 6.2 Measured cortical shape differences between different classes of injury 

Table 6.2. The measured differences in cortical shape measure between TDC (n = 44), 

the ipsilateral hemisphere of children with unilateral alterations (n = 34), the contralateral 

hemisphere of children with unilateral alterations (n = 34), both hemispheres from children 

with bilateral alterations (n = 7), and both hemispheres of children diagnosed with CP but 

with other (non-cortical) forms of injury (n = 54). The differences between injured and 

healthy cortices are also shown along with the significance of the difference and the 

corresponding SE. For these models, cortical region, age and gender are included as 

covariates, and patient ID was included as a mixed effect, taking into account that multiple 

observations per patient corresponding to different regions were used. 

Motor regions 

In Cortex: 

Cortical thickness (mm) Curvature (mm-2) Sulcal depth (mm) 

Mean Difference SE Mean Difference SE Mean Difference SE 

healthy  2.947   0.490   8.627   

with bilateral 
alterations 

3.210 0.263 0.248 0.424 -0.066 0.064 10.296 1.669 0.549 

ipsilateral to 
alterations 

2.442 -0.505* 0.132 0.418 -0.072 0.030 10.421 1.794* 0.456 

contralateral 
to alterations 

3.378 0.431* 0.153 0.470 -0.020 0.039 7.583 -1.044 0.408 

with other 
(non-cortical) 
forms of injury 

3.325 0.378 0.202 0.455 -0.035 0.034 8.327 -0.300 0.427 

Executive function regions 
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In Cortex: 

Cortical thickness (mm) Curvature (mm-2) Sulcal depth (mm) 

Mean Difference SE Mean Difference SE Mean Difference SE 

healthy  2.788   0.882   26.963   

with bilateral 
alterations 

2.391 -0.397 0.196 0.668 -0.214 0.198 26.339 -0.624 1.382 

ipsilateral to 
alterations 

2.701 -0.087 0.130 0.219 -0.663** 0.135 31.075 4.112** 0.834 

contralateral 
to alterations 

2.872 0.084 0.128 0.609 -0.273 0.252 25.244 -1.719 1.16 

with other 
(non-cortical) 
forms of injury 

2.752 -0.036 0.117 0.812 -0.070 0.123 27.938 0.975 0.754 

Visual regions 

In Cortex: 

Cortical thickness (mm) Curvature (mm-2) Sulcal depth (mm) 

Mean Difference SE Mean Difference SE Mean Difference SE 

healthy  1.960   0.442   6.633   

with bilateral 
alterations 

1.286 -0.537 0.201 0.400 -0.042 0.058 5.493 -1.140 0.976 

ipsilateral to 
alterations 

1.380 -0.580** 0.144 0.390 -0.052 0.032 8.388 1.755* 0.625 

contralateral 
to alterations 

1.762 -0.198 0.167 0.461 0.019 0.033 5.834 -0.799 0.599 

with other 
(non-cortical) 
forms of injury 

1.664 -0.296 0.154 0.401 -0.041 0.030 6.497 -0.136 0.553 

Vocabulary regions 

In Cortex: 

Cortical thickness (mm) Curvature (mm-2) Sulcal depth (mm) 

Mean Difference SE Mean Difference SE Mean Difference SE 

healthy  2.962   0.449   7.893   

with bilateral 
alterations 

2.545 -0.417 0.175 0.391 -0.058 0.046 8.010 0.117 0.641 

ipsilateral to 
alterations 

2.836 -0.126 0.104 0.389 -0.060 0.024 8.694 0.801 0.356 

contralateral 
to alterations 

3.051 0.089 0.004 0.396 -0.053 0.024 6.601 -1.292* 0.348 

with other 
(non-cortical) 
forms of injury 

2.977 0.015 0.090 0.404 -0.045 0.021 7.005 -0.888 0.307 

Asterisked correlations were found to be statistically significant: * p < 0.004; ** p < 0.0008, 

*** p < 0.00008. Correlations in bold have a statistical significance of p < 0.004. 
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6.3.3 Modelling cortical shape biomarkers to clinical outcomes 

The shape features from the multivariable regression analyses that were retained following 

data-driven variable selection are as follows. For the AHA motor score, retained regions 

include thickness, curvature and sulcal depth of the primary motor cortex, thickness of the 

primary somatosensory cortex and thickness and sulcal depth of the posterior parietal 

cortex. Retained regions for the BRIEF score include all three shape measures for the 

cingulate cortex, and the thickness and sulcal depth of the insular cortex. For this model, 

the data-driven variable selection only removed one cortical shape feature, suggesting that 

all these predictor variables explain a unique portion of variance in the executive function 

score. For the TVPS model, retained predictors include the curvature and sulcal depth in 

the primary visual cortex, thickness of the inferior temporal gyrus, and thickness of the 

fusiform gyrus. For the VOC model, cortical thickness and curvature of the inferior frontal 

gyrus, and the cortical thickness of the superior temporal gyrus, were retained. All retained 

predictors following the data-driven variable selection in the training set were statistically 

significant (p < 0.05), except for the curvature and sulcal depth of the cingulate cortex, and 

the thickness and sulcal depth of the insular cortex in the BRIEF model. The regression 

coefficients and standard errors of the strongly significant cortical features (p < 0.005), as 

well as patient age, gender and scanner sequence, are provided in Table 6.3. 

The R-squared of the linear models for each of the clinical scores, provided in Table 6.3, 

represents the proportion of variance in the clinical score explained by the model 

constructed on the training set, while the r2 derived from the model validation represents 

how well the model performed on the test set. 

 

 

 

 

 

 

 

Table 6.3 Regression model details and test set performance 



 

108 

 

Table 6.3. Summary of the four trained age-matched regression models, including the 

regression coefficients and standard errors of only the significant (p < 0.005) cortical 

regions retained from the data-driven variable selection, as well as patient age, gender 

and scanner sequence for all models. The multiple R-squared of the trained models, and 

the squared correlation between the predictions of the trained model on the test set and 

the test set outcomes are provided, with the significance of these values compared against 

a Bonferroni corrected alpha value (𝛼 = 0.05/4, 0.0125). 

AHA 

Cortical region Regression coefficient SE 

Primary somatosensory cortex - cortical 
thickness -26.612*** 6.445 

Primary somatosensory cortex - curvature -14.169 *** 3.181 

Primary somatosensory cortex - sulcal depth 8.426*** 1.931 

Posterior parietal cortex - cortical thickness 12.962** 4.543 

Age 2.009*** 0.262 

Gender (Reference: male) 5.548 3.809 

Scanner & sequence (Reference: 
UQCPRRC) -0.625 3.323 

R-squared of trained model 0.78*** 

Predicted r2 on the test set 0.33** 

BRIEF 

Cortical region Regression coefficient SE 

Age 0.851*** 0.092 

Gender (Reference: male) 4.246** 1.388 

Scanner & sequence (Reference: 
UQCPRRC) -0.818 1.337 

R-squared of trained model 0.89*** 

Predicted r2 on the test set 0.03 

TVPS 

Cortical region Regression coefficient SE 

Primary visual cortex - curvature -4.621 ** 1.182 

Inferior temporal gyrus - curvature 5.065** 1.565 

Age 2.897*** 0.512 

Gender (Reference: male) 1.311 3.999 

Scanner & sequence (Reference: 
UQCPRRC) 0.514 3.316 

R-squared of trained model 0.82*** 

Predicted r2 on the test set 0.44** 

VOC 

Cortical region Regression coefficient SE 

Inferior frontal gyrus - cortical thickness -2.065** 0.565 
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Age 2.017*** 0.366 

Gender (Reference: male) 5.595 3.224 

Scanner & sequence (Reference: 
UQCPRRC) 0.890 2.784 

R-squared of trained model 0.90*** 

Predicted r2 on the test set 0.39** 

Asterisked regression coefficients were found to be statistically significant: ** p < 0.01, *** 

p < 0.001. Model correlations in bold have a statistical significance of p < 0.0125. 

Asterisked model and validation correlations were found to be statistically significant: ** p 

< 0.003, *** p < 0.0003. 

Although all trained models were statistically significant (p < 0.0125), only three obtained 

significant correlations in the independent test set (p < 0.0125). Interestingly, reductions in 

curvature and increases in sulcal depth in the primary somatosensory cortex were strongly 

associated with poorer AHA outcomes, reflecting that reduced surface area, and hence 

cortical volume, of this cortical region is predictive of motor function. For communication 

outcomes, decreases in cortical thickness in the inferior frontal gyrus (the cortical region 

containing Broca’s area) were also strongly significant (p < 0.005), suggesting that tissue 

loss, reflected in the cortical thickness measure, is an important cortical predictor of these 

outcomes. For vision, only curvature features were found to be strongly significant (p < 

0.005), potentially a result of the thinner cortex and shallower sulci present in the posterior 

sections of the brain. Nevertheless, reductions in the curvature of the primary visual 

cortex, which again may be a reflection of reduced cortical volume in this area, was the 

most indicative predictor of patient vision. 

Patient age was observed to be a significant predictor of all clinical outcomes (p < 0.001), 

indicating older children performed better at the different tasks. Patient gender was only 

significantly related to the BRIEF outcome, with girls performing better on the survey of 

executive functioning compared to boys. Despite age and gender being significant in this 

model, these findings did not generalise to the test set. MR scanner and sequence was not 

significant in any regression model, highlighting that differences in sources of data did not 

explain a significant portion of variance in the clinical outcomes. 

6.3.4 Comparison to Atropos 

The summary of the regression models using the Atropos segmentations is provided in 

Table 6.4 below. Although these models have a similar R-squared in the training set to the 
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models constructed using the proposed method, these models elucidate consistently fewer 

strongly significant cortical regions (p < 0.005), and only show significant correlations in 

the test set for the VOC model.  

Table 6.4 Regression model details and test set performance for Atropos 

Table 6.4. R-squared of linear models constructed from the shape measures computed 

using ANT’s Atropos for both training and test sets. For each model, the regression 

coefficients and standard errors of only the significant (p < 0.005) cortical regions retained 

from the data-driven variable selection, as well as patient age, gender, and scanner 

sequence for all models. The multiple R-squared of the trained models and the squared 

correlation between the predictions of the trained model on the test set and the test set 

outcomes are provided, with the significance of these values Bonferroni corrected alpha 

value. 

AHA 

Cortical region Regression 
coefficient Standard error 

Primary motor cortex - Sulcal depth 42.994*** 6.512 

Age -1.191 0.559 

Gender (Reference: male) 11.781 3.772 

Scanner & sequence (Reference: 
UQCPRRC) 

-0.591 2.834 

R-squared of trained model 0.75*** 

Predicted r2 on the test set 0.01 

BRIEF 

Cortical region Regression 
coefficient Standard error 

Cingulate cortex - Cortical thickness 12.067*** 2.386 

Age -0.427 0.243 

Gender (Reference: male) 3.221 1.897 

Scanner & sequence (Reference: 
UQCPRRC) 

-1.898 1.239 

R-squared of trained model 0.92*** 

Predicted r2 on the test set 0.06 

TVPS 

Cortical region Regression 
coefficient Standard error 

Inferior temporal gyrus - Cortical thickness 28.002** 8.863 

Age 0.498 3.183 

Gender (Reference: male) -5.875 3.417 

Scanner & sequence (Reference: 1.372 2.498 
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UQCPRRC) 

R-squared of trained model 0.86*** 

Predicted r2 on the test set 0.10 

VOC 

Cortical region Regression 
coefficient Standard error 

Age 3.560*** 0.248 

Gender (Reference: male) 1.835 3.954 

Scanner & sequence (Reference: 
UQCPRRC) 

5.171 2.923 

R-squared of trained model 0.86*** 

Predicted r2 on the test set 0.41** 

Asterisked regression coefficients were found to be statistically significant: * p < 0.05; ** p 

< 0.01, *** p < 0.001. Model correlations in bold have a statistical significance of p < 

0.05/4. Asterisked model correlation were found to be statistically significant: * p < 0.001; 

** p < 0.0025, *** p < 0.00025. 

6.4 Discussion 

Using the proposed cortical analysis pipeline, significant differences in cortical shape 

measures were identified between children with cortical alterations due to congenital brain 

injury that resulted in unilateral CP, and typically developing children, that were consistent 

with known developmental processes. It was observed that children with alterations within 

the hemisphere of injury had significantly reduced cortical thickness compared to the TDC. 

The reduced cortical thickness observed in motor and visual cortical regions may be the 

result of tissue loss due to injury, as well as the cortical alterations interrupting the regional 

increases in cortical density that occur during healthy development [Gogtay et al., 2004; 

Sowell et al., 2004]. This finding is consistent with the regional reduction in cortical 

thickness associated with schizophrenia [Goldman et al., 2009; Narr et al., 2005] and 

children with a very low birth weight (VLBW) [Martinussen et al., 2005], which are both 

conditions which bear some relationship to CP [Beaino et al., 2010; Wu et al., 2013]. The 

ipsilateral cortical surface of children with unilateral injury was also found to have a 

reduced curvature compared to the TDC in motor, executive function and vocabulary 

regions. This reduction in curvature may be the result of injury interrupting the gyrification 

of the cortex that results in significant cortical expansion during healthy development [Hill 

et al., 2010], and is also consistent with findings of reduced gyrification in patients with 

schizophrenia [Sallet et al., 2003; White et al., 2003]. There were also significant increases 
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in sulcal depth observed on the ipsilateral side of children with unilateral alterations 

compared to the TDC for motor, executive function and visual cortical regions. Although 

higher sulcal depth implies increased cortical surface area [Im et al., 2006], the larger 

sulcal depth observed in most cases arises from reduced cortical migration due to 

dysplasia, or the presence of schizencephalic clefts. Observed differences between 

children with bilateral injury and the TDC were largely not significant, most likely due to the 

reduced number of children in this cohort with bilateral injury (n = 7). 

