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ABSTRACT
Over the past decades, the importance of multimedia ser-
vices such as video streaming has increased considerably.
HTTP Adaptive Streaming (HAS) is becoming the de-facto
standard for adaptive video streaming services. In HAS, a
video is split into multiple segments and encoded at multiple
quality levels. State-of-the-art HAS clients employ deter-
ministic heuristics to dynamically adapt the requested qual-
ity level based on the perceived network and device condi-
tions. Current HAS client heuristics are however hardwired
to fit specific network configurations, making them less flexi-
ble to fit a vast range of settings. In this article, an adaptive
Q-Learning-based HAS client is proposed. In contrast to ex-
isting heuristics, the proposed HAS client dynamically learns
the optimal behavior corresponding to the current network
environment. Considering multiple aspects of video qual-
ity, a tunable reward function has been constructed, giving
the opportunity to focus on different aspects of the Qual-
ity of Experience, the quality as perceived by the end-user.
The proposed HAS client has been thoroughly evaluated us-
ing a network-based simulator, investigating multiple reward
configurations and Reinforcement Learning specific settings.
The evaluations show that the proposed client can outper-
form standard HAS in the evaluated networking environ-
ments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent Agents; C.2.3 [Computer-Commu-
nication Networks]: Network Operations—Network Man-
agement

General Terms
Algorithms, Design, Management, Experimentation

Keywords
HTTP Adaptive Streaming, Reinforcement Learning, Agent
Systems

1. INTRODUCTION
In recent years, multimedia services have gained a lot of

popularity. This growth is largely due to video stream-
ing services. These services can generally be divided into
Internet Protocol Television (IPTV), offered by a network
provider and managed through resource reservation, and

Over-The-Top (OTT) services. HTTP Adaptive Stream-
ing (HAS) techniques are becoming the de-facto standard
for OTT video streaming, where video is delivered over the
traditional best-effort Internet. One of the most popular ex-
amples of OTT video streaming services is YouTube1. These
HTTP-based techniques split video content into small seg-
ments of typically 2 to 10 seconds, each of which are encoded
at multiple quality levels. This approach allows video clients
to dynamically adapt the requested video quality to fit the
perceived network state, such as delay and throughput.

The use of HAS techniques comes with some important
advantages. Not only is the video content delivered reliably
over HTTP, HAS also allows seamless interaction through
firewalls. On the downside, delivery over the best-effort In-
ternet makes these techniques prone to network congestion
and large bandwidth fluctuations due to cross traffic, which
can be detrimental for the Quality of Experience (QoE), the
quality as perceived by the end-users. HAS client behavior
is therefore a crucial factor for the streaming service to be
beneficial and to ensure a sufficient level of QoE for the end
user.

Current HAS client heuristics are however hardcoded to
fit specific network configurations. This makes current ap-
proaches less flexible to deal with a vast range of network
setups and corresponding bandwidth variations. This paper
proposes a Q-Learning based HAS client, allowing dynamic
adjustment of streaming behavior to the perceived network
state. The contributions of this paper are three-fold. First,
a Q-Learning-based HAS client has been designed. This ap-
proach, in contrast to current heuristics, allows the client
to dynamically learn the best actions corresponding to the
network environment. The design of the HAS client includes
the definition of a tunable reward function to consider mul-
tiple aspects of QoE. Second, the HAS client design is in-
tegrated in an existing network-based video streaming sim-
ulation framework. Third, the implementation is used to
perform simulations to extensively evaluate the influence of
different parameters of the client. The simulation results al-
low comparison with the proprietary Microsoft ISS Smooth
Streaming algorithm.

The remainder of this paper is structured as follows: an
overview of HAS is first given in Section 2. Next, Section 3
describes the proposed client quality selection algorithm, de-
scribing the Reinforcement Learning (RL) reward function
definition, the environmental state and the evaluated explo-
ration policies. In Section 4, we discuss how the constructed
HAS client is evaluated. Furthermore, we show that the pro-

1http://www.youtube.com
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Figure 1: Illustration of the HTTP Adaptive
Streaming (HAS) concept.

posed Q-Learning based HAS client outperforms traditional
HAS heuristics in the simulated network environments. Sec-
tion 5 gives an overview of related techniques, both on HAS
and RL. Finally, Section 6 concludes this paper and presents
some directions for future work.

