
1

2

3

4
5
6

7

9

10
11
12
13
14

15
16 Q1
17
18
19
20
21

2 2

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Image and Vision Computing xxx (2008) xxx–xxx

IMAVIS 2724 No. of Pages 12, Model 5G

10 June 2008 Disk Used
ARTICLE IN PRESS

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online
Contents lists available at ScienceDirect

Image and Vision Computing

journal homepage: www.elsevier .com/locate / imavis
O
O

FAn extension of min/max flow framework

Hongchuan Yu a,*, Mohammed Bennamoun b, Chua Chin-Seng c

a The Media School, Bournemouth University, Poole, UK
b School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia
c School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

a r t i c l e i n f o a b s t r a c t
23
24
25
26
27
28
29
30
31
32
33
34
Article history:
Received 30 January 2004
Received in revised form 15 September 2006
Accepted 7 May 2008
Available online xxxx

Keywords:
Min/max flow framework
Anisotropic diffusion
Boundary leaking
Image segmentation
Region tracking
35
36

0262-8856/$ - see front matter Crown Copyright � 2
doi:10.1016/j.imavis.2008.05.006

* Corresponding author. Tel.: +61 8 64883222.
E-mail addresses: cnyuhc@yahoo.com (H. Yu), m.b

(M. Bennamoun), ECSChua@ntu.edu.sg (C. Chin-Seng)

Please cite this article in press as: H. Yu
j.imavis.2008.05.006
T
E
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P
RIn this paper, the min/max flow scheme for image restoration is revised. The novelty consists of the fol-

lowing three parts. The first is to analyze the reason of the speckle generation and then to modify the
original scheme. The second is to point out that the continued application of this scheme cannot result
in an adaptive stopping of the curvature flow. This is followed by modifications of the original scheme
through the introduction of the Gradient Vector Flow (GVF) field and the zero-crossing detector, so as
to control the smoothing effect. Our experimental results with image restoration show that the proposed
schemes can reach a steady state solution while preserving the essential structures of objects. The third is
to extend the min/max flow scheme to deal with the boundary leaking problem, which is indeed an
intrinsic shortcoming of the familiar geodesic active contour model. The min/max flow framework pro-
vides us with an effective way to approximate the optimal solution. From an implementation point of
view, this extended scheme makes the speed function simpler and more flexible. The experimental
results of segmentation and region tracking show that the boundary leaking problem can be effectively
suppressed.

Crown Copyright � 2008 Published by Elsevier B.V. All rights reserved.
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E1. Introduction

Linear and non-linear Partial Differential Equations (PDEs) mod-
els have been applied to image restoration and analysis for about
two decades now. Of interest to PDEs models are studies related
to image selective smoothing, whereby the smoothing is adap-
tively controlled not only by the amount of smoothing but also
by the direction along the image features. The classic models in-
clude the Perona–Malik equation [1] and the mean curvature flow
[7], which smooth out noise or trivial textures in an image while
preserving the essential structures or boundaries of the object.
There exists an extensive literature [1–10] which addresses both
their theoretical and application aspects, wherein the mean curva-
ture flow is one of the most popular anisotropic diffusion models.
Alvarez et al. in [3] proved that the mean curvature was invariant
under changes of illumination, positions, orientations and scales of
objects. Lu et al. in [15] further studied the evolutional behavior of
the mean curvature flow and the two principal curvature flows. In-
deed, the attractive quality of the mean curvature flow model is
that sharp boundaries are preserved, i.e. smoothing takes place in-
side a region, but not across region boundaries. But then, due to
Grayson’s theorem [4], it is known that each contour shrinks to
zero and disappears through the continued application of the cur-
84

85

86

87

008 Published by Elsevier B.V. All
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vature flow scheme. Consequently, a stopping criterion is required.
In order to control the model’s evolution, Malladi and Sethian in
[5,6] devised a min/max flow scheme for image enhancement
and denoising under a level set numerical framework. Their basic
idea is to correctly select the evolving curvature flow using the
min/max switch function to remove noise or to enhance the image.
Unfortunately, the implementation of this scheme is accompanied
with a numerical drawback which results in the apparition of some
speckle in the grey-level (or color) image and the contamination of
the entire image gradually. An example is shown in Fig. 2(b–d). In
addition, the continued application of this scheme cannot also re-
sult in the adaptive stopping of the curvature flow, i.e. the evolving
flow cannot stop even when noise is removed. The larger and glo-
bal properties of the shapes in an image are also smoothed out
with this scheme. However, this approach remains valuable and
this paper will present ways on how to overcome its drawbacks.
Furthermore, based on the min/max scheme, the zero-crossing
detector of the second order derivative and the Gradient Vector
Flow (GVF) field [11] are introduced in our modified schemes, so
that the min/max flow can adaptively stop once the noise is
removed.

The min/max flow scheme is a flexible computational frame-
work, and many methods and strategies can indeed be integrated
into this framework. At present, the geodesic active contour model
is widely applied to image segmentation and region tracking appli-
cations. However boundary leaking is still a challenging problem,
which is indeed related to the stopping criterion. Some constraint
rights reserved.
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Fig. 1. The neighborhood and threshold of the min/max flow scheme.
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terms have been introduced into the geometric active contour
model. This includes the weighted area gradient flow [12], the gra-
dient vector flow [11,13], and the edge-flow [14]. However, it is
possible, as demonstrated below, to suppress the boundary leaking
if the evolving flow could be controlled. Indeed the min/max
switch function in the min/max flow scheme provides us with an
effective manner to correctly select an evolution equation. In this
paper, we will further extend the min/max scheme and apply it
to deal with the boundary leaking problem. A straightforward
advantage of this extension scheme is that the expressions of the
speed function for image segmentation and region tracking are
similar, while their different decision rules (boundary conditions)
can be defined, respectively. This makes the design of the speed
function simpler and more flexible for various different
applications.

Different from the geodesic active model, Chan and Vese in
[16,17] recently presented other kinds of active contour models
through the introduction of the partition thresholding under a
minimal variance criterion. These models do not usually need a
stopping term which is based on the image gradient in their evolu-
tion equation. However, in this paper, we still pay attention to the
familiar geodesic active contour model. This is because it is a pro-
totypical model in many applications. Indeed, the partition thres-
holding approach can also be seen as a constraint term and can
be introduced into the geodesic active model as described in [18].

This paper is organized as follows: the min/max flow scheme is
first briefly introduced in Section 2. Then, the image anisotropic
diffusion is analyzed under this scheme in detail in Section 3.
The numerical drawback from the original scheme is demon-
strated, and our presented schemes are also provided in this sec-
tion. Section 4 extends the min/max flow framework to deal with
the boundary leaking in image segmentation and region tracking
applications. Finally, our conclusions appear in Section 5.

