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a b s t r a c t

Boolean random sets are versatile tools to match morphological and topological properties of real structures of mate

rials and particulate systems. Moreover, they can be combined in any number of ways to produce an even wider range

of structures that cover a range of scales of microstructures through intersection and union. Based on wellestablished

theory of Boolean random sets, this work provides scientists and engineers with simple and readily applicable results

for matching combinations of Boolean random sets to observed microstructures. Once calibrated, such models yield

straightforward threedimensional simulation of materials, a powerful aid for investigating microstructure property

relationships. Application of the proposed results to a real case situation yield convincing realisations of the observed

microstructure in two and three dimensions.

Keywords: Microstructure modelling; Boolean random set

1. Introduction

The smaller the scales at which we observe materials, the

more aware we become of the overwhelmingly multiscale

nature of materials. Materials formed using nanoparticles, for

instance, which are expected to modify profoundly the tech

nological world, are bound to exhibit several structural scales

due to the high surface reactivity of nanoparticles (Jeulin

and Moreau, 2005). It is to be expected that the complex

interactions between these scales will affect the macroscopic

properties of nanomaterials to a great extent. In order to

optimally tailor the properties of processes and materials,

engineers and scientists need to correlate statistical and topo

logical properties of multiscale structures with the observed

macroscopic behaviour of the structures in service (Jeulin,

2005).

The study of multiscale materials invariably requires that

we describe them with appropriate morphological models.

There is however an infinity of multiscale models from which

to choose which makes model selection challenging. Multi

scale models are easy to create, starting from a basis of Poisson

point processes. The simple superposition of two Poisson

∗ Corresponding author. Tel.: +33 05 62 88 58 99; fax: +33 05 62 88 56 00.
Email address: Florent.Bourgeois@ensiacet.fr (F.S. Bourgeois).

point processes with different intensities, yields a rich fam

ily of multiscale processes. Such models have in fact received

a great deal of attention in the literature and are classified

as a Poisson cluster model (Cressie, 1993). Special cases of

Poisson cluster models, also referred to as Boolean cluster

models (Rataj and Saxl, 1997) have been studied extensively.

As examples, one may quote spatial Cox processes (Møller,

2005), the Neyman–Scott process (Diggle, 1983), the Strauss

process (Cuzick and Edwards, 1990) and the Matern process

(Stoyan, 1992). The reader is invited to consult one of the

numerous textbooks that present clustered point processes

(e.g. Illian et al., 2008; Cressie, 1993). For materials structure

modelling we replace the points by actual particles, such as

convex sets.

Multiscale structures can be described and modelled with

Boolean random sets (BRS). Starting with a single Poisson point

process, and replacing each point with a convex grain with

known Lebesgue measure (area or volume), yields a BRS (Serra,

1982), a special class of random closed sets (RACS) (Matheron,

1975). Further combining two or more independent Boolean

random sets with different intensities and grain properties

by forming the intersection and/or union of the sets creates



a great diversity of multiscale structures with particularly

interesting shapes and topologies (see for examples of realisa

tions: Greco et al., 1979; Serra, 1982; Savary et al., 1999; Jeulin,

2000).