Children with lesions that do not involve the cortex, which in this cohort included mostly 

PWM injury, were found to have significantly reduced cortical thickness in visual regions, 

and significant decreases in curvature and sulcal depth compared to the TDC for 

vocabulary regions. These findings all reflect a decrease in cortical volume, which is 

consistent with previous findings for children with PWM injury [Inder et al., 1999]. Overall, 

the contralateral hemisphere of children with unilateral alterations was observed to be 

significantly thicker, smoother and have reduced sulcal depth compared to the TDC, for all 

functional cortical regions. The reduced curvature and sulcal depth also reflect a reduced 

cortical volume on the contralateral side. The increase in cortical thickness however may 

be the result of plasticity as a mechanism to compensate for injury [He et al., 2007] on the 

side contralateral to injury, which is in line with previous findings [Kolb and Gibb, 2007; 

Krägeloh-Mann, 2004; Ward, 2005]. Overall, the measurable change in impaired cortical 

regions highlight the utility of the three shape measures used in this analysis to quantify 

cortical injury. There is value in characterising shape using a number of different shape 

measures as opposed to a single cortical volume measure, as the combination of 

increased thickness and reduced cortical folding may counteract the measure of cortical 

volume, making it more difficult to discriminate between altered and preserved cortical 

volumes. Furthermore, these findings highlight the utility in the proposed method for 

characterising cortical shape, as subtle cortical alterations arising from WM injury, or 

subtle cortical alterations observed on the apparently non-injured hemisphere, which may 

not be clearly visible in the MRI, may still be quantified using this approach, and hence 

contribute to the clinical assessment of children with CP. 

The constructed multivariable linear regression models show a moderate multiple R-

squared, i.e. goodness of fit, to all four clinical scores, with ranges between 0.78 and 0.90 

in the training set. These measures represent the variance explained by the succinct set of 
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shape descriptors from specific cortical regions, which included 5 or fewer regions for all 

models. As expected, the multiple R-squared was reduced in the test set for all clinical 

scores, yet was still statistically significant for three of the four scores. The significant 

correlation on the independent test set highlights the ability of these models to generalise 

to unseen data and hence the general patient population. The BRIEF model of executive 

function was observed to not retain any cortical measures, and additionally did not perform 

well upon test set validation. This may be a reflection of the typically wider cortical 

involvement and the important role of WM for cognitive function, and the consequent 

limitation of only using a sparse set of cortical regions to model this function. In addition, 

separate regression models, constructed on subsets of the cohort with clinically diagnosed 

left and right side hemiplegia, are provided in Supplementary Figures A.1 and A.2, to 

visually highlight which cortical regions were associated with clinical outcomes in each 

clinical phenotype. Specific cortical regions and shape measures retained by the data-

driven variable selection were from within a set of cortical regions pre-selected based on 

the literature. However, the final subset of variables included by the model, as shown in 

Table 6.3, as well as the sign of the regression coefficients, is a reflection of the patterns of 

injury present in this data, and should ideally be verified independently using another 

cohort of data. What these models demonstrate, however, is the ability to extract a 

succinct set of morphological biomarkers of cortical shape that are strongly linked to 

clinical outcome and generalise to unseen data. 

There are a number of technical challenges limiting the sensitivity of the cortical shape 

analyses, including subtle occipital sulci that may be incorrectly delineated by the 

segmentation approach, thus yielding inaccurate shape measures in this location, as well 

as the presence of dura mater not fully resolved from the brain surface. However, 

segmentation results were visually inspected and manually corrected where necessary. 

Similarly, Atropos segmentations were manually corrected in these cases, however was 

observed to provide fewer cortical regions that strongly correlate with outcome (Table 6.4), 

and consequently reduced test set correlations when compared to the proposed method. 

This may arise from Atropos slightly over-segmenting the cortical GM due to initialisation 

with Otsu thresholding, causing the shape analysis to overestimate cortical thickness and 

underestimate curvature and sulcal depth (as subtle sulci are lost). However the erroneous 

omission of sulci, particularly thin (i.e. 1-voxel wide) extensions of CSF, occurred using 
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both Atropos and the EM-weighted MRF method detailed in Chapter 4, particularly on the 

lower resolution 1.5T MR images. In future, further tailoring the weighted MRF may help to 

resolve these subtle sulci. Another limitation was that the level set approach for delineating 

the cortical regions has not been validated in the present study. This is partly due to the 

time intensive process of manually segmenting multiple cortical regions on a large number 

of patients. Future investigations into this method will validate the level set approach for 

segmenting the motor cortical regions (e.g. M1S1) on a smaller portion of the data 

(approximately 20 patients, including patients’ severe cortical injury). A final limitation is 

that the predictive models did not include other non-cortical, primary and secondary 

injuries, which would contribute to reduced patient functional outcomes. Methods for 

characterising these forms of injury, which are detailed in the adjacent chapters, are 

combined to overcome this limitation in Chapter 9. 

A limitation of the proposed approach is that not all malformations, particularly subtle 

alterations, can be observed from the MRIs. A detection rate between 40 and 60% was 

reported for focal cortical dysplasia [Tassi et al., 2002], with subtle migration disturbances 

such as neuronal heterotopia requiring histology to accurately reveal [Hannan et al., 1999]. 

As such, the proposed cortical shape measures would not reveal these developmental 

injuries. Another limitation of the proposed cortical analysis pipeline is that it does not 

account for potentially altered structure-function relationships caused by plasticity in order 

to compensate for the presence of injury [Carmichael, 2003; Thiel et al., 2001]. These 

mechanisms may cause shifts in where particular functions are performed, confounding 

the structure-function relationships of the brain which the linear models attempt to 

elucidate. This would consequently reduce the multiple R-squared of these models as it 

introduces variance in the clinical score potentially not explained by cortical shape in the 

chosen cortical regions. Furthermore, as the study data are cross-sectional, the obtained 

results cannot be causally linked to plasticity-related mechanisms. Instead, longitudinal 

data are required in future studies to validate that such changes are indeed related to 

plasticity. Although VBM has frequently been used to identify longitudinal changes in GM 

density in the investigation of plasticity [Giuliani et al., 2011; Sterling et al., 2013; Thomas 

et al., 2009], the characterisation of cortical shape analysis can complement such 

approaches by quantifying alternate cortical changes caused by plasticity, such as the 

thickening of cortical GM or alternate changes in neuronal architecture [Feldman, 2009]. 
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Combined with diffusion MRI, such a cortical analysis could help identify both the 

underlying WM and GM mechanisms of plasticity. 

6.5 Conclusions 

In this chapter, a method for the robust cortical GM segmentation and label atlas 

propagation using level sets was proposed, which are important modifications critical to 

CP data. This proposed approach allowed a quantifiable and reliable relationship between 

regional brain structure and function to be identified. Significant decreases in cortical 

thickness, curvature, and significant increases in sulcal depth were observed within the 

injured hemisphere(s) of children with unilateral CP compared to children with healthy 

development, as well as significant increases in cortical thickness, and significant 

decreases in curvature and sulcal depth were observed on the uninjured hemisphere of 

children with unilateral CP, highlighting potential compensatory mechanisms in these 

children. Using a succinct set of shape measures chosen from specific cortical regions, 

significant correlations with outcome were observed for three clinical functions, including 

motor function (R squared 0.78, p < 0.001), visual function (0.82, p < 0.001) and 

communication (0.90, p < 0.001), and performed well upon test set validation (R squared 

0.33, 0.44, 0.39, all p < 0.01). Care needs to be taken when segmenting the GM and 

labelling cortical substructures, specifically, atlas based priors need adapting to deal with 

the problem of severe alterations that frequently occur in cerebral palsy, which nullifies the 

efficacy of atlas priors. In the following chapter, methods to quantify WM and GM lesions 

are presented, and in the penultimate chapter, all injury segmentation methods are 

combined to identify the most predictive biomarkers of injury. 
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7. Segmenting white and grey matter lesions from children 

with unilateral cerebral palsy 

7.1 Introduction 

The third and final class of injury observed in children with CP are WM and GM lesions. Of 

these injuries, destructive lesions are the most common, with periventricular WM lesion 

observed in around 50% of children with CP and cortical/subcortical GM lesions in 

approximately 20% [Bax et al., 2006; Krägeloh-Mann and Horber, 2007; Reid et al., 2014] 

of cases. MRI is a useful imaging procedure that is commonly used in clinical assessment 

for identifying and qualitatively characterising brain lesions, as both WM and cortical/deep 

GM lesions appear as regions of abnormal intensity. Although GM lesions are less 

common, they impact particularly critical structures of the brain including the basal ganglia, 

thalami and cortical GM, and lead to more severe motor impairments [Martinez-Biarge et 

al., 2010].  

Despite the known negative prognostic implications of tissue lesions, the extent of the 

relationship between regional lesion burden and clinical function has yet to be quantified. 

This is of particular interest, as these relationships can help provide estimates of patient 

function from MRIs early in life, guiding therapeutic strategies for these children. For 

instance, such information can confirm whether lesion burden in specific brain regions lead 

to greater impairments to motor function, hence recommending more intensive therapeutic 

interventions. Hence, this study aims to quantify the correlation between the lesion burden 

in individual regions and multiples clinical scores which quantify motor, cognitive, 

communicative and visual function. The study considers both GM and WM lesions solely 

based on tissue involvement, independent to the timing of the lesion [Krägeloh-Mann and 

Horber, 2007]. Further these WM and GM involvements are considered separately, as it 

has been previously shown their impact on function differs [Krägeloh-Mann and Horber, 

2007; Martinez-Biarge et al., 2010]. 

For the correlation between structure and function to be calculated, all lesions within large 

sets of data need to be delineated in three dimensions. Such an approach can be made 

practical by utilising an automated segmentation algorithm. The field of lesion 

segmentation is well researched, particularly in the MS setting. Although multiple reviews 

have been published discussing various lesion segmentation approaches [García-Lorenzo 
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et al., 2013; Lladó et al., 2012], no studies as yet have performed automated lesion 

segmentation in the CP setting. This may be due to the comparatively large morphological 

changes observed in children with CP, which invalidate the anatomical assumptions 

existing algorithms typically make, resulting in poor segmentation performance.  

Hence in this chapter, a modified lesion segmentation method was used to quantitatively 

assess the functional impact of brain lesion involvement. As the method incorporates 

multiple lesion classes in order to automatically segment both WM and GM lesions, this 

approach, presents the first published quantitative assessment of functional impairment 

caused by GM lesion involvement in children with CP. In this approach, atlases were used 

to subdivide the GM regions into individual cortical and subcortical regions, and WM 

regions into regions with particular WM tracts. Regional WM and GM lesion burdens were 

computed, and used to predict clinical function using multivariable linear regression. Such 

approaches could have clinical utility as they can support the radiological assessment of 

MRIs, and help to tailor treatment strategies for children with CP. A particular advantage of 

the method is that it only relies on standard structural MRIs and does not resort to more 

sophisticated sequences that may not be widely available. It addresses Aim 1 of this 

thesis, “develop several automated segmentation approaches to delineate the three main 

classes of injury observed in children with CP; cortical malformations, WM injury and 

ventricular enlargement”, as well as Aim 3, “[comparing] the automated results against a 

state of the art”. The work in this chapter has been published, and is available at 

doi:10.1016/j.nicl.2016.05.018. 

7.2 Materials and methods 

7.2.1 Study Participants 

Of the total 139 children recruited as part of the studies detailed in Section 3.2.1, only the 

125 patients who also underwent T2-weighted scanning were included in this study: 107 

children diagnosed with unilateral CP (57 male, 50 female, mean age 10.9, age range 7-

16), and 18 children with healthy development (CHD) with (8 male, 10 female, mean age 

11.4, age range 7-16) were included. 

7.2.5 Lesion segmentation algorithm 

An automated lesion segmentation approach tailored specifically for WM and GM lesion 

involvement in children with CP is presented. Segmentation of the three cerebral tissues 
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(WM, GM and CSF) was initially performed using an EM approach interleaved with the 

modified MRF formulation detailed in Chapter 4. 

Figure 7.1 Illustration of lesion segmentation pipeline 

 

Fig. 7.1 An illustration of the lesion segmentation pipeline detailed in this chapter. 

Following pre-processing and an affine alignment to the Colin 27 atlas, the T1-MPRAGE 

undergoes brain masking and tissue segmentation steps. The tissue distributions obtained 

from this segmentation, along with the pre-processed T2-TIRM and non-rigidly registered 

Tissue Probability Maps (warped to the T1-MPRAGE), were used to construct lesion belief 

(probability) maps. Following thresholding, lesion segmentations were refined with the EM 

algorithm. Using the AAL GM and ICBM WM atlases, which were similarly aligned to the 

Colin 27 atlas (and by extension, the T1-MPRAGE), anatomical lesion volumes were 

extracted to use for the statistical analysis. 

Initial lesion belief maps for each of the three types of lesions; WM lesions, GM lesions 

and internal capsule (IC) lesions were generated using the final estimates of tissue 

distributions obtained from the EM-MRF approach, the aligned T2-TIRM image and the 

registered WM and GM tissue probabilistic atlases. Denoting the T1-MPRAGE containing 

𝑛 voxels as 𝒚 = {𝑦𝑖, 𝑖 ∈ [1: 𝑛]}, the T2-TIRM as 𝒙 = {𝑥, 𝑖 ∈ [1: 𝑛]}, the registered TPMs of 

the WM, GM and CSF, and the parameterised Gaussian mean and standard deviation for 

each of the three tissue classes as Φk = (𝜇𝑘, 𝜎𝑘), where 𝑘 ∈ {𝑊𝑀,𝐺𝑀, 𝐶𝑆𝐹}, the formulae 

for the three lesion belief maps 𝑙𝑏 = {𝑙𝑏𝑖, 𝑖 ∈ [1: 𝑛]} is given in Equations 7.1-7.3. 
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𝑙𝑏𝑊𝑀𝐿,𝑖 = 𝑎𝑏𝑠 (
𝑦𝑖 − 𝜇𝑊𝑀
𝜎𝑊𝑀

) . 𝑥𝑖. 𝑇𝑃𝑀𝑊𝑀,𝑖                                             𝐸𝑞 7.1 

𝑙𝑏𝐺𝑀𝐿,𝑖 = 𝑎𝑏𝑠 (
𝑦𝑖 − 𝜇𝐺𝑀
𝜎𝐺𝑀

) . 𝑥𝑖 . 𝑇𝑃𝑀𝐺𝑀,𝑖                                              𝐸𝑞 7.2 

𝑙𝑏𝐼𝐶𝐿,𝑖 = 𝑎𝑏𝑠 (
𝑦𝑖 − (𝜇𝑊𝑀 + 𝜎𝑊𝑀)

𝜎𝑊𝑀
) . 𝑥𝑖 . 𝑇𝑃𝑀𝑊𝑀,𝑖                                     𝐸𝑞 7.3 

In each equation, abnormal tissue outliers were identified using an absolute z-score from 

the mean and standard deviation of the WM and GM distributions established in the EM-

MRF segmentation. Note in Eq 7.3, IC lesions are segmented separately to WM lesions 

because the IC typically appears as a higher intensity in structural MRI, and was assumed 

to be 1 standard deviation above the mean WM intensity. This separate segmentation of 

IC lesions ensures the detection of this lesion type, which was necessary because they 

approach healthy WM intensity, and hence would not be detected in the lesion belief map 

for WM shown in Eq 7.1. Unlike the T1-MPRAGE, the T2-TIRM was normalised in intensity 

between 0 and 1, where the most hyperintense regions are characteristic of hemorrhagic 

injuries. 