2. Min/max flow scheme

The min/max flow scheme was first introduced in [6] for the
grey-scale, texture and color image enhancement and noise re-
moval. An image is interpreted as a collection of iso-intensity con-
tours which can be evolved. The level set equation of an image
intensity I can be written as,

It ¼ FjrIj; ð1Þ

where the speed function is defined as

FðAÞ ¼
maxðj;0Þ; averageðIðXÞ;X 2 XðAÞÞ < Threshold
minðj;0Þ; otherwise

�
;

A,X 2 R2, X(A) is a neighborhood around some point A, j is the cur-
vature of the iso-intensity contour, and t is the evolving time. The
above definition of the speed function is called the min/max flow
framework. Consider a non-convex region R bounded by a closed
iso-intensity contour, and denote by ‘‘inside” the region on the dar-
ker side (lower brightness values). For binary images, the threshold
can be simply taken as the average of the two intensity values;
while, for grey-scale or texture images, it can be estimated as the
average value of the intensity obtained along the direction perpen-
dicular to the gradient direction in the neighborhood X. The max
flow shrinks the outward convexities of R until it becomes a small
convex region, which then collapses to a point. The min flow, on
the other hand, inflates the inward convexities of R until it becomes
the convex hull of the starting region, thereafter diffusions stops.
The particular behavior of the max flow and min flow are, respec-
tively, summarized in the following properties (see [5,6] for details).

Property 1. The flow under F = min(j,0) allows the inward con-
cave fingers to grow outward, while suppressing the motion of the
Please cite this article in press as: H. Yu et al., An extension of min
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outward convex regions. Furthermore the motion halts as soon as a
convex hull is obtained.

Property 2. The flow under F = max(j,0) allows the outward con-
vex regions to grow inward while suppressing the motion of the
inward concave regions. Once the shape becomes fully convex,
the flow becomes the same as a regular curvature flow, in which
case the shape collapses to a point.

In fact, the key idea of the min/max flow scheme is to correctly
select the evolving flow that both smoothes out small oscillations
and maintains the essential details of the shape.

3. Image restoration under min/max flow framework

3.1. Analysis and solution of the speckle problem

The speckle problem appears in the implementation of the min/
max flow scheme described in Eq. (1), and as a result of the pres-
ence of texture or noise in images. Through the following analysis,
it can be shown that it is indeed an artifact caused by numerical
instability.

First, let us imagine the binary case where there are only two
grey levels in an image: one corresponds to the object intensity,
and the other corresponds to the background intensity. The thresh-
old in Eq. (1) is defined as the average of these two intensity values.
Let us assume that the background color is lighter than the object
color. Let some intensity contour pass through point A, and the cir-
cle region is the neighborhood around point A as illustrated in
Fig. 1. If the threshold is less than the intensity average in the
neighborhood around point A, the max flow is selected (see
Fig. 1(a)). In this case, the shape of the object is convex in the
neighborhood, and the curvature of point A is positive. The speed
is then greater than zero. The intensity contour moves therefore in-
ward the object region until the average becomes less, and the
‘‘min” switch takes over. If the threshold is greater than the aver-
age, the min flow is selected (see Fig. 1(b)). In this case, the shape
of the object is concave in the neighborhood, and the curvature of
point A is negative. The speed is less than zero and the intensity
contour moves outward the object region. On that basis, one can
conclude that the binary case does not present any problem.

When the observed image is a grey-scale or textured image, the
analysis is more complicated than the binary case. The threshold in
Eq. (1) is defined as the average value of the intensity obtained
along the tangential line, i.e. the tangent to the intensity contour
at point A as illustrated in Fig. 1. When the threshold is greater
than the average of the neighborhood of point A, the max flow is
selected. In this case, the shape of the object is convex in the neigh-
borhood, and the curvature of point A is positive. Obviously, the
intensity of point A should be updated by a larger intensity value.
Because of the spurious edges, noise or numerical errors, it is pos-
sible that the intensity value of point A becomes greater than the
threshold. Thus, the updated intensity value of point A becomes
/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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greater than the intensity of all the neighboring points. After sev-
eral iterations, the distinct highlight speckles will appear at point
A. A similar analysis can be achieved in the case of dark speckles.

In Fig. 2(b–d), we illustrate the evolution results at different
iterations. With a continued application of the scheme of Eq. (1),
the speckles will contaminate the whole image gradually. In order
to overcome this problem, the decision rule in Eq. (1) is revised.
According to the two properties in Section 2, one can notice that
the flow under F = max(j,0) diffuses away all of the information
while the flow under F = min(j,0) preserves some of the structure.
It is clear that when the average of the neighborhood is less than
the threshold, the max flow should be selected so as to smooth
out small oscillations, but not to enhance them. Thus, any enhance-
ment operation (i.e. selecting the min flow) should be suppressed
in this case. According to the above analysis, it is clear that the
decision rule oversimplifies the choice between the max and min
flows. On that basis, we re-define the min/max flow as,

FðAÞ ¼

maxðj;0Þ; if
averageðIðXÞ;X 2 XðAÞÞ < Threshold
IðAÞ < Threshold

�

minðj;0Þ; if
averageðIðXÞ;X 2 XðAÞÞ > Threshold
IðAÞ > Threshold

�
0 otherwise

8>>>>><
>>>>>:

;

ð2Þ

where X(A) is the neighborhood of point A. When the threshold is
greater than the average, but the intensity of point A is greater than
the threshold, the speed function is set to zero. In this case, no
speckle appears at point A. An experimental illustration is shown
in Fig. 2(e).In addition, we can also notice that some of the textures
in the original image shown in Fig. 2(a) disappear as shown in
Fig. 2(e) when the scheme of Eq. (2) is used.

3.2. Curvature equation under min/max flow framework

The curvature flow is one of the anisotropic diffusion models,
which displays some particular geometric and numerical advanta-
ges. The most attractive quality is that smoothing takes place only
inside a region, but not across region boundaries. According to
Grayson’s theorem [4], we know that all information is eventually
removed through a continued application of the curvature flow
scheme. In order to preserve some essential features after the con-
tinued application of the curvature flow scheme, the min/max
scheme was introduced in the speed function in [5,6]. We will con-
clude that this expectation cannot be achieved under the scheme
of Eq. (2) through the following analysis.

Roughly speaking, the curvature flow can lead Eq. (2) towards a
harmonic solution. We are therefore assuming that the final solu-
tion (intensity function I(X)) is a harmonic function. According to
the mean value theorem for harmonic functions, we know that
the isolated noise points and notch shaped structure in the neigh-
U
N

Fig. 2. The speckle appear in (b–d) when using Eq. (1),
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verified that the inflectional shape or boundary in a neighborhood
will gradually become straight or die out according to the defini-
tion of the speed function given in Eq. (2). To illustrate this point,
we show the initial notched shapes in a neighborhood around
some point in Fig. 3(a and b). The result using the scheme of Eq.
(2) is shown in Fig. 3(c). It can be seen that the notched region
can be smoothed out.