Faced with virtually limitless possibilities, finding a com

bination of BRS that matches a given multiscale structure is

where the difficulty really lies. A model is chosen for its ability

to reproduce a finite number of statistical and/or topological

properties that can be measured on the observed microstruc

ture. There are several possible properties from which to

choose in order to select models that best match given struc

tures and estimate their parameters. Depending on the nature

of the model, some of the most used morphological and

topological properties include the nearestneighbour distance

function, Ripley’s Kfunction, the pair correlation function

(Illian et al., 2008), the variogram (Matheron, 1965), granu

lometries, which are akin to size distributions (Serra, 1982),

the Choquet capacity (Matheron, 1975) and the Euler–Poincaré

or connectivity number. In fact, many of these morphologi

cal characteristics are correlated. The reader should keep in

mind that measurement of these functions is neither always

easy nor accurate. For example, much can be said about

the measurement of the pair correlation function (Jiao et al.,

2007, 2008), whose evaluation is numerically intricate. In order

to fully capture the multiscale nature of the structures of

interest, it is also important to achieve unbiased estimation

of the abovementioned characteristic functions. This can be

made difficult because correlations may exist between mea

surements at various lags. Many authors use weighted least

squares for estimation of model parameters (PardoIgúzquiza,

1999). This may not always be advisable and global estimation

techniques, such as simulated annealing (Kirkpatrick et al.,

1983) or maximum likelihood (Lyman, 2007) are deemed more

appropriate by the authors.

A BRS is uniquely defined by its Choquet capacity (Baudin,

1984). The Choquet capacity is analogous to the moments of a

probability distribution, except that it is defined in terms of the

probability that a given test shape (a compact) will intersect

the BRS. In the same way as we can have an effectively infinite

number of moments of a probability density, we can have an

effectively infinite number of compacts.

The actual number of properties that are considered does

not generally exceed three, and this might seem to be haz

ardous. Matching a number of BRS models, each of which

accounts for one scale inside our material, using 3 compacts

also could seem adventurous at best. Fortunately, it appears

that 2nd order statistics can be sufficient for simulating BRS

structures (Aubert and Jeulin, 2000).

This paper is intended as a practical contribution on mod

elling of multiscale structures using Boolean random sets.

In addition to the potential of such models for creating a

wide variety of multiscale structures, one particularly inter

esting feature is that a large number of interesting statistical

and topological properties have known analytical forms for

such models (Serra, 1982). Moreover, from the knowledge

about model properties in a given dimension, properties in

another dimension can often be predicted. Using BRS mod

els for describing multiscale structures relies upon union and

intersection of BRS models, each individual model capturing

a particular scale of the structure. Despite the large number

of articles and textbooks about BRS, these are deemed insuf

ficiently explicit to permit nonspecialised readers to apply

these models to practical problems. By giving all necessary

formulae along with an illustrative example, this article aims

to form a guide to the use of BRS for modelling multiscale

structures.

2. Basic results for combinations of Boolean
random sets through union and intersection

In this section, basic results for combining random closed sets

through intersection and union are presented; these results

form the bases for modelling multiscale structures using

RACS. Eventually, these results are applied to the special case

of Boolean random sets.

RACS have been studied extensively in the field of math

ematical morphology pioneered by Matheron (1975). If K

describes all possible structuring elements in ℜd, where d is

the dimension of space, RACS A is uniquely characterised by

its Choquet capacity T(A,K) defined by Serra (1982):

T(A, Kx) = P{Kx ∩ A /= ∅} (1)

Subscript x indicates that the spatial location of structur

ing element K is to be taken into account in the general case.

Introducing the functional ˝(A, Kx) = P{Kx ⊂ A} yields:

T(A, Kx) = 1 − P{Kx ⊂ Ac} = 2(1 − q) − ˝(A, Kx) (2)

where Ac is A’s complementary set, and q is the Lebesgue frac

tion of Ac in ℜd. In the general case, the Choquet capacity

depends on the actual position x of structuring element K in

ℜd. In order to clarify the notations, results presented here

after are limited to stationary isotropic random sets; hence

the location index x is dropped. However, all results can be

extended to nonstationary sets by reintroducing position

locator x. Given that T(A,K) and ˝(A,K) are uniquely related

through Eq. (2), only functional ˝(A,K) is used from this point

onward for characterising RACS. In particular, when Kx is the

doublet {x, x + h}, functional ˝(A,K) is equal to the wellknown

pair correlation function P{x ∈ A; x + h ∈ A} (Torquato, 2002),

also referred to as twopoint correlation function (King, 1996).