A threshold, 𝑡𝑡ℎ𝑟𝑒𝑠ℎ, is applied to each of the three lesion belief maps. Using the 75% 

training set, a ROC analysis was performed to establish which threshold for WM and GM 

lesions agreed best with the manual classification of lesions. Specifically, the Equal Error 

Rate (EER), which enforces equal importance to false positives and false negatives, was 

used to determine the optimal thresholds 𝑡𝑡ℎ𝑟𝑒𝑠ℎ,𝑊𝑀 = 0.85 and 𝑡𝑡ℎ𝑟𝑒𝑠ℎ,𝐺𝑀 = 0.875. These 

thresholds were used to test the performance of the lesion segmentation algorithm on the 

independent test set. 

Provided more than one voxel exceeds the WM or GM thresholds, the initial lesion 

segmentation was refined using an EM approach. The mean and standard deviation of the 

lesion T1 intensity were obtained for the likely lesion voxels, and introduced as an 

additional lesion classes along with the three healthy tissue classes obtained from the EM-

MRF segmentation. Tissue classes were then updated within the EM algorithm, with the 

lesion intensities modelled as a Gaussian distribution. The probability of the lesion class 

was weighted by the TIRM intensity, while the probability of the three healthy tissue 

classes was weighted by the inverse of the TIRM intensity (i.e. 1-TIRM). The tissue 

probability maps also weight the posterior probability of each segmented class. The 
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likelihood of each lesion class for the three lesion classes (WM, GM and IC) is given in Eq 

7.4, e.g. for the WM lesion class: 

𝑝𝑊𝑀𝐿,𝑖 = 𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇𝑊𝑀𝐿
𝜎𝑊𝑀𝐿

)
2

] . 𝑥𝑖 . 𝑇𝑃𝑀𝑊𝑀,𝑖                                    𝐸𝑞 7.4 

The likelihood of the healthy tissue classes (WM, GM and CSF) are computed using Eq 

7.5, e.g. for the WM: 

𝑝𝑊𝑀,𝑖 = 𝑒𝑥𝑝 [−(
𝑦𝑖 − 𝜇𝑊𝑀
𝜎𝑊𝑀

)
2

] . (1 − 𝑥𝑖). 𝑇𝑃𝑀𝑊𝑀,𝑖                               𝐸𝑞 7.5 

This step is performed separately for WM lesions, GM lesions and IC lesions, yielding 

separate lesion segmentations in each instance. Post-processing of these lesion 

segmentations consists of a flood fill operation and morphological closing. 

7.2.6 Anatomical lesion volume 

Anatomical and regional involvement of the segmented lesions was computed using the 

AAL atlas, which contains CDGM labels, and the ICBM DTI-81 Atlas which contains WM 

tract labels. Both atlases were aligned to the same image space as the Colin 27 atlas 

[Rivest-Hénault et al., 2015]. Lesion involvement in each region was then computed as the 

sum of the lesion segmentation masked by the particular atlas label. 

7.2.7 Statistical analysis 

Participants were separated into four cohorts, the CHD children and children with WM 

(including IC lesions), GM lesions, or combined WM/GM lesions. Children with combined 

WM/GM lesions were grouped into either WM or GM cohorts for the regression analysis, 

based on which tissue lesion burden was greater in each participant. Both WM and GM 

lesion cohorts were randomly separated into 75%/25% training and test sets. In the 

training set, data-driven variable selection was performed using the Least Absolute 

Shrinkage and Selection operator (LASSO) method [Tibshirani, 1996] obtained from the 

‘glmnet’ package in R statistical software Version 3.2.2, which implicitly performs variable 

selection with a sparsity term that minimises the sum of non-zero coefficients. Unlike 

‘stepAIC’ used in the previous chapters, LASSO was chosen for the analysis in this 

chapter and for the rest of the thesis as it performs both feature selection and feature 

regularisation, and additionally allows the upper boundary on the regression coefficients to 

be manually set to zero. Enforcing negative coefficients was important, as this analysis 
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aims to identify biomarkers of lesion burden leading to reductions in patient function. 

LASSO was run with default alpha and lambda parameters. 

Linear regression models were then constructed, using the regional volumes of the WM 

and GM lesions (in mL) identified from LASSO as independent variables, as well as patient 

age and gender, and the six clinical scores (AHA, BRIEF, SDQ, TVPS, WR and VOC) as 

the dependent variable. Multiple comparisons were corrected for using Bonferroni 

correction. Model residuals were normally distributed for each of the independent 

outcomes. To assess the generalisability of these models to unseen data, training model 

performance was validated via correlation between model predictions and the test set 

outcomes. Additionally, regression models including both WM and GM regional lesion 

volumes were constructed using the training set, with their performance again validated 

with the test set. Model comparisons between the WM and GM models, and the WM/GM 

combined model, were performed using Analysis of Variance (ANOVA), to determine if it is 

beneficial to consider both lesion types. 

7.3 Results 

7.3.1 Demographics information 

The demographics of the four cohorts; the CHD children, those with WM (and/or IC) 

involvement, GM involvement, and those with combined WM/GM involvement, are 

presented in Table 7.1. The AHA score, and a measure of global brain injury severity 

provided from a manual template approach [Fiori et al., 2015], is provided for each cohort, 

split into those with unilateral and bilateral injury. Only children with WM lesions had 

observed bilateral injury, which was reflected in the reduced AHA score compared to 

children with unilateral WM injury. The five children with solely GM lesions had the 

greatest amount of observed injury from the MRI, with the highest injury severity score of 

all cohorts. These children, consequently, also had the poorest motor outcomes of all 

cohorts. Children with unilateral, combined WM/GM injury had similar measures of injury 

severity and similar AHA motor outcome to those children with bilateral WM lesions. 
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Table 7.1 Demographic characteristics of the lesion cohorts 

Table 7.1. Demographic characteristics for the CHD children, WM lesion cohort and the 

GM lesion cohort. For the CHD cohort, information of lesion laterality is not applicable, and 

their clinical scores were not obtained. 

Cohort  CHD cohort WM lesion GM lesion Combined 
WM/GM 

Number of participants 18 80 5 22 

     

Gender     

Male 8 40 4 13 

Female 10 40 1 9 

     

Age at scan (years)     

Mean ± standard deviation 11.42 ± 3.03 11.38 ± 2.92 11.80 ± 1.92 10.54 ± 2.65 

Range (minimum - 
maximum) 

7 - 16 5 - 17 9 - 14 6 - 15 

     

Number with unilateral 
lesions 

NA 55 5 22 

     

Global brain injury severity 
score [Fiori et al., 2015] 

    

Mean ± standard deviation 0.00 ± 0.00 8.34 ± 5.12 14.00 ± 5.20 9.85 ± 5.64 

Range (minimum - 
maximum) 

0 - 0 2.5 - 20 9 - 21 2 - 20 

Assisted Hand Assessment 
(AHA) Score 

    

Mean ± standard deviation NA  75.58 ± 20.05 52.60 ± 31.30 64.61 ± 24.78 

Range (minimum - 
maximum) 

NA 41 - 98 26 - 95 24 - 98.8 

     

Number with bilateral lesions NA 25 0 0 

     

Global brain injury severity 
score [Fiori et al., 2015] 

    

Mean ± standard deviation 0.00 ± 0.00 8.43 ± 4.79 NA NA 

Range (minimum - 
maximum) 

0 - 0 1 - 18.5 NA NA 

Assisted Hand Assessment 
(AHA) Score 

    

Mean ± standard deviation NA 64.21 ± 19.04 NA NA 

Range (minimum - 
maximum) 

NA 8 - 97 NA NA 
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CHD, children with healthy development; GM, grey matter; NA, not available; WM, white 

matter. 

Lesion burden frequency was also investigated across the entire cohort of 107 children 

with unilateral CP, which are shown in Figure 7.2. Most prevalent patterns of WM injury 

include intraventricvular haemorrhage (IVH) and PVL, frequently impacting the superior 

longitudinal fasciculus, corona radiata and PLIC. Frequent GM patterns of injury include 

IVH impacting the deep GM, the lenticular and caudate nuclei and the thalamus. Unilateral 

malformations were the main pattern of injury impacting cortical GM regions, including the 

temporal and frontal lobes, and the precentral gyrus. 

Figure 7.2 Illustration of WM and GM regional lesion frequency 

 

Fig. 7.2 The lesion frequency observed in (a) WM and (b) GM regions among the 107 

children with unilateral CP. ALIC, anterior limb of the internal capsule; PLIC, posterior limb 

of the internal capsule 

7.3.2 Validation of lesion segmentation algorithm 

After training the lesion threshold values 𝑡𝑡ℎ𝑟𝑒𝑠ℎ in the training set, the performance of the 

lesion segmentation method was validated on the test set against a manual assessment of 

lesions using the semi-quantitative brain lesion severity scale [Fiori et al., 2015]. Table 7.2 

shows the segmentation performance on the WM lesion cohort, the GM lesion cohort, and 

all cohorts combined.  
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Table 7.2 Lesion segmentation performance on an independent test set 

Table 7.2. Lesion segmentation performance compared to the manual ground truth 

assessment of lesions on the independent test set. 

Performance 
measures 

WM lesions GM lesions Combined 

Sensitivity 0.933 0.818 0.939 

Specificity 0.765 0.972 0.929 

Accuracy 0.872 0.936 0.936 

False positive rate 0.235 0.028 0.071 

False negative rate 0.067 0.182 0.061 

 

Lesion segmentation performance in the GM had the highest false negative rate, reflecting 

the difficulty identifying GM lesions due to their more subtle changes in intensity. 

Conversely, WM lesions had the highest false positive rate, indicating that the false 

detection of lesions, either from WM intensity changes or moderate intensities in the T2-

TIRM, was more common. For the TDC in the test set, none had lesions identified by the 

lesion segmentation approach. An illustration of lesion segmentation performance in cases 

of GM, WM and IC lesions are provided in Figure 7.3. 
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Figure 7.3 Example segmentations of white and grey matter lesions 

 

Fig. 7.3 Examples of a GM lesion (column (a)), WM lesions (column (b)) and IC lesions 

(column (c)). The top two rows show the axial and coronal slices of the same T2-TIRM 

image, where the hyperintense lesions are indicated with white arrows. The segmented 

lesions, highlighted in green, are presented on the corresponding axial and coronal slices 

of the T1-MPRAGE image in the bottom two rows. A, anterior; L, left; P, posterior; R, right. 
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7.3.3 Comparison to gold standard segmentation approach 

To validate the lesion segmentation approach, its performance is compared to the current 

state of the art lesion segmentation software, the Lesion Segmentation Toolbox (LST) 

[Schmidt et al., 2012]. The sensitivity, specificity, and several other performance measures 

of each approached compared to the manual expert classification of lesions is performed 

and provided in Table 7.3. 

Table 7.3 Lesion segmentation performance compared to state-of-the-art 

Table 7.3. Lesion segmentation performance of the approach used in this paper, and 

SPM’s LST on the 25% independent test set, compared to the manual ground truth 

assessment of lesions. 

Performance 
measure 

Sensitivity Specificity Accuracy False 
positive rate 

False 
negative rate 

Proposed 
approach 

0.939 0.929 0.936 0.071 0.061 

SPM’s LST 0.893 0.351 0.729 0.649 0.107 

The proposed approach was found to have a greater lesion segmentation accuracy 

compared to LST on these data (0.936 versus 0.729). The approach used in LST was 

observed to more frequently produce false positive lesion segmentations, which potentially 

arises from an inaccurate threshold 𝜅 chosen by this method to produce an initial lesion 

belief map [Schmidt et al., 2012]. One example of this false positive segmentation 

occurring is provided in Figure 7.4. 

Figure 7.4 Example of state-of-the-art lesion segmentation 

 

Fig. 7.4 An (a) axial and (b) coronal view of the T2 TIRM of a patient with no lesions 

observed by the manual expert, and the corresponding (c) axial and (d) coronal views of 

the T1 MPRAGE images with the false lesion segmentations obtained from the LST 

method shown in green. 
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7.3.4 Correlation with patient outcome 

The regression models constructed on the training set are detailed in Table 7.4. In this 

table, the regression coefficients can be interpreted as the reduction in the clinical score 

for every 1mL of lesion present in that anatomy. The multiple R-squared of the models, 

which measure strength of the correlation between the outcome and the model 

predictions, were compared against a Bonferroni corrected alpha value (𝛼 = 0.05/6 tests, 

0.008), however the p-values of each feature were not corrected, and simply reflects the 

strength of that feature within the chosen model. 

Table 7.4 Regression model summary for regional lesion burden 

Table 7.4. The retained anatomical regions, and corresponding standardised regression 

coefficients and standard errors, of the GM and WM lesion models, for the six clinical 

outcome scores, modelled on the 75% training set. For each model, the multiple R-

squared is provided. Features that are significant (p < 0.05) in multiple models are bolded. 