2. HTTP ADAPTIVE STREAMING
HAS is the third generation of HTTP based streaming

and is increasingly being used in OTT video services. Sev-
eral industry players have proposed and make heavy use
of HAS protocols, including Microsoft IIS Smooth Stream-
ing [12], HTTP Live Streaming (HLS) by Apple [18] and
Adobe’s HTTP Dynamic Streaming [1]. With the standard-
ized Dynamic Adaptive Streaming over HTTP (DASH) [20],
MPEG tried to find the common ground between the multi-
ple implementations available. In DASH however, only the
interfaces and protocol data are standardized, leaving the
algoritmic details up to the developer.

Regardless of specific implementation details, all of these
HAS protocols follow some general architectural principles.
First, video content is encoded using multiple quality levels
and resolutions. Each of these encoded video streams are
subsequently divided into segments by a stream segmenter.
Typically, one video segment constitutes of several seconds
of video. At the client side, a manifest file is provided, con-
taining information about the different quality levels and
video segments. The manifest file can thus be used to link
the different video segments into a single video stream. For
each segment, which can be transported as a single file over
HTTP, the client uses the information in the manifest file
to decide on the segment and the quality level to download.
The selection heuristic depends on the specific implementa-
tion. Based on the perceived network state, these heuristics
dynamically adapt the requested quality level. Current HAS
clients are however deterministic, making them less flexible
to fit a vast range of network environments. Each segment
is downloaded in a progressive manner, while a buffer at the
client side is used to take care of temporary anomalies such
as a late arrival of a video segment. The successive seg-
ments, stored in the buffer, are played back smoothly as a
single video stream. The general HAS concept is illustrated
in Figure 1.

3. Q-LEARNING HAS CLIENT

3.1 Architectural overview
A general sequential HAS client requests a video segment

on arrival of the previous segment. Prior to a request, the
heuristic is called to select the quality level to request. The
proposed client uses a RL agent in this heuristic.
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Figure 2: Schematic overview of the RL HAS client
design.

RL is a machine learning technique in which an agent only
has limited knowledge about the environment, leading to a
high degree of uncertainty concerning how the environment
will react to the performed actions. However, interaction
with the environment is the only way for the agent to learn.
At each state in the environment, the agent perceives a nu-
merical reward, providing feedback to the agent’s actions.
The agent’s goal is to learn which action to take in a given
state of the environment in order to maximize the cumula-
tive numerical reward [7].

A commonly used RL algorithm is Q-Learning [21]. Using
Q-Learning, knowledge regarding both reward prospects and
environmental state transitions are obtained through inter-
action with the environment. The proposed HAS client uses
a Q-Learning agent to guide the quality selection heuristic.

When the heuristic is called, the current environmental
state (Section 3.3) is updated in the agent. In Q-Learning, a
Q-function is used to measure the ”Quality” of a state-action
combination, based on the perceived rewards. Equation 1
shows how the Q-values are updated when action a is taken
in state s, yielding a reward r. In this equation, (s, a) is the
state-action pair and α ∈ [0; 1] and γ ∈ [0; 1] are the learning
rate and the discount factor respectively. The learning rate
α determines to what extent the newly acquired information
overrides the old information, while the discount factor γ is
a measure of the importance of future rewards.

Q(s, a) = Q(s, a) + α
[
r + γmax

b
Q(s′, b)−Q(s, a)

]
(1)

Based on the learned Q-values, the quality level to request
is selected. The specific selection tactic depends on the used
policy (see Section 3.4). The current action is assigned a
reward to update the learning values, based on the reward
function described in Section 3.2. Whenever a new segment
arrives, it is buffered at the client side. This buffer provides
some protection for temporary unexpected anomalies. The
segments in the buffer are smoothly played back sequentially.

3.2 Reward function
Since the reward function is the fundamental guide for

the RL agent to learn the desired policy, we want the re-
ward function to be a measure for the QoE. Nonetheless,
defining good behavior of a video streaming service is very
subjective. For example, it is hard tell if oscillating between
two video quality levels is better than streaming a single,
intermediary quality level. Therefore configurability is a de-
sirable property for the RL reward function, giving the ser-
vice provider a means to indicate his preferences. For the
construction of this reward function, three aspects of quality
could be identified [13]: (i) the current video quality level,
(ii) the oscillation in quality levels during the video playout
and (iii) buffer starvations, leading to video freezes. These
aspects have led to a reward function being the weighted
sum of four components, detailed below.
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Figure 3: Illustration of the oscillation length and
depth definitions.

