30,253 research outputs found

    Image segmentation with adaptive region growing based on a polynomial surface model

    Get PDF
    A new method for segmenting intensity images into smooth surface segments is presented. The main idea is to divide the image into flat, planar, convex, concave, and saddle patches that coincide as well as possible with meaningful object features in the image. Therefore, we propose an adaptive region growing algorithm based on low-degree polynomial fitting. The algorithm uses a new adaptive thresholding technique with the L∞ fitting cost as a segmentation criterion. The polynomial degree and the fitting error are automatically adapted during the region growing process. The main contribution is that the algorithm detects outliers and edges, distinguishes between strong and smooth intensity transitions and finds surface segments that are bent in a certain way. As a result, the surface segments corresponding to meaningful object features and the contours separating the surface segments coincide with real-image object edges. Moreover, the curvature-based surface shape information facilitates many tasks in image analysis, such as object recognition performed on the polynomial representation. The polynomial representation provides good image approximation while preserving all the necessary details of the objects in the reconstructed images. The method outperforms existing techniques when segmenting images of objects with diffuse reflecting surfaces

    Tracking Table Tennis Balls in Real Match Scenes for Umpiring Applications

    Get PDF
    Judging the legitimacy of table tennis services presents many challenges where technology can be judiciously applied to enhance decision-making. This paper presents a purpose-built system to automatically detect and track the ball during table-tennis services to enable precise judgment over their legitimacy in real-time. The system comprises a suite of algorithms which adaptively exploit spatial and temporal information from real match video sequences, which are generally characterised by high object motion, allied with object blurring and occlusion. Experimental results on a diverse set of table-tennis test sequences corroborate the system performance in facilitating consistently accurate and efficient decision-making over the validity of a service

    Fuzzy-based Propagation of Prior Knowledge to Improve Large-Scale Image Analysis Pipelines

    Get PDF
    Many automatically analyzable scientific questions are well-posed and offer a variety of information about the expected outcome a priori. Although often being neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and the direct information about the ambiguity inherent in the extracted data. We present a new concept for the estimation and propagation of uncertainty involved in image analysis operators. This allows using simple processing operators that are suitable for analyzing large-scale 3D+t microscopy images without compromising the result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it enhance the result quality of various processing operators. All presented concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. Furthermore, the functionality of the proposed approach is validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. Especially, the automated analysis of terabyte-scale microscopy data will benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. The generality of the concept, however, makes it also applicable to practically any other field with processing strategies that are arranged as linear pipelines.Comment: 39 pages, 12 figure

    An extension of min/max flow framework

    Get PDF
    In this paper, the min/max flow scheme for image restoration is revised. The novelty consists of the fol- 24 lowing three parts. The first is to analyze the reason of the speckle generation and then to modify the 25 original scheme. The second is to point out that the continued application of this scheme cannot result 26 in an adaptive stopping of the curvature flow. This is followed by modifications of the original scheme 27 through the introduction of the Gradient Vector Flow (GVF) field and the zero-crossing detector, so as 28 to control the smoothing effect. Our experimental results with image restoration show that the proposed 29 schemes can reach a steady state solution while preserving the essential structures of objects. The third is 30 to extend the min/max flow scheme to deal with the boundary leaking problem, which is indeed an 31 intrinsic shortcoming of the familiar geodesic active contour model. The min/max flow framework pro- 32 vides us with an effective way to approximate the optimal solution. From an implementation point of 33 view, this extended scheme makes the speed function simpler and more flexible. The experimental 34 results of segmentation and region tracking show that the boundary leaking problem can be effectively 35 suppressed

    An improved image segmentation algorithm for salient object detection

    Get PDF
    Semantic object detection is one of the most important and challenging problems in image analysis. Segmentation is an optimal approach to detect salient objects, but often fails to generate meaningful regions due to over-segmentation. This paper presents an improved semantic segmentation approach which is based on JSEG algorithm and utilizes multiple region merging criteria. The experimental results demonstrate that the proposed algorithm is encouraging and effective in salient object detection
    corecore