AHA 

GM WM 

Variable name Regression 
coefficient 

Standard 
error 

Variable name Regression 
coefficient 

Standard 
error 

Superior frontal 
gyrus 

-0.265 0.154 Corpus callosum -0.018 0.015 

Lenticular 
nucleus 

-0.128*** 0.036 Corona radiata -0.005*** 0.001 

Thalamus -0.065*** 0.015 External capsule -0.016*** 0.004 

Middle frontal 
gyrus 

-0.228** 0.083 
Cerebral 
peduncle 

-0.111** 0.034 

   Cingulum -0.266 0.264 

Multiple R-
squared 

0.433*** Multiple R-squared 0.514*** 

BRIEF 

GM WM 

Variable name Regression 
coefficient 

Standard 
error 

Variable name Regression 
coefficient 

Standard 
error 

Caudate nucleus -0.2119* 0.048 PLIC -0.121*** 0.020 

Lenticular -0.426*** 0.119 ALIC -0.050 0.050 

Superior frontal 
gyrus 

-0.122* 0.058 Cingulum -2.012 2.080 

Middle frontal 
gyrus 

-0.549 0.294 
   

Multiple R-
squared 

0.263*** Multiple R-squared 0.386*** 

SDQ 
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GM WM 

Variable name Regression 
coefficient 

Standard 
error 

Variable name Regression 
coefficient 

Standard 
error 

Middle frontal 
gyrus 

-0.063 0.036 Corpus callosum -0.007 0.008 

Superior frontal 
gyrus 

-0.101 0.072 PLIC -0.009** 0.003 

Cingulate cortex -0.061 0.047 Corona radiata -0.003*** 0.001 

Lenticular 
nucleus 

-0.034 0.019 External capsule -0.002 0.002 

Multiple R-
squared 

0.174* Multiple R-squared 0.529*** 

TVPS 

GM WM 

Variable name Regression 
coefficient 

Standard 
error 

Variable name Regression 
coefficient 

Standard 
error 

Middle occipital 
gyrus 

-0.200 0.084 
Posterior thalamic 
radiations 

-0.004 0.130 

Middle frontal 
gyrus 

-0.131 0.236 PLIC -0.068*** 0.017 

Superior frontal 
gyrus 

-0.083 0.396 Fornix -0.010 0.130 

Inferior frontal 
gyrus 

-0.119 0.065 
Superior 
longitudinal 
fasciculus 

-0.029** 0.009 

Multiple R-
squared 

0.202** Multiple R-squared 0.507*** 

WR 

GM WM 

Variable name Regression 
coefficient 

Standard 
error 

Variable name Regression 
coefficient 

Standard 
error 

Middle occipital 
gyrus 

-0.036* 0.018 Fornix -0.093** 0.033 

Superior temporal 
gyrus 

-0.022 0.024 
Superior 
longitudinal 
fasciculus 

-0.012* 0.002 

Supramarginal 
gyrus 

-0.053* 0.021 
Posterior thalamic 
radiations 

-0.003 0.005 

Hippocampus -0.742 0.703 Corpus callosum -0.013 0.009 

Multiple R-
squared 

0.265*** Multiple R-squared 0.280*** 

VOC 

GM WM 

Variable name Regression 
coefficient 

Standard 
error 

Variable name Regression 
coefficient 

Standard 
error 

Precentral gyrus -0.037* 0.017 External capsule -0.015*** 0.003 
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Middle temporal 
gyrus 

-0.041 0.069 Tapatum -0.019 0.011 

Superior occipital 
gyrus 

-0.266 0.879 
Superior 
longitudinal 
fasciculus 

-0.015*** 0.003 

Middle occipital 
gyrus 

-0.049 0.086 Sagittal Stratum -0.057 0.615 

Multiple R-
squared 

0.117* Multiple R-squared 0.491*** 

Asterisked correlations were found to be statistically significant: * p < 0.008; ** p < 0.0016, 

*** p < 0.00016. Correlations in bold have a statistical significance of p < 0.008. 

Significant (p < 0.05) regions that were retained by the training models include the superior 

longitudinal fasciculus and the PLIC (in 3 of the 6 models), and the lenticular nucleus, 

corona radiata and external capsule (all in 2 of the 6 models). All models were found 

significant (p < 0.0008). The performance of these trained WM and GM models, as well as 

the WM/GM combined models, on the independent test set are shown in Table 7.5. Two of 

the six GM and WM alone models were found to be significant (p < 0.008), while four of 

the six combined WM/GM models were found to be significant (p < 0.008).  

Table 7.5 Test set correlations of the trained lesion models 

Table 7.5. The Pearson’s R correlation between the predicted outcomes in the test set 

using the trained linear regression models and the clinical scores of the test set. 

 GM models WM models WM/GM Combined 

Pearson’s 
R 
correlation 

95% 
Confidence 
Interval 

Pearson’s 
R 
correlation 

95% 
Confidence 
Interval 

Pearson’s 
R 
correlation 

95% 
Confidence 
Interval 

AHA 0.504* 
(0.200, 
0.719) 

0.641** 
(0.387, 
0.805) 

0.670*** 
(0.429, 
0.822) 

BRIEF -0.006 
(-0.392, 
0.382) 

0.263 
(-0.138, 
0.590) 

0.269 
(-0.132, 
0.594) 

SDQ 0.182 
(-0.327, 
0.610) 

0.742** 
(0.408, 
0.901) 

0.751** 
(0.424, 
0.905) 

TVPS 0.533* 
(0.184, 
0.763) 

0.304 
(-0.094, 
0.619) 

0.614** 
(0.297, 
0.809) 

WR 0.435 
(0.057, 
0.704) 

0.063 
(-0.332, 
0.440) 

0.493* 
(0.130, 
0.739) 

VOC 0.077 
(-0.319, 
0.452) 

-0.073 
(-0.448, 
0.323) 

0.085 
(-0.313, 
0.457) 

Asterisked correlations were found to be statistically significant: * p < 0.008; ** p < 0.0016, 

*** p < 0.00016. Correlations in bold have a statistical significance of p < 0.008. 
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7.3.5 Correlation with patient outcome using LST lesion segmentations 

The lesion segmentations provided from the state-of-the-art SPM LST approach were 

masked using the GM and WM labelled atlases similar to the proposed method. The 

correlations between these regional lesion burdens and patient outcome were investigated 

using the same statistical methodology. The performance of the trained LASSO regression 

models in the independent test set using these lesion data are given in Table 7.6 below. 

The magnitude of these correlations were noticeably less than the corresponding values 

using the proposed lesion segmentation algorithm shown in Table 7.5, with no models 

achieving statistical significance (p < 0.008). 

Table 7.6 Test set correlations of the Atropos trained models 

Table 7.6. The Pearson’s R correlation between the predicted outcomes in the test set, 

using the regression models on the SPM LST lesion segmentation data, and the clinical 

scores of the test set. 

 GM models WM models WM/GM Combined 

Pearson’s 
R 
correlation 

95% 
Confidence 
Interval 

Pearson’s 
R 
correlation 

95% 
Confidence 
Interval 

Pearson’s 
R 
correlation 

95% 
Confidence 
Interval 

AHA 0.076 
(-0.246, 
0.382) 

-0.127 
(-0.425, 
0.196) 

0.347 
(0.035, 
0.597) 

BRIEF 0.150 
(-0.215, 
0.479) 

0.412 
(0.005, 
0.448) 

0.090 
(-0.273, 
0.431) 

SDQ -0.156 
(-0.542, 
0.284) 

-0.206 
(-0.578, 
0.236) 

-0.249 
(-0.607, 
0.193) 

TVPS 0.274 
(-0.095, 
0.578) 

0.235 
(0.019, 
0.301) 

0.227 
(-0.145, 
0.543) 

WR 0.380 
(0.030, 
0.647) 

0.313 
(-0.046, 
0.601) 

0.365 
(0.012, 
0.637) 

VOC -0.323 
(-0.608, 
0.035) 

-0.304 
(-0.594, 
0.056) 

-0.025 
(-0.376, 
0.332) 

Asterisked correlations were found to be statistically significant: * p < 0.008; ** p < 0.0016, 

*** p < 0.00016. Correlations in bold have a statistical significance of p < 0.008. 

7.3.6 Independence of WM and GM lesion burden 

The table quantifying the amount of co-dependence between the WM only, GM only, and 

the combined WM/GM models, using the ANOVA is provided in Table 7.7. Briefly, the 

combined WM/GM models for the BRIEF and SDQ measures were not significantly 

different from the WM alone models, and the WM/GM models for the TVPS and WR 
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measures were not significantly different from the GM alone models for the respective 

measures (p > 0.05). The differences between the remaining models were significant (p < 

0.04), suggesting that although there is limited co-dependence between WM and GM 

involvement in explaining functional outcomes, there is substantial independence between 

the impact of WM and GM injuries on five of the six functional outcomes. 

Table 7.7 ANOVA comparisons of the white and grey matter lesions models 

Table 7.7. ANOVA comparisons between the GM and WM only models, and the models 

combining WM and GM lesion involvement. 

AHA 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

WM/GM 
combined 

81617 - - - - 

WM only 93130 -6 -11514 2.563 0.023* 

GM only 110550 -8 -28933 4.830 <0.001*** 

BRIEF 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

WM/GM 
combined 

735037 - - - - 

WM only 825191 -7  -90154 1.542 0.164 

GM only 973689 -4 -238652 7.143 <0.001*** 

SDQ 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

WM/GM 
combined 

6013.7 - - - - 

WM only 6386.7 -7 -373.07 0.541 0.800 

GM only 11366.0 -8 -5352.3 6.787 <0.001*** 

TVPS 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

WM/GM 
combined 

439456 - - - - 

WM only 414153 -2 -215837 21.365 <0.001*** 

GM only 655292 -6 -40342 1.331 0.252 

WR 

 Residual Degrees of Mean Square F Significance 
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Sum of 
Squares 

Freedom 

WM/GM 
combined 

27956 - - - - 

WM only 29640 -4 -3228.4 2.598 0.041* 

GM only 31184 -4 -1684.1 1.355 0.256 

VOC 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

WM/GM 
combined 

81786 - - - - 

WM only 148175 -4 -66390 18.264 <0.001*** 

GM only 96119 -5 -14333 3.155 0.011* 

Asterisked correlations were found to be statistically significant: * p < 0.008; ** p < 0.0016, 

*** p < 0.00016. 

7.4 Discussion 

An accurate, validated method for the automatic segmentation of WM and GM lesions has 

been applied to a cohort of children with unilateral CP. The correlation between regional 

lesion involvement and functional outcome was examined. Lesion involvements explained 

between 12-53% of the variance in the clinical score across all training models. Including 

information related to the timing and type of the insults, which cannot be automatically 

determined using the proposed approach, would further increase the amount of variance 

explained by these models. The anatomical regions with significant relationships to clinical 

function (p < 0.05) concurred with previous studies of the roles of individual regions (p < 

0.05) including the thalamus [Haber and Calzavara, 2009], lenticular [Middleton and Strick, 

2000] and caudate nuclei [Grahn et al., 2008], corona radiata [Kraus et al., 2007], cerebral 

peduncle [Cho et al., 2007], PLIC [Kinnunen et al., 2011], external capsule [Fazio et al., 

2009] and superior-longitudinal fasciculus [Bernal and Altman, 2010]. Patient age and 

gender were not observed to be significant predictors of outcome in any trained model. 

Four of these twelve trained structure-function regression models remained significant 

after Bonferroni correction in the validation test set, suggesting that these models 

specifically have identified real, underling relationships in the brain. Overall, these findings 

demonstrate that these models could help predict functional outcomes arising from lesions 

in all children with clinically diagnosed unilateral CP.  
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It was observed that the models consisting of WM lesion involvement had a higher multiple 

R-squared compared to the corresponding GM models for all six clinical scores, which 

may be a result of the greater frequency of WM involvement observed in this cohort (Table 

7.1). However, two of the six GM models were found to be significantly predictive of 

outcomes in the independent test set (p < 0.008), the same number as the number of 

significant WM models (Table 7.5). The important impact of GM involvement on outcome 

observed in this independent test set is consistent with previous findings that children with 

cortical or deep GM lesions showed noticeable motor and sensory deficits [Martinez-

Biarge et al., 2010]. Furthermore combining both WM and GM information led to 

consistently higher correlations in this test set, reaching significance in three of the six 

combined models (p < 0.008). Finally, the substantial independence between the impact of 

WM and GM injuries on five of the six functional outcomes shown in Table 7.7 highlights 

the value in characterising both classes of lesions. Although GM lesions were found to be 

predictive of multiple functional impairments, they are comparatively more difficult to 

segment than WM lesions, as illustrated in the performance measures in Table 7.2. 

Despite this, future studies into CP as well as other cerebral injuries, including multiple 

sclerosis and stroke, are recommended to quantify the extent of GM injury to provide an 

assessment of functional impairment. 

A technical limitation of the present study is the severe extent of injury present in 

approximately 25% of children with CP. Although the non-rigid registration techniques 

used to align the tissue probability maps and atlas labels provide the best possible 

alignment of the corresponding images, errors were still introduced in severely injured data 

with significant tissue loss or morphological changes. Additionally, the presence of other 

injuries such as brain malformations, cases of ventricular enlargement without any 

associated WM signal abnormalities, or cystic GM loss (which appears black in the TIRM, 

and potentially mislabelled as CSF in the segmentation) [Krägeloh-Mann and Horber, 

2007], have not been identified with the proposed approach. The presence of these 

injuries introduces additional variance in the clinical motor outcome score not explained 

solely by the lesion predictor variables, reducing the multiple R-squared of the trained 

models, necessitating the use of additional injury detection methods. Alternatively for 

large-scale injuries, biomarkers of ventricular enlargement, cortical malformation or lesion 

volume may explain the same variance in clinical outcome, confounding the association of 
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each specific injury to function. Therefore the combination of these biomarkers is used to 

construct the comprehensive regression models of injury in Chapter 8, in order to distil 

these individual associations. Another limitation of this study is that the effects of potential 

plasticity, which may lead to the translocation of specific functions on the cortex. Plasticity 

has not been accounted for in the regression models and could lead to an unexplained 

variance in the clinical outcome in these participants. Although LASSO was used in the 

present analysis, which uses an L1 penalty term, alternative feature selection and 

regularisation methods could be used, including ridge regression [Hoerl and Kennard, 

1970] and elastic-nets [Zou and Hastie, 2005]. These approaches use an L2 penalty term, 

and a mix of L1 and L2 penalty terms, respectively. However LASSO was chosen for this 

analysis as it enforces the greatest sparsity among the model coefficients, resulting in the 

most interpretable model. 

