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Summary

Summary

Control of nonlinear systems preceded by unknown hysteresis nonlinearities is a chal-

lenging task and has received increasing attention in recent years with growing in-

dustrial demands involving varied applications. The most common approach is to

construct an inverse operator, which, however, has its limits due to the complexity

of the hysteresis characteristics. Therefore, there is a need to develop a general con-

trol framework to achieve the stable output tracking performance for the concerned

systems and mitigation of the effects of hysteresis without constructing the hysteresis

inverse, especially in the presence of unmodelled dynamics and uncertain hysteresis

models.

The main purpose of the research in this thesis is to develop adaptive neural con-

trol strategies for uncertain nonlinear systems preceded by several different hysteresis

models, including the backlash-like hysteresis, the classic Prandtl-Ishlinskii (PI) hys-

teresis, and the generalized PI hysteresis. By investigating the characteristics of

these hysteresis models, neural network (NN) based control approaches fused with

these hysteresis models are presented for four classes of uncertain nonlinear systems.

For the control of a class of strict-feedback nonlinear systems preceded by unknown

backlash-like hysteresis, adaptive dynamic surface control (DSC) is developed with-

out constructing a hysteresis inverse by exploring the characteristics of backlash-like

hysteresis, which can be described by two parallel lines connected via horizontal line

segments. Through transforming the backlash-like hysteresis model into a linear-

in-control term plus a bounded “disturbance-like” term, standard robust adaptive

control used for dealing with bounded disturbances is applied.

vii



Summary

Furthermore, the control of a class of output feedback nonlinear systems subject to

function uncertainties and backlash-like hysteresis is studied. Adaptive observer back-

stepping using NN is adopted for state estimation and function on-line approximation

using only output measurements. In particular, a Barrier Lyapunov Function (BLF)

is introduced to address two open and challenging problems in the neuro-control area:

(i) for any initial compact set, how to determine a priori the compact superset, on

which NN approximation is valid; and (ii) how to ensure that the arguments of the

unknown functions remain within the specified compact superset. By ensuring bound-

edness of the BLF, we actively constrain the argument of the unknown functions to

remain within a compact superset such that the NN approximation conditions hold.

Thirdly, adaptive variable structure neural control is proposed for a class of uncertain

multi-input multi-output (MIMO) nonlinear systems under the effects of classic PI

hysteresis and time-varying state delays. Although there are some works that deal

with hysteresis, or time delay, individually, the combined problem, despite its practi-

cal relevance, is largely open in the literature to the best of the author’s knowledge.

The unknown time-varying delay uncertainties are compensated for using appropriate

Lyapunov-Krasovskii functionals in the design. Unlike backlash-like hysteresis, stan-

dard robust adaptive control used for dealing with bounded disturbances cannot be

applied here, since no assumptions can be made on the boundedness of the hysteresis

term of the classic PI model. In this thesis, new solution is provided to mitigate the

effect of the uncertain PI classic hysteresis.

Finally, a class of unknown nonlinear systems in pure-feedback form with the gener-

alized PI hysteresis input is considered. Compared with the backlash-like hysteresis

model and the classic PI hysteresis model, the generalized PI hysteresis model can

capture the hysteresis phenomenon more accurately and accommodate more gen-

eral classes of hysteresis shapes by adjusting not only the density function but also

the input function. The difficulty of the control of such class of systems lies in the

nonaffine problem in both system unknown nonlinear functions and unknown input

function in the generalized PI hysteresis model. To overcome this difficulty, in this

thesis, the Mean Value Theorem is applied successively, first to the functions in the

pure-feedback plant, and then to the hysteresis input function.

viii



List of Figures

List of Figures

2.1 Backlash-like hysteresis curves . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Classic Prandtl-Ishlinskii hysteresis curves . . . . . . . . . . . . . . . 17

2.3 Generalized Prandtl-Ishlinskii hysteresis curves . . . . . . . . . . . . . 19

2.4 Schematic illustration of (a) symmetric and (b) asymmetric barrier

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Compact sets for NN approximation . . . . . . . . . . . . . . . . . . 45

3.2 Tracking performance for the strict-feedback system with backlash-like

hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Control inputs for the strict-feedback system with backlash-like hysteresis 63

3.4 Neural weights for the strict-feedback system with backlash-like hysteresis 64

3.5 Estimate of disturbance bound for the strict-feedback system with

backlash-like hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Tracking performance for the output feedback system with backlash-

like hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Tracking error z1 (top) and control input w (bottom) for the output

feedback system with backlash-like hysteresis . . . . . . . . . . . . . 65

3.8 Function approximation results: f1(y) (top) and f2(y) (bottom) for the

output feedback system with backlash-like hysteresis . . . . . . . . . 66

ix



List of Figures

3.9 Parameter adaptation results for the output feedback system with

backlash-like hysteresis: norm of neural weights ‖θ̂1‖ (top); norm of

neural weights ‖θ̂2‖ (middle) and bounding parameter ψ̂ (bottom) . 66

3.10 Output trajectories for the output feedback system with backlash-like

hysteresis with different initial conditions . . . . . . . . . . . . . . . 67

4.1 Compact sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Output tracking performance of SISO plant S1 with classic PI hysteresis 97

4.3 Control signals of SISO plant S1 with classic PI hysteresis . . . . . . 97

4.4 Tracking error comparison result of SISO plant S1 with classic PI hys-

teresis and w/o vh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Learning behavior of neural networks of SISO plant S1 with classic PI

hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Norm of NN weights of SISO plant S1 with classic PI hysteresis . . . 99

4.7 The behavior of the estimate values of the density function, p̂(t, r) . . 99

4.8 Tracking error comparison result of SISO plant S1 with classic PI hys-

teresis for different k1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Tracking error comparison result of SISO plant S1 with classic PI hys-

teresis for different η . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.10 Tracking error comparison result of SISO plant S1 with classic PI hys-

teresis for different ε . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 Tracking error comparison result of SISO plant S1 with classic PI hys-

teresis for different delay ∆t as pointed in Remark 4.8 (the sampling

time T = 0.005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.12 Output tracking performance of MIMO plant S2 with classic PI hysteresis102

4.13 Control signals of MIMO plant S2 with classic PI hysteresis . . . . . . 102

x



List of Figures

4.14 Norm of NN weights of MIMO plant S2 with classic PI hysteresis . . 103

4.15 Other states of MIMO plant S2 with classic PI hysteresis . . . . . . . 103

4.16 Learning behavior of neural networks of MIMO plant S2 with classic

PI hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.17 Tracking error comparison result of MIMO plant S2 with classic PI

hysteresis for different k11 and k21 . . . . . . . . . . . . . . . . . . . . 104

4.18 Tracking error comparison result of MIMO plant S2 with classic PI

hysteresis for different η1 and η2 . . . . . . . . . . . . . . . . . . . . . 105

4.19 Tracking error comparison result of MIMO plant S2 with classic PI

hysteresis for different ε . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Tracking performance for the pure-feedback system with generalized

PI hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 State x2 for the pure-feedback system with generalized PI hysteresis . 128

5.3 Control signals for the pure-feedback system with generalized PI hys-

teresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Norm of NN weights for the pure-feedback system with generalized PI

hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Nussbaum function signals for the pure-feedback system with general-

ized PI hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Estimation of disturbance bound, d̂, for the pure-feedback system with

generalized PI hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



Notation

Notation

R Field of real numbers
Rn Linear space of n-dimensional vectors with elements in R
Rn×m Set of n×m-dimensional matrices with elements in R
‖x‖ Euclidean vector norm of a vector x

(̂·) Estimate of (·)
(̃·) (̂·)− (·)
λmin(A) Minimum eigenvalue of the matrix A where all eigenvalues are real
λmax(A) Maxmum eigenvalue of the matrix A where all eigenvalues are real
x̄i [x1, ..., xi]

T

z̄i [z1, z2, ..., zi]
T

λ̄i [λ1, λ2, ..., λi]
T

ȳ
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Hysteresis and Systems Control

In recent decades, dealing with hysteresis in control design has become an important

research topic, driven by practical needs and theoretical challenges. Hysteresis non-

linearities exist in many industrial processes, especially in position control of smart

material-based actuators, including piezoceramics and shape memory alloys [1]. The

principal characteristic of hysteresis is that the output of the system depends not

only on the instantaneous input, but also on the history of its operation. When

a nonlinear plant is preceded by the hysteresis nonlinearity, the system usually ex-

hibits undesirable inaccuracies or oscillations and even instability [2, 3] due to the

nondifferentiable and nonmemoryless character of the hysteresis. Interest in control

of dynamic systems with hysteresis is also motivated by the fact that they are non-

linear systems with nonsmooth nonlinearities for which traditional control methods

are insufficient and thus requiring development of alternate effective approaches [4].

Development of a general frame for control of a system in the presence of unknown

hysteresis nonlinearities is a quite challenging task.

To address such a challenge, the thorough characterization of these nonlinearities

forms the foremost task. Appropriate hysteresis models may then be applied to

1



1.1 Background and Motivation

describe the nonsmooth nonlinearities for their potential usage in formulating the

control algorithms. Hysteresis models can be roughly classified into physics based

models and purely phenomenological models. Physics-based models are built on first

principles of physics. Phenomenological models, on the other hand, are used to pro-

duce behaviors similar to those of the physical systems without necessarily providing

physical insight into the problems [5]. The basic idea consists of the modeling of the

real complex hysteresis nonlinearities by the weighted aggregate effect of all possible

so-called elementary hysteresis operators. Elementary hysteresis operators are non-

complex hysteretic nonlinearities with a simple mathematical structure. The reader

may refer to [6] for a review of the hysteresis models.

With the developments in various hysteresis models, it is by nature to seek means

to fuse these hysteresis models with the available control techniques to mitigate the

effects of hysteresis, especially when the hysteresis is unknown, which is a typical case

in many practical applications. However, the discussions on the fusion of the available

hysteresis models with the available control techniques is spare in the literature [7].

In the literature, the most common approach to mitigate the effects of hysteresis is

to construct an inverse operator, which was pioneered by Tao and Kokotovic [3]. For

hysteresis with major and minor loops, they used a simplified linear parameterized

model to develop an adaptive hysteresis inverse model with parameters updated on

line by adaptive laws. Model based compensation of hysteresis has been addressed in

many research papers. The main issue is how to find the inverse of the hysteresis [8].

Compensation of hysteresis effects in smart material actuation systems using Preisach

model based control architectures has been studied by many researchers [8]. Ge and

Jouaneh [9] proposed a static approach to reduce the hysteresis effects in tracking

control of a piezoceramic actuator for desired sinusoidal trajectory. The relationship

between input and output of the actuator was first initialized by a linear approxi-

mation model of a specific hysteresis. The Preisach model of the hysteresis was then

used to redefine the corresponding input signals for the desired output of the actu-

ator displacements. Proportional-integral-derivative (PID) feedback controller was

used to adjust the tracking errors. The developed methods worked for both specific

trajectories and required resetting for different inputs. Galinaitis [10] analytically

2



1.1 Background and Motivation

investigated the inverse properties of the Preisach model and proved that a Preisach

operator can only be locally invertible. He presented a closed form inverse formula

when the weight function of the Preisach model was taking a specific form. Mittal and

Meng [11] developed a method of hysteresis compensation in electromagnetic actua-

tor through inversion of numerically expressed Preisach model in terms of first-order

reversal curves and the input history. Croft, Shed and Devasia [12] used a different

approach. Instead of modelling the forward hysteresis in pizoceramic actuators and

then finding the inverse, they directly formulated the inverse hysteresis effect using

Preisach model. Also in [13], an inverse Preisach model was proposed with magnetic

flux density and its rate as inputs, and the magnetic fields as the output.

Methods based on the inverse of Krasnosel’skii-Pokrovskii (KP) model can be found

in [10, 14]. Galinaitis mathmatically investigated the properties and the discrete

approximation method of the KP operators [10]. Webb defined a parameterized

discrete inverse KP model, combined with adaptive laws to adjust the parameters on

line to compensate hysteresis effects[14]. Recently, a feed-forward control design based

on the inverse of Prandtl-Ishlinskii (PI) model was also applied to reduce hysteresis

effects in piezoelectric actuators [15].

Essentially, the inversion problem depends on the phenomenological modelling meth-

ods and strongly influences practical applications of controller design. Due to the

complexity of the hysteresis characteristics, especially the multi-value and nonsmooth-

ness features, it is quite a challenge to find the inverse hysteresis models. Thus, those

inverse based methods are sometimes complicated, computationally costly and highly

sensitive to the model parameters with unknown measurement errors. These issues

are directly linked to the difficulty of stability analysis of the systems except for cer-

tain special cases [3]. Therefore, other advanced control techniques to mitigate the

effects of hysteresis have been called upon and have been studied for decades.

In [16], robust adaptive control was investigated for a class of nonlinear systems

with unknown backlash-like hysteresis, for which, adaptive backstepping control was

designed in [17]. In [18] and [19], adaptive variable structure control and adaptive

backstepping methods were proposed, respectively, for a class of continuous-time

3



1.1 Background and Motivation

nonlinear dynamic systems preceded by hysteresis nonlinearity with the Prandtl-

Ishlinskii (PI) hysteresis model representation.

However, in most of the above works, the dynamics of systems were expressed in the

linear-in-parameters form, for which the regressor is exactly known and the uncer-

tainty is parametric and time-invariant. It is therefore of interest to develop methods

to deal with the case with functional uncertainties, so as to enlarge the class of appli-

cable systems. With the celebrated success and rapid development of approximation

based control in solving functional uncertainties, there is a need to carry out investi-

gations within this framework and develop new tools to deal with uncertain nonlinear

systems preceded by hysteresis, without the need of constructing an inverse operator

for the hysteresis.

1.1.2 Neural Networks

Artificial neural networks (ANNs) are inspired by biological neural networks, which

usually consist of a number of simple processing elements, call neurons, that are

interconnected to each other. In most cases, one or more layers of neurons are con-

nected to each other in a feedback or recurrent way. Since McCulloch and Pitts [20]

introduced the idea of studying the computational abilities of networks composed

of simple models of neurons in the 1940s, neural network techniques have under-

gone great development and have been successfully applied in many fields such as

learning, pattern recognition, signal processing, modelling and system control. The

approximation abilities of neural networks have been proven in many research works

[21, 22, 23, 24, 25, 26, 27, 28]. The major advantages of highly parallel structure,

learning ability, nonlinear function approximation, fault tolerance and efficient analog

VLSI implementation for real-time applications, greatly motivate the usage of neural

networks in nonlinear system control and identification.

The early works of neural network applications for controller design were reported

in [29, 30]. The popularization of backpropagation (BP) algorithm [31] in the late

1980s greatly boosted the development of neural control and many neural control ap-

proaches have been developed [32, 33, 34, 35, 36]. Most early works on neural control

4



1.1 Background and Motivation

described creative ideas and demonstrated neural controllers through simulation or by

particular experimental examples, but were short of analytical analysis on stability,

robustness and convergence of the closed-loop neural control systems. The theoretical

difficulty arose mainly from the nonlinearly parametrized networks used in the ap-

proximation. The analytical results obtained in [37, 38] showed that using multi-layer

neural networks as function approximators guaranteed the stability and convergence

results of the systems when the initial network weights chosen were sufficiently close

to the ideal weights. This implies that for achieving a stable neural control system

using the gradient learning algorithms such as BP, sufficient off-line training must be

performed before neural network controllers are put into the systems.

Due to their universal approximation abilities, parallel distributed processing abili-

ties, learning, adaptation abilities, natural fault tolerance and feasibility for hardware

implementation, neural networks are made one of the effective tools in approximation

based control problems. Recently neural networks (NNs) have been made particularly

attractive and promising for applications to modelling and control of nonlinear sys-

tems. For NN controller design of general nonlinear systems, several researchers have

suggested to use neural networks as emulators of inverse systems. The main idea is

that for a system with finite relative degree, the mapping between system input and

system output is one-to-one, thus allowing the construction of a “left-inverse” of the

nonlinear system using NN. Using the implicit function theory, the NN control meth-

ods proposed in [38, 39] have been used to emulate the “inverse controller” to achieve

the desired control objectives. Based on this idea, an adaptive controller has been

developed using high order neural networks with stable internal dynamics in [40] and

applied in [41]. As an alternative, neural networks have been used to approximate

the implicit desired feedback controller (IDFC) in [42]. A multi-layer neural network

control method for single-input single-output (SISO) non-affine systems without zero

dynamics was also proposed in that paper. In this thesis, we mainly investigate the

implementation of neural networks as function approximators for the desired feedback

control, which can realize exact tracking.

Except that neural networks can be used as function approximators to emulate the

“inverse” control in nonlinear system research, there are many other areas, in which

neural networks play an important role. For example, neural networks combined

5



1.1 Background and Motivation

backstepping design are reported in [43], using neural networks to construct observers

can be found in [44, 45], neural network control in robot manipulators are reported in

[46, 47, 48, 49], neural identification of chemical processes by using dynamics neural

networks can be found in [50, 51], neural control for distillation column are reported

in [52, 53], etc. It should be noted, similar to neural networks, fuzzy system is another

kind of system, which has “intelligence” and has attracted many research interests.

It can also be used as function approximators. Research works in fuzzy system can

be found in [54, 55, 56].

1.1.3 Adaptive Neural Control of Nonlinear Systems

Research in adaptive control for nonlinear systems have a long history of intense

activities that involve rigorous problems for formulation, stability proof, robustness

design, performance analysis and applications. The advances in stability theory and

the progress of control theory in the 1960s improved the understanding of adaptive

control and contributed to a strong interest in this field. By the early 1980’s, several

adaptive approaches have been proven to provide stable operation and asymptotic

tracking. The adaptive control problem since then, was rigorously formulated and

several leading researchers have laid the theoretical foundations for many basic adap-

tive schemes. In the mid 1980s, research of adaptive control mainly focused on the

robustness problem in the presence of unmodeled dynamics and/or bounded distur-

bances. A number of redesigns and modifications were proposed and analyzed to

improve the robustness of the adaptive controllers, e.g., by applying normalization

techniques in controller design and modification of adaptation laws using projection

method [57], dead zone modifications [58, 59], ε-modification [60] and σ-modification

[61].

In last decades, in continuous-time domain, feedback linearization technique [62, 63,

64], backstepping design [65], neural network control and identification [46, 66] and

tuning function design have attracted much attention. Many remarkable results in

this area have been obtained [55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76].
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1.1 Background and Motivation

For SISO continuous-time nonlinear systems, the feasibility of applying neural net-

works for modelling unknown functions in dynamic systems has been demonstrated in

several studies. It was shown that for stable and efficient on-line control using the BP

learning algorithm, the identification of systems must be sufficiently accurate before

control action is initiated [32, 50, 38]. Recently, several good NN control approaches

have been proposed based on Lyapunov’s stability theory [66, 77, 78, 79, 80]. One

main advantage of these schemes is that the adaptive laws are derived based on the

Lyapunov synthesis method and therefore guaranteed the stability of continuous-time

systems without the requirement of off-line training. For strict-feedback nonlinear

SISO system, adaptive control scheme is still an active topic in nonlinear system con-

trol area. Using the backstepping design procedures, a systematic approach of adap-

tive controller design was presented for a class of nonlinear systems transformable to

a parametric strict-feedback canonical form, which guarantees the global and asymp-

totic stability of the closed-loop system [65, 66, 81]. Using the implicit function

theory, the NN control methods proposed in [38, 39] have been used to emulate the

“inverse controller” to achieve the desired control objectives. Based on this idea, an

adaptive controller has been developed using high order neural networks with stable

internal dynamics in [40] and applied in [41]. As an alternative, neural networks have

been used to approximate the implicit desired feedback controller in [42]. Multi-layer

neural network control method was also proposed for SISO non-affine systems without

zero dynamics in that paper. Furthermore, previous works on nonlinear non-affine

systems controller design [82] proposed a new control law for non-affine nonlinear

system for a class of deterministic time-invariant discrete system which is free of the

usual restrictions, such as minimum phase, known plant states etc. A general form of

control structure of adaptive feedback linearization is u = N̂(x)/D̂(x), where D̂(x)

must be bounded away from zero to avoid the possible controller singularity problem

[79]. The approach is only applicable to the class of systems whose dynamics are

linear-in-the-parameters and satisfy the so-called matching conditions. The matching

condition was relaxed to the extended matching condition in [83] and [84], and the

extended matching barrier was broken in [81] by using adaptive backstepping design

[65, 66, 85]. For single input multi outputs systems, some results can be found in

[86, 87].
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1.1 Background and Motivation

For multi-input multi-output (MIMO) continuous-time nonlinear systems, there are

few results available, due primarily to the difficulty in handling the coupling matrix

between different inputs. In [88], a stable neural network adaptive controller was

developed for a class of nonlinear multi-variable systems, the control inputs are in

triangular form and integral Lyapunov function was used to analyze the stability.

In [89], a numerically robust approximate algorithms was given for input-output de-

coupling nonlinear MIMO systems. Several algorithms have been proposed in the

literature for solving the problem of exact decoupling for nonlinear MIMO systems,

see for examples [90, 91, 92, 93]. All these algorithms need the determination of

the inverse, the so-called decoupling matrix. In [94], the problem of semi-global ro-

bust stabilization was investigated for a class of MIMO uncertain nonlinear system,

which cannot be transformed into lower dimensional zero dynamics representation,

via change of coordinates or state feedback. Both the partial state and dynamic out-

put controllers were explicitly constructed via the design tools such as semi-global

backstepping and high-gain observer. In [95], an adaptive fuzzy systems approach

to state feedback input-output linearizing controller was outlined. The analysis was

based on a general nonlinear MIMO system, with minimum phase zero dynamics and

uncertainties satisfying the matching condition.

Adaptive neural network control of nonlinear strict-feedback systems is well docu-

mented in the literature. However, results for general nonlinear pure-feedback sys-

tems are relatively fewer than those for strict-feedback systems. In addition, the

systems considered are often in special forms [42, 96, 97, 98, 99]. The pure-feedback

system represents a more general class of nonlinear systems than its strict-feedback

counterpart, with the important feature being that the virtual or practical controls

are non-affine. In practice, many physical systems such as chemical reactions, pH

neutralization and distillation columns are inherently non-affine and nonlinear. In

recent years, control of non-affine nonlinear systems have captured the attention of

researchers and poses a challenge to control theorists. The main impediment in solv-

ing this control problem directly is that even if the inverse is known to exist, it may

be impossible to construct it analytically. Consequently, no control system design is

possible along the lines of classic model based control. Fundamental research is called

upon for this class of nonlinear systems because of the relatively fewer tools available
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1.2 Objectives and Structure of the Thesis

in comparison with that for affine nonlinear system. In [96], inverse dynamic control

was applied to deal with the non-affine problem under contraction mapping condi-

tion. For the same class of systems, a different approach using the Implicit Function

Theorem and the Mean Value Theorem, was employed in [42], and then extended to

the case with zero dynamics in [99]. In [97], a special class of pure-feedback systems

was considered, wherein the n order system is assumed to be affine in the control

and in the xn state variable for the ẋn−1 equation to avoid a circular argument in

the control design and stability analysis. In [98], the system considered has the first

n− 1 equations non-affine, and the main result heavily relied on the assumption that

1− ∂αn−1

∂xn
6= 0, which is only effective when the input gain functions are known.

For the control of completely non-affine pure-feedback systems, however, few results

are available in the literature. In [100], small gain theorem was combined with input-

to-state stability analysis for control design. In [101], Nussbaum-Gain function was

utilized along with Mean Value Theorem to develop an adaptive NN control for non-

affine pure-feedback systems. For such systems, the main difficulty is in dealing with

non-affine functions, particularly in the final step of backstepping, where circular

argument of control may appear.

In spite of the development of neural network control techniques and their successful

applications, there still remain several fundamental problems yet to be further inves-

tigated. For example, it is well known that NN approximation-based control relies on

universal approximation property in a compact set in order to approximate unknown

nonlinearities in the plant dynamics. However, as pointed out in [102], how to de-

termine a priori the compact set and how to ensure the arguments of the unknown

functions remain within the compact set, are still two open and challenging problems

in the neuro-control area.

1.2 Objectives and Structure of the Thesis

In general, the objective of this thesis is to develop constructive and systematic adap-

tive neural control methods for uncertain nonlinear systems preceded by hysteresis.
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1.2 Objectives and Structure of the Thesis

By investigating different characteristics of several different hysteresis models, neu-

ral network (NN) based control approaches fused with these hysteresis models are

proposed to achieve the stable output tracking performance for the concerned sys-

tems and mitigate the effects of hysteresis without constructing the inverse hysteresis

nonlinearity.

The remainder of the thesis is organized as follows. In Chapter 2, we provide some

mathematical preliminaries, which will be used throughout this thesis. Three types

of hysteresis models and their properties are introduced, including backlash-like hys-

teresis model, classic Prandtl-Ishlinskii (PI) hysteresis model as well as generalized PI

hysteresis model. Then, a brief introduction for function approximation using neural

networks (NNs) is given, followed by some useful definitions, theorems, and technical

lemmas for completeness.

Chapter 3 considers the control of two classes of nonlinear systems with unknown

backlash-like hysteresis. Firstly, for a class of strict-feedback nonlinear systems pre-

ceded by unknown backlash-like hysteresis, adaptive dynamic surface control (DSC)

is developed without constructing a hysteresis inverse by exploring the characteristics

of backlash-like hysteresis, which can be described by two parallel lines connected via

horizontal line segments. Through transforming the backlash-like hysteresis model

into a linear-in-control term plus a bounded “disturbance-like” term, standard robust

adaptive control used for dealing with bounded disturbances is applied. The explosion

of complexity in traditional backstepping design is avoided by utilizing DSC. Func-

tion uncertainties are compensated for using neural networks due to their universal

approximation capabilities. The bounds of the “disturbance-like” terms and neural

network approximation errors, are handled on-line by an adaptive bounding design.

Furthermore, the control of a class of output feedback nonlinear systems subject to

function uncertainties and backlash-like hysteresis is studied. Adaptive observer back-

stepping using NN is adopted for state estimation and function on-line approximation

using only output measurements. In particular, a Barrier Lyapunov Function (BLF)

is introduced to address two open and challenging problems in the neuro-control area:

(i) for any initial compact set, how to determine a priori the compact superset, on

which NN approximation is valid; and (ii) how to ensure that the arguments of the
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unknown functions remain within the specified compact superset. By ensuring bound-

edness of the BLF, we actively constrain the argument of the unknown functions to

remain within a compact superset such that the NN approximation conditions hold.

The stable output tracking with guaranteed performance bounds can be achieved in

the semi-global sense.

In Chapter 4, adaptive variable structure neural control is proposed for a class of

uncertain multi-input multi-output (MIMO) nonlinear systems under the effects of

classic PI hysteresis and time-varying state delays. Although there are some works

that deal with hysteresis, or time delay, individually, the combined problem, despite

its practical relevance, is largely open in the literature to the best of the author’s

knowledge. The unknown time-varying delay uncertainties are compensated for using

appropriate Lyapunov-Krasovskii functionals in the design. Unlike backlash-like hys-

teresis, standard robust adaptive control used for dealing with bounded disturbances

cannot be applied here, since no assumptions can be made on the boundedness of the

hysteresis term of the classic PI model. In this thesis, new solution is provided to

mitigate the effect of the uncertain PI classic hysteresis.

In Chapter 5, a class of unknown nonlinear systems in pure-feedback form with the

generalized PI hysteresis input is considered. Compared with the backlash-like hys-

teresis model and the classic PI hysteresis model, the generalized PI hysteresis model

can capture the hysteresis phenomenon more accurately and accommodate more gen-

eral classes of hysteresis shapes by adjusting not only the density function but also

the input function. The difficulty of the control of such class of systems lies in the

nonaffine problem in both system unknown nonlinear functions and unknown input

function in the generalized PI hysteresis model. To overcome this difficulty, in this

thesis, the mean-value theorem is applied successively, first to the functions in the

pure-feedback plant, and then to the hysteresis input function.

Finally, Chapter 6 concludes the contributions of the thesis and makes recommenda-

tion on future research works.
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Chapter 2

Mathematical Preliminaries

2.1 Introduction

In this chapter, we provide some mathematical preliminaries, which will be used

throughout this thesis. The chapter is organized as follows. Firstly, three types of

hysteresis models considered in this thesis, namely backlash-like hysteresis model,

classic Prandtl-Ishlinskii (PI) hysteresis model, generalized PI hysteresis model, as

well as their properties are introduced in Section 2.2. Then, a brief introduction for

function approximation using neural networks (NNs) is given in Section 2.3, followed

by Section 2.4 about some useful definitions, theorems, and technical lemmas for

completeness.

2.2 Hysteresis Models and Properties

Generally, modeling hysteresis nonlinearities is still a research topic, since hysteresis

is a very complex phenomenon. The readers may refer to [6] for a review. Hysteresis

models can be roughly classified into physics based models and purely phenomenolog-

ical models. Physics-based models are built on first principles of physics. Phenomeno-

logical models, on the other hand, are used to produce behaviors similar to those of

the physical systems without necessarily providing physical insight into the problems
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2.2 Hysteresis Models and Properties

[5]. The basic idea consists of the modeling of the real complex hysteresis nonlinear-

ities by the weighted aggregate effect of all possible so-called elementary hysteresis

operators. Elementary hysteresis operators are noncomplex hysteretic nonlinearities

with a simple mathematical structure. A hysteresis nonlinearity can be denoted as

an operator

w(t) = H(v(t)) (2.1)

with v(t) as input, w(t) as output and H(·) as operator. For different kinds of

hysteresis models, different operators should be adopted, as will be discussed in detail

in the forthcoming subsections.

2.2.1 Backlash-Like Hysteresis Model

Traditionally, a backlash hysteresis nonlinearity can be described by

w(t) = BH(v(t))

=





c(v(t)−B), if v̇(t) > 0 and w(t) = c(v(t)−B)

c(v(t) + B), if v̇(t) < 0 and w(t) = c(v(t) + B)

w(t−), otherwise

(2.2)

where c > 0 is the slope of the lines and B > 0 is the backlash distance. This model

is itself discontinuous and may not be amenable to controller design for the nonlinear

systems.

Instead of using the above model, we define a continuous-time dynamic model to

describe a class of backlash-like hysteresis, as given by [16]:

dw

dt
= α

∣∣∣∣
dv

dt

∣∣∣∣ (cv − w) + B1
dv

dt
(2.3)

where α, c, and B1 are constants, c > 0 is the slope of lines satisfying c > B1.