Here, it is noted ˝(A,h) in the isotropic case. It can be shown

that ˝(A,K) and ˝(Ac,K) are uniquely related through:

˝(A, K) = 1 − 2q + ˝(Ac, K) (3)

In the field of mathematical morphology, ˝(Ac,h) is referred

to as the covariance function (Aubert and Jeulin, 2000).

Let us define RACS A as the intersection of n mutually inde

pendent stationary isotropic RACS Ai, that is A =
⋂n

i=1
Ai. We

have:

˝

(

n
⋂

i=1

Ai, K

)

= P{K ⊂ A} = P{K ⊂ A1} × P{K ⊂ A2} × · · ·

× P{K ⊂ An} =

n
∏

i=1

˝(Ai, K)

So that:

˝

(

n
⋂

i=1

Ai, K

)

=

n
∏

i=1

˝(Ai, K) (4)

Let us now define qi and q as the fractions of the

complementary sets Ac
i

and Ac in ℜd respectively. Since

˝(Ac,K = {x}) = q, Eq. (3) yields: q = 1 −
∏n

i=1
(1 − qi).



Contrary to the intersection case, the union of n mutually

independent stationary isotropic RACS is easily defined using

the complementary sets Ac =
(
⋃n

i=1
Ai

)c
= Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

n.

Hence, we have:

˝(Ac, K) = P{K ⊂ Ac} = P{K ⊂ Ac
1} × P{K ⊂ Ac

2} × · · · × P{K ⊂ Ac
n}

=

n
∏

i=1

˝(Ac
i , K)

Eq. (3) gives: q =
∏n

i=1
qi. Finally, we obtain:

˝

(

n
⋃

i=1

Ai, K

)

= 1 − 2

n
∏

i=1

qi +

n
∏

i=1

(˝(Ai, K) − 1 + 2qi) (5)

These expressions apply to any types of RACS. In particular,

they apply to Boolean random sets. With BRS, the functional

˝(A,K) is given by (Serra, 1982):

˝(A, K) = 1 − 2q + e−�d�̄d(A′⊕
⌣
K) = 1 − 2q + e�̄d(A′⊕

⌣
K)/�̄d(A′) (6)

where �̄d(B) is the average Lebesgue measure of an element

B in ℜd, A′ is the primary grain of the BRS, �d is the intensity

of BRS in ℜd, ⊕ is Minkowski addition and
⌣
K is the element

K reflected through the origin of the element. The second

expression for ˝(A,K) uses the reduced geometric covariogram

rd = �̄d(A′ ⊕
⌣
K)/�̄d(A′). This expression is particularly interest

ing for model parameter estimation purposes in that it does

not require knowledge of the Boolean process intensity �d. This

means that calibration of a BRS from functional ˝(A,K) only

involves determining q and the geometric properties of the pri

mary grain A′. Since definition of ˝(A,K) yields ˝(A,{x}) = 1 − q,

where {x} is a point at an arbitrary location x, �d follows from:

�d =
1

�̄d(A′)
ln
(

1

q

)

(7)

We introduce the notation Kd(h) for the geometric covari

ogram of the BRS’ primary grain A′ in ℜd, and rd(h) = Kd(h)/Kd(0)

is the primary grain’s reduced geometric covariogram in ℜd.

Analytical expressions of geometric covariograms are avail

able in the literature for several primary grains, such as discs,

spheres, ellipsoids and polyhedra, as well as for distributions

of such primary grains (Jeulin, 2000). Then, Eqs. (6) and (7)

simplify to Eqs. (8) and (9) respectively:

˝(A, h) = 1 − 2q + q2e�dKd(h) = 1 − 2q + q2−rd(h) (8)

Fig. 1 – Realisation of a BRS at a chosen reference

resolution.