3.2.1 Segment quality level
It has been shown that a quasi linear relationship exists

between the objective PSNR values and the subjective Mean
Opinion Score (MOS) evaluations [8, 14]. Using this knowl-
edge, we model the quality level component of the reward
as a simplistic linear function. The quality level component
Rquality of the reward function R for streaming quality level
QLi of a video file, consisting of N quality levels, can be
calculated using Equation 2.

Rquality =
QLi − 1

N − 1
∗ 2− 1 (2)

3.2.2 Quality level oscillations
In HAS, the requested quality level will vary over time

if the network environment, such as the available band-
width, fluctuates. Single quality level changes in general
do not yield negative experience. For example, if the avail-
able bandwidth has increased, switching to a higher quality
level will not be perceived as bad behavior. Quality level
switches however impact the QoE when oscillations occur.
An oscillation can be defined as when a previous increase
is followed by a decrease, or vice versa. The penalisation
for the oscillation will be imposed only at the moment it is
observed. To model the cost of an oscillation, we introduce
the length and depth of the oscillation. An illustration of
these properties is shown in Figure 3.

The length of an oscillation is defined as the number of
video segments that have passed since the previous oscilla-
tion. For the reward calculation, a limit of OLmax video seg-
ments is used, meaning that an oscillation of length higher
or equal to OLmax will receive a reward of 0. The number
of quality levels of the immediate increase or decrease at the
moment of the oscillation is defined as the depth. Oscilla-
tions are known to have a bigger impact on the QoE as the
length becomes smaller. Similarly, quality switches are more
noticeable when the switch amounts multiple quality levels.
Using these definitions and observations of length (OLi) and
depth (ODi), the oscillation component Roscillation of the
reward function R can be calculated as

Roscillation =

 0 : no oscillation
−1

OL

2
ODi
i

+ OLi−1

(OLmax−1)∗OL

2
ODi
max

: oscillation

(3)

3.2.3 Buffer starvations
Buffer starvations, leading to video freezes, are a third

aspect known to have a considerable influence on the QoE.
When a client buffer depletes, the video playout is inter-
rupted and rebuffering takes place. After a while, the video
playout continues. For example, such artifacts can sporadi-
cally be observed when watching a YouTube video. A freeze
during the video playout is dramatic for the user quality
perception. The inclusion of video freezes in the RL reward
function however is not trivial. The reward function must
capture the quality of the decision on a single segment qual-
ity level. However, a video freeze will typically not be the
direct result of the decision on the last segment, but will be
the result of earlier actions. Straightforward punishment of
video freezes thus punishes the wrong action.

An indication of a negative evolution of the client side
results, possibly leading to a video freeze, can however be
found in the buffer filling level: a freeze is more likely when
the buffer filling level is lower. Since a decreasing buffer
increases the probability of a buffer to deplete and thus in-
troduce a video freeze, also the change in buffer filling level
is considered.

As for the quality level reward component, a simple linear
function is used for the actual buffer filling level reward com-
ponent. When the buffer filling level Bi is below 10% of the
total buffer size Bmax, the lowest reward of -1 is rewarded.
A buffer filling level below this threshold entails such a high
chance of buffer starvation that a panic alarm should be en-
forced, imposing maximal penalisation. For higher buffer
filling levels, a linear function with values between -1 and 1
is used, as shown in Equation 4.

Rbufferfilling =

{
−1 : Bi ≤ 0.10 ∗Bmax

2∗Bi
(1−0.1)∗Bmax

− 1+0.1
1−0.1

: Bi > 0.10 ∗Bmax

(4)
Concerning the change in the buffer filling level, the goal is

to reward increasing buffer filling, while punishing decaying
buffers. The reward calculation has been constructed in a
way that rewards or punishes the buffer filling change more
when the actual filling is lower. The specification can be
found in Equation 5.

