174,846 research outputs found

    An architecture for adaptive task planning in support of IoT-based machine learning applications for disaster scenarios

    Get PDF
    The proliferation of the Internet of Things (IoT) in conjunction with edge computing has recently opened up several possibilities for several new applications. Typical examples are Unmanned Aerial Vehicles (UAV) that are deployed for rapid disaster response, photogrammetry, surveillance, and environmental monitoring. To support the flourishing development of Machine Learning assisted applications across all these networked applications, a common challenge is the provision of a persistent service, i.e., a service capable of consistently maintaining a high level of performance, facing possible failures. To address these service resilient challenges, we propose APRON, an edge solution for distributed and adaptive task planning management in a network of IoT devices, e.g., drones. Exploiting Jackson's network model, our architecture applies a novel planning strategy to better support control and monitoring operations while the states of the network evolve. To demonstrate the functionalities of our architecture, we also implemented a deep-learning based audio-recognition application using the APRON NorthBound interface, to detect human voices in challenged networks. The application's logic uses Transfer Learning to improve the audio classification accuracy and the runtime of the UAV-based rescue operations

    Microservices and Machine Learning Algorithms for Adaptive Green Buildings

    Get PDF
    In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings

    IT-Enabled Services as Complex Adaptive Service Systems: A Co-Evolutionary View of Service Innovation

    Get PDF
    One specific type of service innovation of particular interest to IT and business professionals is IT-Enabled Services (IES). Previous studies have suggested many roles for IT in service innovations. IT has proven a useful tool in service innovation. IT is an important component of most services in many industries, including healthcare, financial services, engineering, and management consulting. However, little work has been conducted in IESs. Thus, there is considerable potential for researchers in IS, operations, marketing, and economics to make contributions to the emerging debates and challenges in IESs and service innovation. Two topics are critically important in both IES research and practice: what IESs are and how such services emerge and evolve. This research-in-progress attempts to offer a novel perspective on these two topics. Drawn upon complexity theory, we conceptualize services (IESs) as complex adaptive service systems (CASS) with such properties and behaviors as emergence, self-organization, adaptive learning, and nonlinearity, and service development or innovation as a co-evolutionary process composed of variation, selection, and retention (VSR). From this perspective, IESs produce and are reproduced by the environment (or by wide business networks). Based on this complexity theory perspective, we also provide propositions regarding what IESs are, how they emerge and evolve, and what strategies are effective for IT-enabled eservice innovation. The last section offers a research plan for a longitudinal case study of Business Analytics (BA) as an IES to qualify the proposed theoretical perspective

    Training telescope operators and support astronomers at Paranal

    Full text link
    The operations model of the Paranal Observatory relies on the work of efficient staff to carry out all the daytime and nighttime tasks. This is highly dependent on adequate training. The Paranal Science Operations department (PSO) has a training group that devises a well-defined and continuously evolving training plan for new staff, in addition to broadening and reinforcing courses for the whole department. This paper presents the training activities for and by PSO, including recent astronomical and quality control training for operators, as well as adaptive optics and interferometry training of all staff. We also present some future plans.Comment: Paper 9910-123 presented at SPIE 201

    Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System

    Full text link
    A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175
    • …
    corecore