On that basis, we propose the following proposition,

Proposition 1. The speed function in Eq. (2) results in the edges or
boundaries of the shape to be straightened up.

Now, let us consider the continued application of the scheme of
Eq. (2). It is expected that all oscillations below some radius level
be removed, while all features above that level are preserved,
and the algorithm can stop automatically once the sub-scale noise
is removed. In other words, after enough iteration steps, the inflec-
tion edge turns to a straight line in the neighborhood around every
point that is on the shape boundary according to Proposition 1,
while all the features above that radius are preserved. Unfortu-
nately, this assumption cannot be achieved in practice. For conve-
nience, this can further be explained as follows: Assume that L is a
bending boundary above some radius r, and the circles denote the
neighborhood around points x1 and xn 2 L (see Fig. 4). Let point x1

be far away from point xn. We assume that in the neighborhoods
jDxj 6 r around he two points x1 and xn, the two segments of L
are both straight lines, A1B1;AnBn � L, whose extension lines inter-
sect at point C.

Further assume that L is piecewise continuous. For the adjacent
point x2 of x1, the segment A2B2 of L intercepted by the neighbor-
hood jDxj 6 r around x2 must be a straight line, and the slope of x2

is the same as the slope of x1. Similarly, the same argument yields
but they are suppressed in (e) when using Eq. (2).

/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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that the adjacent point to xn, i.e. xn�1, has the same slope as xn.
Obviously, extending the adjacent points to point C, respectively,
from xn and x1, one can see that the slope of C is, respectively, equal
to the slopes of xn and x1. This means that the two line segments
A1B1 and AnBn have the same slope. Thus, the straight lines A1C
and BnC overlap, and A1C;BnC � L. It is clear that the edge L has
to be a straight line. This conclusion conflicts with the initial
assumption, and we conclude that L must be a straight line. If
the length of L is limited, the continual application of the scheme
of Eq. (2) will first smooth out the corners at the endpoints of L,
and then erode the center part of L gradually. Finally, this will re-
sult in the diffusion of all the structures. From the above analysis,
we can state the following proposition.

Proposition 2. The final steady state solution of the scheme of Eq. (2)
falls into one of the following two cases:

(1) If the inflection edge becomes a straight line in the neighbor-
hood with an arbitrary radius level around every point that is
on the shape boundary, the edge of the shape must be a straight
line over the whole image plane;

(2) Otherwise, all the features are smoothed out.

The regular curvature equation usually satisfies the maximum/
minimum principle, i.e. the solution does not have a local maxi-
mum or minimum at time t > 0, and the global extrema are
bounded by the initial and the boundary conditions. The boundary
conditions usually refer to Neumann boundary conditions (oI/
on = 0 where n is the direction of the gradient). It is clear that
the global extrema occurs at the initial time, i.e. I0(x), and the stea-
dy state solution is a constant function. Grayson’s theorem [4] im-
plies that the shapes or boundaries driven by the curvature flow
collapse to a point, and all image information die out. This is the
steady state solution of the regular curvature equation. Indeed,
the decision rule in Eq. (2) results in the same steady state solution
as the one of the regular curvature flow according to Proposition 2.

Another interesting phenomenon is that many continued itera-
tions of the scheme of Eq. (2) with some small radius is roughly
similar to one application of the scheme of Eq. (2) with some large
radius. Assume that the length of some edge l is greater than the
radius, jlj > r, no diffusion takes place at the center of l in this case,
while the smoothing takes place at the two endpoints of l under
the scheme of Eq. (2). It can be noticed that the length of l is short-
ening through the continued application of the scheme of Eq. (2).
When jlj < r, the diffusion takes place at the center of l, and the edge
l is smoothed out. If the radius is selected so large that the initial
edge l satisfies jlj < r at the beginning, it is obvious that the diffu-
sion takes place at every point on l. In this case, the edge l is
smoothed out quickly. On that basis, we can formulate the follow-
ing proposition.

Proposition 3. Many iterations of the scheme of Eq. (2) with a small
radius is roughly equivalent to an evolution with a large radius.
U
N

Fig. 5. The comparison of the results of evolution of Eq. (2) with different radii. Due to the
to an evolution with a large radius.
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In Fig. 5(b and c), we illustrate the results of the evolution of Eq.
(2) with a radius = 1. Fig. 5(d and e) show the result of the evolution
of Eq. (2) with a radius = 5. We can notice that Fig. 5(d) is similar to
Fig. 5(b) despite the difference in the number of iteration and radii.
When the iteration numbers are equal, the evolution result with
radius = 5 is more blurry than the result with radius = 1 as shown
in Fig. 5(b and e). In addition, from Fig. 5(a–c), it can be seen that
the continued iteration of this min/max flow results in the erosion
of the structure of the object.

3.3. Our modified schemes

It is ideal that the algorithm can stop automatically once some
scale noise is removed, and the continued iteration of the min/max
flow scheme will not produce further smoothing. Hence, a stricter
stopping criterion is required. Although the scheme of Eq. (2) does
smooth out all the structures, the min/max switch function is a
flexible computational framework, in which many methods and
strategies can be combined easily to devise an effective stopping
criterion. Indeed, under the min/max flow scheme, we have two
choices, one is to modify the velocity term and another is to re-de-
fine the decision rules.

3.3.1. Modified scheme 1
First, we present a new scheme by re-defining the decision

rules. Consider the heat operator (DI) to be applied to the image
intensity function. It is known that isotropic smoothing takes
place in all directions. In this case, the boundaries of shapes
are smeared. Conversely, the inverse heat equation could deblur
or enhance an image. The famous example is the shock filter, in
which the sign of the Laplacian, sign(DI), is used to determine
the evolving direction of the flow. Indeed the change of sign(DI)
indicates that the front of the current flow should be on some
boundaries. The reverse heat equation would enhance these
boundaries. In the curvature evolution equation, the diffusion
should take place in a direction orthogonal to the gradient,
whereas only the boundaries in the gradient direction need to
be enhanced. This is easily fulfilled by replacing the Laplacian
operator with the second derivative of the image intensity in
the direction of the intensity gradient, Igg, where g is the direc-
tion of the gradient. On this basis, the scheme of Eq. (2) can be
re-written as,

F ¼

maxðj;0Þ; if
averageðIðXÞ;X 2 XðAÞÞ < Threshold&

IðAÞ < Threshold&

edgef > 0

8><
>:

minðj;0Þ; if
averageðIðXÞ;X 2 XðAÞÞ > Threshold&

IðAÞ > Threshold&

edgef > 0

8><
>:

0 otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

;

ð3Þ
different radius, many iterations of Eq. (2) with a small radius is roughly equivalent

/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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where edgef ¼maxfsignððG�rIggÞjXÞ;X2 X3�3ðAÞg �minfsignððG�rIggÞjXÞ;
X 2 X3�3ðAÞg. The term edgef in Eq. (3) is namely a zero-crossing detector
of the second derivative of the image. When edgef > 0, the edges are out-
side the detection windowX3�3, and in this case the diffusion takes place.
On the other hand when edgef6 0, the window X3�3 should straddle the
edges, and no diffusion takes place. In practice, this kind of zero-crossing
method is usually implemented with the Canny edge detector [19]. In this
scheme, we firstly apply the Canny detector on a sub-image of size n by n
centered around some point A. Then, the window X3�3(A) around the
point A is defined on the output binary image from the Canny detector.
Thus, one can appreciate that the edgef term in Eq. (3) can be easily
implemented.

It can be easily verified that when the front of the current flow
is on some boundaries of shapes, the change of the sign of the sec-
ond derivative halts the motion of the min/max flow. The result is
that any further diffusion across the edges is suppressed. In this
way, the boundaries of shapes are preserved, and smoothing only
takes place inside the region of the object, but not across the
boundaries. Hence, the scheme of Eq. (3) can reach a steady state
solution. In Fig. 6, we illustrate the evolution results when using
the scheme of Eqs. (2) and (3) with radius = 1 on a mammographic
image. Fig. 6(d) demonstrates that the schemes of Eqs. (2) and (3)
reach a steady state solution. The evolution error curve is calcu-
lated using, ErrorðtÞ ¼ 1

M�N

PM;N
i¼1;j¼1jI

ðtÞ
i;j � Ið0Þi;j j, where M and N are

the width and height of the image, respectively. It can be noticed
that the scheme of Eq. (3) stops automatically when all textures
below the radius are removed, and the continued application of
Eq. (3) will not produce further changes. This is in contrast to the
results of the scheme of Eq. (2), which does not terminate automat-
ically. Continued evolution of the scheme of Eq. (2) results in the
disappearance of the texture and the erosion of the structure.

3.3.2. Modified scheme 2
In this section, we present another scheme by introducing the

Gradient Vector Flow (GVF) field into the velocity term. The GVF
field was first presented for the active contour model in [11]. It is
usually computed as a diffusion of the intensity gradient vectors
that enable noise to be suppressed. Since the GVF is estimated di-
U
N

C
O

R
R

E

a. original image  b. Using Eq.(3) with ite
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rectly from the continuous gradient space, and its measurement is
contextual and not equivalent to the distance from the closest
point. Besides, the GVF provides a bi-directional force field that
captures the object boundaries from either side. This provides a
reasonable evolving direction for the curvature flow, and also leads
the modified scheme to a steady state solution.

First, a Gaussian edge detector is used in the edge mapping
function f(x) defined by,

f ðxÞ ¼ 1� 1ffiffiffiffiffiffi
2p
p

rE

exp � jrðG
�
rIÞðxÞj2

2r2
E

( )
;

where x 2 R2, Gr is the Gaussian filter with zero-mean and r vari-
ance, and rE determines the width of f(x). In general, r is indepen-
dent from rE. For convenience, the Gaussian operator Gr in f(x) is
usually omitted. The GVF field ~vðxÞ is defined as the equilibrium
solution to the following vector diffusion equation,

~vðxÞt ¼ lr2~vðxÞ � f ðxÞð~vðxÞ � rf ðxÞÞjrf ðxÞj2

~vðx;0Þ ¼ rf ðxÞ

(

where l is a blending parameter. Fig. 7 illustrates f(x) and ~vðxÞ in
the 1D case. It can be noted that there are peaks in f(x) correspond-
ing to the edges of the original signal I(x), and the directions of~vðxÞ
are changed nearby the edges of I(x), i.e. ~vðxÞ points to the edges.

The GVF field contains mainly contextual information and the
flow vectors of this field always point to the closest object bound-
aries. The~vðxÞ is dot-multiplied by the unit gradient vector, N =rI/
jrIj, as follows,

~v �N ¼ krjrIj � N ¼ k D2I
rI
jrIj ;N

� �
¼ kIgg;

where h�,�i denotes the inner product of two vectors, D2I denotes the

Hessian of the image intensity I, and kðjrIjÞ ¼ jrIjffiffiffiffi
2p
p r3

E exp � jrIj2

2r2
E

n o
>

0. It can be noted that the above equation is equal to the second
derivative of I in the direction of the intensity gradient, Igg, up to
a positive scale k. Around the boundaries, the sign of ð~v �NÞ changes
along a normal direction to the boundaries even if the direction of
ration=400 c. Using Eq.(2) with iteration=200 

300 400
Iteration

q. 3

gram 

rgence of Eqs. (2) and (3).

/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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the gradient N does not change. This means that the GVF indicates a
reasonable evolution direction of the curvature flow, but not the
direction of the intensity gradient. Thus, the optimal way to reach
the boundaries is to move along the direction of GVF. Given the fact
that the propagation of the curvature flow always takes place in the
inward normal direction, it can be noted that when the direction of
~vðxÞ and the inward normal direction, �N, are identical, the diffu-
sion takes place in the inward normal direction. On the other hand,
when they have opposite directions, the diffusion should take place
in the outward normal direction N. Because of the noise or spurious
edges, the inward normal direction cannot always align with ~vðxÞ.
Hence, the worse case occurs when ~vðxÞ is tangent to the normal
N. However, the speed function j in the case of the curvature flow
can be modified as follows,

ĵ ¼ signð�~v � NÞjjj:

Under the min/max flow framework, the speed function becomes,

F ¼

maxðĵ;0Þ; if
averageðIðXÞ;X 2 XðAÞÞ < Threshold
IðAÞ < Threshold

�

minðĵ;0Þ; if
averageðIðXÞ;X 2 XðAÞÞ > Threshold
IðAÞ > Threshold

�
0 otherwise

8>>>>><
>>>>>:

:

ð4Þ

From Proposition 2, we know that the curvature flow j under the
min/max flow framework smoothes out all the structure over the
whole image. When the curvature flow j is replaced by ĵ, it can
be noted that the evolving direction of the curvature flow should
be determined by signð�~v �NÞ. Consider a small neighborhood of a
point on the boundaries of shape X. We assume that the GVF and
the inward normal direction have the same direction, i.e.
signð�~v �NÞ ¼ 1. If the max flow is selected according to the deci-
sion rules of Eq. (4), the convex of the shape in X is smoothed. If
the curvature flow runs across the boundary of the shape, the
GVF and the inward normal direction will have opposite directions
in the next iteration, i.e. signð�~v �NÞ ¼ �1. Even if the max flow is
selected according to the decision rules in Eq. (4), the speed func-
tion is set to zero, i.e. F = 0, and therefore any the further diffusion
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would be suppressed. So, according to the above analysis, the final
steady state image should preserve the essential structures of the
shape.