Rbufferchange =


Bi−Bi−1

Bi−1
: Bi ≤ Bi−1

Bi−Bi−1

Bi−
Bi−1

2

: Bi > Bi−1
(5)

3.2.4 Total reward function
The behavior of the constructed reward components for

oscillations and buffer filling changes is illustrated in Fig-
ure 4. Since the quality and buffer filling level reward com-
ponents are modelled as simple linear functions, their be-
havior is omitted due to space limitations. The illustration
is based on the setup presented in Section 4.1, using a video
trace with 7 quality levels, fixed segment length of 2 seconds
and a maximum client buffer of 20 seconds. Based on the
presented reward components, the total reward function can
be defined as specified in Equation 6.

R = C1 ∗ Rquality + C2 ∗ Roscillation

+ C3 ∗ Rbufferfilling + C4 ∗ Rbufferchange
(6)

By assigning different weights C1-C4, different behavior can
be perceived, making the reward function tunable to fit mul-
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Figure 4: Illustration of the oscillation and buffer change reward components behavior.

tiple situations. As discussed earlier, this tunability is re-
quired because of the subjectivity of the QoE.

3.3 Environmental state
When constructing the environmental state, the learning

agent is provided with all information used to calculate the
reward function. The state has therefore been defined using
five elements, modelling information about the current qual-
ity level, buffer filling level and quality oscillations. Even
though the available bandwidth is not an indicator of the
perceived quality level, it is of crucial importance when de-
ciding on the quality level to download. The environmen-
tal state has thus been extended with the available network
bandwidth. The proposed environmental state definition is
summarized in Table 1, where Tseg represents the segment
length in seconds.

State element Range Levels

Buffer filling [0 ; Bmax]sec Bmax
Tseg

Buffer filling change [−Bmax ; Bmax]sec 2 ∗ Bmax
Tseg

Quality level [1 ; N ] N
Bandwidth [0 ; BWmax]bps N + 1

Oscillation length [0 ; 30]segments 31
Oscillation depth [0 ; N − 1] N

Table 1: Proposed environmental state definition.

3.4 Exploration Policy
One of the most challenging tasks in RL can be found in

balancing between exploration and exploitation [24]. Where
too much exploration may have negative impact with re-
gard to the short-term reward, focus on exploitation can
prevent maximizing long-term reward in uncertain environ-
ments since the learned actions possibly remain suboptimal
[21]. Furthermore, this balancing task has a major influence
of the convergence of the learning agents’ behavior.

An often used approach to this tradeoff is the ε-greedy
method [27]. Using this method, exploration comes down to
random action selection and is performed with probability
ε. The best known action is thus exploited with probability
1−ε. Even though this method often outperforms more com-
plex approaches, it has some practical drawbacks. Since the
optimal configuration of the ε-parameter is very application
dependent, rigorous tuning is required to obtain desirable
results.

Another commonly used exporation method is Softmax
[21]. In contrast to the ε-greedy method, which is bal-
ancing optimal and random action selection, with Softmax
action-selection is always performed in a probabilistic way.
A Boltzmann distribution is used to rank the learned Q-
values, based on which selection probabilities are calculated.
As with the ε-greedy method, parameters have to be tuned
to fit the specific application.

Tokic et. al. propose the Value-Difference Based Explo-
ration with Softmax action selection (VDBE-Softmax) pol-
icy [23, 24]. The VDBE-Softmax policy only performs ex-
ploration in situations when knowledge about the environ-
ment is uncertain, indicated by fluctuating Q-values during
learning. The Softmax-method is extended by introducing
a state-dependent exploration probability ε(s), being up-
dated through the learning process based on the difference
in learned Q-values before and after a learning step. Large
differences indicate a high degree of uncertainty about the
environment, shifting the policy to exploration. When dif-
ferences decrease and the agent gains certainty, exploitation
becomes more probable. In case of exploration, the Softmax
policy is used to avoid bad performance when many actions
yield relatively high negative reward, as was the case with
the Value-Difference Based Exploration (VDBE) policy.

The proposed HAS client has been evaluated using both
the Softmax and the VDBE-Softmax exploration policy.

4. PERFORMANCE EVALUATION

4.1 Experimental setup
The experiments have been performed using the NS-3 [16]

based simulation framework described in [4], streaming the
Big Buck Bunny video trace. A single episode of the video
trace consists of 299 segments, each with a fixed length of
2 seconds. This comes down to a total episode duration of
about 10 minutes. Each video segment has been encoded
in 7 quality levels, with bitrates ranging from 300kbps to
2436kbps, as shown in Table 2. To ensure the RL agent
has time to converge, 350 episodes of the video trace are
simulated.