Equation (2.3) can be solved explicitly for v piecewise monotone

w(t) = cv(t) + d(v) (2.4)

with

d(v) = [w0 − cv0]e
−α(v−v0)sgn(v̇) + e−αvsgn(v̇)

∫ v

v0

[B1 − c]eαζsgn(v̇)dζ (2.5)
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2.2 Hysteresis Models and Properties

for v̇ constant and w(v0) = w0. Analyzing (2.4), we see that it is composed of a line

with the slope c, together with a term d(v). For d(v), it can be easily shown that if

w(v; v0; w0) is the solution of (2.4) with initial values (v0; w0), then, if v̇ > 0(v̇ < 0)

and v → +∞(−∞), one has

lim
v→+∞

d(v) = lim
v→+∞

[w(v; v0; w0)− cv] = −c−B1

α
(2.6)

lim
v→−∞

d(v) = lim
v→−∞

[w(v; v0; w0)− cv] =
c−B1

α
(2.7)

It should be noted that the above convergence is exponential at the rate of α. Solution

(2.4) and properties (2.6) and (2.7) show that w(t) eventually satisfies the first and

second conditions of (2.2). Furthermore, setting v̇ = 0 results in ẇ = 0 which satisfies

the last condition of (2.2). This implies that the dynamic equation (2.3) can be used to

model a class of backlash-like hysteresis and is an approximation of backlash hysteresis

(2.2). In particular, w(t) switches exponentially from the line cv(t) − ((c − B1)/α)

to cv(t) + ((c− B1)/α) to generate backlash-like hysteresis curves. Figure 2.1 shows

that the model (2.3) indeed generates a class of backlash-like hysteresis curve, where

α = 1.0, c = 3.1635, B1 = 0.345 and the input signal v = 6.5 sin(2.3t).

It is important to note that (2.6) and (2.7) imply that

Property 2.1 There exists a uniform bound η such that

|d(v)| ≤ η (2.8)

If the values of backlash slope c and distance bound η are not known implicitly, then

adaptation will be used to estimate them. This will be clarified in Chapter 3 about

control design of systems with backlash-like hysteresis.

2.2.2 Classic Prandtl-Ishlinskii Hysteresis Model

The classic Prandtl-Ishlinskii (PI) hysteresis model involves some basic well-known

hysteresis operators. A detailed discussion on this subject can be found in the mono-

graphs [103, 104, 105].
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Figure 2.1: Backlash-like hysteresis curves

Stop and Play Operators

One of the basic elements of the theory of hysteresis operators is borrowed from

continuum mechanics for elastic-perfectly plastic constitutive laws. As long as the

stress w is smaller than the yield stress r, the strain v is related to w through the

linear Hooke’s law. This input-output relation can be expressed by an elastic-plastic,

or stop, operator, w(t) = Er[v](t) with threshold r. Analytically, suppose Cm[0, tE] is

the space of piecewise monotone continuous functions, for any input v(t) ∈ Cm[0, tE],

the stop operator Er, for any r ≥ 0, can be defined by the inductive definition:

Er[v](0) = er(v(0))

Er[v](t) = er(v(t)− v(ti) + Er[v](ti))

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1 (2.9)

with er(v) = min(r, max(−r, v)), where 0 = t0 < t1 < ... < tN = tE is a partition

of [0, tE] such that the function v is monotone on each of the subintervals (ti, ti+1].

The argument of the operator is written in square brackets to indicate the functional
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2.2 Hysteresis Models and Properties

dependence, since it maps a function to a function. The stop operator, however, is

mainly characterized by its threshold parameter r which determines the height of the

hysteresis region in the (v, w) plane.

Another basic hysteresis operator is the play operator Fr[v](t) with threshold r. For a

given input v(t) ∈ Cm[0, tE], the play operator Fr with threshold r is then inductively

defined by

Fr[v](0) = fr(v(0), 0)

Fr[v](t) = fr(v(t), Fr[v](ti))

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1 (2.10)

with fr(v, w) = max(v − r, min(v + r, w)), where 0 = t0 < t1 < ... < tN = tE is the

same kind of partition as given previously. From definitions (2.9) and (2.10), it can

be proved [104] that for any v(t) ∈ Cm[0, tE], Fr is the complement of Er, i.e., they

are closely related through the equation

Er[v](t) + Fr[v](t) = v(t) ∀r ≥ 0 (2.11)

Due to the nature of play and stop operators, the above discussions are based on

v ∈ Cm[0, tE] of continuous and piecewise monotone functions; however, they can be

extended to the space C[0, tE] of continuous functions.

Classic PI hysteresis model

The classic PI hysteresis model was introduced to formulate the elastic-plastic behav-

ior through a weighted superposition of basic elastic-plastic elements Er[v], or stop

as follows:

w(t) =

∫ R

0

p(r)Er[v](t)dr (2.12)

where p(r) is a given density function, satisfying p(r) ≥ 0 with
∫∞
0

rp(r)dr < ∞,

and is expected to be identified from experimental data. With the defined density

function, this operator maps C[t0,∞) into C[t0,∞), i.e., Lipschitz continuous inputs

will yield Lipschitz continuous outputs [103]. Since the density function p(r) vanishes

16



2.2 Hysteresis Models and Properties

−1 −0.5 0 0.5 1 1.5
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

v

w

Figure 2.2: Classic Prandtl-Ishlinskii hysteresis curves

for large values of r, the choice of R = ∞ as the upper limit of integration in the

literature is just a matter of convenience [104].

It can be seen that the stop operator Er serves as the building element in the clas-

sic PI hysteresis model (2.12). We should mention that the stop and the play are

rate-independent thus the classic PI hysteresis model is rate-independent. As an il-

lustration, Figure 2.2 shows w(t) generated by (2.12), with p(r) = 0.01e−0.505(r−0.5)2 ,

r ∈ [0, 100], and the input v(t) = 2 sin(4t)/(1 + t), t ∈ [0, 2π]. This numerical result

shows the classic PI hysteresis model (2.12) indeed generates hysteresis curves and is

well-suited to model the rate-independent hysteresis behavior.

Since Fr is the complement of Er, the classic PI hysteresis model can also be repre-

sented through the play operator. Using (2.11) and substituting Er in (2.12) by Fr,

the classic PI hysteresis model defined by the play operator is

w(t) = p0v(t)−
∫ R

0

p(r)Fr[v](t)dr (2.13)

where p0 =
∫ R

0
p(r)dr is constant and depends on the density function. It should

be noted that (2.13) decomposes the hysteresis behavior into two terms. The first
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2.2 Hysteresis Models and Properties

term is a linear reversible component and the second is a nonlinear hysteretic compo-

nent. This decomposition is crucial since it facilitates the utilization of the currently

available robust adaptive control techniques for the controller design.

2.2.3 Generalized Prandtl-Ishlinskii Hysteresis Model

Based on the definition of the play operator in (2.10), the generalized Prandtl-

Ishlinskii(PI) model can be expressed as [106]:

w(t) = h(v)(t)−
∫ D

0

p(r)Fr[v](t)dr (2.14)

where p(r) is a given density function, satisfying p(r) ≥ 0 with
∫∞
0

rp(r)dr < ∞
and is expected to be identified from experimental data; D is a constant so that

density function p(r) vanishes for large values of D; Fr[v](t) is the play operator

defined in (2.10); and h(v) is the hysteresis input function that satisfies the following

assumptions [106]:

Assumption 2.1 The function h : R → R is odd, non-decreasing, locally Lipschitz

continuous, and satisfies limv→∞ h(v) →∞ and dh(v)
dv

> 0 for almost every v ∈ R.

Assumption 2.2 The growth of the hysteresis function h(v) is smooth, and there

exist positive constants h0 and h1 such that 0 < h0 ≤ dh(v)
dv

≤ h1.

Remark 2.1 It should be noted that the classic PI hysteresis model in (2.13) is only a

special case of the generalized PI hysteresis model described in (2.14). If we select the

input function h(v)(t) = p0v with p0 =
∫ D

0
p(r)dr in (2.14), then the generalized PI

hysteresis model becomes a classic PI hysteresis model. For the classic PI hysteresis

model, the different hysteresis shapes are formulated by adjusting the density function

only. However, for the generalized PI hysteresis model, both the density function

and the input function can be adjusted to describe a more general class of hysteresis

characteristics.

As an illustration, using the same density function and input with the hysteresis

curves of the classic PI model in Figure 2.2, the hysteresis curves of the generalized
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Figure 2.3: Generalized Prandtl-Ishlinskii hysteresis curves

PI model described by w(t) = h(v)(t)− ∫ D

0
p(r)Fr[v](t)dr is shown in Figure 2.3 with

h(v)(t) = 0.02(|u| arctan(u)+0.4u). It can be observed that, the generalized PI model

can describe more general hysteresis shapes.

2.3 Function Approximation

In adaptive neural control design, neural networks (NNs) are mostly used as function

approximators. The unknown nonlinearities in the systems or in the controllers are

approximated by linearly or nonlinearly parameterized neural networks, such as radial

basis function neural networks (RBF NNs) and multilayer neural networks (MNNs).

The purpose of this section is to give a brief introduction to NN approximation. The

reasons for choosing RBF NNs in the thesis are also explained.
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2.3 Function Approximation

2.3.1 NN Approximation

The development of mathematical analysis during the past two hundred years has

lead to the discovery and study of important classes of approximating functions, such

as polynomials, trigonometric series, orthogonal functions, splines, etc. Since Mc-

Culloch and Pitts [20] introduced the idea of studying the computational abilities of

networks composed of simple models of neurons in the 1940s, neural network tech-

niques have undergone great developments and have been successfully applied in many

fields such as learning, pattern recognition, signal processing, modeling and system

control. From 1980s, neural networks were constructed and empirically demonstrated

(using simulation studies) to approximate quite well nearly all functions encountered

in practical applications. The elegant results by Funahashi [23], Cybenko [21] and

Hornik et. al. [24] proved that neural networks are capable of universal approxima-

tion in a very precise and satisfactory sense. These results lead the study of neural

networks from its empirical origins to a mathematical discipline.

The NN approximation problem can be stated following the definition of function

approximation:

Definition 2.1 (Function Approximation) If f(x) : Rn → R is a continuous

function defined on a compact set Ω, and fnn(W,x) : Rs×Rn → R is an approximating

function that depends continuously on W and x, then, the approximation problem is

to determine the optimal parameters W ∗, for some metric (or distance function) d,

such that

d(fnn(W ∗, x), f(x)) ≤ ε (2.15)

for an acceptable small ε [107].

To approximate the unknown function f(x) by using neural networks, the approxi-

mating function fnn(W,x) is firstly chosen. The neural network weights W are then

adjusted by a training set. Thus, there are two distinct problems in NN approx-

imation, namely, the representation problem which deals with the selection of the

approximating function fnn(W,x), and the learning problem which is to find the
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2.3 Function Approximation

training method to ensure that the optimal neural network weights W ∗ are obtained.

In the literature of NN approximation, two types of NNs are usually employed, i.e.,

linearly parameterized approximators (e.g, RBF NNs), and nonlinearly parameterized

approximators (e.g., MNNs).

2.3.2 MNNs

MNN is one of the most widely used neural networks in system modeling and control.

It is a static feedforward network that consists of a number of layers, and each layer

consists of a number of McCulloch-Pitts neurons [20]. Once these have been selected,

only the adjustable weights have to be determined to specify the networks completely.

Since each node of any layer is connected to all the nodes of the following layer, it

follows that a change in a single parameter at any one layer will generally affect all

the outputs in the following layers. The structure of MNNs can be expressed in the

following form

fnn(Z) =
l∑

j=1

[
wjs

(
n∑

k=1

vjkzk + θvj

)]
+ θw (2.16)

where Z = [z1, z2, ..., zn]T is the input vector, vjk are the first-to-second layer intercon-

nection weights, wj are the second-to-third layer interconnection weights, θw and θvj

are the threshold offsets. The activation function s(·) can be chosen as the continuous

and differentiable nonlinear sigmoidal

s(z) =
1

1 + e−γz
, ∀z ∈ R (2.17)

with γ > 0 being a constant, or a hyperbolic tangent function

s(z) =
ez − e−z

ez + e−z
(2.18)

MNN with one or more hidden layers can approximate any continuous nonlinear

function arbitrarily well over a compact set, provided sufficient hidden neurons are

available [21, 23, 24]. MNN has many good properties for function approximation,

e.g., global approximator due to the nature of the global active neuron functions

within the networks, the ability of reducing the effect of the “curse of dimensionality”
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2.3 Function Approximation

problem [108]. However, MNN is often referred to as a nonlinearly parameterized

network, which means that the network output is related to the neural weights in

a nonlinear fashion. This property often makes the analysis of systems containing

MNN difficult and the results obtained conservative. Further, the adjustment of a

single weight of the networks affects the output globally. All the weights have to be

adjusted simultaneously for each training data set. Thus, slow convergence rate were

obtained in the phase of MNN learning, which is inappropriate for online adaptation

of neural networks in closed-loop control systems [47]. On the other hand, RBF NN,

with its properties of linear parameterization and localization, renders it feasible to

be applied to uncertain nonlinear system modeling and control. Since the network

output of RBF NN is related to the adjustable weights in a linear manner, on-line

adaptation laws for neural weights and the convergence results can be derived using

the available adaptive control techniques [61].

2.3.3 RBFNNs

The RBF NNs can be considered as a two-layer network in which the hidden layer

performs a fixed nonlinear transformation with no adjustable parameters, i.e., the

input space is mapped into a new space. The output layer then combines the outputs

in the latter space linearly. Therefore, they belong to a class of linearly parameterized

networks. For a continuous function f(Z) : Rq → R, it has been shown (see, e.g.,

[109]) that an RBF NNs, W T S(Z), can be used to approximate f(Z) over a compact

set ΩZ ⊂ Rq with arbitrary accuracy, i.e.,

f(Z) = W ∗T S(Z) + ε, ∀Z ∈ ΩZ (2.19)

where the input vector Z ∈ ΩZ ⊂ Rq, the weight vector W = [w1, w2, ..., wl]
T ∈ Rl,

W ∗ represents the ideal constant weights, and ε is the approximation error that can

be arbitrarily small, S(Z) = [s1(Z), ..., sl(Z)]T ∈ Rl. The ideal weight vector W ∗ is

an “artificial” quantity required for analysis. W ∗ is defined as the value of W that

minimizes |ε| for all Z ∈ ΩZ ⊂ Rq, i.e.,

W ∗ , arg min
W∈Rl

{
sup

Z∈ΩZ

|f(Z)−W T S(Z)|
}

(2.20)
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2.3 Function Approximation

It has been justified in [110] that for a continuous positive function s(·) on [0,∞), if

its first derivative is completely monotonic, then this function can be used as a radial

basis function. Commonly used RBFs are the Gaussian functions, which have the

form

si(Z) = exp

[−(Z − µi)
T (Z − µi)

η2
i

]
, i = 1, 2, ..., l (2.21)

where µi = [µi1, µi2, ..., µiq]T is the center of the receptive field and ηi is the width

of the Gaussian function. The radial basis functions can also be chosen as Hardys

multiquadric form [110]

si(Z) =
√

σ2
i + (Z − µi)T (Z − µi) (2.22)

or Inverse Hardy’s multiquadric form [110]

si(Z) =
1√

σ2
i + (Z − µi)T (Z − µi)

(2.23)

Universal approximation results in [111] indicate that, for any continuous function

f(Z) : Rn → Rl, if l is sufficiently large, then there exists an ideal constant weight

vector W ∗ such that

max
Z∈ΩZ

|f(Z)−W ∗T S(Z)| < ε, ∀Z ∈ ΩZ (2.24)

with an arbitrary constant ε > 0.

Throughout this thesis, RBF NNs will be used as function approximators in adaptive

NN control design. The useful properties of RBF NNs, such as linear parametrization

and localization, will be exploited to simplify the design and analysis. The problems

with using RBF NNs, such as the curse of dimensionality and the requirement of prior

knowledge for the studied systems will be overcome or minimized.

• RBF NN belongs to a class of linearly parametrized networks where the network

output is related to the adjustable weights in a linear manner, assuming the basis

function centers and variances are fixed a priori. Thus, on-line learning rules

can be used to update the weights and the convergence results can be derived

using the available linear adaptive techniques.
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2.3 Function Approximation

• The activation functions of RBF networks are localized, thus these networks

store information locally in a transparent fashion. The adaptation in part of

the input spaces does not affect knowledge stored in a different area, i.e., they

have spatially localized learning capability. Therefore, if the basis functions are

correctly chosen, the learning speed of RBF NNs is in generally better than that

of MNNs.

• One of the problems of RBF NNs is that the number of basis functions for RBF

networks tends to increase exponentially with the dimension of the input space.

The approximation will become practically infeasible when the dimensionality

of the input space is very high, which is often referred to as “the curse of

dimensionality” [109]. To overcome this problem, in this thesis, the number of

inputs to RBF NN is made minimal by defining intermediate variables, which are

available through the computation of all the variables of the unknown functions.

Thus, the introductions of intermediate variables help to avoid the curse of

dimensionality, and make the proposed neural control scheme computationally

implementable.

• Another problem of using RBF NNs is that the network structure, the number

of basis functions, their location and shape, must be chosen a priori by con-

sidering the working space. According to [111], Gaussian RBF NNs arranged

on a regular lattice can uniformly approximate sufficiently smooth functions on

closed, bounded subsets. Moreover, given only crude estimates of the smooth-

ness of the function being approximated, it is feasible to select the centers and

variances of a finite number of Gaussian nodes, so that the resulting NNs are

capable of uniformly approximating the required function to a chosen tolerance

everywhere on a pre-specified subset. In practical applications, some rough

knowledge of the system states, including those of the plant and the reference

model, is usually assumed to be known. Thus, the centers and widths of RBFs

can be selected on a regular lattice in the respective compact sets.

Thus, by exploiting the useful properties and minimizing the disadvantages, RBF NNs

will be used to approximate the unknown nonlinearities in adaptive NN control design
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throughout this thesis. Simulation studies will be conducted to show the effectiveness

of RBF NNs.

Remark 2.2 Although RBFNN is employed in our control design, it can be replaced

by other linearly parameterized function approximators such as high-order neural net-

works, fuzzy systems, polynomials, splines and wavelet networks without difficulty.

For a unified framework of different approximation structures in adaptive approxima-

tion based control, interested readers can refer to [112].

2.4 Useful Definitions, Theorems and Lemmas

Definition 2.2 (SGUUB)[66] The solution X(t) of a system is semi-globally uni-

formly ultimately bounded (SGUUB) if, for any compact set Ω0 and all X(t0) ∈ Ω0,

there exists an µ > 0 and T (µ,X(t0)) such that ‖X(t)‖ ≤ µ for all t ≥ t0 + T .

Lemma 2.1 (Implicit Function Theorem) [97] For a continuously differentiable

function f(x, u) : Rn × R → R, if there exists a positive constant δ such that

|∂f(x, u)/∂u| > δ > 0, ∀(x, u) ∈ Rn × R. Then there exists a continuous (smooth)

function u∗ = u(x) such that f(x, u∗) = 0.

Lemma 2.2 (Mean Value Theorem) [113] Assume that f(x, y) : Rn×R→ R has

a derivative (finite or infinite) at each point of an open set Rn × (a, b), and assume

also that it is continuous at both endpoints y = a and y = b. Then there is a point

ξ ∈ (a, b) such that f(x, b)− f(x, a) = f
′
(x, ξ)(b− a).

Lemma 2.3 (First Mean Value Theorem for Integration) If G : [a, b] → R
is a continuous function and φ : [a, b] → [0,∞) is an integrable function, then there

exists a number x in [a, b] such that
∫ b

a

G(t)φ(t)dt = G(x)

∫ b

a

φ(t)dt

In particular, if φ(t) = 1 for all t in [a, b], then there exists x in [a, b] such that
∫ b

a

G(t)dt = G(x)(b− a).
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Definition 2.3 (Nussbaum-type Function) A function N(ζ) is called a Nussbaum-

type function if it has the following properties:

(i) lim
s→+∞

sup
1

s

∫ s

0

N(ζ)dζ = +∞

(ii) lim
s→+∞

inf
1

s

∫ s

0

N(ζ)dζ = −∞

For clarity, the even Nussbaum function, N(ζ) = exp(ζ2) cos((π/2)ζ) is used in this

thesis.

Lemma 2.4 [114] Let V (·), ζ(·) be smooth functions defined on [0, tf ) with V (t) ≥ 0,

∀t ∈ [0, tf ), and N(·) be an even smooth Nussbaum-type function. If the following

inequality holds:

V (t) ≤ c0 + e−c1t

∫ t

0

[g(·)N(ζ) + 1]ζ̇ec1τdτ, ∀t ∈ [0, tf )

where c0 represents some suitable constant, c1 is a positive constant, and g(·) is a time-

varying parameter which takes values in the unknown closed intervals I = [l−, l+], with

0 /∈ I, then V (t), ζ(t),
∫ t

0
g(·)N(ζ)ζ̇dτ must be bounded on [0, tf ).

Lemma 2.5 [115] For any continuous function h(ξ1, ..., ξn) : Rm1 × ... × Rmn → R
satisfying h(0, ..., 0) = 0, where ξj ∈ Rmj(j = 1, 2, ..., n, mj > 0), there exist positive

smooth functions %j(ξj) : Rmj → R(j = 1, 2, ..., n) satisfying %j(0) = 0 such that

h(ξ1, ..., ξn) ≤
n∑

j=1

%j(ξj) (2.25)

Definition 2.4 (Barrier Lyapunov Function)[116] A Barrier Lyapunov Function

(BLF) is a scalar function V (x), defined with respect to the system ẋ = f(x) on

an open region D containing the origin, that is continuous, positive definite, has

continuous first-order partial derivatives at every point of D , has the property V (x) →
∞ as x approaches the boundary of D, and satisfies V (x(t)) ≤ b ∀t ≥ 0 along the

solution of ẋ = f(x) for x(0) ∈ D and some positive constant b.
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Figure 2.4: Schematic illustration of (a) symmetric and (b) asymmetric barrier func-
tions

As discussed in [116], there are many functions V1(z1) satisfying Definition 2.4, which

may be symmetric (D = (−kb1 , kb1)) or asymmetric (D = (−ka1 , kb1)) as illustrated in

Figure 2.4 with some positive constants ka1 and kb1 . Asymmetric barrier functions are

more general than their symmetric counterparts, and thus can offer more flexibility

for control design to obtain better performance. However, they are considerably more

difficult to construct analytically, and to employ for control design. For clarity, the

following symmetric BLF candidate considered in [116, 117] is used in this thesis:

V1 =
1

2
log

k2
b1

k2
b1
− z2

1

(2.26)

where log(·) denotes the natural logarithm of ·, and kb1 the constraint on z1, i.e.,

|z1| < kb1 . As seen from the schematic illustration of V1(z1) in Figure 2.4 (a), the

BLF escapes to infinity at |z1| = kb1 . It can be shown that V1 is positive definite and

C1 continuous in the set |z1| < kb1 , and thus a valid Lyapunov function candidate in

the set |z1| < kb1 . The control design and results can be extended to the asymmetric

BLF case. Interested readers can refer to [116].

Lemma 2.6 [118] For any positive constant kb1, let Z1 := {z1 ∈ R : |z1| < kb1} ⊂ R
and N := Rl ×Z1 ⊂ Rl+1 be open sets. Consider the system

η̇ = h(t, η) (2.27)
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2.4 Useful Definitions, Theorems and Lemmas

where η := [w, z1]
T ∈ N is the state, and the function h : R+ × N → Rl+1 satisfies

conditions of the existence and uniqueness of solution ([119], p.476, Theorem 54).

Suppose that there exist continuously differentiable and positive definite functions U :

Rl → R+ and V1 : Z1 →R+, i = 1, ..., n, such that

V1(z1) →∞ as |z1| → kb1 (2.28)

γ1(‖w‖) ≤ U(w) ≤ γ2(‖w‖) (2.29)

with γ1 and γ2 as class K∞ functions. Let V (η) := V1(z1) + U(w), and z1(0) ∈ Z1.

If the inequality holds:

V̇ =
∂V

∂η
h ≤ −µV + λ (2.30)

in the set z1 ∈ Z1, and µ and λ are positive constants, then z1(t) ∈ Z1, ∀t ∈ [0,∞).

Remark 2.3 In Lemma 2.6, we split the state variable into z1 and w, where z1 is the

state to be constrained, and w are the free states, along with the adaptive parameters

if adaptive control is involved. The constrained state z1 requires the use of a barrier

function V1 to prevent it from reaching the limits −kb1 and kb1. The free states require

the use of Lyapunov function candidates in the usual sense, i.e., defined over the entire

state space, a common choice being quadratic functions.

Lemma 2.7 [118] For any positive constant kb1, the following inequality holds for all

z1 in the interval |z1| < kb1:

log
k2

b1

k2
b1
− z2

1

<
z2
1

k2
b1
− z2

1

(2.31)
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Chapter 3

Systems with Backlash-Like

Hysteresis

In this chapter, adaptive NN control schemes are investigated for nonlinear systems

with backlash-like hysteresis. The chapter is organized as follows. Firstly, for a class

of strict-feedback nonlinear systems preceded by unknown backlash-like hysteresis,

adaptive dynamic surface control (DSC) is developed without constructing a hystere-

sis inverse in Section 3.1. Then, for a class of output feedback nonlinear systems in

the presence of unknown functions and bounded time-varying disturbances, an output

feedback control scheme is proposed in Section 3.2. Conclusions are made in Section

3.3.

3.1 Strict-Feedback Systems

3.1.1 Introduction

Hysteresis nonlinearities are common in many industrial processes, especially in po-

sition control of smart material-based actuators, including piezoceramics and shape

memory alloys. The existence of hysteresis nonlinearities severely limit system per-

formance such as giving rise to undesirable inaccuracy or oscillations and even may

lead to instability [3]. Since hysteresis is a very complex phenomenon, modeling a
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3.1 Strict-Feedback Systems

general type of hysteresis is still an active research topic and there exist many hys-

teresis models in the literature, such as the Preisach model, the Ishlinskii hysteresis

operator, the Prandtl-Ishlinskii hysteresis model, the Duhem hysteresis operator, the

Bouc Wen model, an so on. Interested readers can refer to [6] for a review of the

hysteresis models. Among of them, the backlash hysteresis model is the most fa-

miliar and simple model, which can be described by two parallel lines connected via

horizontal line segments and will be considered in this chapter.

Due to the nonsmooth characteristics of hysteresis nonlinearities, traditional control

methods are inadequate in dealing with the effects of unknown hysteresis. Therefore,

advanced control techniques to mitigate the effects of hysteresis have been called

upon and have been studied for decades. One of the most common approaches is to

construct an inverse operator to cancel the effects of the hysteresis as in [3] and [120].

However, it is a challenging task to construct the inverse operator for the hysteresis,

due to its complexity and uncertainty. To circumvent these difficulties, alternative

control approaches that do not need an inverse model have also been developed.

In [16] and [17], robust adaptive control and adaptive backstepping control were,

respectively, investigated for a class of nonlinear systems in a Brunovsky form with

unknown backlash-like hysteresis and system parameters.

Motivated by the above works [16] and [17], in this section, we extend the system

to a class of nonlinear systems in strict-feedback form with unknown functions and

disturbances. The function uncertainties are compensated for by neural networks

due to their universal approximation capabilities [46, 66, 112]. For the control of

strict-feedback nonlinear systems, though backstepping is one of the popular design

methods, an obvious drawback in the traditional backstepping design is the problem of

“explosion of complexity”, which is caused by the repeated differentiations of certain

nonlinear functions such as virtual controls. To overcome the “explosion of com-

plexity”, dynamic surface control (DSC) was proposed for a class of strict-feedback

nonlinear systems with known fi(x1, ..., xi) and gi = 1 by introducing first-order fil-

tering of the synthetic virtual control input at each step of traditional backstepping

approach [121]. The result was extended to a class of strict-feedback nonlinear sys-

tems with unknown functions fi and virtual coefficients gi = 1 by combining DSC

control and neural networks [122]. In this section, the virtual coefficients gi of the
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strict-feedback nonlinear systems are considered as unknown constants further. The

bounds of the “disturbance-like” terms, including disturbances and neural network

approximation errors, are estimated by adaptive control.

The organization of this section is as follows. The problem formulation and prelimi-

naries are given in Section 3.1.2. In Section 3.1.3, adaptive dynamic surface control is

developed for a class of unknown nonlinear systems in strict-feedback form with the

unknown backlash-like hysteresis. The closed-loop system stability is analyzed as well.

Results of extensive simulation studies are shown to demonstrate the effectiveness of

the approach in Section 3.1.4.

3.1.2 Problem Formulation and Preliminaries

Consider a class of nonlinear systems in strict-feedback form described as follows:

ẋ1 = f1(x1) + g1x2 + d1(t)
...

ẋi = fi(x̄i) + gixi+1 + di(t), i = 2, ..., n− 1
...

ẋn = fn(x̄n) + gnu(v) + dn(t)

y = x1 (3.1)

where x̄i = [x1, ..., xi]
T ∈ Ri, i = 1, ..., n are the states, y is the system output, gi are

the unknown constant virtual coefficients, fi(·) are the unknown smooth functions,

di(·) are the unknown bounded time varying disturbances, and u ∈ R is the system

input and the output of the backlash-like hysteresis, which is described as follows:

du

dt
= α

∣∣∣∣
dv

dt

∣∣∣∣ (cv − u) + B1
dv

dt
(3.2)

where α, c, and B1 are constants, c > 0 is the slope of lines satisfying c > B1.

Based on the analysis in Section 2.2.1 of Chapter 2, (3.2) can be solved explicitly as

follows:

u(t) = cv(t) + h(v) (3.3)
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where

h(v) = [u0 − cv0]e
−α(v−v0)sgnv̇ + e−αvsgnv̇

∫ v

v0

[B1 − c]eαζ(sgn v̇)dζ (3.4)

Substituting (3.3) into (3.1), we have:

ẋ1 = f1(x1) + g1x2 + d1(t)
...

ẋi = fi(x̄i) + gixi+1 + di(t), i = 2, ..., n− 1
...