�d =
1

Kd(0)
ln
(

1

q

)

(9)

Eqs. (6) and (7) in the general case (alt. (8) and (9) in the case of

the pair correlation function ˝(A,h)) can readily be substituted

into Eqs. (4) and (5) in order to predict functional ˝(A,K) (alt.

functional ˝(A,h)) for any combination of union and intersec

tion of independent stationary isotropic BRS.

The results that have been presented in this section

form the basis for quantifying multiscale structures through

combinations of BRS using union and intersection. Such com

binations apply to BRS and their complementary sets, recalling

that ˝(Ac,K) and ˝(A,K) are uniquely related through Eq. (2). An

interesting example of combination of BRS and their comple

mentary sets can be found in Greco et al. (1979).

3. Application of combined Boolean
random sets to multiscale materials modelling

Fitting combinations of BRS to multiscale structures is the

purpose of the next section of this paper.

3.1. Boolean random set parameter estimation

Having recalled that functional ˝(A,K) of any combination of

BRS and/or their complementary sets is entirely predictable

Fig. 2 – Example of regularised versus unregularised functional ˝(A,h).



analytically, the remaining question one may ask is whether

it is possible to extract elementary BRS parameters (A′, �d) from

“observed” single or multiscale structures.

Firstly, one may wonder whether it is possible to esti

mate the “true” BRS model parameters directly from the value

of functional ˝(A,h) measured at a given resolution. Indeed,

because of pixelisation of the microstructure, one might

expect that the resolution of observation of the microstruc

ture may degrade the morphology of the set to the point

where BRS parameters can no longer be estimated with pre

Fig. 3 – Effect of resolution on measurement of ˝(A,h).



Fig. 3 – (Continued)

cision. In order to test this point, let us consider a BRS with

monodisperse discs as primary grains. In the unit length of an

arbitrary reference pixel length, which we choose to be that

of the 2048 × 2048 sampling resolution, we choose the “true”

values of disc diameter and process intensity as a = 250 pixels

and � = 2 × 10−5 per unit area respectively. One realisation of

the BRS, generated at the 2048 × 2048 reference resolution, is

shown in Fig. 1.

One thousand (1000) realisations of the BRS were gener

ated at resolutions lower than the reference resolution, from

1024 down to 16 pixels. At every resolution, functional ˝(A,h)

was measured for each realisation and averaged over the

1000 realisations. In each case, realisations were generated at

the 2048 × 2048 resolution using a = 250 pixels and �2 = 2 × 10−5;

then each realisation was rescaled at a lower resolution using

bicubic interpolation. The process of rescaling each realisation

requires some care, since it will in the end have bearing on

the measurement of functional ˝(A,h). Two distinct solutions

may be used. Starting with a binary image such that of Fig. 1,

rescaling to a lower pixel resolution yields a grayscale image,

since boundary pixels will combine to give nonbinary intensi

ties. The image can then be rebinarised using the appropriate

threshold, and the measured functional ˝(A,h) can be mea

sured on the binary realisation that results. It is interesting to

note that the rebinarisation step is not absolutely necessary.

Indeed, the theoretical expression for ˝(A,h) of a rescaled BRS

without rebinarisation can be calculated by regularising func

tional ˝(A,h) at the reference resolution. If n1 is the reference

pixel resolution (e.g. 2048), and n2 the rescaled pixel resolu

tion (e.g. 64), then the theoretical expression for ˝(A,h) at the

rescaled resolution can be predicted using Eq. (10):

Qn2 (A, h)=

∫ h+0.5(n1/n2)

h−0.5(n1/n2)

(
∫ 0.5(n1/n2)

−0.5(n1/n2)

Qn1 (A, |w−u|)dw

)

du (10)

Fig. 2 gives an example of regularised and unregularised ˝(A,h)

for the BRS calculated at the resolution of 64. Having chosen an

arbitrary reference resolution of 2048, functional ˝(A,h) at the

64 resolution gives one value every 32 reference pixel length

units. The difference between the 2 theoretical functionals

occurs at the origin. In order to estimate BRS parameters from

grayscale or rebinarised realisations, one should therefore use

the regularised or unregularised expressions for ˝(A,h) accord

ingly.