A basic network topology has been modelled, consisting
of a single HAS client and server. For the construction of
a bandwidth model, a cross traffic generator was used. The
generated traffic is a sequence of fixed bitrate levels, sent
over a 3Mbps link. Each bitrate level was uniformly dis-



Quality level Bitrate
1 300kbps
2 427kbps
3 608kbps
4 866kbps
5 1233kbps
6 1636kbps
7 2436kbps

Table 2: Quality level bitrates for the Big Buck
Bunny video trace.

50 Mbit/s

Cross traffic

Server HAS Client4 Mbit/s

Figure 5: Overview of the simulated topology.

tributed between 0kbps and 2760kbps and persisted for a
uniformly distributed amount of time ranging from 1s to
300s. The remaining bandwidth perceived by the client
was used as a bandwidth trace, yielding an available band-
width ranging from 203kbps to 2355kbps with an average
of 1513kbps. An overview of this topology can be found in
Figure 5. At the client side, a buffer of maximum 20 seconds
(equal to 10 segments) is available.

4.2 Quality metric for evaluations
The reward function, described in Section 3.2, has been

constructed to be a measure for the quality of a decision
on a single segment quality level. To evaluate the different
approaches however, a measure of the total video playout
quality has to be used. Since objective video quality metrics
are still an open research topic, an intuitive metric has been
used in this work.

As stated earlier, the overall video quality experience de-
pends on three aspects of the video playout [13]: (i) the aver-
age segment quality level, (ii) video freezes and (iii) switches
in segment quality levels. The used metric has thus be con-
structed as a linear combination of these three aspects.

In Section 3.2.1, we discussed that the QoE scales linearly
with the average segment quality level. The metric quality

component will therefore be expressed as
QLavg

N
, where N

is the total number of available quality levels.
The influence of video freezes on the perceived video qual-

ity depends on both the number of freezes and the average
length of the freezes. In [13], a calculation has been pro-
posed, using only three discrete levels of video freeze fre-
quency and average freeze time. Based on an interpolation
of these levels, a continuous function has been used for the
metric in this work. The resulting function metric compo-
nent can be found in Equation 7, where Ffreq and FTavg

represent the freeze frequency and the average freeze time
respectively.

F =
7

8
∗
(

ln(Ffreq)

6
+ 1

)
+

1

8
∗
(

min(FTavg, 15)

15

)
(7)

The last aspect influencing the perceived video quality is

the switching between segment quality levels. Each switch
has an associated depth, being the number of quality levels
bridged by the switch. The numerical impact on the quality
can be expressed based on the number of switches S and the
average switch depth SDavg, as shown in Equation 8 for a
video trace containing M segments and N quality levels.

S =
S ∗ SDavg

M ∗ (N − 1)
(8)

The metric can now be expressed as a linear combination
of these components. To capture the coefficients of the linear
combination, a small subjective test panel of 6 subjects has
been composed. The test subjects were presented different
traces of streaming behavior and were asked to judge the
perceived quality. Linear regression has been applied to the
results to extract the optimal coefficients, leading to the
overall metric expression shown in Equation 9.

4.85 ∗ QLavg

N
− 4.95 ∗ F − 1.57 ∗ S + 0.50 (9)

One can verify that the theoretical range of this metric
is [−3.76; 5.35]. However, since the minimal value would re-
quire a video freeze of at least 15 seconds after each segment
while streaming the lowest quality, this range is not valid in
practice. The practical range for realistic scenarios can be
defined as [0.0; 5.35].

4.3 Obtained results

4.3.1 Reward function selection
As described in Section 3.2, the reward function is defined

as the weighted sum of 4 components. It is clear that this
composite function yields an unlimited number of configura-
tions. To be able to evaluate the results, only a small subset
of these configurations has been considered. To support the
selection process, 10 weight elements were divided among
the 4 coefficients. This results in a total number of 286 con-
figurations. For each of these reward configurations, a sim-
ulation of 350 episodes was executed and the average metric
value of the last 50 episodes was calculated. This process
was executed for both the Softmax and the VDBE-Softmax
exploration policy. Based on the average metric values, a
reward configuration has been selected, performing well for
both exploration policies. The simulations were performed
using a standard learning rate α = 0.3 and a discount fac-
tor γ = 0.95. The resulting reward configuration assigns
following weights according to the definition introduced in
Equation 6: C1 = 2, C2 = 1, C3 = 4 and C4 = 3.