ẋn = fn(x̄n) + gncv(t) + gnh(v) + dn(t)

y = x1 (3.5)

The control objective is to design adaptive control law v(t) for system (3.5) such that

the output y follows the specified desired trajectory yd.

To facilitate the control design later in Section 3.1.3, the following assumptions are

needed.

Assumption 3.1 The signs of gi are known, and there exist constants gi max ≥
gi min > 0 such that gi min ≤ |gi| ≤ gi max.

Assumption 3.2 The desired trajectory vectors are continuous and available, and

[yd, ẏd, ÿd]
T ∈ Ωd with known compact set Ωd = {[yd, ẏd, ÿd]

T : y2
d + ẏ2

d + ÿ2
d ≤ B0} ⊂ R3,

whose size B0 is a known positive constant.

Assumption 3.3 There exist constants cmin and cmax such that the slope c in (3.2)

satisfies c ∈ [cmin, cmax].

Assumption 3.4 There exist a constant hmax such that h(v) ≤ hmax.

Assumption 3.5 There exist constants di max such that di(t) ≤ di max.

32



3.1 Strict-Feedback Systems

Remark 3.1 Assumption 3.1 implies that unknown constants gi are strictly either

positive or negative. Without losing generality, we will only consider the case when

gi > 0. Assumptions 3.3 and 3.4 assume the slop range of a backlash hysteresis and

the upper bound of the hysteresis loop, which are reasonable according to the analysis

in Section 2.2.1 of Chapter 2. In Assumption 3.5, the disturbances are also required

to be bounded, which is practical in reality. It should be noted that all these bounds

gmax, gmin, cmin, cmax, hmax and di max are not required in implementation proposed

control design. They are used only for analytical purposes.

3.1.3 Adaptive Dynamic Surface Control Design

In this section, we will combine the dynamic surface control with backstepping and

adaptive control for the nth-order system described by (3.5). Similar to traditional

backstepping, the design of adaptive dynamic surface control is based on the following

change of coordinates: z1 = x1 − yd, zi = xi − ωi, i = 2, ..., n, where ωi is the output

of a first order filter with αi−1 as the input, and αi−1 is an intermediate control which

shall be developed for the corresponding (i − 1)th subsystem. Finally, an overall

control law v is constructed at step n. The major difference of dynamic surface

control with traditional backstepping is to replace, at each step of recursion, the

quantity α̇i−1 by ω̇i in determining the virtual control αi. As a result, the operation

of differentiation can be replaced by simpler algebraic operation. Before proceeding

with the adaptive control, some notations are presented below: z̄i = [z1, ..., zi]
T ,

ȳj = [y2, ..., yj]
T ,

¯̂
W i = [Ŵ T

1 , ..., Ŵ T
i ]T , where i = 1, ..., n, yj = ωj − αj−1, j = 2, ..., n.

Step 1: Since z1 = x1 − yd, and its derivative is

ż1 = ẋ1 − ẏd = f1(x1) + g1x2 + d1(t)− ẏd (3.6)

Consider the following Lyapunov function candidate:

Vz1 =
1

2g1

z2
1 (3.7)

Its derivative along (3.6) is

V̇z1 =
1

g1

z1ż1 = z1[Q1(Z1) + x2 +
1

g1

d1(t)] (3.8)
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where Q1(Z1) = g−1
1 f1(x1)− g−1

1 ẏd with Z1 = [x1, ẏd] ∈ ΩZ1 ⊂ R2.

To compensate for the unknown function Q1(Z1), we can use the radial basis function

neural networks (RBFNNs) in Section 2.3.3, Ŵ T
1 S(Z1), with Ŵ1 ∈ Rl×1, S(Z1) ∈

Rl×1, and the NN node number l > 1, to approximate the function Q1(Z1) on the

compact set ΩZ1 as follows

Q1(Z1) = Ŵ T
1 S(Z1)− W̃ T

1 S(Z1) + ε1(Z1) (3.9)

where the approximation error ε1(Z1) satisfies |ε1(Z1)| ≤ ε∗1 with a positive constant

ε∗1.

Substituting (3.9) into (3.8) and according to Assumptions 3.1 and 3.5, we obtain

V̇z1 ≤ z1[Ŵ
T
1 S(Z1)− W̃ T

1 S(Z1) + x2] + |z1|D1 (3.10)

where D1 = d1max

g1 min
+ ε∗1.

Since x2 = z2 + y2 + α1, (3.10) becomes

V̇z1 ≤ z1[Ŵ
T
1 S(Z1)− W̃ T

1 S(Z1) + z2 + y2 + α1] + |z1|D1 (3.11)

Choose the following virtual control law and adaptation laws:

α1 = −k1z1 − Ŵ T
1 S(Z1)− tanh(

z1

ε
)D̂1 (3.12)

˙̂
W 1 = Γ1[z1S(Z1)− σ1Ŵ1] (3.13)

˙̂
D1 = γd1 [z1 tanh(

z1

ε
)− σd1D̂1] (3.14)

where k1 > 0, ε > 0, D̂1 is the estimate of D1, Γ1 = ΓT
1 ∈ Rl×l > 0, σ1 > 0, γd1 > 0

and σd1 > 0.

Substituting (3.12) into (3.11), and using the following property of the hyperbolic

tangent function tanh(·):

0 ≤ |z1| − z1 tanh(
z1

ε
) ≤ 0.2785ε (3.15)

we obtain that

V̇z1 ≤ −k1z
2
1 + z1z2 + z1y2 − z1W̃

T
1 S(Z1)− z1 tanh(

z1

ε
)D̃1 + |z1|D1
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−z1 tanh(
z1

ε
)D1

≤ −k1z
2
1 + z1z2 + z1y2 − z1W̃

T
1 S(Z1)− z1 tanh(

z1

ε
)D̃1

+0.2785εD1 (3.16)

where D̃ = D̂ −D.

Using the Young’s inequality, the following inequalities hold:

z1z2 ≤ z2
1 +

1

4
z2
2 (3.17)

z1y2 ≤ z2
1 +

1

4
y2

2 (3.18)

Substituting (3.17) and (3.18) into (3.16) leads to

V̇z1 ≤ −(k1 − 2)z2
1 +

1

4
z2
2 +

1

4
y2

2 − z1W̃
T
1 S(Z1)− z1 tanh(

z1

ε
)D̃1

+0.2785εD1 (3.19)

Define the filtered virtual control ω2 in the following manner:

τ2ω̇2 + ω2 = α1, ω2(0) = α1(0), (3.20)

where τ2 is a design constant that we will choose later.

Due to y2 = ω2 − α1, from (3.20), we have

ω̇2 = −y2

τ2

(3.21)

Therefore, we have

ẏ2 = ω̇2 − α̇1

= −y2

τ2

+ [k1ż1 +
˙̂

W
T

1 S(Z1) + Ŵ T
1 Ṡ(Z1) + tanh(

z1

ε
)

˙̂
D1

+(1− tanh2(
z1

ε
))ż1D̂1] (3.22)

As such,

∣∣∣ẏ2 +
y2

τ2

∣∣∣ ≤ ζ2(z̄2, y2, Ŵ1, D̂1, yd, ẏd, ÿd) (3.23)

where ζ2(z̄2, y2, Ŵ1, D̂1, yd, ẏd, ÿd) is a continuous function.
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From (3.22) and (3.23), using the Young’s inequality, we obtain that

y2ẏ2 ≤ −y2
2

τ2

+ |y2|ζ2

≤ −y2
2

τ2

+ y2
2 +

1

4
ζ2
2 (3.24)

Consider the following Lyapunov function candidate:

V1 = Vz1 +
1

2
W̃ T

1 Γ−1
1 W̃1 +

1

2γd1

D̃2
1 +

1

2
y2

2 (3.25)

Its time derivative along (3.19) and (3.24) is

V̇1 = V̇z1 + W̃ T
1 Γ−1

1
˙̃W 1 +

1

γd1

D̃ ˙̃D + y2ẏ2

≤ −(k1 − 2)z2
1 +

1

4
z2
2 − z1W̃

T
1 S(Z1)− z1 tanh(

z1

ε
)D̃1 + 0.2785εD1

+W̃ T
1 Γ−1

1
˙̂

W 1 +
1

γd1

D̃
˙̂
D − y2

2

τ2

+ 1
1

4
y2

2 +
1

4
ζ2
2 (3.26)

Substituting (3.13) and (3.14) into (3.26) results in

V̇1 ≤ −(k1 − 2)z2
1 +

1

4
z2
2 − σ1W̃

T
1 Ŵ1 − σd1D̃1D̂1 − y2

2

τ2

+ 1
1

4
y2

2 +
1

4
ζ2
2

+0.2785εD1 (3.27)

Step i (2 ≤ i < n): The time derivative of zi is

żi = fi(x̄i) + gixi+1 + di(t)− ω̇i (3.28)

Consider the following Lyapunov function candidate:

Vzi
=

1

2gi

z2
i (3.29)

Its derivative along (3.28) is

V̇zi
=

1

gi

ziżi = zi[Qi(Zi) + xi+1 +
1

gi

di(t)] (3.30)

where Qi(Zi) = g−1
i fi(x̄i)− g−1

i ω̇i with Zi = [x̄i, ω̇i] ∈ ΩZi
⊂ Ri+1.

To compensate for the unknown function Qi(Zi), we can use the RBFNNs, Ŵ T
i S(Zi),

with Ŵi ∈ Rl×1, S(Zi) ∈ Rl×1, and the NN node number l > 1, to approximate the

function Qi(Zi) on the compact set ΩZi
as follows

Qi(Zi) = Ŵ T
i S(Zi)− W̃ T

i S(Zi) + εi(Zi) (3.31)
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3.1 Strict-Feedback Systems

where the approximation error εi(Zi) satisfies |εi(Zi)| ≤ ε∗i with a positive constant

ε∗i .

Substituting (3.31) into (3.30), we obtain

V̇zi
≤ zi[Ŵ

T
i S(Zi)− W̃ T

i S(Zi) + xi+1] + |zi|Di (3.32)

where Di = d1 max

g1 min
+ ε∗i .

Since xi+1 = zi+1 + yi+1 + αi, (3.32) becomes

V̇zi
≤ zi[Ŵ

T
i S(Zi)− W̃ T

i S(Zi) + zi+1 + yi+1 + αi] + |zi|Di (3.33)

Choose the following virtual control law and adaptation laws:

αi = −kizi − Ŵ T
i S(Zi)− tanh(

zi

ε
)D̂i (3.34)

˙̂
W i = Γi[ziS(Zi)− σiŴi] (3.35)

˙̂
Di = γdi

[zi tanh(
zi

ε
)− σdi

D̂i] (3.36)

where ki > 0, ε > 0, D̂i is the estimate of Di, Γi = ΓT
i ∈ Rl×l > 0, σi > 0, γdi

> 0

and σdi
> 0.

Substituting (3.34) into (3.33) and using the property of the hyperbolic tangent func-

tion as (3.15), we obtain

V̇zi
≤ −kiz

2
i + zizi+1 + ziyi+1 − ziW̃

T
i S(Zi)− zi tanh(

zi

ε
)D̃i

+0.2785εDi (3.37)

Using the Young’s inequality, the following inequalities hold:

zizi+1 ≤ z2
i +

1

4
z2

i+1 (3.38)

ziyi+1 ≤ z2
i +

1

4
y2

i+1 (3.39)

Substituting (3.38) and (3.39) into (3.37) leads to

V̇zi
≤ −(ki − 2)z2

i +
1

4
z2

i+1 +
1

4
y2

i+1 − ziW̃
T
i S(Zi)− zi tanh(

zi

ε
)D̃i

+0.2785εDi (3.40)
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3.1 Strict-Feedback Systems

Define the filtered virtual control ωi+1 in the following manner:

τi+1ω̇i+1 + ωi+1 = αi, ωi+1(0) = αi(0), (3.41)

where τi+1 is a design constant that we will choose later.

Due to yi+1 = ωi+1 − αi, from (3.41), we have

ω̇i+1 = −yi+1

τi+1

(3.42)

Therefore, we have

ẏi+1 = ω̇i+1 − α̇i

= −yi+1

τi+1

+ [kiżi +
˙̂

W
T

i S(Zi) + Ŵ T
i Ṡ(Zi) + tanh(

zi

ε
)

˙̂
Di

+(1− tanh2(
zi

ε
))żiD̂i] (3.43)

As such,

∣∣∣ẏi+1 +
yi+1

τi+1

∣∣∣ ≤ ζi+1(z̄i+1, ȳi+1,
¯̂
W i,

¯̂
Di, yd, ẏd, ÿd) (3.44)

where ζi+1(z̄i+1, ȳi+1,
¯̂
W i,

¯̂
Di, yd, ẏd, ÿd) is a continuous function.

From (3.43) and (3.44), using the Young’s inequality, we obtain that

yi+1ẏi+1 ≤ −y2
i+1

τi+1

+ |yi+1|ζi+1

≤ −y2
i+1

τi+1

+ y2
i+1 +

1

4
ζ2
i+1 (3.45)

Consider the following Lyapunov function candidate:

Vi = Vzi
+

1

2
W̃ T

i Γ−1
i W̃i +

1

2γdi

D̃2
i +

1

2
y2

i+1 (3.46)

Its time derivative along (3.40) and (3.45) is

V̇i = V̇zi
+ W̃ T

i Γ−1
i

˙̃W i +
1

γdi

D̃ ˙̃Di + yi+1ẏi+1

≤ −(ki − 2)z2
i +

1

4
z2

i+1 − ziW̃
T
i S(Zi) + W̃ T

i Γ−1
i

˙̂
W i +

1

γdi

D̃
˙̂
Di

−y2
i+1

τi+1

+ 1
1

4
y2

i+1 +
1

4
ζ2
i+1 (3.47)
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Substituting (3.35) and (3.36) into (3.47) results in

V̇i ≤ −(ki − 2)z2
i +

1

4
z2

i+1 − σiW̃
T
i Ŵi − σdi

D̃iD̂i −
y2

i+1

τi+1

+ 1
1

4
y2

i+1

+
1

4
ζ2
i+1 + 0.2785εDi (3.48)

Step n: In this final step, we will design the control input v(t). Since zn = xn − ωn,

the time derivative of zn is

żn = fn(x̄n) + gncv(t) + gnh(v) + dn(t)− ω̇n (3.49)

Consider the following Lyapunov function candidate:

Vzn =
1

2gnc
z2

n (3.50)

Its derivative along (3.49) is

V̇zn =
1

gnc
znżn = zn[Qi(Zn) + v(t) +

h(v)

c
+

1

gnc
dn(t)] (3.51)

where Qn(Zn) = (gnc)−1fn(x̄n)− (gnc)−1ω̇n with Zn = [x̄n, ω̇n] ∈ ΩZni ⊂ Rn+1.

To compensate for the unknown function Qn(Zn), we can use the RBFNNs, Ŵ T
n S(Zn),

with Ŵn ∈ Rl×1, S(Zn) ∈ Rl×1, and the NN node number l > 1, to approximate the

function Qn(Zn) on the compact set ΩZn as follows

Qn(Zn) = Ŵ T
n S(Zn)− W̃ T

n S(Zn) + εn(Zn) (3.52)

where the approximation error εn(Zn) satisfies |εn(Zn)| ≤ ε∗n with a positive constant

ε∗n.

Substituting (3.52) into (3.55)and according to Assumptions 3.1, 3.3-3.5, we obtain

that

V̇zn ≤ zn[Ŵ T
n S(Zn)− W̃ T

n S(Zn) + v(t)] + |zn|Dn (3.53)

where Dn = hmax

cmin
+ dn max

gn mincmin
+ ε∗n.

Choose the following control law:

v(t) = −knzn − Ŵ T
n S(Zn)− tanh(

zn

ε
)D̂n (3.54)
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where kn > 0, ε > 0, D̂n is the estimate of Dn.

Substituting (3.54) into (3.53), and using the property of the hyperbolic tangent

function as (3.15), we obtain that

V̇zn ≤ −knz
2
n − znW̃

T
n S(Zn) + znεn(Zn)− zn tanh(

zn

ε
)D̂ + |zn|D

≤ −knz
2
n − znW̃

T
n S(Zn) + znεn(Zn)− zn tanh(

zn

ε
)D̃ + |zn|D − zn tanh(

zn

ε
)D

≤ −knz
2
n − znW̃

T
n S(Zn)− zn tanh(

zn

ε
)D̃n + 0.2785εDn (3.55)

where D̃n = D̂n −Dn.

Consider the following Lyapunov function candidate:

Vn = Vzn +
1

2
W̃ T

n Γ−1
n W̃n +

1

2γdn

D̃2
n (3.56)

where Γn = ΓT
n ∈ Rl×l > 0, γdn > 0.

Its time derivative along (3.55) is

V̇n = V̇zn + W̃ T
n Γ−1

n
˙̃W n +

1

γdn

D̃n
˙̃Dn

≤ −knz
2
n − znW̃

T
n S(Zn)− zn tanh(

zn

ε
)D̃n + 0.2785εDn

+W̃ T
n Γ−1

n
˙̂

W n +
1

γdn

D̃n
˙̂
Dn (3.57)

Choose the following adaptation laws:

˙̂
W n = Γn[znS(Zn)− σnŴn] (3.58)

˙̂
Dn = γdn [zn tanh(

zn

ε
)− σdnD̂n] (3.59)

where σn > 0 and σdn > 0.

Substituting (3.58) and (3.59) into (3.57) results in

V̇n ≤ −knz
2
n − σnW̃ T

n Ŵn − σdnD̃nD̂n + 0.2785εDn (3.60)

The following theorem shows the stability and control performance of the closed-loop

adaptive system.
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Theorem 3.1 Consider the closed-loop system consisting of the plant (3.5) under As-

sumptions 3.1-3.5, the controller (3.54), and adaption laws (3.35)(3.36). For bounded

initial conditions, there exist constants p > 0, ki > 0, τi > 0, λmax(Γ
−1
i ), σi > 0,

γdi
and σdi

> 0, satisfying V =
∑n

i=1 Vi ≤ p, such that the overall closed-loop control

system is semi-globally stable in the sense that all of the signals in the closed-loop

system are bounded, and the tracking error is smaller than a prescribed error bound.

Proof: Consider the Lyapunov function candidate

V =
n∑

i=1

Vi

The derivative of V with respect to time is:

V̇ =
n∑

i=1

V̇i (3.61)

Substitute (3.27), (3.48) and (3.60) into (3.61), it follows that

V̇ ≤ −(k1 − 2)z2
1 −

n−1∑
i=2

(ki − 2
1

4
)z2

i − (kn − 1

4
)z2

n −
n∑

i=1

σiW̃
T
i Ŵi −

n∑
i=1

σdi
D̃iD̂i

+
n−1∑
i=1

[
− y2

i+1

τi+1

+ 1
1

4
y2

i+1 +
1

4
ζ2
i+1

]
+

n∑
i=1

0.2785εDi (3.62)

Since for any B0 > 0 and p > 0, the sets Ωd = {(yd, ẏd, ÿd) : y2
d + ẏ2

d + ÿ2
d ≤ B0} and

Ωi = {[z̄T
i , ȳT

i ,
¯̂
W

T

i ]T :
∑i

j=1 Vj ≤ p}, i = 1, ..., n are compact in R3 and R2i−1+
∑i

j=1 lj ,

respectively. Therefore, ζi+1 has a maximum Mi+1 on Ωd × Ωi.

By completion of squares, the following inequalities hold:

−σiW̃
T
i Ŵi ≤ −σi‖W̃i‖2

2
+

σi‖W ∗
i ‖2

2
(3.63)

−σdi
D̃iD̂i ≤ −σdi

D̃2
i

2
+

σdi
D2

i

2
(3.64)

Substituting (3.63) and (3.64) into (3.62) leads to

V̇ ≤ −(k1 − 2)z2
1 −

n−1∑
i=2

(ki − 2
1

4
)z2

i − (kn − 1

4
)z2

n −
n∑

i=1

σi‖W̃i‖2

2

−
n∑

i=1

σdi
D̃2

i

2
+

n−1∑
i=1

[
− y2

i+1

τi+1

+ 1
1

4
y2

i+1

]
+ µ (3.65)
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where

µ =
n∑

i=1

σi‖W ∗
i ‖2

2
+

n∑
i=1

σdi
D2

i

2
+

1

4

n−1∑
i=1

M2
i+1 +

n∑
i=1

0.2785εDi (3.66)

Choosing

α0 ≤ min{σdi
γdi

,
σi

λmax(Γ
−1
i )

}, i = 1, ..., n

k1 ≥ 2 +
α0

2g1min

ki ≥ 2
1

4
+

α0

2gi min

, i = 2, ..., n− 1

kn ≥ 1

4
+

α0

2gi mincmin

1

τi

≥ 1
1

4
+

α0

2
, i = 2, ..., n (3.67)

and substituting them into (3.62), we obtain that

V̇ ≤ −α0V + µ (3.68)

If V = p and α0 > µ
p
, then V̇ ≤ 0. It implies that V (t) ≤ p, ∀t ≥ 0 for V (0) ≤ p.

Multiplying (3.68) by eα0t and integrating over [0, t] yields

0 ≤ V (t) ≤ µ

α0

+
[
V (0)− µ

α0

]
e−α0t (3.69)

Therefore, all signals of the closed-loop system, i.e., zi, yi and Ŵi are uniformly ulti-

mately bounded. Furthermore, xi, αi and Ωi are also uniformly ultimately bounded.

From (3.66) and (3.67), we know that for any given constants B0, p, σdi
and σi, we can

decrease λmax(Γ
−1
i ) to make µ

α0
arbitrarily small. Thus, the tracking error z1 becomes

arbitrarily small. This completes the proof.

3.1.4 Simulation Results

To demonstrate the effectiveness of the proposed approach, we consider the plant

used in [16, 17]:

ẋ = a
1− e−x(t)

1 + e−x(t)
+ bu(v)

y = x (3.70)
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where a = 1, b = 1, and u(v) represents an output of the following backlash-like

hysteresis:

du

dt
= α

∣∣∣∣
dv

dt

∣∣∣∣ (cv − u) + B1
dv

dt
(3.71)

with α = 1, c = 3.1635, and B1 = 0.345. As discussed in [16], without control, i.e.,

u(v) = 0, (3.70) is unstable, since ẋ = a1−e−x(t)

1+e−x(t) > 0 for x > 0, and ẋ = a1−e−x(t)

1+e−x(t) < 0

for x < 0. The objective is to control the system output y to follow a desired trajectory

yd = 12.5 sin(2.3t).

We adopt the control law and adaption laws in (3.54) (3.58) (3.59). The following

initial conditions and control design parameters are chosen as: x(0) = u(0) = v(0) =

0.0, Ŵ (0) = D̂(0) = 0.0, k1 = 0.3, Γ = 0.1I25, σ = 0.1, γd = 0.1,σd = 0.1, ε = 0.05.

The simulation results are shown in Figures 3.2- 3.5. From Figure 3.2, we observe

that good tracking performance is achieved and the tracking error converges to a

small neighborhood of zero. At the same time, the control signal v and hysteresis

output u are kept bounded, as seen in Figure 3.3. It is noted that there is a large

difference between the signals v and u in Figure 3.3, which indicates the significant

hysteresis effect. From Figures 3.4- 3.5, we can see that the boundedness of neural

weights ‖Ŵ‖ and estimate of disturbance bound D̂ as well.

3.2 Output Feedback Systems

3.2.1 Introduction

Since the seminal work [32], great progress has been witnessed in neural networks

(NNs) control of nonlinear systems, which has evolved to become a well-established

technique of advanced adaptive control systems. In the earlier NN control schemes,

optimization techniques were mainly used to derive parameter adaptation laws, and

the feasibility of such neural control schemes were demonstrated via numerous empir-

ical studies in off-line environments with little formal mathematical stability proofs,

and firm performance guarantees. Thereafter, considerable research efforts have been

43



3.2 Output Feedback Systems

centered on developing on-line neural control structures and algorithms based on rig-

orous mathematical analysis. Several elegant adaptive NN control approaches based

on Lyapunov’s stability theory have been proposed for nonlinear systems with cer-

tain types of matching conditions [37, 77, 111, 123], as well as nonlinear triangular

systems without the requirement of matching conditions [78, 124]. The advantage of

these schemes is that the parameter adaptation laws are derived based on Lyapunov

synthesis and therefore stability of the closed-loop system is guaranteed. The per-

formance and robustness properties are readily determined. In the above works, the

states of the system are required to be directly measured. However, in practice, the

states might not be directly measured. Therefore, neural network output feedback

control schemes have been investigated in [102, 125, 126, 127, 128]. The main trend in

recent neural control research is to integrate NN, including multi-layer networks[77],

radial basis function networks[111] and recurrent ones [28], with main nonlinear con-

trol design methodologies. Such integration significantly enhances the capability of

control methods in handling many practical systems that are characterized by non-

linearity, uncertainty, and complexity [46, 47, 66, 112].

It is well known that NN approximation-based control relies on universal approxi-

mation property in a compact set in order to approximate unknown nonlinearities in

the plant dynamics. For any initial compact set Ω0, as long as the arguments of the

unknown function start from Ω0 and remain within a compact superset Ω, as shown

in Figure 3.1, NN approximation is valid.

Therefore, how to determine a priori the compact superset Ω and how to ensure the

arguments of the unknown function remain within the compact superset Ω, are two

open and challenging problems in the neuro-control area in [102]. One method of

ensuring that the NN approximation condition holds is by careful selection of the

control parameters, via rigorous transient performance analysis, so that the system

states do not transgress the compact superset of approximation Ω [66, 129, 130], but

the compact superset Ω is only given qualitatively, not quantitively. Another method

is to rely on sliding mode control operating in parallel to the approximation-based

control, such that the compact superset Ω is rendered positively invariant [112, 131].

The compact superset Ω can be specified a priori, but there exist some implementation

issues, such as the fixed-point problem in the input signal.
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Figure 3.1: Compact sets for NN approximation

Recently, the design of barrier functions in Lyapunov synthesis has been proposed for

constraint handling in Brunovsky-type systems [117], nonlinear systems in strict feed-

back form [116], and electrostatic microactuators [132]. Unlike conventional Lyapunov

functions, which are well-defined over the entire domain and radially unbounded for

global stability, a Barrier Lyapunov Function (BLF) possesses the special property

of approaching infinity whenever its arguments approach some limits. By ensuring

boundedness of the BLF along the system trajectories, transgression of constraints

is prevented. We note that the BLF based control design methodology appears very

promising in providing yet another means of tackling the NN approximation-based

control problems, by actively constraining the states of the system to remain within

the compact set of approximation.

In this section, we present adaptive neural control for a class of output feedback

nonlinear systems preceded by unknown backlash-like hysteresis, subject to function

uncertainties and bounded time-varying disturbances. The unknown functions are

compensated for via on-line NN function approximation using only output measure-

ments. To address two important neural control concerns mentioned above, the BLF

is incorporated into Lyapunov synthesis by following the constructive procedures of

adaptive observer backstepping design in [65]. First, for any initial compact set Ω0

where the the argument of the unknown function belongs to, we can always construct

an a priori compact superset Ω. Second, by ensuring the boundedness of the BLF,
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we guarantee that the argument of the unknown function remains within the com-

pact superset Ω, on which the NN approximation is valid. Then, the stable output

tracking with guaranteed performance bounds can be achieved in the semi-global

sense. In addition, the uncertainties due to the NN reconstruction error and the

time-varying disturbances are collectively bounded by an unknown constant, which

is handled on-line by an adaptive bounding design.

The organization of this section is as follows. The problem formulation and prelimi-

naries are given in Section 3.2.2. Section 3.2.3 presents the state estimation filter and

observer design. In Section 3.2.4, the constructive procedures of adaptive observer

backstepping design are provided and the closed-loop system stability is analyzed

as well. Section 3.2.5 demonstrates the feasibility of the proposed approach using a

numerical example.

3.2.2 Problem Formulation and Preliminaries

Consider a class of SISO output feedback nonlinear system described by:

ẋ1 = x2 + f 0
1 (y) + f1(y) + d1(t)

...

ẋρ−1 = xρ + f 0
ρ−1(y) + fρ−1(y) + dρ−1(t)

ẋρ = xρ+1 + f 0
ρ (y) + fρ(y) + dρ(t) + b̄mu

...

ẋn−1 = xn + f 0
n−1(y) + fn−1(y) + dn−1(t) + b̄1u

ẋn = f 0
n(y) + fn(y) + dn(t) + b̄0u

y = x1 (3.72)

where x1, ..., xn are system states, y is the output; f 0
i (y), i = 1, ..., n are known

smooth functions, which represent nominal parts of the plant and may be available

using some prior physical or expert information (f 0
i (y) = 0 if no prior knowledge of

the nonlinearity); fi(y), i = 1, ..., n are unknown smooth functions, which represent

model uncertainties due to modeling errors or unmodeled dynamics; di(t) are bounded

time-varying disturbances with unknown constant bounds; b̄m, ...., b̄0 are uncertain
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constant parameters; and u ∈ R is the system input and the output of the backlash-

like hysteresis, which is described as follows:

du

dt
= α

∣∣∣∣
dw

dt

∣∣∣∣ (cw − u) + B1
dw

dt
(3.73)

where α, c, and B1 are constants, c > 0 is the slope of lines satisfying c > B1.

Based on the analysis in Section 2.2.1 of Chapter 2, (3.73) can be solved explicitly as

follows:

u(t) = cw(t) + h(w) (3.74)

where

h(w) = [u0 − cw0]e
−α(w−w0)sgnẇ + e−αwsgnẇ

∫ w

w0

[B1 − c]eαζ(sgn ẇ)dζ (3.75)

Remark 3.2 When fi(y) in (3.72) satisfy the linear-in-the-parameters (LIP) condi-

tion, i.e., fi(y) = φT
i (y)θ, with φi ∈ Rr known nonlinear function vector and θ ∈ Rr

unknown constant vector, system (3.72) becomes the standard output feedback non-

linear system and has been intensively investigated in [65, 133, 134]. When fi(y) do

not satisfy LIP condition and ρ = n, adaptive observer backstepping control using

neural networks has been presented for system (3.72) in [102], but without addressing

two open and challenging problems in the neuro-control area mentioned in Introduc-

tion. Motivated by [102], we will incorporate a Barrier Lyapunov Function (BLF)

into Lyapunov synthesis to address these two problems in the neuro-control area in

this section.

Assumption 3.6 The unknown disturbance di(t) satisfies |di(t)| ≤ d̄i, where d̄i is an

unknown constant.