Indeed, the flow under F ¼ ĵ is basically the shock filter.
Expanding ĵ will yield,

ĵ ¼ �sign k D2I
rI
jrIj ;N

� �� �
jjj ¼ �signðkIggÞjjj:

Its evolution equation is written as It = �sign(k Igg) � jjj � jrIj.
Clearly this is the standard shock filter equation up to a positive
scale jjj. The scheme of Eq. (4) may be viewed as an implementa-
tion of the shock filter under the min/max flow framework. As a
matter of fact, the classical shock filter is extremely sensitive to
noise. Whereas, the scheme of Eq. (4) performs well on image
enhancing and denoising. This is because the original shock filter
is an inverse heat equation and therefore sensitive to noise [27],
whereas the min/max switch function can effectively suppress the
noise enhancement in the scheme of Eq. (4).

The distinct advantage of the GVF fields is to provide a large
capture range for the edges. This is in favor of denoising. For com-
parison, we first illustrate the original shock filter and the scheme
of Eq. (4), respectively, on a noisy and blurry image. The original
image is the same mammographic image as in Fig. 6(a), which is
degraded with a Gaussian noise (zero-mean and 0.1 variance) in
Fig. 8(b). Obviously, the original shock filter generates many spuri-
ous boundaries as shown in Fig. 8(c). Fig. 8(e) further demonstrates
the scheme of Eq. (4) reaching a steady state solution with the evo-
lution error diagram. Thus, the presented scheme of Eq. (4) can
effectively remove noise while simultaneously preserving some
essential features of the object. The original medical image in
Fig. 8(a) is very blurry, and its luminous contrast is very low. In or-
der to illustrate the properties of the scheme Eq. (4), we apply this
scheme on a nature scene image, so that its advantages become
more evident. In Fig. 9(b), the original water lily image is blurred
and degraded with Gaussian noise. We can see that the features
of the lily image are enhanced effectively, and the final steady state
image can preserve the essential details in Fig. 9(c). However, the
final effect of diffusion also relies on the GVF fields. The ideal case
is that all the essential shape details should be preserved in the
GVF fields.

4. The extended min/max flow framework

The min/max flow framework is a flexible computational
framework. In this section, we will extend this framework and
incorporate it with the active contour model. Because the bound-
ary leaking problem exists in the standard deformable models,
we will demonstrate that the incorporation of this extended frame-
work is ideal to overcome this major shortcoming. We will also
illustrate its applications to segmentation and region tracking.

4.1. Extended min/max flow framework

In the context of the general level set equation /t = Fjr /j, F is
called the speed function, which corresponds to the speed of the
front (or evolving curve) in a direction opposite to the normal of
the front. The extended min/max flow framework can be written
as,

FðXÞ ¼
minðFcðXÞ;0Þ; satisfyingdecisionrules
maxðFcðXÞ;0Þ; otherwise

�
; ð5Þ

where Fc is the speed function of the familiar curvature flow, and
the decision rules can be designed specially for various applications.

First, we consider the following two flows, F = min(Fc,0) and
F = max(Fc,0), whose properties are described in Section 2. When
/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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tance is in the interior, and the positive sign is in the exterior re-
gion. The flow under F = min(Fc,0) will tend to grow outwards
endlessly. Conversely, the flow under F = max(Fc,0) will tend to
shrink until it collapses to a point. Very roughly speaking, we can
think of the choice of the max and min flow as somewhat related
to the evolving tendency, i.e. the evolving tendency of the flow un-
der Eq. (5) depends on the choice of the max and min flows, while
the evolving tendency of the flow under F = Fc only depends on Fc.

Then, let the flow under F = Fc corresponding to the level set equa-
tion /t = Fcjr/j be able to reach a trivial steady state solution. Note
that the steady state solution is only a local optimal solution of the
above equation, and it is not unique. The choice of the flow under
Eq. (5) is either Fc or zero. Let us now consider the flow under the ex-
tended framework of Eq. (5) and the flow under F = Fc together. If the
choice of the flow resulting from the speed function of Eq. (5) and the
flow under F = Fc are identical at all time, it is clear that a steady state
solution of Eq. (5) corresponds to one of the flows under F = Fc. On the
other hand, the worst case occurs when the choice resulting from the
Please cite this article in press as: H. Yu et al., An extension of min
j.imavis.2008.05.006
speed function in Eq. (5) and the flow under F = Fc have opposite
evolving tendencies, i.e. the speed is always set to zero, F = 0. In this
case, no propagation takes place under the scheme of Eq. (5). In addi-
tion, if the min/max flow happens to stay at some state that is a stea-
dy state for the flow under F = Fc, it is clear in this case that Fc = 0.
Then, regardless of the choice of the max or min flow, in either case,
there will be no propagation that takes place.

When the flow under the extended framework of Eq. (5) and the
flow under F = Fc have the same evolving tendency on some local
parts of the evolving curve, these parts will tend to a steady state
just as they are driven by the flow under F = Fc. When the opposite
evolving tendency appears on other parts of the evolving curve,
then there is no propagation that takes place. Hence, propagation
takes place only if the choice of the flow under Eq. (5) and the flow
under F = Fc are identical. It is similar to the case where the front of
propagation is driven by the flow under F = Fc. The final steady
state solution of the scheme of Eq. (5) should be bounded by all
steady state solutions that the flow under F = Fc can reach. From
the above analysis, we can state the following proposition.
/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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Proposition 4. If the flow under F = Fc can reach a steady state, then
the flow under the extended min/max flow framework will also be able
to reach a steady state.

It is clear that the min/max framework only helps us to select an
appropriate solution from the steady state solution set of the
evolving flow under F = Fc. However, this extended framework is
an open computational framework, under which many constraint
conditions can be incorporated in the speed function to suppress
boundary leaking. In the following sections, we will apply this ex-
tended framework to image segmentation and region tracking in
order to suppress the boundary leaking problem.