The functional ˝(A,h) mean value and 95% confidence

intervals were measured at each resolution using orthogo

nal sampling (Jiao et al., 2008) of rebinarised images. As seen

from Fig. 3, the measured ˝(A,h) closely matches the theoret

ical one down to the 64 × 64 resolution. Given that the BRS’

primary grain is only 7.8 pixels at the 64 × 64 resolution, this

simple test tells us that the morphology of Boolean random

sets is particularly well conserved even at low resolution. This

observation is quite significant in practice; indeed, it means

that BRS parameters can be estimated even from low resolu

tion images of microstructures, which is very interesting from

an experimental standpoint. BRS parameter estimation from

measured covariance is the object of the next paragraph.

Given the nonlinearity of the parameter estimation prob

lem at hand, simulated annealing (Kirkpatrick et al., 1983) is

used in this work for BRS parameter estimation. Given a prop

erly chosen cost (or energy) function, such a global parameter

estimation technique will yield the global minimum, when

other estimation schemes might stop in a local minimum. This

work uses the ASAMIN code developed by Sakata (1999), which

emulates Lester Ingber’s code (Ingber, 1989, 2008) for param

eter estimation using Adaptive Simulated Annealing (ASA).

The ASA Ccode is a fast simulated annealing scheme that

uses an exponentially decreasing temperature. The code uses

reannealing and has several tuning options for dealing with

Fig. 4 – Estimation of BRS parameters with ASA as a function of resolution.



many types of nonlinear stochastic problems. By combining

a variable number of BRS models, the model parameter esti

mation scheme consists in finding the parameters of the BRS

that yield the lowest overall cost. The cost function used here

is defined by the weighted sum of squares of residuals given

by Eq. (11):

cost =

n dim/2
∑

h=1

w(h) × (˝(A, h) − ˆ̋ (A, h))
2

(11)

Reflecting the relative number of times lag h can be placed

onto the image when ˝(A,h) is measured using orthogo

nal sampling (Jiao et al., 2008), this work uses the following

weights w(h) for estimating BRS parameters from an image of

length n dim:

w(h) = n dim − h (12)

The ASA algorithm was used to estimate the BRS parame

ters from function ˝(A,h) measured at the abovementioned

resolutions. Fig. 4 shows the estimated BRS parameters as

a function of sampling resolution and their 95% confidence

intervals.

From the above results, it can be concluded that the

ASA parameter estimation scheme is a suitable scheme for

estimating BRS parameters from functional ˝(A,h) measure

ments. As expected from the earlier observations, this simple

numerical example confirms that provided resolution is not

too low with respect to the primary grain size, resolution does

not affect the precision or the accuracy of the parameter esti

mation for BRS.

3.2. Parameter estimation for combined Boolean

random sets

Having discussed some of the practical questions of parame

ter estimation for a single BRS, the ASA parameter estimation

scheme was applied to known BRS combined through inter

section. Firstly, the target value for ˝(A,h) was taken as the

theoretical value for the intersection of 4 BRS whose parame

ters are given in Table 1. The parameters are given in reference

pixel length unit from a 1024 × 1024 reference resolution. As

shown in Fig. 5, which displays a realisation of the combined

BRS, the combination of these BRS truly yields a multiscale

microstructure.

Since the ASA scheme is tested against the theoreti

cal functional ˝(A,h), the cost function is defined using

unweighted Eq. (13) rather than Eq. (11):

cost =

n dim/2
∑

h=1

(˝(A, h) − ˆ̋ (A, h))
2

(13)

Fig. 5 – Realisation of the combined BRS example

(parameters are given in Table 1).

Fig. 6 – Variation of the cost function with increasing

number of BRS.