Assumption 3.7 The sign of the high frequency gain bm = b̄mc is known.

Assumption 3.8 The relative degree ρ = n−m is known and the system is minimum

phase, i.e., the polynomial B(s) = b̄msm + ... + b̄1s + b̄0 is Hurwitz.
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Assumption 3.9 There exist positive constants Y 0, Ȳ0, A0, Y1, Y2, ..., Yn satisfying

max{Y 0, Ȳ0} ≤ A0 such that the reference signal yr(t) and its ρth order derivatives are

piecewise continuous, known and bounded, which satisfy −Y 0 ≤ yr(t) ≤ Ȳ0, |ẏr(t)| <
Y1, |ÿr(t)| < Y2, ..., |y(n)

r (t)| < Yn, ∀t ≥ 0.

Assumption 3.10 There exist a constant hmax such that h(w) ≤ hmax.

Assuming that only the output signal y is measured, the control objective is to drive

the output y to track the given reference signal yr(t) within a neighborhood of zero,

while keeping that all of the signals in the closed-loop system bounded.

3.2.3 State Estimation Filter and Observer Design

Since only the output signal y is measured, some filters should be designed first

which will provide “virtual estimates” of the unmeasured state variables x2, ..., xn.

The unknown function fi(y) : R → R in the plant (3.72) is approximated by the

radial basis function neural networks (RBFNNs) in Section 2.3.3:

fi(y) = φT
i (y)θ∗i + εi(y) (3.76)

where the input y ∈ Ωy ⊂ R; θ∗i = [θ∗i1, ..., θ
∗
ili

]T are ideal constant weights; and εi(y) is

the approximation error satisfying |εi(y)| ≤ ε∗i with constant ε∗i > 0 for all y ∈ Ωy; the

vector of smooth basis functions φi = [φi1, φi2, ..., φil]
T ∈ Rli , φij(y) being chosen as

the commonly used Gaussian functions φij(y) = exp
[
−(y−µij)

T (y−µij)

η2
i

]
, j = 1, 2, ..., li,

where µij is the center of the receptive field and ηi is the width of the Gaussian

function.

Remark 3.3 The stability results obtained in NN control literature are semiglobal in

the sense that, as long as the input variable of the NNs remains within some spec-

ified compact set Ωy ⊂ R, where Ωy can be made as large as desired, there exists a

controller with sufficiently large number of NN nodes such that all the signals in the

closed-loop remain bounded. However, how to determine the compact set Ωy and make

the input variable of the NNs remain within the compact set are two open and chal-

lenging problems in the NN control field as suggested in [102]. One possible solution
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is by careful selection of the control parameters via rigorous transient performance

analysis [66, 129, 130], but the compact set is only given qualitatively, not quanti-

tively. Another method is to rely on a sliding mode control mechanism to render the

compact set positively invariant [112, 131]. The compact set can be specified a prior,

but there exist some implementation issues, such as the fixed-point problem about the

input signal. Therefore, new solutions are sought.

Remark 3.4 To address two open and challenging problems in the neuro-control area

mentioned in Remark 3.3, the Barrier Lyapunov Function (BLF), V1 = 1
2
log

k2
b1

k2
b1
−z2

1
,

introduced in Section 2.4, will be adopted, which was proposed for handling constraints

of states and output in [116, 117, 132]. We note that the BLF based control design

methodology appears very promising in providing yet another means of tackling the

NN approximation-based control problems, by actively constraining the states of the

system to remain within the compact set of approximation.

Substituting (3.74) and (3.76) into (3.72) and after some manipulations, we obtain

that

ẋ = Ax + F 0(y) + Φ(y)θ∗ + ∆(y, t) +

[
0

b

]
w (3.77)

where

A =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0



∈ Rn×n, F 0(y) =




f 0
1 (y)
...

f 0
n(y)


 ∈ Rn×1,

Φ(y) =




ΦT
1 (y)
...

ΦT
n (y)


 =




φT
1 (y) 0 · · · 0

0 φT
2 (y) · · · 0

...
...

. . .
...

0 0 · · · φT
n (y)



∈ Rn×ln,

θ∗ =




θ∗1
...

θ∗n


 ∈ Rln×1, b =




bm

...

b0


 =




b̄mc
...

b̄0c


 ∈ R(m+1)×1,
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∆(y, t) =




∆1(y, t)
...

∆ρ−1(y, t)

∆ρ(y, t)
...

∆n(y, t)




=




ε1(y) + d1(t)
...

ερ−1(y) + dρ−1(t)

ερ(y) + dρ(t) + b̄mh(w)
...

εn(y) + dn(t) + b̄0h(w)




∈ Rn×1 (3.78)

From Assumptions 3.6 and 3.10, we know that there exists a bounding parameter ψ

such that |∆i(y, t)| ≤ ψ, where ψ is unknown and will be estimated by ψ̂.

Choose the K-filters [65] as follows:

ξ̇ = A0ξ + ky + F 0(y) (3.79)

Ξ̇ = A0Ξ + Φ(y) (3.80)

λ̇ = A0λ + enw (3.81)

vi = Ai
0λ, i = 0, 1, ..., m (3.82)

where k = [k1, ..., kn]T such that A0 = A−keT
1 is Hurwitz, and ei is the ith coordinate

vector in Rn.

By constructing the state estimates as follows:

x̂(t) = ξ + ΞT θ∗ +
m∑
0

bivi (3.83)

it is straightforward to verify that the dynamics of the observation error, x̃ = x− x̂,

are given by

˙̃x = A0x̃ + ∆(y, t) (3.84)

Since A0 is Hurwitz, it can be shown that the error system (3.84) with state x̃ is

input state stable (ISS) with respect to the term ∆(y, t). Furthermore, the dynamic

equation of y can be expressed as

ẏ = x2 + f 0
1 (y) + ΦT

1 (y)θ∗ + ∆1(y, t)

= bmvm,2 + ξ2 + f 0
1 (y) + Ω̄T Θ + ∆1(y, t) + x̃2 (3.85)
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with

Θ = [bm, ..., b0, θ
∗T ]T

Ω = [vm,2, vm−1,2, ..., v0,2, Ξ2 + ΦT
1 ]T

Ω̄ = [0, vm−1,2, ..., v0,2, Ξ2 + ΦT
1 ]T

where x̃2, vi,2, ξ2 and Ξ2 denote the second entries of x̃, vi, ξ and Ξ, respectively, and

y, vi, ξ and Ξ are all available signals.

Combining system (3.85) with the filters (3.79)-(3.82), system (3.72) is represented

as

ẏ = bmvm,2 + ξ2 + f 0
1 (y) + Ω̄T Θ + ∆1(y, t) + x̃2 (3.86)

v̇m,i = vm,i+1 − kivm,1, i = 2, 3, ..., ρ− 1 (3.87)

v̇m,ρ = vm,ρ+1 − kρvm,1 + w (3.88)

In the next section, adaptive observer backstepping design will be presented for the

system (3.86)-(3.88) with constructive procedures, where states y, vm,2, ..., vm,ρ are

available.

3.2.4 Adaptive Observer Backstepping Design

In this section, we present the adaptive control design using the backstepping tech-

nique with tuning functions in ρ steps.

Define the following error coordinates:

z1 = y − yr (3.89)

zi = vm,i − αi−1 − %̂y(i−1)
r , i = 2, 3, ..., ρ (3.90)

where %̂ is an estimate of % = 1
bm

and αi−1 is the stabilizing functions at each step

and will be defined later.

Step 1: From (3.86) and (3.89), the derivative of z1 is given by

ż1 = bmvm,2 + ξ2 + f 0
1 (y) + Ω̄T Θ + ∆1(y, t) + x̃2 − ẏr (3.91)
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By substituting (3.90) for i = 2 into (3.91) and using %̃ = %− %̂, we have

ż1 = bmα1 + ξ2 + f 0
1 (y) + Ω̄T Θ + ∆1(y, t) + x̃2 − bm%̃ẏr + bmz2 (3.92)

For any initial compact set Ω0
y := {y ∈ R

∣∣∣|y| ≤ k0, k0 > 0} ⊂ R, which y(0) belongs

to, we can always specify another compact set Ωy := {y ∈ R
∣∣∣|y| ≤ kc1 , kc1 > k0 +A0 +

|yr(0)|} ⊂ R, which is a superset of Ω0
y and can be made as large as desired. As long

as the input variable of the NNs, y, remains within this prefixed compact Ωy, the NN

approximation is valid. Borrowing the idea of the BLF based control in [116, 132], to

design a control that does not drive y out of the interval |y| < kc1 , we require that

|z1| < kb1 with kb1 = kc1 −A0 and choose the following Lyapunov function candidate,

which incorporate the symmetric Barrier Lyapunov Function candidate introduced in

Remark 3.4:

V1 =
1

2
log

k2
b1

k2
b1
− z2

1

+
1

2
Θ̃T Γ−1Θ̃ +

|bm|
2γ%

%̃2 +
1

2γψ

ψ̃2 +
1

2γ1

x̃T Px̃ (3.93)

where Θ̃ = Θ− Θ̂, Θ̂ is the estimate of Θ, ψ̃ = ψ − ψ̂, Γ is a positive definite design

matrix, γ%, γψ and γ1 are positive design parameters, and P is a definite positive

matrix such that

PA0 + AT
0 P = −I

where P = P T > 0.

The derivative of V1 along (3.92) is given by

V̇1 =
z1ż1

k2
b1
− z2

1

− Θ̃T Γ−1 ˙̂
Θ− |bm|

γ%

%̃ ˙̂%− 1

γψ

ψ̃
˙̂
ψ − 1

2γ1

x̃T x̃

=
z1

k2
b1
− z2

1

[bmα1 + ξ2 + f 0
1 (y) + Ω̄T Θ + ∆1(y, t) + x̃2 − bm%̃ẏr + bmz2]

−Θ̃T Γ−1 ˙̂
Θ− |bm|

γ%

%̃ ˙̂%− 1

γψ

ψ̃
˙̂
ψ − 1

2γ1

x̃T x̃ (3.94)

Design the following stabilizing functions:

α1 = %̂ᾱ1 (3.95)

ᾱ1 = −c1z1 − ξ2 − f 0
1 (y)− Ω̄T Θ̂− γ1z1

k2
b1
− z2

1

− ψ̂ tanh

( z1

k2
b1
−z2

1

δ1

)
(3.96)
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where c1 and δ1 are positive design parameters.

It is easy to know that

bmα1 = bm%̂ᾱ1 = ᾱ1 − bm%̃ᾱ1 (3.97)

Substituting (3.95)-(3.97) into (3.94) leads to

V̇1 ≤ − c1z
2
1

k2
b1
− z2

1

+
z1

k2
b1
− z2

1

(Ω̄T Θ̃ + bmz2)− z1

k2
b1
− z2

1

bm%̃(ẏr + ᾱ1) +
z1x̃2

k2
b1
− z2

1

−γ1

( z1

k2
b1
− z2

1

)2

+ ψ

∣∣∣∣
z1

k2
b1
− z2

1

∣∣∣∣− ψ̂
z1

k2
b1
− z2

1

tanh

( z1

k2
b1
−z2

1

δ1

)
− Θ̃T Γ−1 ˙̂

Θ

−|bm|
γ%

%̃ ˙̂%− 1

γψ

ψ̃
˙̂
ψ − 1

2γ1

x̃T x̃ (3.98)

For the second term in the right hand of (3.98), we can rewrite it as

z1

k2
b1
− z2

1

(Ω̄T Θ̃ + bmz2) =
z1

k2
b1
− z2

1

[Ω̄T Θ̃ + (vm,2 − %̂ẏr − α1)e
T
1 Θ̃ + b̂mz2]

=
z1

k2
b1
− z2

1

{[Ω− %̂(ẏr + ᾱ1)e1]
T Θ̃ + b̂mz2} (3.99)

By using Young’s inequality, the fourth term in the right hand of (3.98) becomes

z1x̃2

k2
b1
− z2

1

≤ γ1

( z1

k2
b1
− z2

1

)2

+
x̃2

2

4γ1

≤ γ1

( z1

k2
b1
− z2

1

)2

+
1

4γ1

x̃T x̃ (3.100)

Due to ψ̃ = ψ − ψ̂ and the property of the hyperbolic tangent function

0 ≤ |η| − η tanh(
η

δ
) ≤ 0.2785δ (3.101)

the sixth and seventh terms in the right hand of (3.98) becomes

ψ

∣∣∣∣
z1

k2
b1
− z2

1

∣∣∣∣− ψ̂
z1

k2
b1
− z2

1

tanh

( z1

k2
b1
−z2

1

δ1

)

= ψ

{∣∣∣∣
z1

k2
b1
− z2

1

∣∣∣∣−
z1

k2
b1
− z2

1

tanh

( z1

k2
b1
−z2

1

δ1

)}
+ ψ̃

z1

k2
b1
− z2

1

tanh

( z1

k2
b1
−z2

1

δ1

)

≤ 0.2785δ1ψ + ψ̃
z1

k2
b1
− z2

1

tanh

( z1

k2
b1
−z2

1

δ1

)
(3.102)
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Substituting (3.99)-(3.102) into (3.98), we have

V̇1 ≤ − c1z
2
1

k2
b1
− z2

1

+
b̂mz1z2

k2
b1
− z2

1

+ Θ̃T
{ z1

k2
b1
− z2

1

[Ω− %̂(ẏr + ᾱ1)e1]− Γ−1 ˙̂
Θ

}

−|bm|
γ%

%̃
[
γ%sign(bm)(ẏr + ᾱ1)

z1

k2
b1
− z2

1

+ ˙̂%
]

+ψ̃

[
z1

k2
b1
− z2

1

tanh

( z1

k2
b1
−z2

1

δ1

)
− 1

γψ

˙̂
ψ

]
− 1

4γ1

x̃T x̃ + 0.2785δ1ψ (3.103)

Choose the adaptation law ˙̂% and the tuning functions τ1θ and τ1ψ as follows:

˙̂% = −γ%

[
sign(bm)(ẏr + ᾱ1)

z1

k2
b1
− z2

1

+ σ%%̂

]
(3.104)

τ1θ =
z1

k2
b1
− z2

1

[Ω− %̂(ẏr + ᾱ1)e1]− σθΘ̂ (3.105)

τ1ψ =
z1

k2
b1
− z2

1

tanh

( z1

k2
b1
−z2

1

δ1

)
− σψψ̂ (3.106)

Substituting (3.104) and (3.106) into (3.103) results in

V̇1 ≤ − c1z
2
1

k2
b1
− z2

1

+
b̂mz1z2

k2
b1
− z2

1

+ Θ̃T (τ1θ − Γ−1 ˙̂
Θ) + ψ̃(τ1ψ − 1

γψ

˙̂
ψ) + σθΘ̃Θ̂ + σψψ̃ψ̂

+σ%|bm|%̃%̂− 1

4γ1

x̃T x̃ + 0.2785δ1ψ (3.107)

with the coupling term b̂mz1z2

k2
b1
−z2

1
to be canceled in the subsequent step.

Step 2: The derivative of z2 can be obtained from (3.87) and (3.90) as follows

ż2 = v̇m,2 − α̇1 − ˙̂%ẏr − %̂ÿr

= vm,3 − k2vm,1 − α̇1 − ˙̂%ẏr − %̂ÿr (3.108)

From (3.95) and (3.96), we know that α1 is a function of y, ξ, Ξ, Θ̂, %̂, ψ̂, yr, λ̄m+1, thus,

its derivative α̇1 can be expressed as

α̇1 =
∂α1

∂y
(bmvm,2 + ξ2 + f 0

1 (y) + Ω̄T Θ + ∆1(y, t) + x̃2) +
∂α1

∂yr

ẏr

+
m+1∑
j=1

∂α1

∂λj

(−kjλ1 + λj+1) +
∂α1

∂ξ
(A0ξ + ky + F 0(y))

+
∂α1

∂Ξ
(A0Ξ

T + Φ(y)) +
∂α1

∂Θ̂

˙̂
Θ +

∂α1

∂%̂
˙̂% +

∂α1

∂ψ̂

˙̂
ψ (3.109)
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Substituting (3.109) into (3.108), we have

ż2 = vm,3 − %̂ÿr − β2 − ∂α1

∂y
(ΩT Θ̃ + ∆1(y, t) + x̃2)− ∂α1

∂Θ̂

˙̂
Θ− ∂α1

∂ψ̂

˙̂
ψ (3.110)

where

β2 =
∂α1

∂y

(
ξ2 + f 0

1 (y) + ΩT Θ̂
)

+ k2vm,1 +
∂α1

∂yr

ẏr + (
∂α1

∂%̂
+ ẏr) ˙̂%

+
m+1∑
j=1

∂α1

∂λj

(−kjλ1 + λj+1) +
∂α1

∂ξ
(A0ξ + ky + F 0(y))

+
∂α1

∂Ξ
(A0Ξ

T + Φ(y)) (3.111)

Taking vm,3 as a virtual control input and using z3 = vm,3 − α2 − %̂ÿr, we have

ż2 = z3 + α2 − β2 − ∂α1

∂y
(ΩT Θ̃ + ∆1(y, t) + x̃2)− ∂α1

∂Θ̂

˙̂
Θ− ∂α1

∂ψ̂

˙̂
ψ (3.112)

Since z2 does not need to be constrained, we choose Lyapunov function candidate by

augmenting V1 with a quadratic function as follows

V2 = V1 +
1

2
z2
2 +

1

2γ2

x̃T Px̃ (3.113)

where γ2 is a positive design parameter.

The derivative of V2 along (3.107) and (3.112) is given by

V̇2 ≤ − c1z
2
1

k2
b1
− z2

1

+
b̂mz1z2

k2
b1
− z2

1

+ z2

[
z3 + α2 − β2 − ∂α1

∂y
(ΩT Θ̃ + ∆1(y, t) + x̃2)

−∂α1

∂Θ̂

˙̂
Θ− ∂α1

∂ψ̂

˙̂
ψ

]
+ Θ̃T (τ1θ − Γ−1 ˙̂

Θ) + ψ̃(τ1ψ − 1

γψ

˙̂
ψ) + σθΘ̃Θ̂ + σψψ̃ψ̂

+σρ|bm|%̃%̂− 1

4γ1

x̃T x̃ + 0.2785δ1ψ − 1

2γ2

x̃T x̃ (3.114)

Choose the second stabilizing function α2 and tuning function τ2:

α2 = − b̂mz1

k2
b1
− z2

1

− c2z2 + β2 +
∂α1

∂Θ̂
Γτ2θ +

∂α1

∂ψ̂
γψτ2ψ − ψ̂

∂α1

∂y
tanh

(
z2

∂α1

∂y

δ2

)

−γ2

(∂α1

∂y

)2

z2 (3.115)

τ2θ = τ1θ − z2
∂α1

∂y
Ω (3.116)

τ2ψ = τ1ψ + z2
∂α1

∂y
tanh

(
z2

∂α1

∂y

δ2

)
(3.117)
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where c2 and δ2 are positive design parameters.

Substituting (3.115) and (3.117) into (3.118), we have

V̇2 ≤ − c1z
2
1

k2
b1
− z2

1

− c2z
2
2 + z2z3 + Θ̃T (τ2θ − Γ−1 ˙̂

Θ) + ψ̃(τ2ψ − 1

γψ

˙̂
ψ)

+z2
∂α1

∂Θ̂
(Γτ2θ − ˙̂

Θ) + z2
∂α1

∂ψ̂
(γψτ2ψ − ˙̂

ψ) + σθΘ̃Θ̂ + σψψ̃ψ̂ + σρ|bm|%̃%̂

−
2∑

i=1

1

4γi

x̃T x̃ +
2∑

i=1

0.2785δiψ (3.118)

Step i = 3, ..., ρ. Similar to the procedures in Step 2, choose the following stabilizing

functions αi and tuning functions τi for i = 3, ..., ρ:

αi = −zi−1 − cizi + βi +
∂αi−1

∂Θ̂
Γτiθ +

∂αi−1

∂ψ̂
γψτiψ − ψ̂

∂αi−1

∂y
tanh

(
zi

∂αi−1

∂y

δi

)

−γi

(∂αi−1

∂y

)2

zi −
( i−1∑

k=2

zk
∂αk−1

∂Θ̂

)
Γ

∂αi−1

∂y
Ω

−
( i−1∑

k=2

zk
∂αk−1

∂ψ̂

)
γψ

∂αi−1

∂y
tanh

(
zi

∂αi−1

∂y

δi

)
(3.119)

τiθ = τ(i−1)θ − zi
∂αi−1

∂y
Ω (3.120)

τiψ = τ(i−1)ψ + zi
∂αi−1

∂y
tanh

(
zi

∂αi−1

∂y

δi

)
(3.121)

where

βi =
∂αi−1

∂y

(
ξ2 + f 0

1 (y) + ΩT Θ̂
)

+ kivm,1 +
i−1∑
j=1

∂αi−1

∂y
(j−1)
r

y(j)
r + (

∂αi−1

∂%̂
+ y(i−1)

r ) ˙̂%

+
m+i−1∑

j=1

∂αi−1

∂λj

(−kjλ1 + λj+1) +
∂αi−1

∂ξ
(A0ξ + ky + Ψ(y))

+
∂αi−1

∂Ξ
(A0Ξ

T + Φ(y)) (3.122)

In the last step ρ, the actual control law w and the adaptation law
˙̂
Θ are given as

follows:

w = αρ − vm,ρ+1 + %̂y(ρ)
r (3.123)
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˙̂
Θ = Γτρθ (3.124)

˙̂
ψ = γψτρψ (3.125)

The final Lyapunov function Vρ can be written as

Vρ =
1

2
log

k2
b1

k2
b1
− z2

1

+

ρ∑
i=2

1

2
z2

i +
1

2
Θ̃T Γ−1Θ̃ +

|bm|
2γ%

%̃2 +
1

2γψ

ψ̃2 +

ρ∑
i=1

1

2γi

x̃T Px̃

(3.126)

Substituting (3.118)-(3.125) into the derivative of Vρ, we obtain

V̇ρ ≤ − c1z
2
1

k2
b1
− z2

1

−
ρ∑

i=2

ciz
2
i + σθΘ̃Θ̂ + σψψ̃ψ̂ + σρ|bm|%̃%̂−

ρ∑
i=1

1

4γi

x̃T x̃

+

ρ∑
i=1

0.2785δiψ (3.127)

By completion of squares, (3.127) becomes

V̇ρ ≤ − c1z
2
1

k2
b1
− z2

1

−
ρ∑

i=2

ciz
2
i −

σθ

2
‖Θ̃‖2 − σψ

2
ψ̃2 − σ%

2
|bm|%̃2 −

ρ∑
i=1

1

4γi

x̃T x̃

+
σθ

2
‖Θ‖2 +

σψ

2
ψ2 +

σ%

2
|bm|%2 +

ρ∑
i=1

0.2785δiψ (3.128)

Theorem 3.2 Consider the closed-loop system consisting of the plant (3.72), fil-

ters (3.79)-(3.82), stabilizing functions (3.95)(3.115)(3.119), control law (3.123) and

adaptation laws (3.104)(3.124), under Assumptions 3.6-3.10. Then, for any initial

compact set Ω0
y, which y(0) belongs to,

(i) there always exists a sufficiently large compact set Ωy, such that y(t) ∈ Ωy,

∀t > 0;

(ii) all closed loop signals are bounded; and

(iii) the output tracking error converges to a neighborhood of zero, which can be made

arbitrarily small by appropriate selection of design parameters.

Proof:
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3.2 Output Feedback Systems

(i) For any initial compact set Ω0
y := {y ∈ R

∣∣∣|y| ≤ k0, k0 > 0} ⊂ R, which y(0)

belongs to, we can always specify another compact set Ωy := {y ∈ R
∣∣∣|y| ≤

kc1 , kc1 > k0 + A0 + |yr(0)|} ⊂ R, which is a superset of Ω0
y and can be made as

large as desired. Now, we prove that y, the input variable of the NNs, remains

within this specified compact set for all time, which means that y(t) ∈ Ωy,

∀t > 0.

Borrowing the idea of the BLF based control in [116][132], to design a control

that does not drive y out of the interval |y| < kc1 , we require that |z1| < kb1

with kb1 = kc1 −A0. According to Lemma 2.7, − k2
b1

k2
b1
−z2

1
< − log

k2
b1

k2
b1
−z2

1
in the set

|z1| < kb1 . Therefore, (3.128) can be further represented as

V̇ρ ≤ −c1 log
k2

b1

k2
b1
− z2

1

−
ρ∑

i=2

ciz
2
i −

σθ

2
‖Θ̃‖2 − σψ

2
ψ̃2 − σ%

2
|bm|%̃2 −

ρ∑
i=1

1

4γi

x̃T x̃

+
σθ

2
‖Θ‖2 +

σψ

2
ψ2 +

σ%

2
|bm|%2 +

ρ∑
i=1

0.2785δiψ

≤ −µ1Vρ + µ2 (3.129)

in the set |z1| < kb1 , where

µ1 = min

{
2ci,

σθ

λmax(Γ−1)
, σ%γ%, σψγψ,

1

2λmax(P )

}
(3.130)

µ2 =
σθ

2
‖Θ‖2 +

σψ

2
ψ2 +

σ%

2
|bm|%2 +

ρ∑
i=1

0.2785δiψ (3.131)

We can rewrite the closed loop system consisting of the plant (3.72), filters

(3.79)-(3.82), stabilizing functions (3.95)(3.115)(3.119), control law (3.123) and

adaptation laws (3.104)(3.124), as η̇ = h(t, η), where η = [z̄T
n , Θ̃T , %̃, ψ̃]T . Then,

it can be shown that h(t, η) satisfies the conditions of the existence and unique-

ness of solution ([119], p.476, Theorem 54) for η ∈ Ω =
{

z̄n ∈ Rn, Θ̃ ∈ Rln+m+1 ,

%̃ ∈ R, ψ̃ ∈ R
∣∣∣ |z1| < kb1

}
. Since z1(0) = y(0) − yr(0), y(0) ≤ k0 in the defini-

tion of Ω0
y and kc1 > k0 + A0 + |yr(0)| in the definition of Ωy, we obtain that

|z1(0)| < kb1 . Therefore, we can conclude that the set Ω is an invariant set.

Together with (3.129), we infer, from Lemma 2.6, that |z1(t)| < kb1 , ∀t > 0.

Since y(t) = z1(t) + yr(t) and |yr(t)| ≤ A0 in Assumption 3.9, we obtain that
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3.2 Output Feedback Systems

|y(t)| ≤ |z1(t)| + |yr(t)| < kb1 + A0 = kc1 , ∀t > 0. As such, we can conclude

that for any initial compact set Ω0
y, which y(0) belongs to, there always exists

a sufficiently large compact set Ωy, such that y ∈ Ωy, ∀t > 0.

(ii) Let µ0 = µ2

µ1
, then (3.129) satisfies

0 ≤ Vρ(t) ≤ µ0 + (Vρ(0)− µ0)e
−µ1t ≤ µ0 + Vρ(0) (3.132)

Therefore, from (3.126), we infer that z̄n, Θ̂, %̂, ψ̂, x̃ are bounded. Since z1 and

yr are bounded, y is also bounded. Then, from (3.79) and (3.80), we conclude

that ξ and Ξ are bounded as A0 is Hurwitz. Assumption 3.8 and (3.81) imply

that λ̄m+1 are bounded. From the coordinate change (3.90), it follows that

vm,i = zi + %̂y(i−1)
r + αi−1(y, ξ, Ξ, Θ̂, %̂, ψ̂, λ̄m+i−1, ȳ

(i−2)
r ), i = 2, 3, ..., ρ

(3.133)

For i = 2, the boundedness of λ̄m+1, along with the boundedness of z2 and

y, ξ, Ξ, Θ̂, %̂, ψ̂, yr, ẏr, proves that vm,2 is bounded. From (3.82), it follows that

λm+2 is bounded. Following the same procedure recursively, the boundedness

of λ is established. Finally, from (3.83) and the boundedness of ξ, Ξ, λ, x̃, we

conclude that x is bounded. Furthermore, w(t) is bounded. Hence, all closed

loop signals are bounded.

(iii) From (3.126) and (3.132), we obtain that

1

2
log

k2
b1

k2
b1
− z2

1

≤ µ0 + (Vρ(0)− µ0)e
−µ1t (3.134)

Taking exponentials on both sides of (3.134) results in

k2
b1

k2
b1
− z2

1

≤ e2[µ0+(Vρ(0)−µ0)e−µ1t] (3.135)

Since |z1(t)| < kb1 is obtained in (i), we have, that k2
b1
− z2

1 > 0. Multiplying

both sides by (k2
b1
− z2

1) and after some manipulations lead to

|z1(t)| ≤ kb1

√
1− e−2[µ0+(Vρ(0)−µ0)e−µ1t] (3.136)
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It follows that given any µ > kb1

√
1− e−2µ0 , there exists T such that for all

t > T ,

|z1(t)| ≤ µ (3.137)

As t →∞,

|z1(t)| ≤ kb1

√
1− e−2µ0 (3.138)

which implies that

|y − yr| ≤ kb1

√
1− e−2µ0 , as t →∞ (3.139)

Due to µ0 = µ2

µ1
, and from the definitions of µ1 (3.130) and µ2 (3.131), we see

that y − yr can be made arbitrarily small by appropriate selection of design

parameters.

3.2.5 Simulation Results

In this section, the feasibility and effectiveness of the proposed approach are illustrated

by an example. Consider a second-order output feedback system as follows

ẋ1 = x2 + (y3 − y)/(1 + y4) + 0.1 sin(0.1t)

ẋ2 = y2 + sin(y) + 0.1 cos(0.1t) + u(w)

y = x1 (3.140)

where x1, x2 are system states, y is the output; f1(y) = (y3− y)/(1 + y4) and f2(y) =

y2 + sin(y) are unknown functions; the bounded time-varying disturbances d1(t) =

0.01 sin(0.1t) and d2(t) = 0.01 cos(0.1t) satisfy that |d1(t)| ≤ 0.01, |d2(t)| ≤ 0.01; and

u(w) represents an output of the following backlash-like hysteresis:

du

dt
= α

∣∣∣∣
dw

dt

∣∣∣∣ (cw − u) + B1
dw

dt
(3.141)

with α = 1, c = 3.1635, and B1 = 0.345. The objective is for y to track the desired

trajectory yr, which is generated by a second-order filter

yr =
w2

n

s2 + 2ζwns + w2
n

yref (3.142)
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with wn = 1.5, ζ = 0.8, and for yref defined to be a square wave of amplitude

A0 = 0.05, period T = 20s.