4.2. Boundary leaking

The boundary leaking problem was first observed in the case of
the segmentation of CT medical image in [12]. In fact, it is an intrin-
sic fault of the original geodesic active contour model presented in
[20]. The geodesic active model is usually written as,

Ct ¼ gðIÞjcNc � ðrg �NcÞNc;

where jc is the Euclidean curvature of the evolving curve C(t), Nc is
the unit normal inward of C(t), g(I) is usually defined as a monoton-
ically decreasing function of the intensity gradient jrIj, which at-
tracts the evolving curve towards the object boundary. Using the
level set framework, we can obtain its level set representation as
follows,

/t ¼ gðIÞjcjr/j þ rg � r/ ð6Þ

with the initial condition /(0,C) = /0(C), and its speed function
F = g(I)jc �rg � Nc. It is easy to see that the curvature term (the first
term) in the speed function is the known Euclidean heat flow, which
is used for curve smoothing and evolution. In practice, if only the
dynamic balance is reached between the curvature term and the
second term in the speed function, the scheme of Eq. (6) can reach
a steady state solution. Expanding further the speed function F will
yield,

F ¼ gðIÞjc � g0 D2I
rI
jrIj ;Nc

� �

Let us assume that the evolving curve has converged to the real
boundary of the object. The unit vector of intensity gradient and the
normal of C(t) are identical in this case, �Nc =rI/jrIj. Thus, the sec-
ond term should be the second derivative of I in the direction of the
intensity gradient up to a derivative factor g0(I), and is equal to zero,
i.e. D2I rI

jrIj ;Nc

D E
¼ Igg ¼ 0. Because the function g(I) = minimum 6¼ 0

in this case, it is difficult to reach a dynamic balance state at the real
boundary. Thus, this scheme is prone to boundary leaking.

The boundary leaking problem does not only appear in image
segmentation, but also appears in region tracking applications.
Usually, most deformable models can be used to extract the con-
tours of moving objects in the tracking region, but the input frames
need to be enhanced in advance. Region tracking is usually based
on the observed inter-frame intensity difference model,
d(x,y) = I(x,y, t) � I(x,y, t � 1), where I(x,y, t), I(x,y, t � 1) are the cur-
rent and previous frame intensity functions. The probability den-
sity function of d(x,y) is usually modeled as a mixture of two
Gaussian (or Laplacians) distributions, which are both zero-mean
and correspond to the background area and the moving objects
area, respectively.

In [21,22], the detection and tracking of moving objects in the
image sequences were formulated in a variational framework. Mo-
tion detection estimates only the moving area between the two
successive frames. It does not detect the input frame sequences di-
rectly, but rather detects a new generated frame, which is de-
scribed as,
Please cite this article in press as: H. Yu et al., An extension of min
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IDðXÞ ¼ max
Y2XðXÞ

pdjbgðdðXÞÞ � pdjobjðdðYÞÞ þ pdjobjðdðXÞÞ � pdjbgðdðYÞÞ
pdjbgðdðXÞÞ � pdjbgðdðYÞÞ þ pdjobjðdðXÞÞ � pdjobjðdðYÞÞ

( )
;

where X(X) denotes the neighborhood of pixel X 2 R2, and
pdjbg(,pdjobj) are the probability density function of the observed in-
ter-frame difference d(X) under the background area (or object
area) hypothesis (for more details, refer to [21,22]). In ID(X), the
moving area has been enhanced. This can be observed in
Fig. 12(b). The geodesic active contour model based edge detection
operation can then effectively be used for the motion detection. This
is then followed by a tracking module. Unlike motion detection, the
tracking part detects the boundaries of the moving object on the
original input frames directly.

The detection and tracking problems were described in [21] as
an energy minimization problem. The Euclidean curve evolution
equation is described as,

Ct ¼ cðgðIDÞjc �rgðIDÞ �NcÞNc þ ð1� cÞðgðjrIjÞjc

�rgðjrIjÞ � NcÞNc; c 2 ½0;1�

Its level set representation can be written as,

/t ¼ c gðIDÞjc þrgðIDÞ �
r/
jr/j

� �
jr/j þ ð1� cÞðgðjrIjÞjc

þrgðjrIjÞ � r/
jr/jÞjr/j: ð7Þ

It is clear that both the motion detection and tracking parts
adopt the geodesic active contour model, whose speed functions
have the common form as reported in Eq. (6). Thus, the bound-
ary leaking problem also appears in the scheme of Eq. (7) as
well.

Through the above analysis, one can see that the boundary leak-
ing problem is an intrinsic fault of the geodesic active contour
model. Similarly, it also appears in the parametric active models.
By way of adding a conservative (non-conservative) external force,
this problem is at most alleviated but cannot be surmounted. The
extended min/max framework can help us to select an appropriate
solution from the trivial steady state solution set of the curvature
flow. This solution may not be the optimal solution but is a reason-
able approximation. This is because it is possible to suppress
boundary leaking when the wrong evolving tendency of the flow
can be corrected.

In the following sections, the schemes of Eqs. (6) and (7) are re-
defined under the extended min/max flow framework, and the
decision rules are modeled as probability density functions.

4.3. Image segmentation under the extended min/max flow framework

Our proposed algorithm aims at the partial volume estimation
[23], which is essentially a boundary leaking problem. Usually,
these kinds of problems indicate that the risk of misclassification
for adjacent regions is too big, and in some extreme cases where
the two distributions have the same mean but different variances,
the classification error is intolerable. In order to overcome these
problems, some further texture features are extracted and added
to the feature vector. In this paper, for convenience, we consider
Gaussian distributions. We also assume that the number of classes
is known a priori so as to estimate the parameters of the statistical
model.

In order to efficiently deal with the finite mixture model, we
choose some clique types as shown in Fig. 10. Besides image inten-
sity is also used to construct the pixel feature vector. A similar idea
can be found in [24]. The feature vector V(X) = (v1(X), . . . ,
vm(X),vm+1(X))T,X 2 R2 is defined by,
/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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Fig. 10. The four clique types associated to a second order model.
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viðXÞ ¼
P
c2Ci

DcðXÞ; i 6 m

vmþ1ðXÞ ¼ 1
w�w

P
X2W

IðXÞ; i ¼ mþ 1

8><
>:
where Ci is the set of all cliques of type i in a given window
W(w �w), Dc(X) = �1 if I(X) = I(X0) and Dc(X) = 1 otherwise. It is
easy to see that the first m elements are texture features while
the (m + 1)th is an intensity feature. In our algorithm, the length
of the feature vector is 5. These features can then be applied to both
textured and non-textured images.