Fig. 6 shows the variation of the cost function that was

obtained as the number of combined BRS – with monodisperse

discs as primary grains – is increased from 1 to 10. The ASA

parameter estimation algorithm is able to identify a clear min

imum which corresponds to the combination of exactly 4 BRS.

The estimated BRS parameters are given in Table 1 in the two

righthand side columns. The agreement between actual and

estimated parameters proves that the ASA algorithm is able

to recover the right combination of BRS accurately.

Having established that the ASA estimation scheme can

successfully estimate combined BRS parameters from theo

retical functional ˝(A,h), we can now assess the ASA scheme

against ˝(A,h) measured from realisations of combined BRS.

Because combined BRS in effect yield multiscale microstruc

Table 1 – Test of ASA algorithm for estimation of combined BRS parameters.

BRS Ai Parameters of 4 independent stationary isotropic BRS
using monodisperse discs as primary grains

Estimated parameters using ASA

�2i number of discs/unit surface area ai disc diameter (pixel) �̂2i âi

A1 1 × 10−5 170 9.95 × 10−6 168.70

A2 1 × 10−4 80 1.04 × 10−4 79.20

A3 5 × 10−3 16 5.08 × 10−3 15.89

A4 1 × 10−1 4 1.01 × 10−1 3.99



Fig. 7 – Parameter estimates as a function of resolution for

combined BRS.

tures, the problem of pixel resolution and image size becomes

critical. If the resolution is lower than the characteristic size

of a given random set present in the microstructure, it goes

without saying that it will not be possible to estimate the cor

responding BRS parameters accurately. If the image size is

insufficient, the random sets with the largest characteristic

dimension may not be sampled in a representative manner;

hence it will not be possible to estimate its parameters accu

rately. Surely, these issues could be circumvented provided

large high resolution images are available. In practice, one

is often faced with limitations on available combinations of

image size and pixel resolution. As an illustrative example, 100

realisations of the combined BRS of Table 1 were generated

at different pixel resolutions: 512 × 512, 256 × 256, 128 × 128,

and 64 × 64. Combined BRS parameters were estimated using

ASA for the average measure of ˝(A,h) at each resolution. The

parameter estimates are plotted in Fig. 7 as a function of res

olution.

As expected, we observe that the combination of estimated

BRS parameters becomes closer to its true value as resolution

is increased. This result is in fact a simple consequence of the

fact that the measured ˝(A,h) becomes closer to the theoreti

cal value as resolution increases. In our example, we find that

the ASA scheme is able to estimate the correct combination

of parameters for all 4 BRS at a 512 × 512 resolution; however,

it does not give satisfactory results at the 256 × 256 resolution.

The smallest primary grain being a 4 pixel diameter disc at the

1024 × 1024 reference resolution, this yields 2 pixel diameter

discs at the 512 × 512 resolution. From this simple observation,

one may conclude as a practical rule that the lowest resolution

for BRS parameter estimation should be such that one pixel is

equal to the size of the smallest physical feature one wishes

to observe.

Our results thus far have enabled us to review some

key practical building blocks for matching a combination of

Boolean random sets to twodimensional binary images of

multiscale microstructures:

 Functional ˝(A,h) for any combination of BRS through union

and intersection is entirely predictable analytically through

Eqs. (4) and (5).

 The ASA parameter estimation scheme is suitable for

estimating parameters of combined BRS from measured

functional ˝(A,h).

 The cost function given by Eqs. (10) and (11) is satisfactory

for identifying the best combination of BRS.

 Given the sensitivity of combined BRS parameter estimation

to pixel resolution, pixel length should be no greater than

the size of the smallest microstructural feature or scale one

wishes to characterise.

With this in mind, we are now in a position to apply the

proposed combined BRS parameter estimation scheme to real

microstructures.