The initial conditions and the control design parameters used in the simulation are as

follows: x1(0) = 0.0, x2(0) = 0.0, ξi(0) = Ξi(0) = v0,i(0) = 0.0, i = 1, 2, k1 = k2 = 5.0,

c1 = c2 = 0.8, δ1 = δ2 = 7.0, γ1 = γ2 = 0.1, Γθ1 = 0.2I, Γθ2 = 0.1I,γψ = 0.05,

σθ1 = 0.4, σθ2 = 0.8, σψ = 0.4. For the unknown functions f1(y) and f2(y), we use

the RBFNNs to approximate them on-line as f1(y) = φT
1 (y)θ̂1 and f2(y) = φT

2 (y)θ̂2

respectively, where the input of the neural networks is only the output signal y. If the

initial compact set is chosen as Ω0
y := {y ∈ R

∣∣∣|y| ≤ k0}, where k0 = 0.5, we can specify

another compact set Ωy := {y ∈ R
∣∣∣|y| ≤ kc1}, where kc1 = 0.6 > k0 + A0 + |yr(0)| =

0.55. Thus, we have that kb1 = kc1 − A0 = 0.55. Our proposed control can ensure

that the input variable of the NNs, y, remains within this prefixed compact Ωy all

the time, and thus, the NN approximation is valid. For both function approximators,

the numbers of nodes are chosen as l1 = l2 = 5; the centers of the receptive fields as

µ1 = µ2 = [−0.6,−0.3, 0.0, 0.3, 0.6]T , the widths of the Gaussian function as η1 = 0.2

and η2 = 0.1. The initial values for all weights θ̂1 and θ̂2 are set to zero (i.e., no initial

knowledge).

The simulation results are shown in Figures 3.6-3.10. Figure 3.6 shows the output

tracking performance. It can be seen that the output y remains within the compact

set Ωy := {y ∈ R
∣∣∣|y| ≤ 0.6} and tracks the desired trajectory yr to a neighborhood

of zero when the proposed BLF based control is used. The tracking error z1 = y− yr

and the control u are shown in Figure 3.7. It is noted that there are some spikes in

the control signal u(t) at t = nT/2 (n = 1, 2,...). This is caused by the nonlinear

term z1

k2
b1
−z2

1
in (3.96) and (3.115). For the square wave reference signal defined in

(3.142), there are some jumps at t = nT/2 (n = 1, 2,...), which result in jumps for the

tracking error signal z1. Before z1(t) tends to approach the barriers at z1 = ±0.55, the

nonlinear term z1

k2
b1
−z2

1
grows rapidly and leads to a large control effort that prevents z1

from the barriers. It can be seen that z1 remains in the set |z1| < kb1 in Figure 3.7, and

thus, |y| < kc1 , such that NN approximation is valid. From Figure 3.8, we can see that

the approximations to the functions f1 and f2 are converging to a neighborhood of the

actual functions. The boundedness of the norm of neural weights ‖θ̂1‖ and ‖θ̂2‖, and
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the bounding parameter adaptation ψ̂ are shown in Figure 3.9 as well. In addition,

Figure 3.10 shows output trajectories for different initial conditions. It indicates that

with the proposed BLF based control, the output y, starting from a initial compact

set Ω0
y := {y ∈ R

∣∣∣|y| ≤ 0.5}, can always stay within the specified compact set

Ωy := {y ∈ R
∣∣∣|y| ≤ 0.6} for all time, which ensures that NN approximation is valid.

3.3 Conclusion

In this chapter, firstly, adaptive dynamic surface control (DSC) using neural networks

has been proposed for a class of nonlinear systems in strict-feedback form with back-

lash hysteresis input, where the hysteresis is modeled as a differential equation. The

developed adaptive control can guarantee that all signals involved are semi-globally

uniformly ultimately bounded (SGUUB) without constructing a hysteresis inverse.

Simulation results have been provided to show the effectiveness of the proposed ap-

proach. Secondly, adaptive observer backstepping using neural network (NN) has

been adopted for state estimation and function on-line approximation using only

output measurements to achieve the output tracking for a class of output feedback

nonlinear systems with back-lash hysteresis input. The Barrier Lyapunov Function

(BLF) has been incorporated into Lyapunov synthesis to address two open and chal-

lenging problems in the neuro-control area. By ensuring the boundedness of the BLF,

we can actively (i) determine the compact set a priori, on which NN approximation is

valid; and (ii) ensure the argument of the unknown function remain within the spec-

ified set. The semi-globally uniformly ultimately bounded (SGUUB) stability of the

closed-loop system has been provided and the effectiveness of the proposed approach

has been illustrated using a numerical example.
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Figure 3.2: Tracking performance for the strict-feedback system with backlash-like
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Figure 3.3: Control inputs for the strict-feedback system with backlash-like hysteresis
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Figure 3.6: Tracking performance for the output feedback system with backlash-like
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Chapter 4

Systems with Classic

Prandtl-Ishlinskii Hysteresis

4.1 Introduction

Control of a system with hysteresis nonlinearities is challenging, because they are

non-differentiable nonlinearities and severely limit system performance by giving rise

to undesirable inaccuracy or oscillations, and even lead to closed loop instability

[3]. Furthermore, due to the nonsmooth characteristics of hysteresis nonlinearities,

traditional control methods are inadequate in dealing with the effects of unknown

hysteresis. In [3], adaptive control with an adaptive hysteresis inverse was presented

for plants with unknown parameterized hysteresis. Robust control was developed by

combining the inverse compensation for a novel dynamic hysteresis model in magne-

tostrictive actuators in [120]. In [16], robust adaptive control was investigated for a

class of nonlinear system with unknown backlash-like hysteresis, for which, adaptive

backstepping control was designed in [17]. Apart from the above hysteresis models,

there exist many other hysteresis models in the literature, since hysteresis is a very

complex phenomenon. For different kinds of hysteresis models, different compensation

methods should be adopted. As such, it is challenging to fuse those hysteresis models

with the available control techniques. It appears that the classic Prandtl-Ishlinskii

(PI) hysteresis model, which is a subclass of Preisach type model, can be explored in
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connection with the existing robust adaptive control methods. In [18] and [19], adap-

tive variable structure control and adaptive backstepping methods were proposed,

respectively, for a class of continuous-time nonlinear dynamic systems preceded by

hysteresis nonlinearity with the classic PI hysteresis model representation. However,

since the nonlinear functions in most of the above works were assumed to be known,

it is therefore of interest to develop methods to deal with unknown nonlinearities, so

as to enlarge the class of applicable systems.

Other than hysteresis, time-delay is another problem that is often encountered in

physical systems, for example, in the turbojet engines, aircraft systems, microwave

oscillators, nuclear reactors, rolling mills, chemical processes, and hydraulic systems,

among others [135]. The existence of time-delays in a system frequently becomes a

source of instability, and may degrade the control performance. The control of the

time-delay systems is challenging since they involve infinite-dimensional functional

differential equations, which are more difficult to handle than finite-dimensional or-

dinary differential equations [136]. To guarantee the stability of time-delay systems,

a number of different approaches have been proposed [137]. Lyapunov-Krasovskii

functionals [138], combined with the linear matrix inequality (LMI) technique, have

been used to establish a framework for the stability and control of time-delay systems

[139, 140, 141, 142]. In [143], Lyapunov-Krasovskii functionals were used with back-

stepping for a class of single-input single-output (SISO) nonlinear time-delay systems

with a “triangular structure”, which was later commented that it could not be “con-

structively obtained” in [144]. The need for knowledge of system nonlinearities was

removed with the use of adaptive neural network control in [145], which was extended

to a class of multi-input multi-output (MIMO) nonlinear systems in block-triangular

form with unknown state delays [146]. Apart from the Lyapunov-Krasovskii method,

the Lyapunov-Razumikhin technique has also been investigated for linear time delay

systems [147], as well as for nonlinear time delay systems [148, 149].

Although there are some works that deal with hysteresis, or time delay, individually,

the combined problem, despite its practical relevance, is largely open in the literature

to the best of the author’s knowledge, with the exception of [150], in which turning

cutting systems were modeled as plants containing linearly parameterized nonlinear-

ities, backlash hysteresis, and known constant time delay. Motivated by [150], in this
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chapter, several technical contributions are made as follows:

First, the restriction of linearly parameterized nonlinear systems considered in [150], is

removed to tackle a larger and more complex class of nonlinear systems with unknown

nonlinearities, for which direct approximation based control using neural networks is

adopted due to their universal approximation capabilities.

Second, nonlinear systems that are preceded by uncertain hysteresis inputs in the

classic PI form, are considered, which is more complex than the backlash type, but

can capture the hysteresis phenomenon more accurately. The classic PI hysteresis is

fused with adaptive neural control to the reduce the effects of uncertain hysteresis.

Third, the assumption of known constant time delay considered in [150], is relaxed

to unknown time-varying delay, for which Lyapunov-Krasovskii functionals are used

to compensate.

The organization of this chapter is as follows. The problem formulation and pre-

liminaries are given in Section 4.2. In Section 4.3, adaptive variable structure neural

control is developed for a class of SISO time-varying state delay systems with hystere-

sis by utilizing an integral-type Lyapunov function first, which is extended to MIMO

systems later. Results of extensive simulation studies are shown to demonstrate the

effectiveness of the approach in Section 4.4, followed by conclusion in Section 4.5.

4.2 Problem Formulation and Preliminaries

Consider the following class of uncertain MIMO nonlinear system Σ0 consisting of

interconnected subsystems in a Brunovsky form with time-varying state delays and

uncertain classic PI hysteresis inputs:

Σ0 :





ẋi,j = xi,j+1

ẋi,ni
= fi(x, ūi−1) + gi,τ (xτ ) + bi(x̄i)ui

xi(t) = ψi(t), t ∈ [−τmax, 0]

yi = xi,1

(4.1)

where i = 1, 2, ..., m, j = 1, 2, ..., ni − 1; xi = [xi,1, ..., xi,ni
]T ∈ Rni are the delay-free

state variables of the ith subsystem, x̄i = [xT
1 , ..., xT

i ]T ∈ Rn̄i with n̄i =
∑i

j=1 nj
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and x = [xT
1 , xT

2 , ..., xT
m]T ∈ Rn with n =

∑m
i=1 ni; yi ∈ R denotes the ith subsystem

output; fi(·) and gi,τ (·) are unknown continuous functions; bi(·) are the unknown

differentiable control gains; ψi(t) are the smooth and bounded initial functions; xτ =

[x1(t−τ1(t))
T , ..., xm(t−τm(t))T ]T , and τ1(t), ..., τm(t) are unknown time-varying state

delays, τmax as will be defined later is a known positive constant; ūi = [u1, u2, ..., ui]
T ,

and ui ∈ R is the input of the the ith subsystem and the output of the ith hysteresis,

which is represented as the classic PI hysteresis model with a play operator as follows:

ui(t) = pi0vi(t)− di[vi](t) (4.2)

pi0 =

∫ R

0

pi(r)dr

di[vi](t) =

∫ R

0

pi(r)Fir[vi](t)dr (4.3)

Fir[vi](0) = fir(vi(0), 0)

Fir[vi](t) = fir(vi(t), Fir[vi](tk)), for tk < t ≤ tk+1 and 0 ≤ k ≤ N − 1

fir(v, w) = max(v − r, min(v + r, w))

where ui(t) ∈ R and vi(t) ∈ R are the output and input of the classic PI hystere-

sis model respectively; pi(r) is a given density function, satisfying pi(r) ≥ 0 with∫∞
0

rpi(r)dr < ∞, Fir is known as the play operator. In addition, there are N subin-

tervals, and the function vi is monotone on each of the subintervals (tk, tk+1]. The

density function pi(r) vanishes for large values of r. As such, it is reasonable to choose

a large enough constant R such that the given density function pi(R) vanishes, de-

spite the fact that R = ∞ is commonly chosen as the upper limit of integration in

the literature.

Substituting the classic PI hysteresis model (4.2) into the plant (4.1), we obtain the

the integrated system Σ1

Σ1 :





ẋi,j = xi,j+1

ẋi,ni
= fi(x, ūi−1) + gi,τ (xτ ) + bi(x̄i)pi0vi(t)− bi(x̄i)di[vi](t)

xi(t) = ψi(t), t ∈ [−τmax, 0]

yi = xi,1

(4.4)
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Our control objective is to track the specified desired trajectory yid to a small neigh-

borhood of zero with the output yi, while ensuring that all the signals in the corre-

sponding closed-loop system is semiglobally uniformly ultimately bounded (SGUUB).

Remark 4.1 Although it appears possible to rewrite (4.4) into the non-affine form

ẋ = f(x, u), it still cannot be handled by the method proposed by [42], in which Implicit

Function Theorem was adopted to handle the non-affine problem. The reason is that

if we want to apply Implicit Function Theorem to a function, one requirement is

that the first order derivative of the function is not equal to zero. However, due

to the nonsmooth characteristics of hysteresis, the function f(x, u) transformed from

(4.4) is non-differentiable and thus does not satisfy the conditions of applying Implicit

Function Theorem. Therefore, we need seek for new solutions in this chapter.

Remark 4.2 Noticing that di[vi](t) in (4.4) is an integral function of control input

signal vi, which needs to be designed later, we cannot assume di[vi](t) is bounded

before we prove the boundedness of control input vi, even if the output of the classic PI

model is bounded for bounded input. Therefore, standard robust adaptive control used

for dealing with bounded disturbance cannot be applied here. To solve this problem,

we will develop the comprehensive control in the subsequent Section 4.3.

Assumption 4.1 There exist two positive constants, bi0 and bi1, such that 0 < bi0 ≤
|bi(x̄i)| ≤ bi1, ∀x̄i ∈ Rn̄i.

Remark 4.3 Assumption 4.1 implies that smooth functions bi(x̄i) are either strictly

positive or strictly negative, which is reasonable because bi(x̄i) being bounded away

from zero is the controllable condition of system Σ1 in (4.4), which is necessary in

most control schemes [65, 151]. Without loss of generality, we shall assume that

bi(x̄i) > 0, ∀x̄i ∈ Rn̄i. In addition, the constants bi0 and bi1 need not be known, as

they are used in the stability analysis only.

Assumption 4.2 The desired trajectory yid and its time derivatives up to the ni-th

order remain bounded, i.e., x̄id = [yid, ẏid, ÿid, ...y
(ni)
id ]T ∈ Ωid ⊂ Rni+1 with known

compact set Ωid, i = 1, ..., m.

72



4.3 Control Design and Stability Analysis

Assumption 4.3 The unknown time-varying state delays τi(t) satisfy the following

inequalities

0 ≤ τi(t) ≤ τmax, τ̇i(t) ≤ τ̄max < 1, i = 1, ..., m (4.5)

with known constants τmax and τ̄max.

Assumption 4.4 There exist known constants pi0min and pi max, such that pi0 >

pi0min, and pi(r) ≤ pi max for all r ∈ [0, R], i = 1, ...m.

Remark 4.4 It is reasonable to set an upper bound for the density function pi(r),

based on its properties that pi(r) ≥ 0 with
∫ R

0
rpi(r)dr < ∞.

Remark 4.5 According to Lemma 2.5, the unknown continuous functions of delayed

states in (4.4), gi,τ (xτ ), satisfy the inequality

gi,τ (xτ ) ≤
m∑

k=1

%ik(xk(t− τk(t))) (4.6)

with %ik(·) being positive continuous functions, i = 1, ..., m. In this chapter, we con-

sider the special case whereby the bounding functions, %ik(·), are known. As for the

case of unknown bounding functions, interested readers can refer to [146].

4.3 Control Design and Stability Analysis

In this section, we will carry out adaptive NN control design for system Σ1 in (4.4) to

achieve stable output tracking. In order to illustrate the design methodology clearly,

the SISO case (i.e., m = 1) is discussed first, which is generalized to the MIMO case

(i.e., m ≥ 2) subsequently. For both cases, the closed-loop system will be proved to

be SGUUB by Lyapunov stability analysis.

The following definitions and notations are used throughout the control design and

stability analysis. Define xid and ei as

xid = [yid, ẏid, ..., y
(ni−1)
id ]T

ei = xi − xid = [ei1, ei2, ..., eini
]T
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and the filtered tracking error si as

si = (
d

dt
+ λi)

ni−1ei1 =

ni−1∑
j=1

λijeij + eini
(4.7)

where λij are chosen such that the polynomial
∑ni−1

j=1 λijeij + eini
is a Hurwitz poly-

nomial.

4.3.1 Adaptive Variable Structure Neural Control for SISO Case (m = 1)

For the SISO case where m = 1, system (4.4) can be rewritten in the following form:

Σ11 :





ẋ1,j = x1,j+1, j = 1, 2, ..., n1 − 1

ẋ1,n1 = f1(x1) + g1,τ (x1(t− τ1(t))) + b1(x1)p10v1(t)− b1(x1)d1[v1](t)

x1(t) = ψ1(t), t ∈ [−τmax, 0]

y1 = x1,1

(4.8)

Substituting (4.8) into (4.7) leads to

ṡ1 = f1(x1) + g1,τ (x1(t− τ1(t))) + b1(x1)p10v1 − b1(x1)d1[v1](t) + ν1 (4.9)

where ν1 =
∑n1−1

j=1 λ1je1,j+1 − y
(n1)
1d .

Define the following integral Lyapunov function candidate, which was firstly proposed

in [152] to avoid control singularity:

Vs1 =

∫ s1

0

σ

b1(x̄
+
1 , σ + β1)

dσ (4.10)

where β1 = y
(n1−1)
1d −∑n1−1

j=1 λ1je1j, and x̄+
1 = [x1,1, ..., x1,n1−1]

T .

Then, Vs1 can be rewritten as the following form by using the First Mean Value

Theorem for Integrals

Vs1 =
λs1s

2
1

b1(x̄
+
1 , λs1s1 + β1)

, λs1 ∈ (0, 1)

According to Assumption 4.1, 0 < b10 ≤ b1(x1), it is clear that Vs1 is positive definite

with respect to s1.
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Differentiating Vs1 with respect to time t, we obtain

V̇s1 =
∂Vs1

∂s1

ṡ1 +
∂Vs1

∂x̄+
1

˙̄x
+
1 +

∂Vs1

∂β1

β̇1

=
s1

b1(x1)
ṡ1 +

∫ s1

0

σ
[∂b−1

1 (x̄+
1 , σ + β1)

∂x̄+
1

˙̄x
+
1

]
dσ + β̇1

∫ s1

0

σ
[∂b−1

1 (x̄+
1 , σ + β1)

∂β1

]
dσ

(4.11)

Due to ∂b−1
1 (x̄+

1 , σ + β1)/∂β1 = ∂b−1
1 (x̄+

1 , σ + β1)/∂σ and β̇1 = −ν1, it is shown that

β̇1

∫ s1

0

σ
[∂b−1

1 (x̄+
1 , σ + β1)

∂β1

]
dσ = − ν1s1

b1(x1)
+

∫ s1

0

ν1

b1(x̄
+
1 , σ + β1)

dσ (4.12)

Substituting (4.9) and (4.12) into (4.11) results in

V̇s1 =
s1

b1(x1)

[
f1(x1) + g1,τ (x1(t− τ1(t))) + b1(x1)p10v1 − b1(x1)d1[v1](t) + ν1

]

+

∫ s1

0

σ
[ n1−1∑

k=1

∂b−1
1 (x̄+

1 , σ + β1)

∂x1k

x1,k+1

]
dσ − ν1s1

b1(x1)

+

∫ s1

0

ν1

b1(x̄
+
1 , σ + β1)

dσ (4.13)

Using (4.6) and Young’s inequality, (4.13) becomes

V̇s1 ≤ s1Q1(Z1) + s1

[
p10v1 − d1[v1](t)

]
+

1

2
%2

11(x1(t− τ1(t)))

+
s2
1

2b2
1(x1)

(4.14)

where

Q1(Z1) =
f1(x1)

b1(x1)
+

1

s1

∫ s1

0

[
σ

n1−1∑

k=1

∂b−1
1 (x̄+

1 , σ + β1)

∂x1k

x1,k+1 +
ν1

b1(x̄
+
1 , σ + β1)

]
dσ

=
f1(x1)

b1(x1)
+

∫ 1

0

[
θs1

n1−1∑

k=1

∂b−1
1 (x̄+

1 , θs1 + β1)

∂x1k

x1,k+1 +
ν1

b1(x̄
+
1 , θs1 + β1)

]
dθ

with Z1 = [xT
1 , s1, ν1, β1]

T ∈ Rn1+3.

To overcome the design difficulties from the unknown time-varying delays τ1(t) in

(4.14), the following Lyapunov-Krasovskii functional can be considered [114]:

VU1(t) =
1

2(1− τ̄max)

∫ t

t−τ1(t)

%2
11(x1(τ))dτ (4.15)
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The time derivative of VU1 can be expressed as follows:

V̇U1(t) =
1

2(1− τ̄max)

[
%2

11(x1(t))− %2
11(x1(t− τ1(t)))(1− τ̇1(t))

]
(4.16)

which can be used to cancel the time-delay term on the right hand side of (4.14),

thus circumvent the design difficulty due to the unknown time-varying delay τ1(t),

without introducing any additional uncertainties to the system. For concise notation,

the time variables t and t − τ1(t) will be omitted whenever the time-varying delay

term is eliminated, in the remainder of the section.

Combining (4.14) and (4.16), we obtain

V̇s1 + V̇U1 ≤ s1h1(Z1) + s1

[
p10v1 − d1[v1](t)

]
(4.17)

where

h1(Z1) = Q1(Z1) +
s1

2b2
1(x1)

+
1

2(1− τ̄max)s1

%2
11(x1) (4.18)

Remark 4.6 Note that h1(Z1) in (4.18) contains the term 1
2(1−τ̄max)s1

%2
11(x1), which

is not well-defined at s1 = 0 and may lead to the the controller singularity problem, if

we utilize h1(Z1) to construct the control law. As such, care must be taken to grantee

the boundedness of the control as discussed in [114]. It is noted that the controller

singularity takes place at the point s1 = 0, where the control objective is supposed to

be achieved. From a practical point of view, once the system reaches its origin, no

control action should be taken for less power consumption. As s1 = 0 is hard to detect

owing to the existence of measurement noise, it is more practical to relax our control

objective of convergence to a “ball” rather than the origin.

Define the following compact sets

ΩZ1 =
{

[xT
1 , s1, ν1, β1]

T | x1 ∈ Ω1, x1d ∈ Ω1d

}
(4.19)

Ωcs1
= {s1| |s1| < cs1 , x1d ∈ Ω1d} (4.20)

Ω0
Z1

= ΩZ1 − Ωcs1
(4.21)

where Ω1 ⊂ Rn1 is a sufficiently large compact set satisfying Ω1 ⊃ Ω10 defined later

in Theorem 4.1, and cs1 is a positive design constant that can be chosen arbitrarily
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small and “−” in (4.21) is used to denote the complement set of set Ωcs1
. In addition,

it has been shown that Ω0
Z1

is a compact set in [114].

Let Ŵ T
1 S(Z1) be the approximation of the function h1(Z1), defined in (4.18), on the

compact set Ω0
Z1

. Then, using the radial basis function neural networks (RBFNNs)

in Section 2.3.3, we have

h1(Z1) = Ŵ T
1 S(Z1)− W̃ T

1 S(Z1) + ε1(Z1) (4.22)

where the approximation error ε1(Z1) satisfies |ε1(Z1)| ≤ ε∗1 with positive constant

ε∗1, ∀Z1 ∈ Ω0
Z1

.

For (4.17), we design a control law as follows

v1 = −q(s1|cs1)
sgn(s1)

p10min

[k10(t)|s1|+ |Ŵ T
1 S(Z1)|] + v1h (4.23)

v1h = −q(s1|cs1)
sgn(s1)

p10min

∫ R

0

p̂1(t, r)|F1r[v1](t)|dr (4.24)

k10(t) = q(s1|cs1)(k11 + k12(t) +
1

2
) (4.25)

where p̂1(t, r) is the estimate of the density function p1(r), k11 is a positive constant,

and k12(t) chosen as

k12(t) = q(s1|cs1)
k13

2(1− τ̄max)s2
1

∫ t

t−τmax

%2
11(x1(τ))dτ (4.26)

with k13 as a positive constant specified by the designer.

The adaptation laws are designed as follows

˙̂
W 1 = q(s1|cs1)Γ1[S(Z1)s1 − σw1Ŵ1] (4.27)

∂

∂t
p̂1(t, r) =

{
−q(s1|cs1)η1σp1 p̂1(t, r), if p̂1(t, r) ≥ p1max;

q(s1|cs1)η1[|s1||F1r[x1,n1 ](t)| − σp1 p̂1(t, r)], if 0 ≤ p̂1(t, r) < p1max.

(4.28)

with Γ1 > 0, σw1 , σp1 and η1 are strictly positive constants.

Remark 4.7 The term v1h in (4.24) is used to cancel the effect caused by the hys-

teresis term d1[v1](t). Unlike traditional robust adaptive controller designs, where
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d1[v1](t) is either assumed to be bounded by a constant or a known function, d1[v1](t)

here is presented as an integral function of control input signal v1, and there are no

assumptions on its boundedness. Considering that the density function p1(r) is not

a function of time, it can be treated as a “parameter” of the hysteresis model and

adaption law can be developed to obtain an estimate of it. This is crucial for the

success of the adaption law design [18].

Remark 4.8 From (4.23) and (4.24), we notice that both sides of (4.23) contain

the control signal v1, because v1h depends on v1 as can be seen from (4.24). This is

known as the fixed-point problem, where the solvability of v1 can be proved following

the proof of Theorem 1.4 about the existence of the hysteresis inverse operator in [15].

Since it is difficult to obtain the explicit solution for v1 from (4.23), we introduce

several possible implementation methods instead of solving v1 directly from (4.23).

One is the time-scale separation approach, recently proposed in [153]: the control

signal v1(t) is a solution of a “fast” dynamical equation, which means the dynamics

of the controller are faster than that of the system plant. Thus, time-scale separation

is achieved between the system plant and the controller dynamics using the singular

perturbation theory. Second method is adopting the numerical implementation of the

inverse hysteresis operator as in [15], where a real-time inverse feed-forward control

was designed for piezo-electric actuators. In this chapter, we introduce a small delay

to evaluate the input: at time t, we use v1(t−4t) to compute v1h in (4.24) for suitably

small ∆t, such that v1(t) in (4.23) becomes a function of s1, Ŵ1, p̂1(t, r), v1(t −4t).

The limitation of this method is that its accuracy depends on the choice of ∆t. The

effects of the variations of ∆t will be investigated later in the simulation part in

Section 4.4.

Theorem 4.1 Consider the closed-loop system consisting of the plant (4.8), the con-

trol laws (4.23) (4.24) and adaptation laws (4.27) (4.28). Under Assumptions 4.1-4.4,

given some initial conditions x1(0), Ŵ1(0), belong to Ω10, we can conclude that the

overall closed-loop neural control system is SGUUB in the sense that all of the signals

in the closed-loop system are bounded, i.e., the states and weights in the closed-loop
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system will remain in the compact set Ω1 defined by

Ω1 =

{
s1, W̃1

∣∣∣|s1| ≤
√

2µ1, ‖W̃1‖ ≤
√

2µ1

λmin(Γ
−1
1 )

}
(4.29)

with

µ1 =
µ11

λ11

+ V1(0)

µ11 =
σp1R

2
p2

1max +
σw1

2
‖W ∗

1 ‖2 +
ε∗21
2

(4.30)

λ11 = min
{b10k11

λs1

, k13,
σw1

λmax(Γ
−1
1 )

, σp1η1

}
(4.31)

V1(0) = Vs1(0) + VU1(0) +
1

2
W̃ T

1 (0)Γ−1
1 W̃1(0) +

1

2η1

∫ R

0

p̃2
1(0, r)dr

and the tracking error will converge to a neighborhood of zero. In addition, the states

and weights in the closed-loop system will eventually converge to the compact set Ωs

defined by

Ω1s =

{
s1, W̃1

∣∣∣|s1| ≤
√

2µ∗1, ‖W̃1‖ ≤
√

2µ∗1
λmin(Γ

−1
1 )

}
(4.32)

where µ∗1 = µ11

λ11
.

Proof: The method of proof is generally similar to that in our previous works [129,

154], although the details of analysis are different and more complex, due to the

presence of time delay and hysteresis in the system. In this proof, we will show that

for a compact set ΩNN , on which the NN approximation is valid, there exist some

control parameters and a non-empty initial compact set Ω10, such that as long as the

initial conditions start in Ω10, the states and weights will remain in the conservative

compact set Ω1, and finally converge to the compact set Ω1s. Both of them belong

to the chosen compact set ΩNN . The proof includes two steps, and one could see the

whole picture at the end of the proof of Step 2.

Step 1: Suppose that both the states and weights belong to ΩNN , i.e., {x1, Ŵ1} ∈
ΩNN , ∀t ≥ 0, on which NN approximation (4.22) is valid.
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Consider the following Lyapunov function candidate

V1(t) = Vs1(t) + VU1(t) +
1

2
W̃ T

1 Γ−1
1 W̃1 +

1

2η1

∫ R

0

p̃2
1(t, r)dr (4.33)

where W̃1 = Ŵ1 −W1 and p̃1(t, r) = p̂1(t, r)− p(r).

Differentiating V1(t) with respect to time t leads to

V̇1(t) = V̇s1(t) + V̇U1(t) + W̃ T
1 Γ−1

1
˙̂

W 1 +
1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr (4.34)

Substituting (4.17) into (4.34) leads to

V̇1(t) ≤ s1h1(Z1) + s1

[
p10v1 − d1[v1](t)

]
+ W̃ T

1 Γ−1
1

˙̂
W 1

+
1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr (4.35)

Considering the adaptive neural control laws and adaptation laws from (4.23)-(4.28),

the stability analysis is carried out in the following two regions, respectively.