Suppose that the feature vectors satisfy a Gaussian distribution,
i.e. V(X) � N(m,R). Once these feature vectors have been extracted,
the EM algorithm is applied to estimate the parameters of each class
in the image. Since the elements in V(X) are not independent of each
other, the probability density function pdi(V(X)) should be of a high-
er dimension Gaussian type for each class Ri,R =

S
iRi. In order to esti-

mate the probability of each pixel robustly, one can sample a
neighbor window around each pixel. For the partial mixture case
in a given window, the above probability density function can be re-
placed by the joint probability density function for each class,

log pdiðVðXÞjmi;RiÞ ¼
X

Y2WðXÞ
ai log pdiðVðYÞjmi;RiÞ;

where ai = kRi \Wk/(w �w). This makes the mixture distribution of
X, PrðVðXÞÞ ¼

Q
ipdiðVðXÞ jmi;RiÞ, depend on the location

X = (x,y)T 2 R2. Because V(X) � N(m,R) for a given window W(X),
its sample mean VðXÞ and covariance matrix RðXÞ should also fol-
low a Gaussian distribution. In [25], the above joint probability den-
sity function for each class was re-written as,

log pdiðVðXÞjmi;RiÞ ¼ �
1
2

h
ðVðXÞ �miÞTR�1

i ðVðXÞ �miÞ

þ trðR�1
i RðXÞÞ þ logð2pdetðRiÞÞ

i
:

It is clear that the above equation can detect two regions with the
same mean but with different variances.

Consequently, a Bayesian classification method is applied to de-
cide to which class each pixel should belong using the following
likelihood function,

PrðXjmi;RiÞ ¼
Prðmi;RiÞ � pdiðVðXÞjmi;RiÞP

iPrðmi;RiÞ � pdiðVðXÞjmi;RiÞ
;

where the prior probability Pr(mi,Ri) can be estimated using the EM
algorithm. The Bayesian classification result is the class number,

LðXÞ ¼ arg maxiðPrðXjmi;RiÞÞ:

This is because the inside of the evolving curve is viewed as a single region
RL0 , the decision rules are only used to decide on whether the Bayesian
classification result L(X) is equal to the class number L0. Under the min/
max flow framework, the curve evolution equation can be re-written as,
/t ¼ Fjr/j; ð8Þ

where

F ¼
minfðgðjrIjÞjc �rg �NcÞ;0g; LðXÞ ¼ L0

maxfðgðjrIjÞjc �rg � NcÞ;0g; otherwise

�
:

Compared with the scheme of Eq. (6), the scheme of Eq. (8) in-
creases the capture range, and selects a reasonable evolution direc-
tion for each iteration step. This is due to the fact that the Bayesian
decision can control the evolution tendency of the evolving curve
under the extended min/max flow framework.
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4.4. Region tracking under extended min/max flow framework

The scheme of Eq. (7) consists of two parts. The first deals with
motion detection, and the other covers the tracking part. First, let
us consider the motion detection equation. The crucial step is to
decide on whether a given pixel belongs to a moving area. Since
the inter-frame difference probability density function is modeled
as a mixture of two Gaussian (or Laplacian) distributions. The prob-
ability density function can be written as,

pdðdðXÞÞ ¼ Pjbg � pdjbgðdðXÞÞ þ Pjobj � pdjobjðdðXÞÞ;

where Pjbg(,Pjobj) is a priori probability under the background (, ob-
ject) area case. A decision rule for the motion detection equation
can be easily designed according to the above equation. Under the
extended min/max flow framework, the motion detection equation
can be re-written as,

/t ¼ FDjr/j;

where

FD ¼ min gðIDÞjc þrgðIDÞ � r/
jr/j ;0

� 	
; Pjbg � pdjbgðdðXÞÞ

< Pjobj � pdjobjðdðXÞÞ

FD ¼ max gðIDÞjc þrgðIDÞ � r/
jr/j ;0

� 	
; otherwise

8>>><
>>>:

:

Comparing with Eq. (8), one can note that the image segmentation
approach is applied to the enhancement frame {ID} for motion
detection. In this case, because there are only object and back-
ground areas in frame {ID}, the class number is two. The feature is
the scale d(X), which follows a normal distribution d(X) � N(0,r2).
Similarly to the image segmentation case, we sample a neighbor-
hood window around point X. The joint probability density function
for each class can be re-written as,

log pdiðdðXÞjr2
i Þ ¼ �

1
2

logð2pr2
i Þ þ

�d2ðXÞ
r2

i

þ
�r2ðXÞ
r2

i

" #
; i ¼ 1;2;

where �dðXÞ and �r2ðXÞ are the window mean and variance, respec-
tively. The Bayesian decision can conveniently be obtained in the
context of the following likelihood function,

PrðXjr2
i Þ ¼

Prðr2
i Þ � pdiðdðXÞjr2

i ÞP
i

Prðr2
i Þ � pdiðdðXÞjr2

i Þ
; i ¼ 1;2:

So, the speed function can be re-defined as,

FD ¼ min gðIDÞjc þrgðIDÞ � r/
jr/j ;0

� 	
; PrðXjr2

bkÞ < PrðXjr2
objÞ

FD ¼ max gðIDÞjc þrgðIDÞ � r/
jr/j ;0

� 	
; otherwise

8<
: :

ð9Þ
For the tracking part equation, the crucial step is to decide on the
evolving direction of the evolution curve (i.e. the direction of the ob-
ject motion). This is a challenge because the texture background or
the edges in the original input frame could often change the evolving
direction unpredictably. In [26], it was shown that the probability of
each pixel belonging to the inside and outside of the evolving curve
could be approximated by the infimum of the inter-frame intensity
difference. The estimate of infimum can be used in the decision rules
for the tracking part equation under the extended min/max flow
framework. The tracking equation part can be re-written as,

/t ¼ FT jr/j; ð10Þ

where

FT ¼ min gðjrIjÞjc þrgðjrIjÞ � r/
jr/j ;0

� 	
; V in < Vout

FT ¼ max gðjrIjÞjc þrgðjrIjÞ � r/
jr/j ;0

� 	
; otherwise

8><
>:

/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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and

V in ¼ inf
fZ:jZj6d;XþZ2Xg

ðIðX; tÞ � IðXþ Z; t � 1ÞÞ2

Vout ¼ inf
fZ:jZj6d;XþZ2�Xg

ðIðX; tÞ � IðXþ Z; t � 1ÞÞ2

8><
>: :

The parameter d determines the maximum range of motion. There-
fore, it should be set to different values for the different image se-
quences, respectively.

According to Eqs. (9) and (10), the scheme of Eq. (7) is re-de-
fined as,

/t ¼ ðFD þ FTÞ � jr/j: ð11Þ

Although the speed function of the motion detection and track-
ing part have the same form as in image segmentation, they repre-
sent two different problems. Each one can be solved using its
corresponding decision rule. This makes the speed function regu-
larizing and flexible. Indeed, the extended min/max flow frame-
work is only an open computational framework. Under this
framework, we can only consider the intrinsic characteristics of
the evolving curve to design the speed function, while leave the
‘‘stopping criterion” to the decision rules.

