24 research outputs found

    Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer

    Get PDF
    In this paper, the adaptive fuzzy tracking control is proposed for a class of multi-input and multioutput (MIMO) nonlinear systems in the presence of system uncertainties, unknown non-symmetric input saturation and external disturbances. Fuzzy logic systems (FLS) are used to approximate the system uncertainty of MIMO nonlinear systems. Then, the compound disturbance containing the approximation error and the time-varying external disturbance that cannot be directly measured are estimated via a disturbance observer. By appropriately choosing the gain matrix, the disturbance observer can approximate the compound disturbance well and the estimate error converges to a compact set. This control strategy is further extended to develop adaptive fuzzy tracking control for MIMO nonlinear systems by coping with practical issues in engineering applications, in particular unknown non-symmetric input saturation and control singularity. Within this setting, the disturbance observer technique is combined with the FLS approximation technique to compensate for the effects of unknown input saturation and control singularity. Lyapunov approach based analysis shows that semi-global uniform boundedness of the closed-loop signals is guaranteed under the proposed tracking control techniques. Numerical simulation results are presented to illustrate the effectiveness of the proposed tracking control schemes

    Robust tracking control of a flexible manipulator with limited control input based on backstepping and the Nussbaum function

    Get PDF
    A flexible manipulator is a versatile automated device with a wide range of applications, capable of performing various tasks. However, these manipulators are often vulnerable to external disturbances and face limitations in their ability to control actuators. These factors significantly impact the precision of tracking control in such systems. This study delves into the problem of attitude tracking control for a flexible manipulator under the constraints of control input limitations and the influence of external disturbances. To address these challenges effectively, we first introduce the backstepping method, aiming to achieve precise state tracking and tackle the issue of external disturbances. Additionally, recognizing the constraints posed by control input limitations in the flexible manipulator's actuator control system, we employ a design approach based on the Nussbaum function. This method is designed to overcome these limitations, allowing for more robust control. To validate the effectiveness and disturbance rejection capabilities of the proposed control strategy, we conduct comparative numerical simulations using MATLAB/Simulink. These simulations provide further evidence of the robustness and reliability of the control strategy, even in the presence of external disturbances and control input limitations

    ADAPTIVE FUZZY CONTROL CONCEPTS AND SURVEY

    Get PDF
    In this paper an adaptive fuzzy control concepts and survey are introduced. Starting with the global adaptive control towered the adaptive fuzzy control, the required concepts are explained. Some of the adaptive fuzzy control subjects are viewed as sequential steps with simplifying their views to enable the reader to get a fast and global idea with some details if it is necessary. Most of the stability considerations in the corresponding references are proved by using the lyapunov criteria, where the derivation is a mathematical concept with long steps. Therefore, it is mentioned without details, and for more information, the corresponding reference must be studied. It can be seen from this topic, that the main role of the fuzzy system in adaptive control is the system identification, controller construction and output predictor. The adaptive fuzzy control survey is presented at the end, so the reader can go along with the topics after he reviewed the necessary concepts

    Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems

    Get PDF
    This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    Adaptive neural control of nonlinear systems with hysteresis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A SURVEY ON CONTROL TECHNIQUES OF A BENCHMARKED CONTINUOUS STIRRED TANK REACTOR

    Get PDF
    The study carried out in this paper unveils a survey on issues related to modelling problems control strategies of a Continuous Stirred Tank Reactor (CSTR), a highly nonlinear plant containing numbers of stable and unstable operating points is considered. The issues discussed are categorised into regulation, feedback linearization, flatness, observation and estimation as well as challenges related to equilibrium points concerning CSTR. In this study, the limited capability of a conventional PID controller is discussed based on preliminary description and a dynamic modelling of the nonlinear plant. Moreover, the limitations of the conventional PID is illustrated through a simulation using nonlinear model of CSTR carried out under input constraint and the presence of bounded disturbances. The result shows that a fixed PID will not guarantee consistent performance throughout operating set points. The feedback linearization formalism is presented to prove that only regulation in the neighbourhood of operating point is possible. Non-minimum phase property exhibited by a CSTR is investigated as well. Flatness control is demonstrated as one of the possible linearization control technique achieving the objective of the trajectory trackin
    corecore