• Region 1: If |s1| ≥ cs1 , then q1(s1|cs1) = 1. Noting (4.22) and submitting

(4.23) into (4.35), we have

V̇1(t) ≤ −s1W̃
T
1 S(Z1) + s1ε1(Z1)− k10(t)s

2
1 + s1

[
p10v1h − d1[v1](t)

]

+W̃ T
1 Γ−1

1
˙̂

W 1 +
1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr (4.36)

Using Young’s Inequality, we have

s1ε1(Z1) ≤ s2
1

2
+

ε∗21
2

(4.37)

Substituting (4.25), (4.27) and (4.37) into (4.36) leads to

V̇1(t) ≤ −k11s
2
1 − k13VU1 − σw1W̃

T
1 Ŵ1 +

ε∗21
2

+ s1

[
p10v1h − d1[v1](t)

]

+
1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr (4.38)

For the third term in (4.38), by completion of squares, we have

−σw1W̃
T
1 Ŵ1 ≤ −σw1

2
‖W̃1‖2 +

σw1

2
‖W ∗

1 ‖2 (4.39)
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For the last two terms in (4.38), using (4.3) and (4.24), we have

s1

[
p10v1h − d1[v1](t)

]
+

1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr

= s1

[
− sgn(s1)p10

p10min

∫ R

0

p̂1(t, r)|F1r[v](t)|dr −
∫ R

0

p1(r)F1r[v](t)dr
]

+
1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr

≤ −|s1|
∫ R

0

p̂1(t, r)|F1r[v](t)|dr + |s1|
∫ R

0

p1(r)|F1r[v](t)|dr

+
1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr

≤ −|s1|
∫ R

0

p̃1(t, r)|F1r[v](t)|dr +
1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr (4.40)

According to (4.28), the adaptation law for the estimate of density function

p̂1(t, r) is divided to two cases, due to the different regions which p̂1(t, r) belongs

to. Therefore, we also need to consider two cases for the analysis of (4.40):

(a) r ∈ R1max = {r : p̂1(t, r) ≥ p1max} ⊂ [0, R].

According to (4.28), we have

p̃1(t, r) ≥ 0 (4.41)

∂

∂t
p̂1(t, r) = −η1σp1 p̂1(t, r) (4.42)

Substituting (4.41) and (4.42) into (4.40), we have

−|s1|
∫

r∈R1 max

p̃1(t, r)|F1r[v](t)|dr +
1

η1

∫

r∈R1 max

p̃1(t, r)
∂

∂t
p̂1(t, r)dr

≤ −σp1

∫

r∈R1 max

p̃1(t, r)p̂1(t, r)dr (4.43)

(b) r ∈ Rc
1max, which is the complement set of R1max in [0, R], i.e., 0 ≤ p̂1(t, r) <

p1max.

In this case, from (4.28), we have

∂

∂t
p̂1(t, r) = η1[|s1||F1r[v1](t)| − σp1 p̂1(t, r)] (4.44)
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Substituting (4.44) into (4.40), we have

−|s1|
∫

r∈Rc
1 max

p̃1(t, r)|F1r[v](t)|dr +
1

η1

∫

r∈Rc
1 max

p̃1(t, r)
∂

∂t
p̂1(t, r)dr

≤ −σp1

∫

r∈Rc
1 max

p̃1(t, r)p̂1(t, r)dr (4.45)

Combining (4.40), (4.43) and (4.45), we know that

s1

[
p10v1h − d1[v1](t)

]
+

1

η1

∫ R

0

p̃1(t, r)
∂

∂t
p̂1(t, r)dr

≤ −σp1

∫ R

0

p̃1(t, r)p̂1(t, r)dr (4.46)

By completion of squares, we have

−σp1 p̃1(t, r)p̂1(t, r) ≤ −σp1

2
p̃2

1(t, r) +
σp1

2
p2

1(r) (4.47)

Integrating both sides of (4.47) over [0, R] results in

−σp1

∫ R

0

p̃1(t, r)p̂1(t, r)dr ≤ −σp1

2

∫ R

0

p̃2
1(t, r)dr +

σp1

2

∫ R

0

p2
1(r)dr(4.48)

According to Assumption 4.4, we know that p1(r) ≤ p1max. Therefore,

−σp1

∫ R

0

p̃1(t, r)p̂1(t, r)dr ≤ −σp1

2

∫ R

0

p̃2
1(t, r)dr +

σp1R

2
p2

1max (4.49)

Substituting (4.39), (4.46) and (4.49) into (4.38), we have

V̇1(t) ≤ −k11s
2
1 − k13VU1 − σw1

2
‖W̃1‖2 − σp1

2

∫ R

0

p̃2
1(t, r)dr +

σp1R

2
p2

1max

+
σw1

2
‖W ∗

1 ‖2 +
ε∗21
2

≤ −λ11V1(t) + µ11 (4.50)

where

λ11 = min
{b10k11

λs1

, k13,
σw1

λmax(Γ
−1
1 )

, σp1η1

}

µ11 =
σp1R

2
p2

1max +
σw1

2
‖W ∗

1 ‖2 +
ε∗21
2

Multiplying (4.50) by eλ11t and integrating over [0, t], we have
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0 ≤ V1(t) ≤ µ11

λ11

+ [V1(0)− µ11

λ11

]e−λ11t ≤ µ1 (4.51)

where µ1 = µ11

λ11
+V1(0). Therefore, according to the definition of V1(t) in (4.33),

‖W̃1‖ ≤
√

2µ1/λmin(Γ
−1
1 ), |s1| ≤

√
2b11V1(t) ≤

√
2b11µ1

Region 2: If |s1| < cs1 , then q1(s1|cs1) = 0. In this case, the control signal

v1 = 0, v1h = 0,
˙̂

W 1 = 0, ∂
∂t

p̂1(t, r) = 0, i.e., all the signals are kept bounded.

Define π1 = [e11, ..., e1,n1−1]
T ∈ Rn1−1. From (4.7), we know that (i) there is a

state space representation for mapping s1 = [ΛT 1]e1, i.e., π̇1 = As1π1 + bs1s1 with

Λ1 = [λ11, ..., λ1,n1−1]
T , bs1 = [0, ..., 0, 1]T , As1 being a stable matrix; (ii) there are

positive constants c10 and λ1 such that ‖eAs1 t‖ ≤ c10e
−λ1t, and (iii) the solution of π1

is

π1(t) = eAs1 tπ1(0) +

∫ t

0

eAs1 (t−τ)bs1s1(τ)dτ

Accordingly, it follows that

‖π1(t)‖ ≤ c10‖π1(0)‖e−λ1t + c10

∫ t

0

e−λ1(t−τ)|s1(τ)|dτ

≤ c10‖π1(0)‖+
c10

√
2b11µ1

λ1

(4.52)

Noting s1 = ΛT
1 π1 + e1n1 and e1 = [πT

1 , e1n1 ]
T , we have

‖e1‖ ≤ ‖π1‖+ |e1n1| ≤ (1 + ‖Λ1‖)‖π1‖+ |s1|

Substituting (4.52) into the above inequality leads to

‖e1‖ ≤ c10(1 + ‖Λ1‖)‖π1(0)‖+ [1 +
(1 + ‖Λ1‖)c10

λ1

]
√

2b11µ1

Therefore, we can conclude that all the closed-loop signals are semi-globally uniformly

ultimately bounded for some initial conditions, and the tracking error will converge

to a neighborhood of zero.
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Figure 4.1: Compact sets

Furthermore, from (4.51), we also can have

0 ≤ V1(t) ≤ µ∗1, t →∞ (4.53)

where µ∗1 = µ11

λ11
. Therefore,

‖W̃1‖ ≤
√

2µ∗1/λmin(Γ
−1
1 ), |s1| ≤

√
2b11V1(t) ≤

√
2b11µ∗1

as t →∞.

Step 2: In this step, we prove that there exist some control parameters and a non-

empty initial compact set Ω10, such that as long as initial conditions belong in Ω10,

the states and the weights under the proposed control, for t > 0, will never escape

from the conservative compact set Ω1, which belongs to the chosen compact set ΩNN ,

as shown in Figure 4.1.

From the definition of the bounds of the compact sets Ω1 in (4.29) and Ω1s in (4.32),

we can see that for a given ΩNN , there exist some V1(0), µ11, λ11 such that Ω1 ⊂ ΩNN

and Ω1s ⊂ ΩNN . From the definitions of µ11 and λ11 in (4.30)(4.31) as follows

µ11 =
σp1R

2
p2

1 max +
σw1

2
‖W ∗

1 ‖2 +
ε∗21

2

λ11 = min
{b10k11

λs1

, k13,
σw1

λmax(Γ
−1
1 )

, σp1η1

}
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we can see that the values of µ11 and λ11 depend on the choice of the control param-

eters k11, k13, λmax(Γ
−1
1 ) and η1. Therefore, for a given NN compact set ΩNN , there

exist some control parameters such that Ω1 ⊂ ΩNN for a V (0) = Vmax > 0. Then, we

define the initial compact set Ω10 as the set of initial conditions s1(0), Ŵ1(0) such that

V (0) < Vmax. Therefore, for all s1(0), Ŵ1(0) that belong to Ω10, we have Ω1 ⊂ ΩNN

for t > 0. If Ω1 and Ω1s are larger than ΩNN , this means that the initial conditions

do not belong to a valid initial compact set Ω10. This completes the proof.

4.3.2 Adaptive Variable Structure Neural Control for MIMO Case (m ≥
2)

In the foregoing discussions, we design control for the SISO case by Lyapunov synthe-

sis design, so as to elucidate the main ideas of our control design. In this section, we

extend the previous result to the MIMO case (4.4). System (4.4) is block triangular

with respect to inputs u, as seen in the fact that nonlinearities fi(x, ūi−1) only contain

inputs from the preceding subsystems. This structure of interconnection facilitates

systematic recursive design.

Substituting (4.4) into (4.7) leads to

ṡi = fi(x, ūi−1) + gi,τ (x1(t− τ1(t)), ..., xm(t− τm(t))) + bi(x̄i)pi0vi(t)

−bi(x̄i)di[vi](t) + νi (4.54)

where νi =
∑ni−1

j=1 λijei,j+1 − y
(ni)
id .

Define the following integral Lyapunov function candidate,

Vsi =

∫ si

0

σ

bi(x̄
+
i , σ + βi)

dσ (4.55)

where βi = y
(ni−1)
id −∑ni−1

j=1 λijeij, and x̄+
i = [xT

1 , ..., xT
i−1, xi,1, ..., xi,ni−1]

T .

Applying First Mean Value Theorem for Integrals to (4.55), we have

Vsi =
λsis

2
i

bi(x̄
+
i , λsisi + βi)

, λsi ∈ (0, 1)

which is positive definite with respect to si due to Assumption 4.1, 0 < bi0 ≤ bi(x̄i).
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Differentiating Vsi with respect to time t, we obtain

V̇si =
∂Vsi

∂si

ṡi +
∂Vsi

∂x̄+
i

˙̄x
+
i +

∂Vsi

∂βi

β̇i

=
si

bi(x̄i)

[
fi(x, ūi−1) + gi,τ (x1(t− τ1(t)), ..., xm(t− τm(t)))

+bi(x̄i)pi0vi(t)− bi(x̄i)di[vi](t) + νi

]

+
i−1∑
j=1

gi,τ (x1(t− τ1(t)), ..., xm(t− τm(t)))

∫ si

0

σ
[∂b−1

i (x̄+
i , σ + βi)

∂xjnj

]
dσ

+

∫ si

0

σ
{ i∑

j=1

nj−1∑

k=1

∂b−1
i (x̄+

i , σ + βi)

∂xjk

xj,k+1 +
i−1∑
j=1

∂b−1
i (x̄+

i , σ + βi)

∂xjnj

[
fj(x, ūi−1)

+bj(x̄j)uj(vj)
]}

dσ − νisi

bi(x̄i)
+

∫ si

0

νi

bi(x̄
+
i , σ + βi)

dσ (4.56)

Using (4.6), after some manipulations, (4.56) becomes

V̇si ≤ siQi + si

[
pi0vi(t)− di[vi](t)

]
+

|si|
|bi(x̄i)|

m∑

k=1

%ik(xk(t− τk(t)))

+
i−1∑
j=1

m∑

k=1

%jk(xk(t− τk(t)))s
2
i

∫ 1

0

θ
[∂b−1

i (x̄+
i , θsi + βi)

∂xjnj

]
dθ (4.57)

where

Qi(Zi) =
fi(x, ūi−1)

bi(x̄i)
+

∫ 1

0

{
θsi

[ i∑
j=1

nj−1∑

k=1

∂b−1
i (x̄+

i , σ + βi)

∂xjk

xj,k+1

+
i−1∑
j=1

∂b−1
i (x̄+

i , θsi + βi)

∂xjnj

[fj(x, ūi−1) + bj(x̄j)uj(vj)]
]

+
νi

bi(x̄
+
i , θsi + βi)

}
dθ

with Zi = [xT , si, νi, βi, v1, ...., vi−1]
T ∈ R(

∑m
i=1 ni)+i+2.

By utilizing Young’s inequality, we obtain that

|si|
|bi(x̄i)|

m∑

k=1

%ik(xk(t− τk(t))) ≤ ms2
i

2b2
i (x̄i)

+
1

2

m∑

k=1

%2
ik(xk(t− τk(t))) (4.58)

And
i−1∑
j=1

m∑

k=1

%jk(xk(t− τk(t)))s
2
i

∫ 1

0

θ
[∂b−1

i (x̄+
i , θsi + βi)

∂xjnj

]
dθ
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≤ 1

2

i−1∑
j=1

m∑

k=1

%2
jk(xk(t− τk(t))) +

ms4
i

2

i−1∑
j=1

( ∫ 1

0

θ
[∂b−1

i (x̄+
i , θsi + βi)

∂xjnj

]
dθ

)2

(4.59)

Substituting (4.58) and (4.59) into (4.57), we have

V̇si ≤ siQi + si

[
pi0vi(t)− di[vi](t)

]
+

ms2
i

2b2
i (x̄i)

+
1

2

i∑
j=1

m∑

k=1

%2
jk(xk(t− τk(t)))

+
ms4

i

2

i−1∑
j=1

( ∫ 1

0

θ
[∂b−1

i (x̄+
i , θsi + βi)

∂xjnj

]
dθ

)2

(4.60)

To overcome the design difficulties from the unknown time-varying delays τ1(t), ...,

τm(t) in (4.60), the following Lyapunov-Krasovskii functional can be considered:

VUi
(t) =

1

2(1− τ̄max)

i∑
j=1

m∑

k=1

∫ t

t−τk(t)

%2
jk(xk(τ))dτ (4.61)

The time derivative of VUi
can be expressed as follows:

V̇Ui
(t) =

1

2(1− τ̄max)

[ i∑
j=1

m∑

k=1

%2
jk(xk(t))

−
i∑

j=1

m∑

k=1

%2
jk(xk(t− τk(t)))(1− τ̇k(t))

]
(4.62)

which can be used to cancel the time-delay term on the right hand side of (4.60).

Combining (4.60) and (4.62), we obtain

V̇si + V̇Ui ≤ sihi(Zi) + si

[
pi0vi(t)− di[vi](t)

]
(4.63)

where

hi(Zi) = Qi(Zi) +
msi

2b2
i (x̄i)

+
1

2(1− τ̄max)si

i∑
j=1

m∑

k=1

%2
jk(xk(t))

+
ms3

i

2

i−1∑
j=1

( ∫ 1

0

θ
[∂b−1

i (x̄+
i , θsi + βi)

∂xjnj

]
dθ

)2

(4.64)

Define the following compact sets

ΩZ1 =
{

[xT , s1, ν1, β1]
T | xj ∈ Ωj, j = 1, ..., m, x1d ∈ Ω1d

}
(4.65)
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ΩZi
=

{
[xT , si, νi, βi, v1, ..., vi−1]

T
∣∣∣ xj ∈ Ωj, j = 1, ..., m, xkd ∈ Ωkd,

k = 1, ..., i, Ŵj ∈ Ωj, j = 1, ..., i− 1
}

(4.66)

Ωcsi
= {si| |si| < csi

, xid ∈ Ωid} (4.67)

Ω0
Zi

= ΩZi
− Ωcsi

(4.68)

where Ωj ⊂ Rnj is a sufficiently large compact set satisfying Ωj ⊃ Ωj0 defined later

in Theorem 4.2, and csi
is a positive design constant that can be chosen arbitrarily

small. The compact set Ω0
Zi

is the complement set of set Ωcsi
.

Let Ŵ T
i S(Zi) be the approximation of the function hi(Zi), defined in (4.64), on the

compact set Ω0
Zi

. Then, using RBFNNs, we have

hi(Zi) = Ŵ T
i S(Zi)− W̃ T

i S(Zi) + εi(Zi) (4.69)

where the approximation error εi(Zi) satisfies |εi(Zi)| ≤ ε∗i with positive constant ε∗i ,

∀Zi ∈ Ω0
Zi

.

Similar to the procedures of Section 4.3.1, we design the following control law for the

system in (4.4):

vi = −q(si|csi
)
sgn(si)

pi0min

[ki0(t)|si|+ |Ŵ T
i S(Zi)|] + vih (4.70)

vih(t) = −q(si|csi
)
sgn(si)

pi0min

∫ R

0

p̂i(t, r)|Fir[vi](t)|dr (4.71)

ki0(t) = q(si|csi
)[ki1 + ki2(t) +

1

2
] (4.72)

where p̂i(t, r) denotes the estimate of the density function pi(r); ki1 is any positive

constant, and ki2(t) is chosen as

ki2(t) = q(si|csi
)

ki3

2(1− τ̄max)s2
i

i∑
j=1

m∑

k=1

∫ t

t−τmax

%2
jk(xk(τ))dτ (4.73)

with ki3 a positive constant specified by the designer.

The adaptation laws are chosen as

˙̂
W i = q(si|csi

)Γi[S(Zi)si − σwi
Ŵi] (4.74)

∂

∂t
p̂i(t, r) =

{
−q(si|csi

)ηiσpi
p̂i(t, r), if p̂i(t, r) ≥ pi max;

q(si|csi
)ηi[|si||Fir[xi,ni

](t)| − σpi
p̂i(t, r)], if 0 ≤ p̂i(t, r) < pi max.

(4.75)
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with Γi > 0, σwi
, σpi

and ηi are strictly positive constants.

Based on the above design for control and adaptation laws, we are ready to establish

the following result for the MIMO case.

Theorem 4.2 Consider the closed-loop system consisting of the plant (4.4), the con-

trol laws (4.70) (4.71) and adaptation laws (4.74) (4.75). Under Assumptions 4.1-

4.4, given some initial conditions xi(0), Ŵi(0), belong in Ωi0, we can conclude that the

overall closed-loop neural control system is SGUUB in the sense that all of the signals

in the closed-loop system are bounded, i.e., the states and weights in the closed-loop

system will remain in the compact set defined by

Ωi =

{
si, W̃i

∣∣∣|si| ≤
√

2µi, ‖W̃i‖ ≤
√

2µi

λmin(Γ
−1
i )

}
(4.76)

with

µi =
µi1

λi1

+ Vi(0)

µi1 =
σpi

R

2
p2

i max +
σwi

2
‖W ∗

i ‖2 +
ε∗2i

2

λi1 = min
{bi0ki1

λsi

, ki3,
σwi

λmax(Γ
−1
i )

, σpi
ηi

}

Vi(0) = Vsi(0) + VUi
(0) +

1

2
W̃ T

i (0)Γ−1
i W̃i(0) +

1

2ηi

∫ R

0

p̃2
i (0, r)dr

and the tracking error will converge to a neighborhood of zero. In addition, the states

and weights in the closed-loop system will eventually converge to the compact set

defined by

Ωis =

{
si, W̃i

∣∣∣|si| ≤
√

2µ∗i , ‖W̃i‖ ≤
√

2µ∗i
λmin(Γ

−1
i )

}
(4.77)

where

µ∗i =
µi1

λi1

Proof: The proof is built on that of Theorem 4.1, and for the conciseness, we will

only outline the general approach without going into specific details. For the i-th
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subsystem, we design vi that takes into account the inputs from the preceding (i− 1)

subsystems, i.e. v̄i−1. Suppose that both the states and the weights belong to ΩNN ,

i.e., {xj, Ŵi} ∈ ΩNN , ∀t ≥ 0, on which NN approximation (4.69) is valid.

Consider the following Lyapunov function candidate

Vi(t) = Vsi(t) + VUi
(t) +

1

2
W̃ T

i Γ−1
i W̃i +

1

2ηi

∫ R

0

p̃2
i (t, r)dr (4.78)

where W̃i = Ŵi −Wi and p̃i(t, r) = p̂i(t, r)− pi(r).

Differentiating Vi(t) with respect to time t leads to

V̇i(t) = V̇si(t) + V̇Ui
(t) + W̃ T

i Γ−1
i

˙̂
W i +

1

ηi

∫ R

0

p̃i(t, r)
∂

∂t
p̂i(t, r)dr (4.79)

Substituting (4.63) into (4.79) leads to

V̇i(t) ≤ sihi(Zi) + si

[
pi0vi − di[vi](t)

]
+ W̃ T

i Γ−1
i

˙̂
W i

+
1

ηi

∫ R

0

p̃i(t, r)
∂

∂t
p̂i(t, r)dr (4.80)

Considering the adaptive neural control laws and adaptation laws from (4.70)-(4.75),

the stability analysis is carried out in the following two regions, respectively.

• Region 1: If |si| ≥ csi
, then qi(si|csi

) = 1. Noting (4.69) and submitting (4.70)

into (4.80), we have

V̇i(t) ≤ −siW̃
T
i S(Zi) + siε1(Zi)− ki0(t)s

2
i + si

[
pi0vih − di[vi](t)

]

+W̃ T
i Γ−1

i
˙̂

W i +
1

ηi

∫ R

0

p̃i(t, r)
∂

∂t
p̂i(t, r)dr (4.81)

Using Young’s Inequality, we have

siεi(Zi) ≤ s2
i

2
+

ε∗2i

2
(4.82)

Substituting (4.72), (4.74) and (4.82) and into (4.81) leads to

V̇i(t) ≤ −ki1s
2
i − ki3VUi − σwi

W̃ T
i Ŵi +

ε∗2i

2
+ si

[
pi0vih − di[vi](t)

]

+
1

ηi

∫ R

0

p̃i(t, r)
∂

∂t
p̂i(t, r)dr (4.83)
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For the third term in (4.83), by completion of squares, we have

−σwi
W̃ T

i Ŵi ≤ −σwi

2
‖W̃i‖2 +

σwi

2
‖W ∗

i ‖2 (4.84)

For the last two terms in (4.83), we can obtain the similar conclusions as (4.46)

and (4.49):

si

[
pi0vih − di[vi](t)

]
+

1

ηi

∫ R

0

p̃i(t, r)
∂

∂t
p̂i(t, r)dr

≤ −σpi

∫ R

0

p̃i(t, r)p̂i(t, r)dr

≤ −σpi

2

∫ R

0

p̃2
i (t, r)dr +

σpi
R

2
p2

i max (4.85)

Substituting (4.84) and (4.85) into (4.83), we have

V̇i(t) ≤ −ki1s
2
1 − ki3VUi − σwi

2
‖W̃i‖2 − σpi

2

∫ R

0

p̃2
i (t, r)dr +

σpi
R

2
p2

i max

+
σwi

2
‖W ∗

i ‖2 +
ε∗2i

2
≤ −λi1Vi(t) + µi1 (4.86)

where

λi1 = min
{bi0ki1

λsi

, ki3,
σwi

λmax(Γ
−1
i )

, σpi
ηi

}

µi1 =
σpi

R

2
p2

i max +
σwi

2
‖W ∗

i ‖2 +
ε∗2i

2

Multiplying (4.86) by eλi1t and integrating over [0, t], we have

0 ≤ Vi(t) ≤ µi1

λi1

+ [Vi(0)− µi1

λi1

]e−λi1t ≤ µi (4.87)

where µi = µi1

λi1
+ Vi(0). Therefore,

‖W̃i‖ ≤
√

2µi/λmin(Γ
−1
i ), |si| ≤

√
2bi1Vi(t) ≤

√
2bi1µi (4.88)

Region 2: If |si| < csi
, then qi(si|csi

) = 0. In this case, the control signal

vi = 0, vih = 0,
˙̂

W i = 0, ∂
∂t

p̂i(t, r) = 0, i.e., all the signals are kept bounded.
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Similar to the discussion in Theorem 4.1, we can conclude that the overall closed-loop

neural control system is SGUUB in the sense that all of the signals in the closed-loop

system are bounded, i.e., the states and weights in the closed-loop system will remain

in the compact set Ωi defined in (4.76), and will eventually converge to the compact

set defined by (4.77). This completes the proof.

4.4 Simulation Results

In this section, results of extensive simulation studies are presented to demonstrate

the effectiveness of the proposed adaptive NN approach to deal with uncertain non-

linear systems under the effects of time delay and hysteresis. For clear illustration,

we consider first a simplified SISO plant with first-order dynamics, and study the

tracking performance of the controller, as well as perform detailed analysis on the ef-

fects of control parameter variations. Subsequently, a MIMO plant consisting of two

interconnected second-order subsystems is tackled, and the closed loop properties and

tracking behavior are investigated.

4.4.1 SISO Case

For the SISO case, we consider the following first-order scalar nonlinear system with

hysteresis and state delay:

S1 :

{
ẋ = 1−e−x

1+e−x + 0.1x(t− τ(t)) + u

y = x
(4.89)

where y is the plant output; u is the plant input and the output of the classic PI

hysteresis model as in (4.2): u = p0v−
∫ R

0
p(r)Fr[v](t)dr, with p(r) = 0.35e−0.003(r−1)2

for r ∈ [0, 100], pmax = 0.35, p0min = 0.35; the time-varying delay τ(t) = 1−0.5 cos(t),

τmax = 2, τ̄max = 0.6. The objective is to design control v such that the output y can

track the desired trajectory yd = sin(2t) + 0.1 cos(6.7t).

We adopt the control law and adaption laws designed in Section 4.3.1 in the following:

v = −q(s|cs)
sgn(s)

p0 min

[k0(t)|s|+ |Ŵ T S(Z)|] + vh (4.90)
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vh = −q(s|cs)
sgn(s)

p0 min

∫ R

0

p̂(t, r)|Fr[v](t)|dr (4.91)

k0(t) = q(s|cs)[k1 + k2(t) +
1

2
] (4.92)

k2(t) = q(s|cs)
k3

2(1− τ̄max)s2

∫ t

t−τmax

%2(x(τ))dτ (4.93)

˙̂
W = q(s|cs)Γ1[S(Z)s− σwŴ ] (4.94)

∂

∂t
p̂(t, r) =

{
−q(s|cs)ησpp̂(t, r), if p̂(t, r) ≥ pmax

q(s|cs)η[|s||Fr[v](t)| − σpp̂(t, r)], if 0 ≤ p̂(t, r) < pmax

(4.95)

where s = e = y − yd, and p̂(t, r) is the estimate of the density function of p(r).

The input of the neural networks is Z = [x, ẏd] ∈ R2. Employing ten nodes for

each input dimension, we end up with 102 = 100 nodes for the network Ŵ T S(Z).

The bounding function for the time delay term is chosen as %(x(τ)) = 0.1|x(τ)|, and

the following initial conditions and controller design parameters are adopted in the

simulation: x(0) = 0.5, v(0) = 0, p̂(0, r) = 0, Ŵ (0) = 0, Γ = diag{1.0}, σ = 0.1,

η = 0.2, σp = 0.05, k1 = 0.1, k3 = 0.001, ε = 0.05, cs = 0.0001.

The simulation results for SISO plant S1, as described in (4.89), are shown in Figures

4.2 -4.11. From Figure 4.2, we can observe that good tracking performance is achieved.

At the same time, the boundedness of the control signals are shown in Figure 4.3. It

is noted that there is a large difference between the v and u, indicating the significant

hysteresis effect. In particular, we highlight the importance of the term vh in (4.90),

which is used to mitigate the effect caused by the hysteresis term
∫ R

0
p(r)Fr[v](t)dr in

the classic PI hysteresis model u = p0v −
∫ R

0
p(r)Fr[v](t)dr, as discussed in Remark

4.7. The comparison of tracking errors in the presence and absence of vh is shown

in Figure 4.4, and it is seen that with vh, the tracking error resulting from hysteresis

is attenuated accordingly. Figures 4.5 and 4.6 show the nonlinear approximation

capability of neural networks Ŵ T S(Z) and the norm of NN weights respectively. The

behavior of the estimate of the density function, p̂(t, r), is also indicated in Figure

4.7.

To investigate the effects of the control parameters on the tracking performance, and

to provide recommendations for their selection, we provide the following comparison

results for the design constants k1 and η in Figures 4.8 and 4.9. First of all, as
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shown in Figure 4.8, the tracking error can be reduced by increasing the parameter

k1. Secondly, from (4.95) and Figure 4.9, we know that higher learning rate, i.e.

increase of η, results in better tracking performance. While the above results seem

to indicate that k1 and η should be large, caution must be exercised in the choice of

these parameters, due to the fact that there are some tradeoffs between the control

performance and other issues. In particular, for the case of control gain k1, the price

to be paid is the high gain control, which also can be seen from (4.90) and (4.92).

Problems associated with high gain control include sensitivity to measurement noise,

excitation of high frequency unmodelled dynamics, as well as excessive control efforts.

A similar tradeoff exists with regard to the parameter η, which represents the learning

rate of the density function estimate p̂(t, r), in (4.95). In general, if η is chosen to be

too large, then the stability and robustness of the system may be compromised in a

similar way as high gain control.

Need to mention that, due to the use of sign function sgn(·), controllers (4.90) and

(4.91) become discontinuous, which may excite unmodelled high-frequency plant dy-

namics and cause the chattering phenomenon. To avoid the undesired chattering

phenomenon, we replace the sign function in the above control laws with the satura-

tion function sat( s
ε
), which is defined as:

sat(∗) =





1 if ∗ ≥ ε
∗
ε

if | ∗ | < ε

−1 if ∗ > ε

(4.96)

where ε is a very small positive constant. Therefore, the different choices of ε also can

affect the tracking performance, as shown in Figure 4.10. The smaller ε, the closer

the saturation function approximate the sign function. As such, though the better

tracking performance can be achieved with the smaller ε, the chattering phenomenon

will become more serious, as a result, which degrades the performance finally.