4.5. Experiments and analysis

4.5.1. Image segmentation
Experiments of image segmentation were performed on a grey

slice image to segment a leg bone. From the original slice image in
Fig. 11(a), it can be observed that the boundary of the bone is blurry,
but the texture features in the different regions are distinct. This
warranted the use of the texture features with our algorithm. In
our experiments, our algorithm is used to deal with the partial vol-
ume estimation. An initial segmentation was provided. It can usually
be obtained using the K-means method (see Fig. 11(b)). For compar-
ison, the image segmentation is implemented using the schemes of
Eqs. (6) and (8), respectively. The function g(jrIj) in the evolution
equations is defined as g(jrIj) = 1/(1 + jrIjk),k = 1 or 2.

The segmented image obtained using Eq. (6) is shown in
Fig. 11(c). Since some parts of the initial evolving curve have run
across the edges of the leg bone while others have not reached
the boundary, the obtained evolving curve using Eq. (6) was only
able to reach some local spurious edges but not the desired bound-
ary of the leg bone at steady state. One can see that the flow under
Eq. (6) leaks through at some locations outside of the desired
boundary after the continued application of the scheme of Eq.
(6). When the segmentation is driven by Eq. (8), the evolving curve
tends towards the boundaries of the leg bone gradually, and nicely
converges after a number of iterations. The result of the segmented
image using Eq. (8) is shown in Fig. 11(d).

4.5.2. Region tracking
Experiments with region tracking were carried out on an image

sequence with a 320 � 240 resolution. The two methods driven by
the schemes of Eqs. (7) and (11) are compared from the following
U

Fig. 11. Image segmentation using the schemes of Eqs. (6) and (8). (a) original image; (b
(8). Notice that the scheme of Eq. (8) gives better results and is immune of the boundar
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three aspects, the motion detection part, the tracking part and the
combination of these two parts.

4.5.3. Motion detection
For comparison, we implemented the detection of the moving

area using the motion detection part of Eq. (7) and the scheme of
Eq. (9). In this experiment, the Gaussian model was adopted. The un-
known parameters were estimated using the EM algorithm for cre-
ating the enhancement frame {ID} shown in Fig. 12(b). It can be
seen that the moving area is appropriately separated from the back-
ground. We performed motion detection using the schemes of Eqs.
(7) and (9), respectively, on the new frame {ID} until a steady state
solution was reached. The results are shown in Fig. 12(c and d). It
can be noticed that there is no distinct boundary leaking in
Fig. 12(c and d). This can be explained as follows. Both the motion
detection part of Eq. (7) and the scheme of Eq. (9) can easily drive
the evolving curve to the desired boundary. Because the background
is zero-valued in the enhancement frame {ID} of Fig. 12(b), while the
motion area is non-zero-valued,

4.5.4. Tracking part
For comparison, the contour of the moving object is tracked

through the implementation of the tracking part in Eq. (7) and the
scheme of Eq. (10), respectively. The former is only based on the cur-
rent frame {In}, but the latter is based on both the current frame {In}
and the previous frame {In�1}. The evolving curves in Fig. 12(c and d)
are defined as the initial zero-level set for the tracking part. The re-
sults are shown in Fig. 12(e and f). It can be noticed that the evolving
curve using the scheme of Eq. (10) can converge to the boundary of
the moving object, while the evolving curve using the tracking part
of Eq. (7) gets across the desired boundary.

4.5.5. Combined equation
In this experiment, we illustrate the tracking algorithm via the

implementation of Eq. (11) on a real image sequence. For conve-
nience, the initial contour is manually outlined in the first frame
0 of the sequence, and then the contour is tracked from frame 0
to 1, then from frame 1 to frame 2, and so on up to the last frame
in the sequence. The total number of frames is 30. The initial un-
known parameters in the Gaussian models can be estimated accu-
rately using the contour area in the first frame, and then these
parameters could be estimated repeatedly using the known con-
tour area in the previous frame. The results are shown in Fig. 13.

In the first 19 frames, the inter-frame motion is small. In this
case, the motion detection part in Eq. (11) could easily locate the
motion area, i.e. the evolving curve is very close to the boundaries
of the moving object. Therefore, the tracking part in Eq. (11) can re-
fine this evolving curve to ensure converge to the contour of the
moving object in a small capture range. The parameter d is set to
a small value.

After frame 20, the moving object becomes faster and the image
speed is of about 10 pixels per frame. Although the motion detec-
tion part in Eq. (11) can detect the motion area, the detected mo-
tion area is larger than the object area. Many background edges
) K-means segmentation; (c) segmentation using Eq. (6); (d) segmentation using Eq.
y leaking problem.

/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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Fig. 12. Comparison of motion detection and tracking part, respectively, using the original scheme of Eq. (7) and our proposed scheme of Eqs. (9) (10). Notice that our
proposed scheme gives accurate tracking compared to the original scheme.

Fig. 13. Region tracking using Eq. (11). In the first six frames, the object is moving slowly, while the object is moving quickly after 19th frame. This shows that the proposed
scheme is suitable for slowly moving objects.
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Nor textures appear in this motion area. Hence, the motion detection

part did not help in the detection of the object boundaries. It is dif-
ficult to track the boundaries of the moving object using the track-
ing part of Eq. (11) around this complicated area. In frame 20, it can
be noticed that the evolving curve converges at the boundaries of
the other shapes but not the moving object. Although we tried to
carefully adjust the parameter d to a large value, the contour of
the moving object still remained deformed.

5. Conclusions

In this paper, the min/max flow scheme for image enhancement
and denoising is revised. The novelty consists in three parts. The
first is to analyze the reason behind the speckle generation and
the modification of the original scheme. The second is to point
Please cite this article in press as: H. Yu et al., An extension of min
j.imavis.2008.05.006
out that the continued application of this scheme cannot result
in the adaptive stopping of the curvature flow. On that basis, we
presented two modified schemes through the introduction of the
GVF field and the zero-crossing detector so as to control the
smoothing effect. The third contribution is the extension of the
min/max flow scheme to deal with the boundary leaking problem.
The boundary leaking problem is indeed an intrinsic deficiency of
the active contour model. Under the familiar geodesic active con-
tour scheme, none of the existing approaches is able to overcome
this shortcoming. Whereas, this proposed min/max flow frame-
work provides an effective way to approximate the optimal
solution.

It could be noticed from our experimental results on medical
images for enhancement and denoising that the edge contrast is
not sufficient under the modified min/max flow schemes. Thus,
/max flow framework, Image Vis. Comput. (2008), doi:10.1016/
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we will aim to introduce the inverse diffusion equation in future
work. In addition, our experimental results of regions tracking
indicate that the extended min/max flow framework only helps
us to select an appropriate solution but not the optimal solution.
In future work, under this extended framework, our aim will be
to develop more robust decision rules.
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