Further evaluations have been performed using the se-
lected reward configuration to allow meaningfull compar-
ison between the Softmax and the VDBE-Softmax explo-
ration policy. All simulations are executed using fixed set-
tings for the Softmax inverse temperature parameter β and
the VDBE-Softmax parameter σ. The inverse temperature
β has been set to 1.0, yielding an exploration/exploitation
balancing relative to the intermediary Q-values. Lowering
β will force the balance towards random exploration while
the opposite effect is achieved by increasing β. Based on a
combination of results described in literature [24] and pre-
liminary experiments, the VDBE-Softmax parameter σ has
been fixed to 0.2. For the oscillation reward component
Roscillation, the maximal oscillation length has been set to
OLmax = 30.
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Figure 7: Convergence of the client behavior using
the Softmax exploration policy and parameters α =
0.3, γ = 0.95.

4.3.2 Influence of the exploration policy on conver-
gence

An important property of a learning agent is its conver-
gence. Therefore, as a first evaluation, we analyse the con-
vergence of the Softmax and the VDBE-Softmax exploration
policy. Figure 6 shows the evolution of the average reward
value per episode as a function of the number of simulated
episodes for both the Softmax and the VDBE-Softmax pol-
icy. The figure shows that both policies converge to a compa-
rable average reward value. However, faster convergence is
achieved using the VDBE-Softmax policy due to the shifting
to optimal action selection. The Softmax exploration policy
on the other hand stays in exploration mode for a longer
period. Since for the VDBE-Softmax policy the exploita-
tion probability does not reach 100%, sporadic application
of Softmax exploration is still possible. This can be seen
in the fluctuations of the average reward around the 175th

episode.

4.3.3 Evolution of client behavior
The convergence can not only be seen in terms of abso-

lute reward values, but can also be perceived when analysing
the HAS client behavior. As shown in Figure 7(a), visual-
ising the requested quality level per segment for the 20th

episode, the client behavior is still very unstable for early
episode iterations. After convergence (episode nr. 350), the
client behavior is distinct and more stable, as can be seen
in Figure 7(b). Both graphs show the behavior of the HAS
client, using the Softmax exploration policy with parameter
settings α = 0.3 and γ = 0.95.
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Figure 9: Influence of the discount factor on the
convergence of the Softmax learning agent.

4.3.4 Influence of the Q-Learning discount factor
In order to evaluate the influence of the Q-Learning dis-

count factor γ, simulations have been performed using 9
discount factors of 0.1 to 0.9. Seen the improving behav-
ior for higher discount factors, additional simulations have
been performed for discount factors 0.95, 0.99, 0.995 and
0.999. Each of these simulations were performed using a
default learning rate of α = 0.3. The results are summa-
rized in Figure 8 for both exploration policies. The graph
shows the impact of the discount factor γ on the average
reward values and corresponding 95% confidence intervals
over the last 50 episodes (episodes 301-350). It can be seen
that higher values of γ yield higher reward values, with an
optimal discount factor of γ = 0.95 for both the Softmax
and the VDBE-Softmax exploration policy. Limited perfor-
mance for small discount factor could be due to the large
environmental state space. Smaller growth of Q-values can
lead to slower convergence for large state spaces. For exam-
ple, Figure 9 shows the convergence of the Softmax learning
agent with learning rate α = 0.3 and discount factors γ = 0.5
and γ = 0.95. It can be seen that convergence is significantly
slower for smaller discount factors.

4.3.5 Comparison with traditional HAS
Using the optimal settings γ = 0.3 and α = 0.95, the per-

formance of the Q-Learning HAS client can be compared to
traditional HAS behavior. Table 3 shows the average metric



values and standard deviations over the last 50 episodes for
the proposed Q-Learning HAS client, using both the Soft-
max and the VDBE-Softmax exploration policy, compared
to the traditional Microsoft ISS Smooth Streaming client 2.
The data shows that the Q-Learning-based HAS client out-
performs traditional HAS client algorithms with 9.7% for
the quality metric constructed in Section 4.2. Note that the
increased MOS score caused a shift in classification from
impairments being slightly annoying to noticable but not
annoying. Furthermore, the negligible standard deviations
confirm the converged behavior of the learning agent.