A strength of the present study is that the proposed segmentation approach only requires 

structural MR images, which are well established sequences and are common in clinical 

practice. In future, a combination of automated methods for detecting all classes of injury 

from structural MRIs will be combined to provide a complete assessment of injury and 

estimation of impairment for children with CP. These estimates can help guide what 

therapeutic interventions for motor, cognitive, visual or communicative function may be 

required for individual children, and assisting these interventions to be performed earlier in 

life, where neuroplasticity may have a greater effect [Cioni et al., 2011]. Furthermore, as 

children with unilateral CP may not respond well to lateralised interventions such as 

Constraint-Induced Movement Therapy (CIMT), the severity and laterality of brain lesions 

may guide the potential clinical utility of unimanual CIMT versus bimanual training. Future 

investigations will also look to apply this approach to children with bilateral CP, when data 

becomes available. 
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7.5 Conclusions 

This chapter presented a robust method for performing automated brain lesion 

segmentation from T1-weighted MRI sequences alone, and applied to the segmentation of 

both WM and GM lesions from children with unilateral CP. Its performance was validated 

against manual expert classifications of lesions with an accuracy of 0.936, and 

outperformed the current state-of-the-art lesion segmentation approach with an accuracy 

of 0.729. After computing regional WM and GM lesion burden, LASSO was used to identify 

regional burdens related to individual clinical functions separately for WM and GM lesions. 

The automatically selected regions conformed to established relationships between 

anatomical regions and function, with significant correlations observed between regional 

lesion burden and motor (0.670, p < 0.008), cognitive (0.751, p < 0.008), visual (0.614, p < 

0.008) and communicative function (0.533, p < 0.008). GM lesions led to a significant and 

generalisable reduction in functional outcomes comparable in magnitude to WM lesions, 

demonstrating the importance of quantifying GM lesion involvement. In the following 

chapter, the measures of injury obtained from the methods described in the previous two 

chapters are combined, and are used to characterise the prevalence of injury in this cohort 

of children with CP. Additionally, the independence of these measures of injury was 

examined to determine the most predictive image biomarkers of patient function. 
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8. Combining injury detection methods to characterise injury 

and predict clinical outcomes in a cohort of children with 

unilateral CP 

8.1 Introduction 

In previous chapters, it was mentioned that MRI is strongly recommended to elucidate the 

timing and aetiology of brain insults that cause CP [Korzeniewski et al., 2008] to help 

facilitate therapeutic selection [Accardo et al., 2004], and is the current standard for 

assessing injury in clinical practice. Current characterisation of injuries related to CP are 

broadly grouped into three classes based on aetiological patterns [Krägeloh-Mann et al., 

2007]: brain maldevelopments (of which cortical malformations are the main type) 

occurring from disturbances in the first and second trimesters; periventricular white matter 

injury (and potentially the secondary enlargement of the ventricles due to primary tissue 

loss) occurring from disturbances in the early third trimester; and cortical/deep grey matter 

injury occurring from disturbances in the late third trimester. The use of these 

characterisations are common, and many studies have investigated the prevalence of 

these aetiologies of injury within specific cohorts of children with CP [Bax et al., 2006; 

Krägeloh-Mann et al., 2007; Legault et al., 2011]. However, as a rule, these classifications 

have only been qualitatively assessed, disregarding the location and severity of lesions 

observed from the structural MRI (sMRI). 

Quantitative measures of injury, accounting for injury severity and anatomical location, 

have the potential to better quantify the relationship (if any) between brain lesions and 

functional outcomes [Arnfield et al., 2013]. Furthermore, in future, such characterisations 

of injury may allow for valid and reliable predictions of patient impairment from MRIs 

acquired very early in life, which has implications for the selection of treatment strategies. 

However, this requires lesion volumes to be segmented in three dimensional images, 

which is too laborious to perform manually on large cohorts of data. Automated techniques 

are necessary to perform these segmentations in a repeatable and time-efficient manner. 

Such techniques need to be tailored to the specific challenges present in the sMRI of 

children with CP, including the potentially severe morphological alterations and the 

heterogeneous appearance of lesions, which are illustrated in Figure 1. However, no study 

has utilised the comprehensive quantifications of injury that automated approaches allow, 
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nor have they examined the utility of using these quantifications to predict clinical function. 

As a result, it remains unclear whether quantitative measures of brain injury can usefully 

augment the current classifications of brain injury in the clinical setting to produce finer 

estimates of patient function. 

In this chapter, the three developed automated approaches from the previous chapters are 

used to characterise the prevalence of injury in this cohort of children with unilateral CP. 

These approaches identify the three main aetiologies of injury based on current 

classifications [Krägeloh-Mann and Horber, 2007]; including a tailored segmentation 

strategy and cortical shape analysis pipeline to detect cortical malformations [Pagnozzi et 

al., 2016b], a lesion-as-outlier segmentation strategy using T1- and T2-weighted MRIs for 

the detection of white and grey matter lesions [Pagnozzi et al., 2016a], and a statistical 

shape model (SSM) of healthy ventricular shape to detect the secondary enlargement of 

ventricles [Pagnozzi et al., 2016c]. These biomarkers were used to characterise the 

prevalence of injury in this cohort, and used to construct regression models with several 

scores of clinical function, including motor, cognitive, communicative and visual ability. 

Such models can improve our understanding of the relationship between the extent and 

topography of brain lesions and clinical function in children with CP. This work addresses 

Aim 2 of the thesis, combining all of the aforementioned approaches to “establish a 

statistical methodology that translates image-derived measures of injury severity to patient 

functional impairment, and thus determine the elucidated impact between brain injuries to 

patient outcomes”. In future, this understanding can help provide insights into 

neuroplasticity [Krägeloh-Mann and Horber, 2007]. However the immediate goal of these 

models is to provide valid and reliable estimates of patient function, which can help to tailor 

treatment strategies, potentially leading to improved gains in patient function for children 

with CP.  

8.2 Materials and Methods 

8.2.1 Study Participants 

All 139 children recruited as part of the studies detailed in Section 3.2.1 have been 

included in this chapter. 
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8.2.2 Image Biomarkers 

Image-processing techniques were used to identify and quantify three types of injury 

observed in the MRIs of children with CP [Krägeloh-Mann and Horber, 2007]. These 

methods and their performance are detailed in the following sections. An overview of the 

pipeline of these automated methods are illustrated in Figure 8.1. 

Figure 8.1 Illustration of the three combined injury segmentation pipelines 

 

Fig. 8.1. The overall processing pipeline, including pre-processing steps (in red), 

registration (in yellow) of the utilised atlases (in green and blue), and the brain masking 

and tissue segmentation approaches described in Chapter 4 (in orange), which facilitate 

the detection of ventricular enlargement using the method from Chapter 5 (in light green), 

cortical shape measures using the approach from Chapter 6 (in brown), and lesion burden 

method using the method described in Chapter 7 (in purple). 
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8.2.2.1 Identifying cortical malformations 

Cortical malformations, which appear as a heterogeneous range of abnormal cortical 

shapes, were identified in this study using a brain tissue segmentation algorithm that 

accommodates severe injury [Pagnozzi et al., 2015], and three shape measures computed 

from the cortical grey matter segmentation (cortical thickness, curvature, sulcal depth) in 

order to quantify shape abnormalities [Pagnozzi et al., 2016b] in each cortical region 

defined by the Automated Anatomical Labelling (AAL) atlas, as described in Chapter 6. An 

illustration of these cortical measures in three patients with observed cortical alterations 

are shown in Figure 8.2. Note for these figures, the cortical measures, which were 

obtained only on the cortical surface, were smoothed across the entire cortical grey matter 

segmentation. Biomarkers from this approach are an absolute z-score from healthy cortical 

shape measures measured from the corresponding cortical region among the 44 CHD 

children. Unlike an absolute measure of cortical shape (such as cortical thickness in 

millimetres), a z-score relative to healthy cortical shape aligns with the subsequent 

volumes of lesion burden and ventricular enlargement volume, where larger values 

represent greater injury severity. This facilitates the interpretation of the regression model 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

140 

 

Figure 8.2 Cortical measures in three cases of malformation 

 

Fig. 8.2. An illustration of three cases with cortical malformations, and the measured 

cortical thickness (in mm), sulcal depth (in mm) and curvature (in mm-2) of these cortices. 

Regions of injury were observed to have higher sulcal depths, and reduced cortical 

thickness and curvature. 

8.2.2.2 Identifying white and grey matter lesions 

White and grey matter lesions were identified using the lesion segmentation algorithm 

tailored to CP data described in Chapter 7, which contains multiple lesion classes to 

identify both types of lesions [Pagnozzi et al., 2016a]. Biomarkers from this approach are a 

lesion volume (in mL) in the different brain regions, identified using the AAL grey matter 

atlas and the ICBM DTI-81 white matter parcellation atlas (International Consortium for 
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Brain Mapping, CA) respectively. This approach achieved a sensitivity of 94% and a 

specificity of 93% for both white and grey matter lesions [Pagnozzi et al., 2016a]. Although 

it was observed that the specificity of WM lesion segmentations alone were comparatively 

lower due to more frequent variations in WM intensity, while the sensitivity of GM lesion 

segmentations alone were comparatively lower due to reduced contrast observed for GM 

lesions.  

8.2.2.3 Identifying ventricular enlargement 

Ventricular enlargement was identified using a SSM of healthy lateral ventricles to extract 

volumes of enlargement, and compute their impingement on nearby deep grey matter 

anatomies [Pagnozzi et al., 2016c], as detailed in Chapter 5. Biomarkers from this 

approach include a volume of ventricular enlargement (in mL) in the deep grey matter 

anatomies, as determined by the AAL grey matter atlas. Note that this is not the entire 

lateral ventricular volume, solely the volume of the region that is thought to be enlarged, 

compared to typically developing children. Three cases illustrating these segmented 

regions are shown in Figure 8.3. 
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Figure 8.3 Illustration of volume of ventricle enlargement segmentations 

 

Fig. 8.3. Illustration of three cases of enlarged ventricles due to injury, and the 

segmentation of the enlarged volumes from the nearest healthy ventricle shape. 

8.2.4 Statistical Methodology 

The relationship between the brain injury and patient outcomes were investigated using 

regression models, where the image derived biomarkers of injury are the independent 

predictor variables, and the several clinical test scores are the dependent outcome 

variables. Initially, to obtain unbiased estimates, the data were partitioned, with regression 

models trained on 75% of the data and their performance validated on the independent 

25% test set. These regression models were constructed with the LASSO method 

[Tibshirani, 1996], using the ‘glmnet’ package in R statistical software Version 3.2 [The R 

Development Core Team, 2008]. LASSO was chosen over other approaches, such as 

least squares, because of its inherent variable selection and regularisation properties. In 

the LASSO approach, predictor variables that are not strongly associated with the clinical 

outcomes are removed from the model. LASSO was run with default lambda and alpha 
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parameters that define the weight and type of the regularisation penalty respectively. 

Patient age and gender were included in all models and to account for the variance in 

different scanner sequences used in this study, scanner sequence was included as a 

categorical variable in each model. The regression coefficients of each model, which 

encode the relative weights of individual biomarkers impacting clinical outcome, were 

enforced to be negative. This was done in order to only extract correlations where 

observed injury led to reductions in patient outcome. Interaction effects were excluded to 

reduce the total number of model parameters and hence prevent model over-fitting. In 

total, six models were constructed, one for each of the six clinical scores (AHA, BRIEF, 

SDQ, TVPS, WR and VOC). Multiple comparisons of the models were corrected for using 

a Bonferroni correction, while model residuals were observed to be normally distributed for 

each of the dependent outcomes. An analysis of variance (ANOVA) was performed to 

compare the complete models from all biomarkers combined, and the biomarkers of each 

type of injury individually, to ascertain if it is beneficial to look at all kinds of injury observed 

in the MRIs concurrently. 

8.3 Results 

8.3.1 Characterisation of injury in the cohort 

The prevalence of injury, as determined by our automated analyses, in our cohort is 

illustrated in Figure 8.4. Prevalence is shown as a Venn diagram, to illustrate that each 

individual patients may have a combination of the three classes of injury. Binary 

characterisation of injury was classified as the presence of any enlarged ventricles or 

white/grey matter lesions (greater than 0 mL anywhere in the brain), or a regional cortical 

shape with a computed z-score > 2.5 compared to corresponding healthy cortical shape 

(for any cortical shape and region). Of the 139 children in our cohort, 109 were classified 

as having some form of injury, with 15% of the cohort having all three types of injury 

identified. Ventricular enlargement was the most common form of injury (observed in 68% 

of children), followed by white/grey matter lesions (55%) and cortical malformations (30%). 

As expected from the known aetiology of injury, ventricular enlargement was observed in 

over 60% of patients with white/grey matter lesions. False positive characterisations of 

ventricular enlargement, caused by slight alignment errors of the ventricular meshes, 

explains why 14 children with typical brain development were incorrectly identified as 

possessing some form of brain injury.  
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Figure 8.4 Venn diagram characterising injury prevalence in the cohort 

 

Fig. 8.4. A Venn diagram characterising the observed prevalence of ventricular 

enlargement, cortical malformations and WM/GM lesions observed in this cohort using the 

described automated techniques. 

8.3.2 Observed structure-function relationships 

The image biomarkers retained from LASSO, and their respective regression coefficients 

for each of the six models, are given in Table 8.1 below. In these models, the cortical 

shape biomarkers (labelled ‘Cortical thickness’, ‘Curvature’ or ‘Sulcal depth’) represent the 

reduction in clinical outcome for a 1 unit increase in z-score from healthy shape in that 

cortical region, while the lesion biomarkers (labelled ‘Lesion’) and ventricular enlargement 

biomarkers (labelled ‘Ventricle enlargement’) represent the decrease in clinical score from 

an increase in 1mL of lesion, or enlarged ventricle respectively, in that anatomy. In this 

table, we note that the p-values of each biomarker are uncorrected, and simply reflect the 

strength of that feature within the chosen model. However, the adjusted R-squared of the 

models, which measure strength of the correlation between the outcome and the model 

predictions, were compared against a Bonferroni corrected alpha value (0.05/6 tests, 

0.008). 
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Table 8.1 Regression model summary for the combined models 

Table 8.1. The retained anatomical regions, and corresponding regression coefficients 

(including standard errors) of the six regression models modelled on the 75% training set. 

