70,484 research outputs found

    Progressive refinement rendering of implicit surfaces

    Get PDF
    The visualisation of implicit surfaces can be an inefficient task when such surfaces are complex and highly detailed. Visualising a surface by first converting it to a polygon mesh may lead to an excessive polygon count. Visualising a surface by direct ray casting is often a slow procedure. In this paper we present a progressive refinement renderer for implicit surfaces that are Lipschitz continuous. The renderer first displays a low resolution estimate of what the final image is going to be and, as the computation progresses, increases the quality of this estimate at an interactive frame rate. This renderer provides a quick previewing facility that significantly reduces the design cycle of a new and complex implicit surface. The renderer is also capable of completing an image faster than a conventional implicit surface rendering algorithm based on ray casting

    Template-Cut: A Pattern-Based Segmentation Paradigm

    Get PDF
    We present a scale-invariant, template-based segmentation paradigm that sets up a graph and performs a graph cut to separate an object from the background. Typically graph-based schemes distribute the nodes of the graph uniformly and equidistantly on the image, and use a regularizer to bias the cut towards a particular shape. The strategy of uniform and equidistant nodes does not allow the cut to prefer more complex structures, especially when areas of the object are indistinguishable from the background. We propose a solution by introducing the concept of a "template shape" of the target object in which the nodes are sampled non-uniformly and non-equidistantly on the image. We evaluate it on 2D-images where the object's textures and backgrounds are similar, and large areas of the object have the same gray level appearance as the background. We also evaluate it in 3D on 60 brain tumor datasets for neurosurgical planning purposes.Comment: 8 pages, 6 figures, 3 tables, 6 equations, 51 reference

    Modelling multi-scale microstructures with combined Boolean random sets: A practical contribution

    Get PDF
    Boolean random sets are versatile tools to match morphological and topological properties of real structures of materials and particulate systems. Moreover, they can be combined in any number of ways to produce an even wider range of structures that cover a range of scales of microstructures through intersection and union. Based on well-established theory of Boolean random sets, this work provides scientists and engineers with simple and readily applicable results for matching combinations of Boolean random sets to observed microstructures. Once calibrated, such models yield straightforward three-dimensional simulation of materials, a powerful aid for investigating microstructure property relationships. Application of the proposed results to a real case situation yield convincing realisations of the observed microstructure in two and three dimensions
    • 

    corecore