3.3. Modelling real microstructures with combined BRS

Fig. 8 shows a binarised crosssection image of Berea per

meable sandstone published by Dullien (1992). We shall

assume that this image corresponds to a plane taken at ran

dom through a threedimensional isotropic structure. Clearly,

there is no relevance in attempting to fit BRS with two

dimensional primary grains to a crosssection image through

a threedimensional microstructure. Although a great vari

ety of threedimensional primary grains can be used, we

Fig. 8 – Measurement of functional ˝(A,h) for original and simulated microstructures.



Fig. 9 – Visual comparison between original microstructure (left) and simulated microstructure using estimated BRS

parameters (right).

shall restrict our application of the above results to BRS with

spheres as primary grains. Amongst the standard diameter

size distributions that can be used, we limit the parame

ter estimation exercise to 3 sphere diameter distributions:

monodisperse, uniform and linear. The ASA parameter esti

mation scheme returned 2 solutions that yielded the lowest

cost value overall:

 5 BRS with monodisperse spheres as primary grains. The

estimated diameters and process intensities are a = (13.8;

18.2; 20.3; 27.9; 33.3) pixels and �3 = (0.00116; 0.00126; 0.00110;

0.00059; 0.00038) spheres per unit volume respectively.

 1 BRS with a linear diameter distribution of spheres as

primary grains. The estimated maximum diameter of the

spheres and process intensity are a = 15.823 pixels and

�3 = 1.813 × 10−3 spheres per unit volume respectively.

Here, the values of the parameters are given in the pixel

length unit of the original image. One hundred realisations of

the fitted BRS were generated, and the average function ˝(A,h)

is plotted in Fig. 8 with the value measured on the original

sandstone image. The agreement between the two confirms

of the effectiveness of the BRS parameter estimation scheme

proposed in this work.

A random crosssection taken through a three

dimensional realisation of the estimated BRS with linearly

distributed parameters (a = 15.823; �3 = 1.813 × 10−3) is shown

in Fig. 9. Its visual similarity to the sandstone image gives an

indirect confirmation of the BRS parameter estimates. In prac

tice, as the eye is sensitive to small morphological differences,

such as the difference between the slightly angular grains in

the original structure and the roundness of the spheres used

with the BRS, a good practical way for comparing original

and simulated microstructures visually is to look at them

sidebyside slightly out of focus. A distribution of angular

primary grains, such as Poisson polyhedra for example might

possibly give even better results in this particular case.

The fitted BRS being threedimensional, the estimated

parameters readily permit reconstruction of the sandstone

microstructure in three dimensions. As indicated earlier, the

simulated crosssection of Fig. 9 was in fact taken as a ran

dom crosssection through a threedimensional realisation

of the estimated BRS. The lefthand side image of Fig. 10

shows a threedimensional realisation of the estimated BRS,

whereas the righthand side image shows the corresponding

pore space.

Overall, the microstructure fitting procedure described in

this paper provides straightforward implementation tools

for simulating threedimensional microstructures from two

Fig. 10 – Threedimensional simulation of Berea sandstone using estimated BRS parameters.



dimensional observations using combinations of BRS. From

a materials analysis viewpoint, this approach is quite pow

erful. Because one is able to generate a limitless number of

realisations of the threedimensional microstructure from the

estimated BRS, combined BRS give material scientists and

engineers the possibility of seeking and obtaining statistically

robust results about the relationship between morpholog

ical/topological properties of the microstructure and the

properties in service. For example, a realisation such as Fig. 10,

which can be generated in a matter of seconds, can be poured

into a fluid flow simulation package for analysis of its trans

port properties. Moreover, important topological properties

such as the Euler–Poincaré number can be derived analytically

from BRS parameters (Miles, 1976). The possibility of deriving

topological results analytically from combined BRS is another

significant strength of using combinations of BRS to describe

real microstructures.