In addition, as discussed in previous Remark 4.8, we adopt a numerical method by

introducing a small delay ∆t to implement the control v in (4.90) instead of solving

it directly. The choices of the delay ∆t affect the performance as shown in Figure

4.11. With the increasing of ∆t, the performance becomes worse. In this chapter, we

choose 4t = T , where T = 0.005 is the sampling time.
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4.4.2 MIMO Case

Consider the following MIMO nonlinear system consisting of two interconnected

second-order subsystems with time delay and hysteresis:

S2 :





ẋ11 = x12

ẋ12 = x11x12 + u1 + 0.1x11(t− τ1(t))

ẋ21 = x22

ẋ22 = x11x21 + u2 + 0.2x21(t− τ2(t))

y1 = x11

y2 = x21

where yi are the plant outputs, i = 1, 2; ui are the plant inputs and the outputs

of the classic PI hysteresis model as in (4.2): ui = p0vi −
∫ R

0
p(r)Fr[vi](t)dr with

p(r) = 0.08e−0.0024(r−1)2 for r ∈ [0, 100], pmax = 0.35, p0min = 0.1; the time-varying

delays τ1(t) = 0.2(1 + sin(t)), τ2(t) = 1 − 0.5 cos(t), τmax = 2, τ̄max = 0.6. The

objective is to design control vi such that the output yi can track the desired trajectory

ydi = 0.5 sin(t), i = 1, 2.

The control law and adaption laws in (4.70)-(4.75) are adopted. The inputs of the

neural networks are Z1 = [s1, x, ν1, β1] ∈ R7 and Z2 = [s2, x, ν2, β2, v1] ∈ R8, where

νi = λi(ẏi − ẏid) − ẏid, βi = ẏid − λi(yi − yid), i = 1, 2. Employing three nodes for

each input dimension, we end up with 37 nodes for the network Ŵ T
1 S(Z1), and 38

nodes for the network Ŵ T
2 S(Z2). The bounding functions for the time delay term

are chosen as %1(x1(τ)) = 0.1|x11(τ)|, %2(x2(τ)) = 0.2|x22(τ)|, and the following

initial conditions and controller design parameters are adopted in the simulation:

x11(0) = −0.4, x12(0) = x21(0) = x22(0) = 0.5, v1(0) = v2(0) = 0, p̂1(0, r) =

p̂2(0, r) = 0, Ŵ1(0) = Ŵ2(0) = 0, Γ1 = diag{1.0}, Γ2 = diag{0.025}, σ1 = 0.2,

σ1 = 2.5, η1 = η2 = 0.01, σp1 = σp2 = 0.05 k11 = k21 = 0.1, k13 = k23 = 0.001,

λ1 = 2.5, λ2 = 2.0, cs1 = cs2 = 0.0001.

Simulation results for MIMO plant S2, as described in (4.97), are shown in Figs 4.12-

4.19. From Figures 4.12, it is seen that good tracking performance is achieved despite

large initial tracking errors e1 and e2, and they converge to a small neighborhood

of zero in a relatively short time. At the same time, it can be observed, in Figures
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4.13, 4.14 and 4.15, that the control signals, norms of NN weights, and states x12,

x22 remain bounded. Figure 4.16 shows the nonlinear approximation capability of

neural networks Ŵ T
1 S(Z1) and Ŵ T

2 S(Z2). Similar relationships between variations of

control parameters and effects on tracking performance, as shown for the SISO case,

can be verified for the MIMO case as well in Figures 4.17-4.19.

4.5 Conclusion

Adaptive variable structure neural control has been proposed for a class of uncer-

tain MIMO nonlinear systems with unknown state time-varying delays and classic PI

hysteresis nonlinearities. The uncertainties from unknown time-varying delays have

been compensated for through the use of appropriate Lyapunov-Krasovskii function-

als. The effect of the unknown hysteresis with the classic PI models was also mitigated

using the proposed control. The controller has been made to be free from singularity

problem by utilizing integral Lyapunov function. Based on the principle of sliding

mode control, the developed controller can guarantee that all signals involved are

semi-globally uniformly ultimately bounded. Simulation results have verified the ef-

fectiveness of the proposed approach.
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Figure 4.2: Output tracking performance of SISO plant S1 with classic PI hysteresis
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Figure 4.3: Control signals of SISO plant S1 with classic PI hysteresis
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Figure 4.6: Norm of NN weights of SISO plant S1 with classic PI hysteresis
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teresis for different ε
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Figure 4.12: Output tracking performance of MIMO plant S2 with classic PI hysteresis
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Figure 4.13: Control signals of MIMO plant S2 with classic PI hysteresis
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‖Ŵ2‖
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Figure 4.16: Learning behavior of neural networks of MIMO plant S2 with classic PI
hysteresis
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Figure 4.18: Tracking error comparison result of MIMO plant S2 with classic PI
hysteresis for different η1 and η2
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Figure 4.19: Tracking error comparison result of MIMO plant S2 with classic PI
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Chapter 5

Systems with Generalized

Prandtl-Ishlinskii Hysteresis

5.1 Introduction

Hysteresis nonlinearities are common in smart material-based actuators, such as

piezoceramics and shape memory alloys. It is challenging to fuse the available hystere-

sis models with the existing control methods, due to the nonsmooth characteristics

of hysteresis nonlinearities. One of the most common approaches is to construct an

inverse operator to cancel the effects of the hysteresis as in [3] and [120]. However, it

is a challenging task to construct the inverse operator for the hysteresis, due to the

complexity and uncertainty of hysteresis. To circumvent these difficulties, alternative

control approaches that do not need an inverse model have also been developed in

[16, 17, 18, 19]. In [16] and [17], robust adaptive control and adaptive backstepping

control were, respectively, investigated for a class of nonlinear system with unknown

backlash-like hysteresis. In [18] and [19], adaptive variable structure control and

adaptive backstepping methods, respectively, were proposed for a class of continuous-

time nonlinear dynamic systems preceded by a hysteresis nonlinearity with the classic

Prandtl-Ishlinskii (PI) model representation.

Compared with the above works, in this chapter, we consider a class of unknown
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nonlinear systems in pure-feedback form which are preceded by a generalized PI hys-

teresis input. Compared with the backlash-like hysteresis and the classic PI hysteresis

model, the generalized PI hysteresis model proposed in [106] can capture the hystere-

sis phenomenon more accurately and accommodate more general classes of hysteresis

shapes, by adjusting both the density function and the input function. However, the

difficulty here in dealing with the generalized PI hysteresis model lies in that the input

function in the generalized PI hysteresis model is unknown and non-affine. Motivated

by [99, 101, 155], in this chapter, we adopt the Mean Value Theorem to transform the

unknown non-affine input function to a partially affine form, which can be seen as a

multiplication of control term with a function of control and handled by extending

some available techniques for affine nonlinear system control in the literature.

For pure-feedback systems, the cascade and non-affine properties make it difficult to

find the explicit virtual controls and the actual control to stabilize the pure-feedback

systems. In [97] and [98], much simpler pure-feedback systems where the last one or

two equations were assumed to be affine, were discussed. In [100], an “ISS-modular”

approach combined with small gain theorem was presented for adaptive neural control

of the completely non-affine pure-feedback system. In this chapter, we also consider

a class of unknown nonlinear systems in pure-feedback form. The non-affine problem

in the control variable and virtual ones is dealt with by adopting the Mean Value

Theorem, motivated by the works [99, 101, 155], without the assumptions that the

last one or two equations are affine as in [97] and [98]. The unknown virtual control

directions are dealt with by using Nussbaum functions.

The main contributions are highlighted as follows:

(i) to the best of the author’s knowledge, it is the first time, in the literature, that

the tracking control problem of unknown nonlinear systems in pure-feedback

form with the generalized PI hysteresis input is investigated;

(ii) the difficulty in dealing with the generalized PI hysteresis model, i.e., the non-

affine problem of the uncertain nonlinear input function in the generalized PI

hysteresis model, is solved by adopting the Mean Value Theorem;

(iii) different from the previous works [18, 19], the σ-modification is included in the
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adaptation law of estimate of density function, p̂(t, r), to establish the different

closed-loop stability; and

(iv) the combination of the Mean Value Theorem and Nussbaum functions are also

used to solve the non-affine and unknown virtual control direction problems in

the pure-feedback nonlinear systems, without the assumptions that the last one

or two equations are affine as in [97, 98].

The organization of this chapter is as follows. The problem formulation and prelim-

inaries are given in Section 5.2. In Section 5.3, adaptive neural control is developed

for a class of unknown nonlinear systems in pure-feedback form with the uncertain

generalized PI hysteresis input. The closed-loop system stability is analyzed as well.

Results of extensive simulation studies are shown to demonstrate the effectiveness of

the approach in Section 5.4, followed by the conclusion in Section 5.5.

5.2 Problem Formulation and Preliminaries

Consider the following class of unknown nonlinear system in pure-feedback form whose

input is preceded by the uncertain generalized PI hysteresis:

ẋj = fj(x̄j, xj+1), 1 ≤ j ≤ n− 1

ẋn = fn(x̄n, u) + d(t)

y = x1 (5.1)

where x̄j = [x1, ..., xj]
T ∈ Rj is the vector of states of the first j differential equations,

and x̄n = [x1, ..., xn]T ∈ Rn; fj(·) and fn(·) are unknown smooth functions; d(t) is a

bounded disturbance; y ∈ R is the output of the system; and u ∈ R is the input of

the system and the output of the hysteresis nonlinearity, which is represented by the

generalized PI model in [106] as follows

u(t) = h(v)(t)−
∫ D

0

p(r)Fr[v](t)dr (5.2)

Fr[v](0) = hr(v(0), 0)

Fr[v](t) = hr(v(t), Fr[v](ti)), for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1

hr(v, w) = max(v − r, min(v + r, w))
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where v is the input to the hysteresis model; 0 = t0 < t1 < ... < tN = tE is a

partition of [0, tE] such that the function v is monotone on each of the subintervals

(ti, ti+1]; p(r) is a given density function, satisfying p(r) ≥ 0 with
∫∞
0

rp(r)dr < ∞;

D is a constant so that density function p(r) vanishes for large values of D; Fr[v](t)

is known as the play operator; and h(v) is the hysteresis input function that satisfies

the following assumptions [106]:

Assumption 5.1 The function h : R → R is odd, non-decreasing, locally Lipschitz

continuous, and satisfies limv→∞ h(v) →∞ and dh(v)
dv

> 0 for almost every v ∈ R.

Assumption 5.2 The growth of the hysteresis function h(v) is smooth, and there

exist positive constants h0 and h1 such that 0 < h0 ≤ dh(v)
dv

≤ h1.

The objective is to design an adaptive neural controller v(t) for system (5.1) (5.2)

such that all signals in the closed-loop system are bounded, while the output y follows

the specified desired trajectory yd to a small neighborhood of zero.

Remark 5.1 Compared with the classic PI hysteresis model, the difficulty in dealing

with the generalized PI hysteresis model lies in that the input function h(v) is un-

known, which needs some new treatments. In this chapter, motivated by the works

[99, 101, 155], the Mean Value Theorem is adopted to transform the unknown non-

affine input function to a partially affine form, which can be seen as a multiplication

of a control term with a function of control. As such, the available techniques for

affine nonlinear system control in the literature can be extended to solve this problem.

Remark 5.2 Although it appears possible to rewrite (5.1) and (5.2) into the non-

affine form ẋ = f(x, v), it still cannot be directly handled by the method proposed by

[99], in which the Mean Value Theorem and Implicit Function Theorem were adopted

to handle the non-affine problem. The reason is that if we want to apply the Mean

Value Theorem and Implicit Function Theorem to a function, one requirement is that

the first order derivative of the function is not equal to zero. However, due to the

nonsmooth characteristics of hysteresis, the function f(x, v) transformed from (5.1)
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and (5.2) is non-differentiable and thus does not satisfy the conditions of applying

the Mean Value Theorem and Implicit Function Theorem. Therefore, only the Mean

Value Theorem is applied to the smooth functions in (5.1), namely, fj(·), fn(·) and

the hysteresis input function h(v). For the nonsmooth function Fr[v](t) in (5.2), a

new treatment needs to be developed later.

Remark 5.3 There are many physical processes whose dynamics can be described

by nonlinear differential equations of form (5.1) and (5.2). Examples include some

chemical reaction processes such as the continuously stirred tank reactor (CSTR)

system given in [41, 156]. Within the tank reactor, two chemicals are mixed and react

to produce compound A at a concentration Ca. The control objective is to manipulate

the coolant flow rate qc to control the concentration Ca at a desired value. The system

is a pure-feedback system, which is non-affine in the control input qc. According

to [157] and [158], the control valve that controls the coolant flow rate, qc, exhibits

considerable hysteresis. Since the generalized PI hysteresis model can capture the

hysteresis phenomenon more accurately and accommodate more general classes of

hysteresis shapes by adjusting both the density function and the input function, the

generalized PI hysteresis model can be adopted to represent the hysteresis nonlinearity

between the coolant flow rate, qc, and the aperture of the control valve, v. Therefore,

we can regard the CSTR system as a physical example of pure feedback systems with

input hysteresis of form (5.1) and (5.2).

Assumption 5.3 The desired trajectory yd, and their time derivatives up to the nth

order y
(n)
d , are continuous and bounded.

Based on Assumption 5.3, we define the trajectory vector x̄d(j+1) = [yd ẏd ... y
(j)
d ]T ,

j = 1, ..., n − 1, which is a vector from the yd to its j-th time derivative, y
(j)
d , which

will be used in the subsequent control design.

Assumption 5.4 There exists an unknown constant d∗ such that |d(t)| ≤ d∗.

Assumption 5.5 There exist a known constant pmax, such that p(r) ≤ pmax for all

r ∈ [0, D].
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Remark 5.4 It is reasonable to set an upper bound for the density function p(r),

based on its properties that p(r) ≥ 0 with
∫∞

0
rp(r)dr < ∞.

According to the Mean Value Theorem [113], we can express fj(·, ·) in (5.1) as follows:

fj(x̄j, xj+1) = fj(x̄j, x
0
j+1) +

∂fj(x̄j, xj+1)

∂xj+1

∣∣∣
xj+1=x

θj
j+1

× (xj+1 − x0
j+1), 1 ≤ j ≤ n− 1

fn(x̄n, u) = fn(x̄n, u
0) +

∂fn(x̄n, u)

∂u

∣∣∣
u=uθn

× (u− u0) (5.3)

where x
θj

j+1 = θjxj+1 + (1 − θj)x
0
j+1, with 0 < θj < 1, 1 ≤ j ≤ n − 1, and xθn

n =

θnu + (1− θn)u0, with 0 < θn < 1.

By choosing x0
j+1 = 0 and x0

n = 0, (5.3) can be written as

fj(x̄j, xj+1) = fj(x̄j, 0) +
∂fj(x̄j, xj+1)

∂xj+1

∣∣∣
xj+1=x

θj
j+1

xj+1, 1 ≤ j ≤ n− 1

fn(x̄n, u) = fn(x̄n, 0) +
∂fn(x̄n, u)

∂u

∣∣∣
u=uθn

u (5.4)

For convenience of analysis, we define gj(x̄j, x
θj

j+1) =
∂fj(x̄j ,xj+1)

∂xj+1

∣∣∣
xj+1=x

θj
j+1

and gn(x̄n, uθn)

= ∂fn(x̄n,u)
∂u

∣∣∣
u=uθn

, which are also unknown nonlinear functions.

Substituting (5.4) into (5.1), we have

ẋj = fj(x̄j, 0) + gj(x̄j, x
θj

j+1)xj+1, 1 ≤ j ≤ n− 1

ẋn = fn(x̄n, 0) + gn(x̄n, u
θn)u + d(t)

y = x1 (5.5)

In addition, according to the Mean Value Theorem [113], there also exists a constant

θ0 (0 < θ0 < 1) such that the unknown input function h(v) in (5.2) satisfies the

following property

h(v) = h(v∗) +
∂h(·)
∂v

∣∣∣
v=vθ0

(v − v∗)

where vθ0 = θ0v + (1− θ0)v
∗.

According to Assumptions 5.1 and 5.2, and the Implicit Function Theorem [64], we

can find v∗ such that h(v∗) = 0. Defining

g0(v
θ0) =

∂h(·)
∂v

∣∣∣
v=vθ0
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we have

h(v) = g0(v
θ0)(v − v∗)

Therefore, we can rewrite (5.2) as

u(t) = g0(v
θ0)v − g0(v

θ0)v∗ −
∫ D

0

p(r)Fr[v](t)dr (5.6)

Substituting (5.6) into (5.5) leads to our unified system:

ẋj = fj(x̄j, 0) + gj(x̄j, x
θj

j+1)xj+1, 1 ≤ j ≤ n− 1

ẋn = fn(x̄n, 0) + gn(x̄n, u
θn)[g0(v

θ0)v − g0(v
θ0)v∗ −

∫ D

0

p(r)Fr[v](t)dr] + d(t)

y = x1 (5.7)

Assumption 5.6 There exist constants g
j

and ḡj such that 0 < g
j
≤ |gj(·)| ≤ ḡj <

∞, for j = 1, ..., n.

Remark 5.5 Assumption 5.6 implies that smooth functions gj(·) for j = 1, ..., n

are strictly either positive or negative, which is reasonable because gj(·) being away

from zero is the controllable condition of system (5.7), which is made in most control

schemes [65, 151]. Without loss of generality, we shall assume that gn(x̄n, uθn) > 0,

while no knowledge is required of the signs of gj(·), j = 1, 2, ..., n− 1.

5.3 Control Design and Stability Analysis

In this section, we will investigate adaptive neural control for the system (5.7) using

the backstepping method [65] combined with neural networks approximation. The

backstepping design procedure contains n steps and involves the following change of

coordinates: z1 = x1 − yd, zi = xi − αi−1, i = 2, ..., n, where αi is a virtual control

which shall be developed for the corresponding i-subsystem based on an appropriate

Lyapunov function Vi. The control law v(t) is designed in the last step to stabilize the
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entire closed-loop system, and deal with the hysteresis term. The closed-loop system

can be proved to be SGUUB by Lyapunov stability analysis.

Step 1: Since z1 = x1 − yd and z2 = x2 − α1, the derivative of z1 is

ż1 = f1(x̄1, 0) + g1(x̄1, x
θ1
2 )x2 − ẏd

= f1(x1, 0) + g1(x̄1, x
θ1
2 )(z2 + α1)− ẏd

= g1(x̄1, x
θ1
2 )(z2 + α1) + Q1(Z1) (5.8)

where Q1(Z1) = f1(x̄1, 0)− ẏd with Z1 = [x̄1, ẏd] ∈ ΩZ1 ⊂ R2.

To compensate for the unknown function Q1(Z1), we can use the radial basis function

neural networks (RBFNNs) in Section 2.3.3, Ŵ T
1 S(Z1), with Ŵ1 ∈ Rl×1, S(Z1) ∈

Rl×1, and the NN node number l > 1, to approximate the function Q1(Z1) on the

compact set ΩZ1 as follows

Q1(Z1) = Ŵ T
1 S(Z1)− W̃ T

1 S(Z1) + ε1(Z1) (5.9)

where the approximation error ε1(Z1) satisfies |ε1(Z1)| ≤ ε∗1 with positive constant

ε∗1.

Substituting (5.9) into (5.8), we obtain

ż1 = g1(x̄1, x
θ1
2 )(z2 + α1) + Ŵ T

1 S(Z1)− W̃ T
1 S(Z1) + ε1(Z1) (5.10)

Choose the following virtual control law and adaption laws:

α1 = N(ζ1)[k1z1 + Ŵ T
1 S(Z1)]

ζ̇1 = k1z
2
1 + z1Ŵ

T
1 S(Z1)

˙̂
W 1 = Γ1[z1S(Z1)− σ1Ŵ1] (5.11)

where Γ1 = ΓT
1 ∈ Rl×l > 0, k1 > 0 and σ1 > 0 are design parameters.

Consider the following Lyapunov function candidate

V1 =
1

2
z2
1 +

1

2
W̃ T

1 Γ−1
1 W̃1 (5.12)
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The time derivative of (5.12) along with (5.10) and (5.11) is

V̇1 = z1ż1 + W̃ T
1 Γ−1

1
˙̃W 1

≤ −k1z
2
1 + [g1(x̄1, x

θ1
2 )N1(ζ1) + 1]ζ̇1 + g1(x̄1, x

θ1
2 )z1z2 − σ1W̃

T
1 Ŵ1 + |z1|ε∗1

(5.13)

By using Young’s inequality, we obtain the following inequalities:

−σ1W̃
T
1 Ŵ1 ≤ −σ1‖W̃1‖2

2
+

σ1‖W ∗
1 ‖2

2

|z1|ε∗1 ≤ z2
1

4c11

+ c11ε
∗2
1

g1(x̄1, x
θ1
2 )z1z2 ≤ z2

1

4c12

+ c12g
2
1(x̄1, x

θ1
2 )z2

2 (5.14)

Substituting (5.14) into (5.13) results in

V̇1 ≤ −(k1 − 1

4c11

− 1

4c12

)z2
1 + [g1(x̄1, x

θ1
2 )N1(ζ1) + 1]ζ̇1 − σ1‖W̃1‖2

2

+c12g
2
1(x̄1, x

θ1
2 )z2

2 +
σ1‖W ∗

1 ‖2

2
+ c11ε

∗2
1

≤ −γ1V1 + [g1(x̄1, x
θ1
2 )N1(ζ1) + 1]ζ̇1 + ρ1 + c12g

2
1(x̄1, x

θ1
2 )z2

2 (5.15)

where γ1 and ρ1 are positive constants, which are defined as

γ1 = min
{

2(k1 − 1

4c11

− 1

4c12

),
σ1

λmax(Γ
−1
1 )

}
, ρ1 =

σ1‖W ∗
1 ‖2

2
+ c11ε

∗2
1

Multiplying both sides of (5.15) by eγ1t yields

d

dt
(V1e

γ1t) ≤ ρ1e
γ1t + [g1(x̄1, x

θ1
2 )N1(ζ1) + 1]ζ̇1e

γ1t + c12g
2
1(x̄1, x

θ1
2 )z2

2e
γ1t (5.16)

Integrating (5.16) over [0, t], we have

V1 ≤ ρ1

γ1

+ [V1(0)− ρ1

γ1

]e−γ1t + e−γ1t

∫ t

0

[g1(x̄1, x
θ1
2 )N1(ζ1) + 1]ζ̇1e

γ1τdτ

+e−γ1t

∫ t

0

c12g
2
1(x̄1, x

θ1
2 )z2

2e
γ1τdτ (5.17)

≤ ρ1

γ1

+ V1(0) + e−γ1t

∫ t

0

[g1(x̄1, x
θ1
2 )N1(ζ1) + 1]ζ̇1e

γ1τdτ

+e−γ1t

∫ t

0

c12g
2
1(x̄1, x

θ1
2 )z2

2e
γ1τdτ (5.18)
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Noting Assumption 5.6, the last term of (5.18) e−γ1t
∫ t

0
c12g

2
1(x̄1, x

θ1
2 )z2

2e
γ1τdτ has the

following property

e−γ1t

∫ t

0

c12g
2
1(x̄1, x

θ1
2 )z2

2e
γ1τdτ ≤ e−γ1t

∫ t

0

c12ḡ
2
1z

2
2e

γ1τdτ

≤ ḡ2
1 sup

τ∈[0,t]

[z2
2(τ)]e−γ1t

∫ t

0

c12e
γ1τdτ

≤ c12

γ1

ḡ2
1 sup

τ∈[0,t]

[z2
2(τ)] (5.19)

where ḡ1 is the upper bound for |g1(·)| as defined in Assumption 5.6.

Therefore, if z2 can be kept bounded over a finite time interval [0, tf ), then we can ob-

tain the boundedness of the term e−γ1t
∫ t

0
c12g

2
1(x̄1, x

θ1
2 )z2

2e
γ1τdτ . Furthermore, (5.18)

can be written as

V1 ≤ c1 + e−γ1t

∫ t

0

[g1(x̄1, x
θ1
2 )N1(ζ1) + 1]ζ̇1e

γ1τdτ (5.20)

where c1 = ρ1

γ1
+ V1(0) + c12

γ1
ḡ2
1 supτ∈[0,tf ][z

2
2(τ)]. According to Lemma 2.4, we can

conclude that V1, ζ1, Ŵ1,
∫ t

0
[g1(x̄1, x

θ1
2 )N1(ζ1) + 1]ζ̇1e

γ1τdτ are all bounded on [0, tf ).

According to Proposition 2 [159], tf = ∞ and we know that z1 and Ŵ1 are SGUUB.

The boundedness of z2 will be dealt with in the following steps.

Step j (2 ≤ j < n): Similar to the procedure of Step 1, we define zj = xj −αj−1. Its

derivative is

żj = ẋj − α̇j−1

= fj(x̄j, 0) + gj(x̄j, x
θj

j+1)xj+1 − α̇j−1 (5.21)

Since αj−1 is a function of x̄j−1, x̄dj, ζj−1, Ŵ1, ..., Ŵj−1, its derivative, α̇j−1, can be

expressed as

α̇j−1 =

j−1∑

k=1

∂αj−1

∂xk

ẋk + φj−1

=

j−1∑

k=1

∂αj−1

∂xk

fk(x̄k, xk+1) + φj−1 (5.22)

where

φj−1 =
∂αj−1

∂ζj−1

ζ̇j−1 +
∂αj−1

∂x̄dj

˙̄xdj +

j−1∑

k=1

∂αj−1

∂Ŵk

˙̂
W k (5.23)
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which is computable. As such, α̇j−1 can be seen as a function of x̄j,
∂αj−1

∂x1
, ...,

∂αj−1

∂xj−1
, φj−1.

Further, we can rewrite (5.21) as

żj = gj(x̄j, x
θj

j+1)(zj+1 + αj) + Qj(Zj) (5.24)

where Zj = [x̄j,
∂αj−1

∂x1
, ...,

∂αj−1

∂xj−1
, φj−1] ∈ ΩZj

⊂ R2j, and Qj(Zj) = fj(x̄j, 0) − α̇j−1 is

an unknown function that can be approximated by the RBFNNs, Ŵ T
j S(Zj), on the

compact set ΩZj
as

Qj(Zj) = Ŵ T
j S(Zj)− W̃ T

j S(Zj) + εj(Zj) (5.25)

where the approximation error εj(Zj) satisfies |εj(Zj)| ≤ ε∗j with positive constant ε∗j .

Substituting (5.25) into (5.21), we obtain

żj = gj(x̄j, x
θj

j+1)(zj+1 + αj) + Ŵ T
j S(Zj)− W̃ T

j S(Zj) + εj(Zj) (5.26)

The following virtual control laws and adaption laws are considered:

αj = N(ζj)[kjzj + Ŵ T
j S(Zj)]

ζ̇j = kjz
2
j + zjŴ

T
j S(Zj)

˙̂
W j = Γj[zjS(Zj)− σjŴj] (5.27)

where Γj = ΓT
j > 0, kj and σj are positive constants.

Define the following Lyapunov function candidate

Vj =
1

2
z2

j +
1

2
W̃ T

j Γ−1
j W̃j (5.28)

Similar to the procedures outlined in Step 1, with the help of Young’s Inequality, the

derivative of Vj in (5.28) along (5.26) and (5.27) can be obtained as

V̇j ≤ −(kj − 1

4cj1

− 1

4cj2

)z2
j + [g1(x̄j, x

θj

j+1)Nj(ζj) + 1]ζ̇j − σj‖W̃j‖2

2

+cj2g
2
j (x̄j, x

θj

j+1)z
2
j+1 +

σj‖W ∗
j ‖2

2
+ cj1ε

∗2
j

≤ −γjVj + [gj(x̄j, x
θj

j+1)Nj(ζj) + 1]ζ̇j + ρj + cj2g
2
j (x̄j, x

θj

j+1)z
2
j+1 (5.29)

where γj and ρj are positive constants defined as

γj = min
{

2(kj − 1

4cj1

− 1

4cj2

),
σj

λmax(Γ
−1
j )

}
, ρj =

σj‖W ∗
j ‖2

2
+ cj1ε

∗2
j (5.30)
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Multiplying both sides of (5.29) by eγjt and integrating over [0, t], we have

Vj ≤ ρj

γj

+ [Vj(0)− ρj

γj

]e−γjt + e−γjt

∫ t

0

[gj(x̄j, x
θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ

+e−γjt

∫ t

0

cj2g
2
j (x̄j, x

θj

j+1)z
2
j+1e

γjτdτ (5.31)

≤ ρj

γj

+ Vj(0) + e−γjt

∫ t

0

[gj(x̄j, x
θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ

+e−γjt

∫ t

0

cj2g
2
j (x̄j, x

θj

j+1)z
2
j+1e

γjτdτ (5.32)

Similarly, as discussed in Step 1, if zj+1 can be kept bounded over a finite time interval

[0, tf ), we can readily guarantee the boundedness of the extra term

e−γjt
∫ t

0
cj2g

2
j (x̄j, x

θj

j+1)z
2
j+1e

γjτdτ in (5.32) as follows

e−γjt

∫ t

0

cj2g
2
j (x̄j, x

θj

j+1)z
2
j+1e

γjτdτ ≤ cj2

γj

ḡ2
j sup

τ∈[0,t]

[z2
j+1(τ)] (5.33)

Therefore, (5.32) can be written as

Vj ≤ cj + e−γjt

∫ t

0

[gj(x̄j, x
θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ (5.34)

where cj =
ρj

γj
+ Vj(0) +

cj2

γj
ḡ2

j supτ∈[0,tf ][z
2
j+1(τ)]. Then, applying Lemma 2.4, the

boundedness of Vj, ζj, Ŵj,
∫ t

0
[gj(x̄j, x

θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ can be readily obtained.

The boundedness of zj+1 will be dealt with in the Step (j + 1).