For each model, the multiple R-squared is provided. Features that are significant (p < 

0.05) in multiple models are bolded. 

AHA 

Independent variable Regression coefficient Standard error 

(Intercept) 116.80*** 4.741 

Supplementary motor area - Curvature -7.462* 2.828 

Primary somatoensory cortex - Curvature -15.157*** 3.810 

Cingulate - Cortical thickness -14.063*** 3.259 

Lingual gyrus - Sulcal depth -13.062** 4.306 

Middle temporal gyrus - Sulcal depth -14.887*** 2.566 

Lenticular nucleus - Lesion -0.051** 0.017 

External capsule - Lesion -0.012*** 0.003 

Cerebral peduncle - Lesion -0.044* 0.020 

Age 0.302 0.599 

Gender (Reference: Male) 1.733 3.547 

MR Sequence (Reference: QCPRRC) -4.850 4.820 

Adjusted R-squared 0.728*** 

BRIEF 

Independent variable Regression coefficient Standard error 

(Intercept) 202.195*** 19.884 

Primary somatosensory cortex - Sulcal depth -11.116 6.205 

Insula - Curvature -15.949 9.506 

Occipital gyrus - Curvature 15.342 9.1775 

Inferior temporal gyrus - Curvature -21.469** 7.685 

Premotor cortex - Cortical thickness -12.619 9.222 

Middle temporal gyrus - Cortical thickness -16.595 9.875 

Middle frontal gyrus - Lesion -0.049 0.033 

Caudate nucleus - Lesion -0.053 0.038 

Age 1.267 1.662 

Gender (Reference: Male) 18.522* 8.958 

MR Sequence (Reference: QCPRRC) 2.499 12.254 

Adjusted R-squared 0.310* 

SDQ 

Independent variable Regression coefficient Standard error 

(Intercept) 81.750*** 5.252 

Primary motor cortex - Cortical thickness -2.392* 1.099 

Primary motor cortex - Sulcal depth -1.286 0.808 

Insula - Curvature -4.839*** 1.239 
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Cingulate cortex - Cortical thickness -2.656* 1.090 

Cingulate cortex - Curvature -1.631** 0.527 

Fusiform gyrus - Curvature -1.057 0.774 

Lingual gyrus - Curvature -2.268 1.161 

Lingual gyrus - Sulcal depth -1.238 5.313 

Inferior temporal gyrus - Sulcal depth -4.963*** 0.973 

Premotor cortex - Cortical thickness -3.196* 1.368 

Middle temporal gyrus - Curvature -4.221** 1.207 

Superior occipital gyrus - Lesion -0.090 0.059 

Superior temporal gyrus - Lesion -0.005 0.003 

Corona radiata - Lesion -0.001*** <0.001 

Age 0.222 0.242 

Gender (Reference: Male) 1.835 1.615 

MR Sequence (Reference: QCPRRC) 0.424 1.554 

Adjusted R-squared 0.707*** 

TVPS 

Independent variable Regression coefficient Standard error 

(Intercept) 135.004*** 10.693 

Primary motor cortex - Cortical thickness -7.782 5.024 

Rolandic operculum - Cortical thickness -2.814 3.447 

Supplementary motor area - Curvature -4.382 3.599 

Primary sensory cortex - Sulcal depth -2.557 3.536 

Insula - Sulcal depth -2.248* 0.981 

Cingulate cortex - Curvature -2.234 1.915 

Fusiform gyrus - Cortical thickness -18.213 15.334 

Superior temporal gyrus - Cortical thickness -3.800 6.289 

Primary visual cortex - Cortical thickness -7.382 5.339 

Lingual gyrus - Curvature -1.570 4.327 

Inferior temporal gyrus - Sulcal depth -4.191 3.650 

Inferior frontal gyrus - Cortical thickness -4.720 4.499 

Middle temporal gyrus - Cortical thickness -2.192 5.176 

Middle frontal gyrus - Lesion -0.019 0.015 

Hippocampus - Lesion -0.264 0.395 

Superior occipital gyrus - Lesion -0.295 0.238 

Supramarginal - Lesion -0.019 0.019 

Caudate nucleus - Lesion -0.008 0.019 

Posterior thalamic radiations - Lesion -0.002 0.004 

Age 0.487 1.102 

Gender (Reference: Male) 3.421 5.340 

MR Sequence (Reference: QCPRRC) 0.322 6.475 

Adjusted R-squared 0.577*** 

WR 

Independent variable Regression coefficient Standard error 
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(Intercept) 96.247*** 10.067 

Cingulate cortex - Cortical thickness -1.295 3.420 

Cingulate cortex - Curvature -0.734 1.395 

Fusiform gyrus - Curvature -0.930 2.292 

Angular gyrus - Cortical thickness -1.054 4.395 

Primary visual cortex - Cortical thickness -6.516 3.584 

Primary visual cortex - Sulcal depth -5.695 8.091 

Cuneus - Curvature -1.557 2.771 

Lingual gyrus - Sulcal depth -8.600 17.606 

Occipital gyrus - Curvature -11.531** 3.856 

Inferior temporal gyrus - Curvature -3.649 2.288 

Inferior temporal gyrus - Sulcal depth -2.910 2.340 

Middle frontal gyrus - Cortical thickness -3.372 2.852 

Gyrus rectus - Curvature -1.219 2.088 

Precentral gyrus - Lesion -0.003 0.005 

External capsule - Lesion -0.002 0.003 

Cerebral peduncle - Lesion -0.003 0.016 

Age -2.272*** 0.532 

Gender (Reference: Male) -3.423 2.39 

MR Sequence (Reference: QCPRRC) -6.935* 3.115 

Adjusted R-squared 0.385* 

VOC 

Independent variable Regression coefficient Standard error 

(Intercept) 8.980 22.027 

Supplementary motor area - Curvature -0.810 2.795 

Primary somatosensory cortex - Cortical 
thickness 

-7.609 3.801 

Insula - Sulcal depth -0.364 0.871 

Cingulate cortex - Curvature -0.674 1.341 

Angular gyrus - Curvature -0.713 4.449 

Angular gyrus - Sulcal depth -0.919 1.429 

Primary visual cortex - Cortical thickness -2.845 4.301 

Lingual gyrus - Curvature -3.136 3.246 

Inferior temporal gyrus - Sulcal depth -0.979 3.168 

Posterior parietal gyrus - Sulcal depth -5.267 2.609 

Gyrus rectus - Cortical thickness -5.610 3.997 

Middle temporal gyrus - Cortical thickness -1.371 3.507 

Middle frontal gyrus - Lesion -0.014 0.019 

Inferior frontal gyrus - Lesion -0.006 0.009 

Cingulate cortex - Lesion -0.011 0.062 

Hippocampus - Lesion -0.325 0.183 

Middle occipital gyrus - Lesion -0.017 0.016 

Caudate nucleus - Lesion -0.020 0.014 
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Posterior thalamic radiations - Lesion -0.002 0.004 

Cingulum - Lesion -0.034 0.249 

Age 4.090*** 0.805 

Gender (Reference: Male) 0.608 3.013 

MR Sequence (Reference: QCPRRC) -2.695 3..807 

Adjusted R-squared 0.575*** 

Asterisked feature correlations were found to be statistically significant: * p < 0.05; ** p < 

0.01, *** p < 0.001. Correlations in bold have a statistical significance of p < 0.05. 

Asterisked model correlations were found to be statistically significant: * p < 0.008; ** p < 

0.0016, *** p < 0.00016. 

8.3.3 Analysis of predictive biomarkers 

The performance of the predictive regression models are shown in Table 8.2. Five of the 

six data-driven models were statistically significant (p < 0.008) in the 25% test set. 

Although the correlations for the manually chosen biomarkers were generally smaller than 

the corresponding data-driven models, four of these six models were statistically 

significant (p < 0.008).  

Table 8.2 Test set correlations of the combined trained models 

Table 8.2. Pearson’s R correlation between the predicted outcomes in the test set using 

the trained regression models and the clinical scores of the test set, for both the data-

driven and manually chosen models. 

 Pearson’s R correlation 95% Confidence Interval 

AHA 0.706** (0.488, 0.841) 

BRIEF 0.482 (0.124, 0.729) 

SDQ 0.795** (0.456, 0.932) 

TVPS 0.617* (0.252, 0.827) 

WR 0.545* (0.161, 0.786) 

VOC 0.682** (0.354, 0.860) 

8.3.4 Assessment of independence of biomarker-type 

To assess the independence of the different categories of biomarkers, an ANOVA analysis 

was performed to compare the complete models obtained from the data-driven variable 

selection, and models constructed using only the biomarkers from this model of a specific 

injury class (i.e. cortical biomarkers and lesion biomarkers separately). The summary of 

these analyses is provided in Table 8.3. Model comparisons to the ventricle enlargement 

biomarkers alone were omitted as no ventricular enlargement biomarkers were retained by 
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LASSO in any model. All models containing only cortical shape or lesion burden 

biomarkers were found to be significantly different from the complete regression models (p 

< 0.05), except for the cortical biomarker only model for TVPS (p = 0.109). This suggests 

that the two different sets of biomarkers explain different portions of variance in the clinical 

score of children with CP. 

Table 8.3 ANOVA comparisons between the three different biomarkers of injury 

Table 8.3. ANOVA model comparisons between the complete regression models, and the 

models constructed with the cortical shape and lesion burden biomarkers only. 

AHA 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

Complete model 7161.1 - - - - 

Cortical 
biomarkers only 

12478.6 -3 -5317.5 12.623 <0.001*** 

Lesion 
biomarkers only 

20031.5 -5 -12870 18.332 <0.001*** 

BRIEF 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

Complete model 26360 - - - - 

Cortical 
biomarkers only 

32537 -3 -6177.1 3.125 0.036* 

Lesion 
biomarkers only 

44323 -7 -17963 3.894 0.002** 

SDQ 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

Complete model 122.92 - - - - 

Cortical 
biomarkers only 

276.38 -4 -153.46 6.554 0.001** 

Lesion 
biomarkers only 

627.53 -12 -504.61 7.184 <0.001*** 

TVPS 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

Complete model 3704.2 - - - - 

Cortical 
biomarkers only 

5131.4 -6 -1427.2 1.927 0.109 
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Lesion 
biomarkers only 

7877.5 -13 -4173.3 2.600 0.015* 

WR 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

Complete model 1883.6 - - - - 

Cortical 
biomarkers only 

2963.5 -5 -1079.7 3.554 0.012* 

Lesion 
biomarkers only 

4754.9 -15 -2871.3 3.150 0.003** 

VOC 

 Residual 
Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F Significance 

Complete model 1348.5 - - - - 

Cortical 
biomarkers only 

3318.4 -10 -1969.9 3.506 0.006** 

Lesion 
biomarkers only 

4263.5 -14 -2915 3.706 0.002** 

8.4 Discussion 

The findings from this chapter support the early characterisation of brain injury from the 

structural MRIs of children with CP, into the defined classes based on aetiologies 

[Krägeloh-Mann et al., 2007]. Using automated approaches for quantifying these 

respective injuries, a prevalence of injury in our cohort was found to be comparable to 

studies on other cohorts of children with CP [Bax et al., 2006; Krägeloh-Mann and Horber, 

2007; Legault et al., 2011]. Leveraging the quantifications that these automated methods 

allow, models of brain injury to patient function were generated. Assessing the 

performance of these models on the unseen test set determined how well these observed 

relationships could predict functional outcomes in children with observed brain injury. Five 

of the six models were observed to obtain significant correlations in this test set, with only 

the Brief model not achieving significance. As Brief measures executive function, we 

hypothesise that reduced executive outcomes may primarily arise from the loss of white 

matter connectivity, which would require diffusion MRI and tractography to identify [Rose 

et al., 2011]. On its own, sMRI does not assess neural connectivity and the inclusion of 

diffusion data may result in greater association of these outcomes. However, unlike sMRI, 

there is not yet a routine and widely accepted method for diffusion MRI acquisition and 

processing of data [Jones et al., 2013]. The significant correlations observed for the other 
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clinical scores demonstrates the clinical utility of these predictive models in estimating 

patient function in order to provide early and effective therapeutic interventions. 

Although the model features were retained from a data-driven process, the significant 

regions conform to known structure-function relationships of the brain. For instance, the 

supplementary motor area has known associations with intended voluntary action 

[Goldberg, 2010], the primary somatosensory cortex has been associated with the mental 

rehearsal of motor acts [Porro et al., 1996], the anterior cingulate has known motor regions 

regulating the interactions between cognitive and motor control [Paus, 2001], supporting 

the observed importance of these regions in the AHA model (Table 8.1). Additional 

significant regions in the AHA model include the lenticular nucleus, which is known to 

control a variety of movements [Middleton and Strick, 2000], and is connected to the 

external capsule [Henry et al., 2004], and the cerebral peduncle, which contains WM fibres 

of the corticospinal tract and has previously been shown to be predictive of motor deficits 

[Laundre et al., 2005]. For the Brief and SDQ models of cognitive function, several of the 

retained regions (inferior temporal gyrus, primary motor cortex, insular cortex, cingulate 

cortex, premotor cortex and corona radiata) have known associations with cognition and 

executive functioning. For instance, the inferior temporal gyrus, which was significantly 

retained in both models, has a known role in verbal fluency and cognition, and is 

commonly affected in AD [Scheff et al., 2011]. The observation in the Brief model that girls 

had higher reported executive functioning than boys may be due to females maturing 

earlier than males [Waber, 1976], or arising from the currently unexplained phenomenon 

that males with CP tend to exhibit more severe impairment [Jarvis et al., 2005]. Other 

significant features retained in the SDQ model include the primary motor and premotor 

cortices, which have both been shown to be responsible for motor learning and cognitive 

actions [Rizzolatti et al., 2002; Sanes and Donoghue, 2000], the cingulate cortex that has 

been associated with the regulation of varied mental and emotional activity [Bush et al., 

2000], and the corona radiata which has been associated with mental calculation and 

information processing [Sasson et al., 2012]. The insular cortex, which was retained in 

both models for cognition (SDQ) and vision (TVPS) , has known associations with multiple 

sensory areas, influencing awareness of somatosensation and goal directed cognition 

[Chang et al., 2013], and the processing of visual information [Nagai et al., 2007]. We 

hypothesise that the presence of the occipital gyrus in the word reasoning model may 
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arise from the known roles in the auditory and spatial information and stimuli [Renier et al., 

2010], including sound localisation, which are required to perform well in the WPPSI-III 

subtests for communication. Age was retained in both models for vocabulary (VOC) and 

word reasoning (WR), potentially reflecting the known improvements in articulation 

[Kilminster and Laird, 2014] and phonological skills [Snowling and Hulme, 1994] occurring 

during childhood development.  