This paper has presented elementary and easily imple

mentable results and procedures for fitting combinations of

BRS to microstructures. These practical tools are sufficient for

anyone who wishes to start quantifying a material structure

using BRS. Nevertheless, several issues of practical signifi

cance were not addressed in the present paper. These are:

 The cost function that has been used in this work relies

solely on functional ˝(A,h). Such a function may not be suf

ficient to differentiate between closely related combinations

of BRS. Evidence of this can be found in the results presented

earlier. Indeed, amongst the three types of BRS that were

used to fit the sandstone microstructure example, the ASA

parameter estimation scheme returned the same lowest

cost value for both a combination of 5 BRS with monodis

perse spheres and a single BRS with linearly distributed

spheres. Additional functionals, such as the threepoint

functional ˝(A,h1,h2) (Aubert and Jeulin, 2000) can be added

into the cost function in order to make finer distinctions

between BRS.

 With the sole objective of testing the proposed com

bined BRS parameter estimation scheme, the parameter

estimation exercise for the sandstone microstructure was

intentionally limited to combinations of 3 possible BRS

through intersection. Moreover, no allowance was made for

combining BRS of different types. In practice, it is natural

to want to test a greater number of possible combinations.

One must be aware of the fact that the space of possible

combinations is virtually infinite. Indeed, it depends on the

types of BRS one may consider, the number of BRS used

in a combination, the phase of the BRS that is used (A or

Ac), and finally, the nature and order of the combination

(union and intersection). In the end, one ought to restrict

the search to a limited number of possible combinations;

otherwise the problem will become overwhelming. Obser

vation of the microstructure of interest is a fundamental

prerequisite for orientating the choice of possible BRS and

the way they might be combined.

 The results and methods presented in this paper can read

ily be used to estimate threedimensional BRS parameters

not only from crosssections, but also from volume images

of microstructure (e.g. tomographic images). Where tomo

graphic measurements can only yield a few images of a

microstructure of interest because of time and cost issues,

estimation of combined BRS from volume images can simu

late as many realisations of the microstructure as required.

Hence, the authors are of the opinion that microstructure

modelling using spatial statistics, such as described in this

paper for instance, remains an invaluable companion for

tomographic imaging work.

 Not all microstructures can be described using combina

tions of BRS. There exist a number of techniques that

may help decide whether BRS can possibly render a given

microstructure. The reader is invited to review Serra’s clas

sic textbook (Serra, 1982), which contains several pointers

about this important issue. The central question is what is

it that one wants to achieve by matching a combination of

BRS to an observed microstructure. For example, if we are

interested in the general connectivity of a given material

phase inside a microstructure, like with pores for instance,

it may not be necessary to seek a model that captures all

the details of that particular phase. If this is the case, then

one is likely to find a relatively simple combination of BRS

that will describe the texture satisfactorily, even though it

is not capable of describing all the textural details. In this

sense, the results presented in this paper have a wide range

of applicability.

4. Conclusions

Boolean random sets have powerful morphological and topo

logical properties. Moreover, they can be combined in any

number of ways to produce a very wide variety of microstruc

tures. Based on wellestablished theory of BRS, this paper

reviews elementary applied notions about combination of

BRS, with the objective of providing material scientists and

engineers with results they can readily apply to their own

analyses of materials. The work proposes and validates a

reliable solution for estimating combined BRS parameters

through intersection and union, from the covariance func

tion measured on images of microstructure. Using a stepwise

approach that starts from the simplest BRS to combinations

of BRS, this work shows that Adaptive Simulated Annealing

is able to recover BRS parameters efficiently using a simple

cost function. Various issues related to parameter estimation

from images, such as pixel resolution, are also discussed in a

practical sense. It is found that BRS are well conserved as pixel

resolution decreases, which is a strong argument in favour of

using such models for describing multiscale microstructures.

Finally, the proposed combined BRS parameter estimation

scheme is applied to a real case situation; it is able to esti

mate BRS that yield convincing realisations of the observed

microstructure in two and three dimensions.
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