Step n: This is the final step, in which we will design the control input v(t). Since

zn = xn − αn−1, its derivative is given by

żn = fn(x̄n, 0) + gn(x̄n, u
θn)[g0(v

θ0)v − g0(v
θ0)v∗ −

∫ D

0

p(r)Fr[v](t)dr] + d(t)− α̇n−1

= gn(x̄n, u
θn)[g0(v

θ0)v − g0(v
θ0)v∗ −

∫ D

0

p(r)Fr[v](t)dr] + Qn(Zn) + d(t)

= gn(x̄n, u
θn)[g0(v

θ0)v − g0(v
θ0)v∗ −

∫ D

0

p(r)Fr[v](t)dr] + Ŵ T
n S(Zn)

−W̃ T
n S(Zn) + εn(Zn) + d(t) (5.35)

where Ŵ T
n S(Zn) is used to approximate the unknown function Qn(Zn) = fn(x, 0) −

α̇n−1 on the compact set ΩZn ⊂ Rn with Zn = [x̄n,
∂αn−1

∂x1
, ..., ∂αn−1

∂xn−1
, φn−1] ∈ ΩZn ⊂ R2n,

and the approximation error εn(Zn) satisfies |εn(Zn)| ≤ ε∗n with positive constant ε∗n.
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Choose the following Lyapunov function candidate

Vn =
1

2
z2

n +
1

2
W̃ T

n Γ−1
n W̃n +

1

2γd

d̃2 +
ḡn

2γp

∫ D

0

p̃2(t, r)dr (5.36)

where d̃ = d̂ − d∗, p̃(t, r) = p̂(t, r) − pmax, d̂ and p̂(t, r) are the estimates of the

disturbance bound d∗ and the density function of p(r) respectively, Γn = ΓT
n > 0, and

γd, γp are positive constants.

The derivative of Vn defined in (5.36) along (5.35) is

V̇n = zngn(x̄n, u
θn)[g0(v

θ0)v −
∫ D

0

p(r)Fr[v](t)dr]− zngn(x̄n, uθn)g0(v
θ0)v∗

+znŴ
T
n S(Zn)− znW̃ T

n S(Zn) + znεn(Zn) + znd(t) + W̃ T
n Γ−1

n Ẇn +
1

γd

d̃ ˙̃d

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (5.37)

From Assumptions 5.2 and 5.6, we know that |gn(x, uθn)g0v
∗| ≤ C, where C is a

positive constant. And due to |εn(Zn)| ≤ ε∗n, and Assumption 5.4, (5.37) can be

written as

V̇n ≤ zngn(x̄n, uθn)[g0(v
θ0)v −

∫ D

0

p(r)Fr[v](t)dr] + znŴ
T
n S(Zn)− znW̃ T

n S(Zn)

+|zn|(C + ε∗n) + |zn|d∗ + W̃ T
n Γ−1

n Ẇn +
1

γd

d̃ ˙̃d +
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

(5.38)

The following control laws and adaption laws are proposed:

v = N(ζn)
[
knzn + Ŵ T

n S(Zn) + d̂ tanh(
zn

ω
)
]

+ vh (5.39)

vh = −sign(zn)

∫ D

0

p̂(t, r)

h0

|Fr[v](t)|dr (5.40)

ζ̇n = knz2
n + znŴ

T
n S(Zn) + znd̂ tanh(

zn

ω
) (5.41)

˙̂
W n = Γn[znS(Zn)− σnŴn] (5.42)

˙̂
d = γd[zn tanh(

zn

ω
)− σdd̂] (5.43)

∂

∂t
p̂(t, r) =

{
−γpσpp̂(t, r), if p̂(t, r) ≥ pmax

γp[|zn||Fr[v](t)| − σpp̂(t, r)], if 0 ≤ p̂(t, r) < pmax

(5.44)

where σp and ω are positive constants.
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Remark 5.6 The term vh in (5.39) is used to cancel the effect caused by the non-

differentiable hysteresis term
∫ D

0
p(r)Fr[v](t)dr. Due to the integral form of∫ D

0
p(r)Fr[v](t)dr, we cannot make assumptions on its boundedness, and thus cannot

design the traditional robust adaptive control. However, considering that the density

function p(r) is not a function of time, it can be treated as a “parameter” of the

hysteresis model, and an adaptation law can be developed to obtain an estimate of it.

Substituting (5.39)-(5.43) into (5.38), and using Young’s Inequality and the following

property of the hyperbolic tangent function tanh(·) [76, 160]:

0 ≤ |zn| − zn tanh(
zn

ω
) ≤ 0.2785ω,

we obtain that

V̇n ≤ −(kn − 1

4cn1

)z2
n + [gn(x, uθn)g0(v

θ0)Nn(ζn) + 1]ζ̇n − σn‖W̃n‖2

2
− σdd̃

2

2

+
σn‖W ∗

j ‖2

2
+

σdd
∗2

2
+ 0.2785ωd∗ + cn1(ε

∗
n + C)2

+gn(x, uθn)
[
− g0(v

θ0)|zn|
∫ D

0

p̂(t, r)

h0

|Fr[v](t)|dr − zn

∫ D

0

p(r)Fr[v](t)dr
]

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (5.45)

where cn1 is a positive constant.

Notice that the last two terms of (5.45) can be written as

gn(x, uθn)
[
− g0(v

θ0)|zn|
∫ D

0

p̂(t, r)

h0

|Fr[v](t)|dr − zn

∫ D

0

p(r)Fr[v](t)dr
]

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ gn(x, uθn)
[
− |zn|

∫ D

0

p̂(t, r)|Fr[v](t)|dr + |zn|
∫ D

0

pmax|Fr[v](t)|dr
]

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −gn(x, uθn)|zn|
∫ D

0

p̃(t, r)|Fr[v](t)|dr +
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr (5.46)
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According to (5.44), the adaptation law for the estimate of density function p̂(t, r)

comprises two cases, due to the different regions which p̂(t, r) belong to. Therefore,

we also need to consider two cases for the analysis of (5.46):

Case(a): When r ∈ Dmax = {r : p̂(t, r) ≥ pmax} ⊂ [0, D], according to (5.44), we have

p̃(t, r) ≥ 0 (5.47)

∂

∂t
p̂(t, r) = −γpσpp̂(t, r) (5.48)

Substituting (5.47) and (5.48) into (5.46), we have

−gn(x, uθn)|zn|
∫

r∈Dmax

p̃(t, r)|Fr[v](t)|dr +
ḡn

γp

∫

r∈Dmax

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −σpḡn

∫

r∈Dmax

p̃(t, r)p̂(t, r)dr (5.49)

Case (b): When r ∈ Dc
max, which is the complement set of Dmax in [0, D], i.e.,

0 ≤ p̂(t, r) < pmax.

In this case, from(5.44), we have

p̃(t, r) < 0 (5.50)

∂

∂t
p̂(t, r) = γp[|zn||Fr[v](t)| − σpp̂(t, r)] (5.51)

Substituting (5.50) and (5.51) into (5.46), we have

−gn(x, uθn)|zn|
∫

r∈Dc
max

p̃(t, r)|Fr[v](t)|dr +
ḡn

γp

∫

r∈Dc
max

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −gn(x, uθn)|zn|
∫

r∈Dc
max

p̃(t, r)|Fr[v](t)|dr + ḡn|zn|
∫

r∈Dc
max

p̃(t, r)|Fr[v](t)|dr

−σpḡn

∫

r∈Dc
max

p̃(t, r)p̂(t, r)

≤ −σpḡn

∫

r∈Dc
max

p̃(t, r)p̂(t, r)dr (5.52)

Combining Case (a) with Case (b), (5.46) can be written as

gn(x, uθn)[−g0(v
θ0)|zn|

∫ D

0

p̂(t, r)

h0

|Fr[v](t)|dr − zn

∫ D

0

p(r)Fr[v](t)dr]
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+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −gn(x, uθn)|zn|
∫

r∈Dmax

p̃(t, r)|Fr[v](t)|dr +
ḡn

γp

∫

r∈Dmax

p̃(t, r)
∂

∂t
p̃(t, r)dr

−gn(x, uθn)|zn|
∫

r∈Dc
max

p̃(t, r)|Fr[v](t)|dr +
ḡn

γp

∫

r∈Dc
max

p̃(t, r)
∂

∂t
p̃(t, r)dr

= −σpḡn

∫

r∈Dmax

p̃(t, r)p̂(t, r)dr − σpḡn

∫

r∈Dc
max

p̃(t, r)p̂(t, r)dr

= −σpḡn

∫ D

0

p̃(t, r)p̂(t, r)dr (5.53)

By Young’s Inequality, we have

−σpḡnp̃(t, r)p̂(t, r) ≤ −σpḡn

2
p̃2(t, r) +

σpḡn

2
p2

max (5.54)

Integrating both sides of (5.54) over [0, D] results in

−σp1 ḡn

∫ D

0

p̃(t, r)p̂(t, r)dr ≤ −σpḡn

2

∫ D

0

p̃2(t, r)dr +
σpḡnD

2
p2

max (5.55)

Therefore, according to (5.55), we can rewrite (5.53) further as

gn(x, uθn)[−g0(v
θ0)|zn|

∫ D

0

p̂(t, r)

h0

|Fr[v](t)|dr − zn

∫ D

0

p(r)Fr[v](t)dr]

+
ḡn

γp

∫ D

0

p̃(t, r)
∂

∂t
p̃(t, r)dr

≤ −σpḡn

2

∫ D

0

p̃2(t, r)dr +
σpḡnD

2
p2

max (5.56)

Substituting (5.56) into (5.45), we have

V̇n ≤ −(kn − 1

4cn1

)z2
n + [gn(x, uθn)g0(v

θ0)Nn(ζn) + 1]ζ̇n − σn‖W̃n‖2

2
− σdd̃

2

2

−σpḡn

2

∫ D

0

p̃2(t, r)dr +
σn‖W ∗

j ‖2

2
+

σdd
∗2

2
+ 0.2785ωd∗ + cn1(ε

∗
n + C)2

+
σpḡnD

2
p2

max

≤ −γnVn + [gn(x, uθn)g0(v
θ0)Nn(ζn) + 1]ζ̇n + ρn (5.57)

where γn and ρn are positive constants defined as

γn = min{2(kn − 1

4cn1

),
σn

λmax(Γ−1
n )

, σdγd, σpγp}

ρn =
σn‖W ∗

n‖2

2
+

σdd
∗2

2
+ 0.2785ωd∗ + cn1(ε

∗
n + C)2 +

σpḡnD

2
p2

max (5.58)
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Multiplying both sides of (5.57) and integrating over [0, t], we have

Vn ≤ ρn

γn

+ [Vn(0)− ρn

γn

]e−γnt + e−γnt

∫ t

0

[gn(x, uθn)g0(v
θ0)Nn(ζn) + 1]ζ̇neγnτdτ

(5.59)

≤ ρn

γn

+ Vn(0) + e−γnt

∫ t

0

[gn(x, uθn)g0(v
θ0)Nn(ζn) + 1]ζ̇ne

γnτdτ

≤ cn + e−γnt

∫ t

0

[gn(x, uθn)g0(v
θ0)Nn(ζn) + 1]ζ̇ne

γnτdτ (5.60)

where cn = ρn

γn
+ Vn(0). According to Assumptions 5.1, 5.2, and 5.6, we can regard

gn(x, u)g0(v) in (5.60) as g(·), which is a time-varying parameter and takes values in

the known closed intervals I = [h0gn
, h1ḡn], with 0 /∈ I. Using Lemma 2.4, we can con-

clude that Vn(t), ζn(t) and hence zn(t), Ŵn,
ˆ̄dn are SGUUB. From the boundedness of

zn(t), the boundedness of the extra term e−γn−1t
∫ t

0
c(n−1)2g

2
n−1(x̄n−1, x

θn−1
n )z2

neγn−1τdτ

at Step (n− 1) is readily obtained. Applying Lemma 2.4 for (n− 1) times backward,

it can be seen from the above iterative design procedure that Vj, zj, Ŵj,
ˆ̄dj, and hence,

xj, are SGUUB on [0, tf ).

Remark 5.7 In order to use Lemma 2.4 to establish closed-loop stability, we need

to express V̇n in the form of V̇n = −γnVn + [gn(x, uθn)g0(v
θ0)Nn(ζn) + 1]ζ̇n + ρn as

in (5.57). Thus, we need to adopt the σ-modification form in the adaptation law

of p̂(t, r) as in (5.44). This is different from the previous works [18, 19], where no

σ-modification was included since only the property V̇ ≤ 0 was to be obtained.

The following theorem shows the stability and control performance of the closed-loop

adaptive system.

Theorem 5.1 Consider the closed-loop system consisting of the plant (5.1), pre-

ceded by unknown hysteresis nonlinearities (5.2), and the control laws and adap-

tation laws (5.39). Under Assumptions 5.3-5.5, and given any initial conditions

zi(0), Ŵi(0), d̂(0) (i = 1, 2, ..., n) belonging to Ω0, the overall closed-loop neural control

system is SGUUB, in the sense that all of the signals are bounded. Specifically, the

states and weights in the closed-loop system will remain in the compact set Ω defined
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by

Ω =

{
zj, W̃j, d̃

∣∣∣|zj| ≤
√

2µj, ‖W̃j‖ ≤
√

2µj

λmin(Γ
−1
j )

,

|d̃| ≤
√

2γdµn, j = 1, 2, ...n
}

(5.61)

and eventually converge to the compact set Ωs defined by

Ωs =

{
zj, W̃j, d̃

∣∣∣|zj| ≤
√

2µ∗j , ‖W̃j‖ ≤
√

2µ∗j
λmin(Γ

−1
j )

,

|d̃| ≤
√

2γdµ∗n, j = 1, 2, ...n
}

(5.62)

where

µj = cj + cj0, j = 1, 2, ...n,

cn =
ρn

γn

+ Vn(0),

Vn(0) =
1

2
z2

n(0) +
1

2
W̃ T

n (0)Γ−1
n W̃n(0) +

1

2γd

d̃2
n(0) +

ḡn

2γp

∫ D

0

p̃2(0, r)dr,

cj =
ρj

γj

+ Vj(0) +
2cj2

γj

ḡ2
j (cj+1 + cj+1,0),

Vj(0) =
1

2
z2

j (0) +
1

2
W̃ T

j (0)Γ−1
j W̃j(0), j = 1, 2, ..., n− 1,

µ∗j = c′j + cj0, j = 1, 2, ...n,

c′n =
ρn

γn

,

c′j =
ρj

γj

+
2cj2

γj

ḡ2
j (cj+1 + cj+1,0), j = 1, 2, ..., n− 1,

and cj0 being the upper bound of e−γjt
∫ t

0
[gj(x̄j, x

θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ , j = 1, 2, ...n.

Proof: For any given initial compact set Ω0, i.e., {zi(0), Ŵi(0), d̂(0)} ∈ Ω0 (i =

1, 2, ..., n), we can always construct a corresponding compact set ΩNN comprising

ΩZ1 , ..., ΩZn , which is larger than Ω0 and can be as large as we want, on which the

NN approximation is valid. Based on the previous iterative derivation procedures

from Step 1 to Step n of backstepping, from (5.20), (5.34) and (5.60), and according

to Lemma 2.4, we can conclude that Vj, zj, Ŵj,
ˆ̄d, and hence, xj, are SGUUB, i =

1, 2, ..., n, i.e., all the signals in the closed-loop system are bounded.
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Noting the definition of Vn in (5.36), and letting cn0 be the upper bound of the term

e−γnt
∫ t

0
[gn(x, uθn)g0Nn(ζn) + 1]ζ̇neγnτdτ , cn = ρn

γn
+ Vn(0), µn = cn + cn0 in (5.60), we

have

|zn| ≤
√

2µn, ‖W̃n‖ ≤
√

2µn

λmin(Γ−1
n )

, |˜̄d| ≤
√

2γdµn.

Similarly, in the rest of steps from (n − 1) to 1, letting cj0 be the upper bound of

e−γjt
∫ t

0
[gj(x̄j, x

θj

j+1)Nj(ζj) + 1]ζ̇je
γjτdτ , cj =

ρj

γj
+ Vj(0) +

2cj2

γj
ḡ2

j (cj+1 + cj+1,0) and

µj = cj + cj0 in (5.34), we can obtain

|zj| ≤
√

2µj, ‖W̃i‖ ≤
√

2µj

λmin(Γ
−1
j )

, j = 1, ..., n− 1.

Furthermore, we can rewrite (5.59) as

Vn ≤ µ∗n + [Vn(0)− ρn

γn

]e−γnt

where µ∗n = c′n+cn0, c′n = ρn

γn
, and cn0 be the upper bound of the term e−γnt

∫ t

0
[gn(x, uθn)

g0Nn(ζn) + 1]ζ̇neγnτdτ . As t →∞, we have

Vn ≤ µ∗n

Therefore, based on the definition of Vn in (5.36), we can conclude that when t →∞,

the following inequalities are true:

|zn| ≤
√

2µ∗n, ‖W̃n‖ ≤
√

2µ∗n
λmin(Γ−1

n )
, |˜̄d| ≤

√
2γdµ∗n

A similar conclusion can be made about zj, Ŵj as follows

|zj| ≤
√

2µ∗j , ‖W̃j‖ ≤
√

2µ∗j
λmin(Γ

−1
j )

, j = 1, ...n− 1

with µ∗j = c′j + cj0 and c′j =
ρj

γj
+

2cj2

γj
ḡ2

j (cj+1 + cj+1,0) as t →∞.

In addition, from the definition of the bounds of the compact sets Ω in (5.61) and

Ωs in (5.62), and the definitions of ρj, γj in (5.30) and ρn, γn (5.58), we can see

that the size of the compact sets Ω and Ωs depends on the choice of the con-

trol parameters σj, λmax(Γ
−1
j ), σd, σp, ω, ḡn, γp, cj1, cj2, kj. In particular, by decreasing
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σj, cj1, cj2, λmax(Γ
−1
j ), σn, σd, σp, ω, cn1, λmax(Γ

−1
n ), and increasing kj, kn, γd, γp, we can

reduce µj, µ
∗
j , µn, µ

∗
n, and thus, the size of the compact sets Ω and Ωs will decrease.

Therefore, as long as the initial conditions start in Ω0, there exist some control pa-

rameters such that the states and weights will remain in the conservative compact

set Ω, and finally converge to the compact set Ωs. Both of them belong to the chosen

compact set ΩNN . This completes the proof.

5.4 Simulation Results

In this section, simulation studies are presented to demonstrate the effectiveness of

the proposed adaptive NN approach to deal with uncertain nonlinear systems in

pure-feedback form preceded by the generalized PI hysteresis. Consider the following

second-order nonlinear system with the generalized PI hysteresis:

ẋ1 = x2 + 0.05 sin(x2)

ẋ2 =
1− e−x2

1 + e−x2
+ u + 0.1 sin(u) + 0.1 sin(6t)

y = x1 (5.63)

where u represents the output of the hysteresis described by the generalized PI model

u(t) = h(v)(t)− ∫ D

0
p(r)Fr[v](t)dr with the density function p(r) = 0.08e−0.0024(r−1)2 ,

r ∈ [0, 100], and h(v)(t) = 0.4(|v| arctan(v) + v). We can check that the plant (5.63)

satisfies Assumptions 5.4 to 5.5. Our objective is to make the output of system (5.63),

y, to track the desired trajectory, yd = 0.8 sin(0.5t) + 0.1 cos(t).

We adopt the control law and adaption laws designed in Section 5.3 in the following:

α1 = N(ζ1)[k1z1 + Ŵ T
1 S(Z1)]

v = N(ζ2)
[
k2z2 + Ŵ T

2 S(Z2) + d̂ tanh(
z2

ω
)
]

+ vh

vh = −sign(z2)

∫ D

0

p̂(t, r)

h0

|Fr[v](t)|dr

ζ̇1 = k1z
2
1 + z1Ŵ

T
1 S(Z1)

ζ̇2 = k2z
2
2 + z2Ŵ

T
2 S(Z2) + z2d̂ tanh(

z2

ω
)
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˙̂
W 1 = Γ1[z1S(Z1)− σ1Ŵ1]

˙̂
W 2 = Γ2[z2S(Z2)− σ2Ŵ2]

˙̂
d = γd[z2 tanh(

z2

ω
)− σdd̂]

∂

∂t
p̂(t, r) =

{
−γpσpp̂(t, r), if p̂(t, r) ≥ pmax

γp[|z2||Fr[v](t)| − σpp̂(t, r)], if 0 ≤ p̂(t, r) < pmax

(5.64)

where z1 = x1 − yd, z2 = x2 − α1. The Nussbaum function is chosen as N(ζ) =

exp(ζ2) cos((π/2)ζ). The inputs of the neural networks are Z1 = [x1, yd] ∈ R2 and

Z2 = [x1, x2,
∂α1

x1
, φ1] ∈ R4, where φ1 = ∂α1

∂ζ1
ζ̇1 + ∂α1

∂yd
ẏd + ∂α1

∂Ŵ1

˙̂
W 1. The following

initial conditions and controller design parameters are adopted in the simulation:

x1(0) = 0.2, x2(0) = ζ1(0) = ζ2(0) = d̂(0) = 0.0, Ŵ1(0) = Ŵ2(0) = 0.0, k1 = k2 = 1.0,

Γ1 = 0.01I25, σ1 = 0.0, Γ2 = 0.2I256, σ2 = 0.002, σp = 0.2, γp = 0.06, pmax = 0.1,

ω = 0.1, h0 = 0.35.

In practice, the selection of the centers and widths of RBF has a great influence on

the performance of the designed controller. According to [111], Gaussian RBF NNs

arranged on a regular lattice on Rn can uniformly approximate sufficiently smooth

functions on closed, bounded subsets. Accordingly, in the following simulation studies,

the centers and widths are chosen on a regular lattice in the respective compact sets.

Specifically, we employ 5 nodes for each input dimension of Ŵ T
1 S(Z1) and 4 nodes for

each input dimension of Ŵ T
2 S(Z2), and, thus, we end up with 25 nodes (i.e., l1 = 25)

with centers µl = 1.0 (l = 1, 2, ...l1) evenly spaced in [−4.0, +4.0] × [−4.0, +4.0]

and widths ηl = (l = 1, 2, ...l1) for neural network Ŵ T
1 S(Z1); and 256 nodes (i.e.,

l2 = 256) with centers µl (l = 1, 2, ...l2) evenly spaced in [−4.0, +4.0]× [−4.0, +4.0]×
[−4.0, +4.0] × [−4.0, +4.0] and widths ηl = 1.0 (l = 1, 2, ...l1) for neural network

Ŵ T
2 S(Z2).

Due to the use of sign function sgn(·), the control signal vh (5.40) becomes discon-

tinuous, which may excite unmodelled high-frequency plant dynamics and cause the
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chattering phenomenon. To avoid the undesired chattering phenomenon, we will re-

place the sign function in vh with the following saturation function in the simulation:

sat(∗) =





1 if ∗ ≥ ε
∗
ε

if | ∗ | < ε

−1 if ∗ > ε

where ε is a small positive constant and chosen as 0.05 in this section.

The simulation results are shown in Figures 5.1-5.6. From Figure 5.1, we observe that

good tracking performance is achieved and the tracking error converges to a small

neighborhood of zero in less than one period of oscillation. At the same time, other

signals, including the state x2, control signal v, hysteresis output u, NN weights norms

‖W1‖, ‖W2‖, Nussbaum function signals ζ1, ζ2, N(ζ1), N(ζ2), and the disturbance pa-

rameter estimate d̂ are kept bounded, as seen in Figures 5.2-5.6. It is noted that there

is a large difference between the signals v and u in Figure 5.3, which indicates the

significant hysteresis effect. In particular, in all figures, there are two obvious spikes

at around 4 and 8 seconds, which result from the Nussbaum functions N(ζ1), N(ζ2).

5.5 Conclusion

Adaptive neural control has been proposed for a class of unknown nonlinear sys-

tems in pure-feedback form preceded by the uncertain generalized PI hysteresis. We

adopted the Mean Value Theorem to solve the non-affine problem both in system un-

known nonlinear functions and unknown input function in the generalized PI hystere-

sis model, and used Nussbaum function to deal with the problem of the unknown vir-

tual control directions. The closed-loop control system has been theoretically shown

to be SGUUB using Lyapunov synthesis method. Simulation results have verified the

effectiveness of the proposed approach.
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Figure 5.1: Tracking performance for the pure-feedback system with generalized PI
hysteresis
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Figure 5.2: State x2 for the pure-feedback system with generalized PI hysteresis
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Figure 5.3: Control signals for the pure-feedback system with generalized PI hysteresis

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time

no
rm

 o
f N

N
 w

ei
gh

ts

‖W1‖

‖W2‖

Figure 5.4: Norm of NN weights for the pure-feedback system with generalized PI
hysteresis

129



5.5 Conclusion

0 10 20 30 40 50
−8

−6

−4

−2

0

2

4

time

ζ1

N(ζ1)

ζ2

N(ζ2)

Figure 5.5: Nussbaum function signals for the pure-feedback system with generalized
PI hysteresis

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time

es
tim

at
io

n 
of

 d
is

tu
rb

an
ce

 b
ou

nd
 

Figure 5.6: Estimation of disturbance bound, d̂, for the pure-feedback system with
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Chapter 6

Conclusions and Further Research

6.1 Conclusions

This thesis focused on exploring new avenues to fuse different hysteresis models with

the available control techniques to achieve both stabilization and strict tracking preci-

sion requirements for the concerned uncertain nonlinear systems without constructing

a hysteresis inverse. The results presented in this thesis can be considered as a step-

ping stone to be used toward the development of a general control framework for the

systems with hysteretic behavior. The key results are as follows:

• Strict-Feedback Systems with Backlash-Like Hysteresis.

For a class of strict-feedback nonlinear systems preceded by unknown backlash-

like hysteresis, adaptive dynamic surface control (DSC) was developed without

constructing a hysteresis inverse by exploring the characteristics of backlash-like

hysteresis, which can be described by two parallel lines connected via horizontal

line segments. Through transforming the backlash-like hysteresis model into a

linear-in-control term plus a bounded “disturbance-like” term, standard robust

adaptive control used for dealing with bounded disturbances was applied. The

explosion of complexity in traditional backstepping design was avoided by uti-

lizing DSC. Function uncertainties were compensated for using neural networks

(NNs) due to their universal approximation capabilities. Through Lyapunov
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synthesis, the closed-loop control system has been proved to be semi-globally

uniformly ultimately bounded (SGUUB), and the tracking error converged to a

small neighborhood of zero. Simulation results have been provided to illustrate

the performance of the proposed approach.

• Output Feedback Systems with Backlash-Like Hysteresis.

Adaptive neural observer backstepping has been proposed for state estimation

and function on-line approximation using only output measurements to achieve

the output tracking for a class of output feedback nonlinear systems subject to

function uncertainties and backlash-like hysteresis. The Barrier Lyapunov Func-

tion (BLF) has been incorporated into Lyapunov synthesis to address two open

and challenging problems in the neuro-control area. By ensuring the bound-

edness of the BLF, we can actively (i) determine the compact set a priori, on

which NN approximation is valid; and (ii) ensure the argument of the unknown

function remain within the specified set. The SGUUB stability of the closed-

loop system has been provided and the effectiveness of the proposed approach

has been illustrated using a numerical example. The present approach would

provide both theoretical criteria and practical insights for the design and im-

plementation of NN based control. It can be considered as a supplement or an

improvement to the state of art in neuro-control field.

• MIMO Systems with Classic Prandtl-Ishlinskii Hysteresis

Adaptive variable structure neural control is proposed for a class of uncertain

multi-input multi-output (MIMO) nonlinear systems under the effects of classic

Prandtl-Ishlinskii (PI) hysteresis and time-varying state delays. Although there

are some works that deal with hysteresis, or time delay, individually, the com-

bined problem, despite its practical relevance, is largely open in the literature

to the best of the author’s knowledge. The unknown time-varying delay uncer-

tainties are compensated for using appropriate Lyapunov-Krasovskii functionals

in the design. Unlike backlash-like hysteresis, standard robust adaptive control

used for dealing with bounded disturbances cannot be applied here, since no as-

sumptions can be made on the boundedness of the hysteresis term of the classic

PI model. By investigating the properties of PI classic hysteresis, the effect of
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the uncertain PI classic hysteresis was also mitigated using the proposed control.

The controller has been made to be free from singularity problem by utilizing

integral Lyapunov function. Based on the principle of sliding-mode control,

the developed controller can guarantee that all signals involved are SGUUB.

Simulation results have verified the effectiveness of the proposed approach.

• Pure-Feedback Systems with Generalized Prandtl-Ishlinskii Hystere-

sis

Adaptive neural control has been investigated for a class of unknown nonlinear

systems in pure-feedback form with the generalized Prandtl-Ishlinskii (PI) hys-

teresis input. Compared with the backlash-like hysteresis model and the classic

PI hysteresis model, the generalized PI hysteresis model can capture the hys-

teresis phenomenon more accurately and accommodate more general classes of

hysteresis shapes by adjusting not only the density function but also the input

function. The difficulty of the control of such class of systems lies in the non-

affine problem in both system unknown nonlinear functions and unknown input

function in the generalized PI hysteresis model. To overcome this difficulty, we

adopted the meanvalue theorem to solve the nonaffine problem in both system

unknown nonlinear functions and unknown input function in the generalized

PI hysteresis model, and used Nussbaum function to deal with the problem

of the unknown virtual control directions. The closed-loop control system has

been theoretically shown to be SGUUB using the Lyapunov synthesis method.

Simulation results have verified the effectiveness of the proposed approach.

6.2 Recommendations for Further Research

This section presents several possible directions that are recommended for extending

the results developed in this thesis:

• Variability in Hysteresis Modeling.

In this thesis, we focused on a specific hysteresis model for a class of concerned
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nonlinear system. In practice, the hysteretic behavior of the actuators has vari-

ability due to some factors, such as fluctuation of the temperature. Therefore,

more investigations are needed to to include this variability in hysteresis mod-

eling and to fuse these hysteresis models with the available control techniques

to to mitigate the effects of hysteresis while satisfying the basic requirements

for the concerned system.

• Practical Applications.

As mentioned, hysteresis nonlinearities are common in many industrial pro-

cesses, especially in position control of smart material-based actuators. Both

computer simulations and experimental work need to be carried out extensively

to verify the effectiveness and expose the limitations of the proposed controllers

in this thesis, especially in the face of real time response, tolerances, measure-

ment noise and modeling compatibility with practical systems, etc.

• Generalization of the solution of NN open problems.

Though the solution of NN open problems was presented for uncertain output

feedback systems in Chapter 3.2, the proposed method could be generalized

to many more classes of systems with state-dependent uncertain nonlinearities,

which makes the problem becomes much more challenging. One way is to

follow a similar approach as that in our recently published result [161], where

Barrier Lyapunov Functions are adopted to handle full state constraints for

strict feedback systems. The analysis will be much more involved, requiring the

checking of feasibility conditions on the initial states and control parameters.

The case of uncertain strict feedback systems is still an ongoing topic of research

for us.
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