Ventricular enlargement biomarkers were observed to be removed by LASSO’s variable 

selection for all models of clinical function. This may due to ventricular enlargement being 

a secondary injury caused by primary periventricular white matter tissue loss [Melhem et 

al., 2000; Palmer, 2004]. Consistent with this aetiology, most children with ventricular 

enlargement in this cohort had white or grey matter tissue lesions. As a result, both 

ventricular enlargement and lesion biomarkers explain similar portions of variance in these 

children’s functional outcomes. Since the ventricular enlargement biomarkers were 

removed by LASSO, this indicates that they explain relatively less variance in the 

functional outcomes than the lesion biomarkers. However, it was observed that both 

cortical morphology and lesion burden variables were retained by LASSO for all six 

models. The independence of these biomarkers is further demonstrated in the ANOVA 

supplementary table, identifying that the two sets of factors explain independent portions 

of variance in five of the six models. These findings highlight the benefit of quantifying both 

biomarkers for the assessment of MRIs. 

Although the developed automated approaches were designed to be robust to the 

presence of severe brain injury, there are a number of technical limitations with these 

methods. Firstly, despite most of these approaches requiring only an affine alignment of 

atlases, which is mostly driven by the alignment of the skull, there are registration errors 

introduced in the deformable registration of the tissue probability maps used in the lesion 

segmentation pipeline. The brain masking segmentation step occasionally incorporates 

dura into the brain mask and miss subtle cortical sulci. In these cases, manual editing of 

the segmentations is required, as instances of either error will affect the cortical shape 

measures computed in the cortical analysis pipeline. The presence of slight 

correspondence errors between the ventricular shape models led to a large number of 

false positive classifications of ventricular enlargement, contributing to the 14 false positive 

classification of brain injury in typically developing children. This misclassification could be 



 

153 

 

minimized by using Procrustes alignment prior to SSM fitting in order to reduce the 

misalignment of the ventricles, and to use maps to down weight regions of detected 

“enlargement” near the anterior horn of the lateral ventricles, where this misalignment 

typically occurs. Due to the risk of over-fitting on the limited available training data, no 

interaction terms were included for account for potential feature covariance, nor was WM 

connectivity information incorporated in the current study. The inclusion of diffusion data 

the model will be important in the future, because structural MRI alone cannot account for 

the variable influence of neuroplastic mechanisms that lead to altered structure-function 

relationships to compensate for the presence of injury [Carmichael, 2003; Thiel et al., 

2001]. These altered relationships confound the relationships between injury and 

impairment that the regression models attempt to elucidate, introducing unexplained 

variance in the clinical scores and potentially reducing the multiple R-squared of these 

models. 

The main strength of this study is that the developed injury segmentation approaches only 

requiring well established T1-weighted sequences. More sophisticated diffusion and 

functional sequences are not as widely available, and have longer scanning times which 

complicate the imaging of young children. The development of automated techniques that 

only require these rapid and established sequences help facilitate potential translation to 

clinical practice. Secondly, this study encapsulates the full range of primary and secondary 

injuries characterised previously [Krägeloh-Mann et al., 2007], as well as patient age and 

gender, allowing for comprehensive characterisation of brain injury from sMRI. In future, 

image analysis in the CP setting needs to move towards more automated quantification of 

injury, as it allows quantitative relationships between brain injury and outcome to be 

elucidated for children with both unilateral and bilateral CP. These associations have the 

potential to build upon the understanding of the brains structure-function relationships, 

which is an important prerequisite for understanding reorganisation and plasticity. 

Furthermore, there is potential in using these associations to produce estimates of patient 

function, which have important clinical implications for dictating the type and intensity of 

intervention that may be required, early in life in order to optimise functional outcomes. 

Although the classification of preterm infants and infants born at term age was not 

recorded as part of this study, the characterisation of injury in this chapter can help 

investigate the development of children born preterm. Preterm infants have an increased 
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incidence of brain injuries [Volpe, 2009], including PVL and deep GM injury, and have 

been observed to have reduce long-term neurodevelopmental outcomes [Petrini et al., 

2009]. Furthermore, there is the potential to use the described approaches to characterise 

longitudinal changes in brain structure as a result of neuroplastic mechanisms, occurring 

through early childhood development or in response to therapeutic rehabilitation. Using the 

segmentation approaches to detect changes in cortical volume arising from neuroplasticity 

in the GM, combined with diffusion MRI approaches to detect neuroplastic changes in the 

WM [Reid et al., 2016], the effects of plasticity can be comprehensively quantified. Such 

studies could be used to elucidate how brain structure changes in response to injury or 

therapy, and possibly also the mechanisms of plasticity underlying these changes, with 

associated implications for patient function. Such information could lead to tailored therapy 

for patients to best leverage these recuperative mechanisms. 

8.5 Conclusion 

In this chapter, several validated, automated approaches for identifying three different 

aetiologies of brain injury applied to a cohort of children diagnosed with unilateral CP. 

Similar prevalence’s of cortical malformations (observed in 30% of children), white and 

grey matter lesions (55%) and secondary ventricular enlargement (68%) were observed to 

previous studies on populations of children with CP. Furthermore, significant correlations 

were observed between the biomarkers of injury and multiple scores of patient motor, 

cognitive, visual and communicative function. These structure-function relationships 

generalised to unseen data, with correlations between 0.482 and 0.795, and retained 

predictor variables that conformed to known roles of brain structures. There was significant 

independence between cortical morphology and tissue lesions in explaining functional 

outcomes, highlighting the benefit of quantifying both of these types of injury for clinical 

assessment. These findings supports the early elucidation and characterisation of brain 

injury from sMRI in the clinical assessment of children with CP. In future, automated 

methods are needed to build on our understanding of the brain’s structure-function 

relationship, in order to better understand neuroplasticity, and produce estimates of patient 

function that has clinical utility in guiding rehabilitation strategies. 
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9. Discussion and Conclusion 

9.1 Novel contributions 

Several contributions have been made in this thesis towards the goal of accurately 

identifying and quantifying cerebral injury from the T1- and T2-weighted MRI of in children 

with CP.  

These contributions include 

1. the development of several automated segmentation approaches to delineate the 

three main classes of injury observed in children with CP, including: 

a. the development of a robust segmentation algorithm that minimises reliance 

on atlas priors and uses a modified spatial term 

b. the utilisation of an SSM procedure to model healthy ventricle shape, and 

use this to delineate regions of involvement into nearby anatomies 

c. the development of a shape analysis and label propagation pipeline for the 

characterisation of cortical shape and the development of cortical biomarkers 

of injury 

d. the development of a WM and GM lesion segmentation pipeline for the 

quantification of regional tissue loss due to injury 

2. a statistical methodology that translates image-derived measures of injury severity 

to patient functional impairment, and thus determined the impact of brain injury on 

patient outcomes 

a. identified that the several biomarkers of injury are all predictive of functional 

impairments, and have independent effects of clinical outcomes 

3. comparisons of the automated results against a manual gold standard, confirming 

the automated results strongly agree with the manual expert, and improve upon the 

current state of the art techniques, highlighting their inapplicability to the CP setting 

due to inaccurate assumptions 

The contributions address the three aims of this thesis. The main findings of these papers 

are summarised below. 
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9.1.1 Current role of structural MRI 

The current role of structural MRI is as the standard imaging modality used in the clinical 

assessment of brain injury, and will only increase in the future based on the American 

Academy of Neurology’s recommendation that all children with CP have a structural MRI 

at 2 years of age. Although diffusion and functional MRI’s are prevalent in the literature 

[Faria et al., 2010; Faria et al., 2011; Oishi et al., 2011; Oishi et al., 2013; Yoshida et al., 

2013], the long scanning times for diffusion MRI complicate the imaging of young children, 

and are currently not the standard for clinical assessment [Saunders et al., 2007]. It is 

advantageous to assess individual focal lesions from structural MRI. 

State of the art image processing techniques were identified from the literature, and 

summarised in the systematic review (Chapter 2), with specific focus to the technical 

challenges of the CP setting. Since the completion of the systematic review, an additional 

12 original articles have been published that met the inclusion criteria of the review. One 

study assessing ventricular shape using SSMs proposed for neonatal MRIs has been 

published [Qiu et al., 2015]. This method, however, utilises deformable registration to 

obtain point-wise correspondences to injury, which introduces significant errors in the CP 

setting. A number of cortical analysis methods have been published, measuring cortical 

thickness and surface area to analyse changes related to schizophrenia [Kong et al., 2015] 

and epilepsy [Ahmed et al., 2015; Ristić et al., 2015] using FreeSurfer, while sulcal depth 

computed using BrainVISA was utilised as a biomarker to classify AD [Andersen et al., 

2015]. Additionally, the temporal alignment of cortical surfaces has been proposed using 

surface inflation [Li et al., 2015a], but this is not suited to brains with severe injury. A 

potentially viable method, called the multi-contrast multi-scale surface registration 

(MMSR), leverages the topological properties of the level set framework to assist cortical 

alignment [Tardif et al., 2015].  

Many lesion segmentation methods have been published, particularly in the MS [Guizard 

et al., 2015; Mechrez et al., 2015; Roura et al., 2015] and stroke [Ozenne et al., 2015] 

setting. Although similar, these approaches require non-rigid registration of the patient 

MRIs, which is difficult for MRIs containing severe brain injury. The EM method with a 

modified mixture model, which is similar to an MRF, was used to identify both WM and GM 

lesions in the case of ischemic stroke [Ozenne et al., 2015]. To date, none of these 
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methods have been applied to CP. The automated image processing pipeline developed 

as part of this thesis aimed to address this issue. 

9.1.2 Tissue segmentation in the presence of severe injury 

As mentioned throughout this thesis, the severity of injury in the CP setting can mean that 

brain structure deviates significantly from healthy atlases. Consequently, tissue 

segmentation, which is necessary to perform for subsequent analyses of injury, remains a 

fundament challenge. Image pre-processing was implemented to alleviate as much of the 

image bias, noise and artefacts as possible. To tackle to problem of accommodating injury 

variability, the adaptive EM algorithm, which can estimate tissue classes using one or 

more MR modalities that is robust to scanning parameters, initialised with a data-driven 

peak-finding approach rather than atlas priors, was used. This method, interleaved with a 

weighted MRF formulation that enforces spatial homogeneity of labels corresponding to 

intensity homogeneity, was developed as part of this thesis, and is detailed in Chapter 4. 

Although the use of sophisticated multi-atlas techniques are the state-of-the-art 

approaches commonly used for current studies, these methods fail in the presence of 

extreme deformation. The proposed approach highlights the potential of adapting simple, 

existing approaches for this unique clinical problem. Such approaches benefit from their 

simplicity by providing greater computational efficiency and are robust to cases that 

significantly differ from healthy priors. It was shown that a reduced reliance on atlas priors 

yielded improved segmentation accuracy of the cortical GM, particularly for injured data 

sets [Pagnozzi et al., 2015]. 

9.1.3 Assessment of ventricular enlargement 

Modelling ventricular shape using SSMs has been frequently performed in the detection of 

ventricular enlargement corresponding to AD. However the accuracy of these methods 

critically rely on an accurate point-wise correspondence between ventricular shapes, which 

in the case of irregular and highly variable enlargement observed in children with CP, is a 

technical challenge. The approach developed in this thesis was to tailor the SSM method 

for use in the CP setting, by avoiding the construction of a model of injury and solely 

construct a healthy SSM. As this model contains all observed healthy variability in ventricle 

shape, injury is represented as the residual volume between a target shape and the 

closest healthy ventricle shape provided by the transformed SSM (Chapter 5). This 

representation of injury is unique to this approach, allows identification of subtle injury on 
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ventricles with a small volume, and avoids false positive detection of enlargement in 

healthy ventricles with a large volume, compared to a distance from the mean 

representation of injury used in other SSM studies [Apostolova et al., 2012; Chou et al., 

2007; Ferrarini et al., 2008a; Thompson et al., 2004]. This was demonstrated by the 

improved ROC performance of the residual volume over the magnitude of SSM 

deformation compared to the manual classification of injury [Pagnozzi et al., 2016c]. The 

second development was the utilisation of this volume to extract a surrogate marker of 

injury to surrounding subcortical GM structures, including the caudate nucleus, thalamus 

and lenticular nucleus, as well as the internal capsule. Although this is an indirect 

approach, the segmentation of these structures directly is challenging due to the reduced 

tissue contrast of these structures and the requirement of deformable atlas registration, 

whereas the ventricle segmentation is robust even in cases of injury due to the high 

contrast of the ventricular boundary. As shown in Chapter 5, these surrogate markers were 

strongly correlated with multiple clinical scores of patient function, highlighting the value to 

be gained from this biomarker. 

9.1.5 Assessment of cortical malformations 

Quantifying cortical shape has been performed frequently in studies observing cortical 

development, and shape changes due to WS, autism and injury associated with CP. 