Client Quality metric Stdev
MSS 3.59601 0 (deterministic)

Softmax 3.94450 0.00116
VDBE-Softmax 3.94343 0 (total stability)

Table 3: Average metric values and standard devia-
tion per client algorithm.

5. RELATED WORK

5.1 HAS client algorithms
As described in Section 2, multiple proprietary HAS al-

gorithms are available, most of which are AVC-based. Re-
cently, several new client approaches have been described in
literature. Liu et al. propose a client heuristic to handle
parallel HTTP connections, based on the segment download
time [10]. By comparing the perceived segment download
time with the expected segment download time, bandwidth
fluctuations can be estimated appropriately. Jarnikov et al.
discuss several guidelines on configuring robust HAS clients
with regard to changing network conditions [6]. The oppor-
tunities of HAS in the domain of live streaming services are
investigated by Lohmar et al. [11]. The work focusses on the
influence of client buffering on the end-to-end delay. Many
recent research topics focus on the applicability of HAS in
mobile environments by exploiting additional information.
The heuristic described by Riiser et al. [19] uses Global
Positioning System (GPS) information to obtain more ac-
curate information on the available bandwidth. Further-
more, Adzic et al. have proposed content-aware heuristics
[2]. These approaches require metadata to be embedded in
the video description. The additional consequences of qual-
ity selection in mobile environments have been shown by
Trestian et al. [25]. The research shows that lowering the
requested quality can significantly reduce energy consump-
tion of Android devices.

In contrast to the above described approaches, we fo-
cus on an increased adaptivity and self-learning behavior of
the client heuristic through the design of a RL-based client
heuristic. To the best of our knowledge, no previous research
proposed the application of Reinforcement Learning (RL)
in the design of a HTTP Adaptive Streaming (HAS) client
heuristic.

2Original source code available from:
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/
AdaptiveStreaming

5.2 RL in network management
Reinforcement Learning (RL) has previously been success-

fully applied to various network management problems. In
[5], Cao et. al. propose an agent-based network fault diag-
nosis model in which the agent uses RL to improve its fault
diagnosis performance. Their research shows this approach
can outperform traditional fault diagnosis models. Bagnasco
et. al. propose the application of RL to dynamically adapt
a hierarchical policy model to perform autonomous network
management [3]. They argue that an autonomic system
must have a degree of flexiblity to adapt to changes in goals
or resources, which is hard to achieve by means of static
policies. In the area of resource allocation, successfull ap-
plications of RL can be found. Vengerov presents a general
framework for adaptive reconfiguration of distributed sys-
tems using a combination of RL and fuzzy rulebases [26].
Dynamic resource allocation of entities sharing a set of re-
sources is used as an example. On the other hand, Tesauro
et. al. propose a hybrid approach, gaining performance in
the combination of RL and deterministic queuing models for
resource allocation [22]. In this hybrid system RL is used
to train offline on collected data, hereby avoiding possible
performance loss during the online training phase. Further-
more, multiple approaches have been proposed, focussing on
the resource allocation aspect in wireless mesh networks [9,
15]. Another area of network management where RL has
been applied previously is Quality of Service (QoS) routing.
Especially in wireless sensor networks, the network topology
may change frequently, yielding inherently imprecise state
information, which impedes QoS routing. In [17], Ouferhat
et. al. propose a Q-Learning based formalism to optimise
QoS scheduling.

6. CONCLUSION
In this paper, we proposed a Q-Learning based HAS client,

allowing dynamical adjustment of the streaming behavior to
the perceived network state in order to maximize the QoE.
The RL agent has been provided with a tunable reward func-
tion, considering multiple aspects of QoE. Experiments have
been performed using a NS-3 based simulation framework in
order to analyse the influence of various RL setups on this
specific use-case. Based on these simulation results, we were
able to evaluate the proposed HAS client in comparison to
proprietary clients such as Microsoft ISS Smooth Streaming
based on an objective video quality metric. We have shown
that, depending on the client configuration, the RL-based
HAS client obtains a quality metric, which is on average
9.7% better than traditional HAS heuristics in the simulated
network environments.

In future work, the evaluations will be extended to cover
more realistic network environments. This includes network
setups with multiple clients and additional bandwidth pat-
terns. Furthermore, we will investigate the possibilities of
multi-agent RL for multiple HAS clients to cooperate on
optimizing their behavior.
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