These studies, however, utilise deformable registration both for segmenting the cortical 

GM, and for estimating cortical thickness or sulcal depth measures, which critically fail on 

patients with extensive tissue loss. In the approach developed in this thesis, tissue 

segmentations were obtained using an automated EM-weighted MRF segmentation 

initialised with robust data-driven techniques, and improved with a modified spatial kernel, 

which yielded improved cortical segmentations [Pagnozzi et al., 2015]. From this cortical 

GM segmentation, multiple shape measures were computed in order to detect the 

spectrum of possible malformations; cortical thickness to detect pachygyria, curvature to 

detect polymicrogryia and schizencephaly, and sulcal depth to detect lissencephaly 

(Chapter 6). Instead of using deformable surface registration, the voxel-based Laplacian 

approach was used to compute cortical thickness and sulcal depth, which provides 

computational efficiency over mesh-based methods and robustness to injury. Curvature 

was computed using the VTK toolkit. Another technical novelty that was implemented in 

this pipeline was the implementation of level sets to map these shape measures from 
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cortical regions to the standard AAL atlas, by allowing labels to be propagated down the 

4D level set function in a smooth topological manner that allows for intersection between 

the subject and atlas cortices. Converting shape measures to an absolute z-score relative 

to the healthy shape measures from the corresponding cortical regions allows for a 

quantification of cortical malformation. Moderate correlations between the constructed 

models and patient function, and a succinct set of biomarkers for each score that were 

consistent with the known structure-function relationship of the brain, were identified, and 

were observed to generalise to an unseen data set [Pagnozzi et al., 2016b]. 

9.1.6 Assessment of focal lesions 

Due to the prevalence of WM and GM injury observed in children with CP [Bax et al., 

2006], a lesion segmentation approach was developed as part of the framework of 

automated methods (Chapter 7). Although existing lesion segmentation software is 

available, the use of a variable lesion likelihood threshold and the lack of a GM lesion 

class limits its performance on CP data. In Chapter 7, a modified version of the fully 

automated EM-weighted MRF segmentation from Chapter 4 was proposed which 

incorporated T2-weighted MRI and registered TPMs to weight lesion and healthy tissue 

class likelihoods. This approach incorporates three separate lesion classes; WM lesion, 

GM lesion and internal capsule lesion, which is a unique approach tailored to identifying 

the full spectrum of lesions observed in children with CP. Furthermore, this approach is 

robust to injury severity, only requiring an affine alignment of atlas tissue priors. The 

improved performance of this approach compared to the available state-of-the-art LST 

toolbox in SPM, and maintains higher performance with increasing injury severity 

[Pagnozzi et al., 2016a]. This lesion volume was utilised to compute regional WM and GM 

involvement, which were found to be significantly correlated with multiple outcomes, and 

performed well upon test set validation. This analysis also identified the relative greater 

importance of GM lesions when predicting patient outcome, which is supported in the 

literature [Krägeloh-Mann et al., 2007; Martinez-Biarge et al., 2010]. 
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9.2 Implications 

The work presented in this thesis lays the foundation for the development of a clinical tool 

that can assist clinicians with the assessment of the MRIs of children with CP. The 

automated approaches developed as part of this thesis can provide an accurate 

segmentation of healthy brain structures and identified injury, allowing it to be a clinically 

useful tool. Additional information quantifying the extent of injury, and using statistical 

models to provide predictions of impairment, are also provided by these methods, which 

could greatly enhance the tailoring of treatment strategies for individual patients. Overall, 

this thesis paves the way for automated image analysis methods in CP and automates the 

current semi-quantitative radiological scoring methods proposed in the CP setting [Fiori et 

al., 2014; Inder et al., 2003; Kidokoro et al., 2013; Miller et al., 2005; Shiran et al., 2014; 

Sie et al., 2005; Skiöld et al., 2013].  

The ability of the proposed approaches to be robust to injury severity is important for the 

clinical utility of the proposed tool. Methods must be able to provide automated analyses 

for severely injured brains, but conversely be sensitive enough to detect subtly injury that 

clinicians may oversee. In this cohort, it was observed that only 2 children diagnosed with 

CP with mild to moderate functional impairments had no observed injury in the MRI, which 

equates to approximately 2% false negative rate overall. However, care must be taken in 

the detection of extremely slight injury in this context, as injury identified by clinicians 

should be considered as the ground truth. Nevertheless, as all of the developed 

approaches continuously and quantitatively assess injury, this allows even subtle injury to 

be measured using these methods, which were found to agree with the experts’ manual 

classification of injury in a majority of cases. Additionally, the simplicity of the proposed 

methods in this thesis makes them robust in the presence of severe injury. Although 

severely injured cases would be easily detected by trained experts, an automated 

quantification of injury is still beneficial, for both comprehending injury severity, and for 

providing an estimate of function. 

Although the automated approaches developed in this thesis have been tailored for 

children with CP, these methods can be applied to any cerebral pathology with similar 

appearing lesions, highlighting potential value for the elderly and neonatal populations. 

The proposed EM-weighted MRF method can be applied to the task of brain tissue 

segmentation for many different populations. The shape models of ventricular enlargement 
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could be applied to investigations into AD, where the distance-from-the-mean definition of 

injury may be more suitable. The cortical shape analysis could be extended to any shape 

affecting pathology, including autism, WS and schizophrenia, or could track these shape 

measures longitudinally through development. Finally, the lesion segmentation approach 

can be applied to the detection of WM lesions in MS with any T2-weighted modality 

applicable with the proposed approach. The application of these approaches to brain 

tumours is also possible, with the developed EM-MRF segmentation potentially 

discriminating between necrotic, hypoxic and active parts of the tumour, which 

demonstrates the wide applicability of the tools developed in this thesis. 

These investigations into CP related injury highlight (1) the reliance on atlas priors should 

be minimised and instead rely on adaptive approaches and data-driven modifications to 

enhance segmentations in regions of severe injury, which deviate significantly from healthy 

atlases, (2) utilise unsupervised approaches for lesion segmentation with dedicated WM 

and GM lesion classes, (3) the use of multiple shape measures to fully parameterise 

cortical topology, and (4) the construction of shape models of injury should be avoided, 

and instead measure residual volumes from the closest healthy shape from the model 

manifold. 

9.3 Limitations 

A limitation of the work contained in this thesis is the variable influence of plasticity, which 

is dependent on a number of genetic and environmental factors [Belsky and Pluess, 2009; 

Chapman et al., 2003]. The approaches presented in this thesis assume normal structure-

function relationships, and build models relating biomarkers of injury to patient outcome 

accordingly. However plasticity alters this relationship and consequently reduces the 

accuracy of the trained models. The detection of plasticity mechanisms is required to 

account for changes in the structure-function relationships when using the proposed 

techniques. Mechanisms of GM plasticity include neurogenesis and alterations in dendritic 

arbour [Feldman, 2009], often appearing as changes in cortical thickness and volume 

[Zatorre et al., 2012] which could be quantified using the cortical analysis proposed in 

Chapter 6. Changes in WM, however, include altered WM connections and tract structure, 

require additional modalities such as diffusion MRI quantify the microstructural properties 

of the WM tracts. Combining structural and diffusion MRI, both the underlying WM and GM 

neuroplastic mechanisms could be identified, facilitating investigations into plasticity. For 
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instance, functional MRI driven diffusion tractography [Reid et al., 2016] can help to 

identify patient-specific cortical networks associated with particular functions, potentially 

allowing these approaches to avoid assumptions of normal structure-function relationships. 

Furthermore both structural and diffusion MRI were used in conjunction with the semi-

quantitative brain lesion severity scale to explore the relationship between brain injury and 

motor and sensory function with insights into the mechanisms of plasticity [Fiori et al., 

2015]. A related limitation is that the data used in these studies is cross-sectional, 

preventing any findings to be associated with plasticity. To address this limitation in future 

studies, longitudinal data sets are required so that changes in brain structure within 

individual patients can be causally linked to neuroplasticity mechanisms.  

Another limitation is the lack of quantitative validation of the developed methods in the CP 

setting. Quantitative comparisons to alternate state of the art approaches have been 

performed, which in certain cases have been tailored to enhance prior relaxation and the 

initialisation method. However, these state of the art approaches have not been developed 

specifically for the CP setting, and the severe injury that may be observed. Ideally 

validation of the proposed approaches developed in this thesis should be performed 

against manual segmentations of injury, for instance 3D segmentations of lesions or 

quantitative characterisations of cortical shape. However the time intensive nature of 

segmenting voxels of injury for the 100+ data sets involved in this study is infeasible, and 

has thus not been available for validation studies. Instead, validation against only the 

qualitative classifications of injury, provided by a manual expert experienced at assessing 

the MRIs of children with CP, was performed throughout this thesis. Furthermore, these 

manual classifications of injury came from one expert child neurologist, and as such does 

not provide any information on inter- and intra-rater reliability metrics, which have shown to 

be as high as 7% and 23% in Multiple sclerosis lesion segmentation [Zijdenbos et al., 

2002]. In future, provided manually segmented data sets from multiple experts are 

available, further validation studies should be performed on this new data. 

A final limitation of the work in this thesis was the use of non-standard measures of patient 

outcome. Although all the clinical measures used in this thesis have been shown to be 

valid and reliable [Bourdon et al., 2005; Frostig et al., 1961; Gioia et al., 2002; Krumlinde-

Sundholm et al., 2007; Wechsler, 1967], future work should look to validate the observed 

structure-function relationships on more thorough or widely used clinical scores, such as 
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the GMFCS for gross motor function, the MACS for hand function, the CFCS for 

communicative ability or the IQ for intelligence and cognition. 

9.4 Future work 

The future work for the automated framework presented in this thesis will be to develop the 

investigated approaches into a tool useful in the clinical setting. This will involve translating 

these methods from MATLAB to C++ or C#, and including software developed in-house 

code at The Australian e-Health Research Centre group as well as the freely available ITK 

and VTK packages, to generate a standalone application that clinicians can run on their 

computer. Unlike MATLAB, the C-based languages are applicable with the established ITK 

and VTK imaging libraries, allows for a fast implementation of the procedures, and can be 

run on any computer. 

Broader recommendations for future work in the automated image analysis of brain MRIs 

are to use methods that can accommodate patients with potentially severe injuries, either 

by employing relatively simple yet robust approaches as in this thesis, or alternatively 

developing methods which selectively relax atlas priors in regions that differ significantly 

from healthy anatomy. The clinical recommendations based on this research are to push 

towards performing neuroimaging on children early in life, and using the quantifications of 

injury severity provided by automated techniques such as those presented in the thesis to 

provide predictions of multiple patient outcomes. It is also recommended to use such 

approaches for longitudinal studies, allowing injury observed early in life at the time of 

scanning to be causally linked to long term functional outcomes, allowing differing 

trajectories of improvement based on different rehabilitation and therapies to be examined. 

As adults with CP have been observed to consume a large amount of healthcare 

resources [Pons et al., 2016], characterising these trajectories and optimising treatment 

strategies will lead to improved outcomes and reduced reliance on healthcare services for 

patients with CP. 

The automated measures of injury presented throughout this thesis are biomarkers based 

on the defined aetiologies of injury observed in children with CP. However, as yet, they are 

not clinically established biomarkers. In order to have these measures accepted in clinical 

practice, future efforts will involve collaboration with paediatricians, providing them with the 

developed methods and the information that these methods provide. Long term usage and 
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refinement of these methods can lead to a consensus on the biomarkers that have most 

diagnostic value, best classify the extent of injury or best predict prognoses of patient 

function. Additionally, the use of these characterisations of injury as part of clinical trials 

investigating rehabilitation could help reveal biomarkers predictive of response to an 

intervention, which is critical in the development of effective therapies. 

A critical intention of the developed framework is its application to the clinical assessment 

of neonates. As the American Academy of Neurology has recommended all children with 

CP have an MRI at 2 years of age, this tool has the potential to provide additional clinical 

value at this crucial developmental period. As mentioned previously, there is currently no 

medical tool in place to assist the clinical assessment of the MRIs of children with 

developmental disorders, leaving room for FDA-approved devices to solve this unique 

clinical problem. The integration of such a medical imaging solution still requires 

substantial development, including collaborations with medical professionals in order to 

implement and develop the necessary training resources, however the development of a 

cloud-based tool allowing users to upload an image and receive a volumetric report of 

brain structure is being planned. An example clinical report, providing details of lesion 

burden and cortical morphology relative to healthy development for a selected patient, is 

provided in Supplementary Figure A.3 as a demonstration of the information this tool can 

provide. The automated delineation of injury can help clinicians better establish the timing 

and aetiology of injury, while the predictive models of patient function have substantial 

implications for the development of treatment strategies. This has significant value for 

tailoring patient specific treatment strategies to be implemented at an earlier age, which if 

effective, can lead to greater long-term gains in functionality for children with CP. 
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Appendices 

A.  Supplementary Material 

 

Supplementary Figure A.1 An illustration of the regression coefficients obtained using the 

methodology in Chapter 6, on the cortical regions retained after data-driven variable 

selection, for only those children with left side hemiplegia. Coloured regions can be 

interpreted as either an increase (if red to yellow) or decrease (if blue) in cortical z-score 

(relative to healthy) is associated with an improvement in the clinical score. Model results 

are displayed for each of the three cortical measures and four clinical scores. Patient age 

and gender were excluded. 

Figure A.1 Cortical shape regression coefficients for left side hemiplegia   
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Supplementary Figure A.2 An illustration of the regression coefficients obtained using the 

methodology in Chapter 6, on the cortical regions retained after data-driven variable 

selection, for only those children with right side hemiplegia. Coloured regions can be 

interpreted as either an increase (if red to yellow) or decrease (if blue) in cortical z-score 

(relative to healthy) is associated with an improvement in the clinical score. Model results 

are displayed for each of the three cortical measures and four clinical scores. Patient age 

and gender were excluded. 

Figure A.2 Cortical shape regression coefficients for right side hemiplegia 
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Supplementary Figure A.3 An example MR Quantification Report. Using the techniques 
developed throughout this thesis, this report provides patient name and age, six axial 
slices of the structural MRI, cortical z-scores of each cortical measure (relative to healthy 
cortical measures), and the cortical measures in the motor regions of the left and right 
hemisphere, plotted against the normative percentiles as a function of age. Additionally, 
WM and GM lesion burden, and lateral ventricle volume, is provided for both hemispheres. 

Figure A.3 Example MR quantification report 


