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Abstract: In this paper, adaptive fuzzy tracking control is proposed for a class of multi-input

and multi-output (MIMO) nonlinear systems in the presence of system uncertainties, unknown non-

symmetric input saturation and unknown external disturbances. For the MIMO nonlinear system,

the time-varying external disturbance cannot be directly measured which is estimated via distur-

bance observer. By choosing the appropriate gain matrix, disturbance observer can approximate

the unknown disturbance well and the estimate error converges to a compact set. And then, fuzzy

logic systems (FLS) are used to approximate the system uncertainty of MIMO nonlinear systems.

Based on outputs of disturbance observer and FLS, adaptive tracking control is presented for the

uncertain MIMO nonlinear system. Considering the unknown non-symmetric input saturation and

control singularity case, adaptive fuzzy tracking control is developed via disturbance observer and

FLS approximation technique. The effects of unknown input saturation and control singularity are

treated as a part of system compound disturbance which is estimated using disturbance observer.

Under the proposed tracking control techniques, semi-global uniform boundedness of the closed-loop

signals is guaranteed via Lyapunov analysis. Numerical simulation results are presented to illustrate

the effectiveness of the proposed tracking control schemes.

Keywords: MIMO nonlinear system, Input saturation, Disturbance observer, Fuzzy logic systems,

Tracking control

1 Introduction

In the past years, robust adaptive control of uncertain nonlinear systems has received much attention

to enhance performance robustness of the closed-loop control system. In practice, most control plants
∗Corresponding author. Tel: (+86) +25+84893084, Fax: (+86) +25+84892300, E-mail: chenmou@nuaa.edu.cn.
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are multivariable and are characterized by widely changing environmental disturbances and various

work conditions. Thus, it is important to investigate effective robust adaptive control techniques

for uncertain MIMO nonlinear systems [1–7]. Robust adaptive control based on universal function

approximators (such as fuzzy systems and neural networks) has been extensively studied [8–12].

In particular, adaptive fuzzy control has been an active impact in the control community because

adaptive fuzzy control provides a systematic and efficient framework to incorporate linguistic fuzzy

information from human experts [13–16]. In [17], adaptive fuzzy robust tracking control and and

its application were studied via small gain approach. Direct adaptive output-feedback fuzzy con-

trol was designed for the nonaffine nonlinear system [18]. In [19], fuzzy control design was given

for the trajectory tracking on uncertain nonlinear systems. Adaptive fuzzy-based tracking control

was proposed for nonlinear systems via VSS and H∞ approaches in [20]. In [21], robust adaptive

tracking control was studied for nonlinear systems based on bounds of fuzzy approximation parame-

ters. Adaptive fuzzy output tracking control was proposed for a class of uncertain nonlinear systems

in [22]. However, the time-varying external disturbance of the nonlinear system cannot be efficiently

tackled via fuzzy logic systems. To improve the anti-disturbance ability of the closed-loop control

system, the disturbance-observer-based control can be developed in which disturbance observer is

adopted to estimate the unknown external disturbance.

In the recent decade, various design techniques have been intensively developed for disturbance

observer to fully use the information of external disturbances [23–27]. In literatures, disturbance

observers were used to approximate external disturbance, and robust control were developed based

on the output of disturbance observers. In [24, 25], fuzzy disturbance observer and its application

were studied for discrete-time and continuous-time systems. The general framework was given for

nonlinear systems subject to disturbances using disturbance observer based control (DOBC) tech-

nique [26]. The nonlinear predictive control was proposed using the disturbance observer in [27].

In [28], nonlinear-disturbance observer was proposed for multivariable minimum-phase systems with

arbitrary relative degrees. The nonlinear disturbance observer for robotic manipulators was devel-

oped in [29]. In [30], composite disturbance-observer-based control and terminal sliding mode control

(TSMC) were investigated for uncertain structural systems. In [31], nonlinear disturbance observer-

based approach was proposed for longitudinal dynamics of a missile. The disturbance attenuation and

rejection problem was investigated for a class of MIMO nonlinear systems using DOBC framework

in [32]. In [33], composite DOBC and H∞ control were proposed for complex continuous models.

Composite DOBC and TSMC were developed for nonlinear systems with disturbances in [34]. In [35],

sliding mode synchronization control was proposed for uncertain chaotic systems based on distur-
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bance observer. Sliding mode control was developed for a class of uncertain nonlinear system using

disturbance observer in [36]. In [37], robust DOBC was presented for time delay uncertain systems.

However, the disturbance observer should be further developed for the uncertain MIMO system with

input saturation.

Input saturation is the most important non-smooth nonlinearity which should be explicitly considered

in the control design. The analysis and design of control systems with input saturation constraints

have been widely studied [38–42]. In [39], tracking control was developed for ocean surface vessels with

input saturation using the neural network. Robust adaptive neural network control was proposed for

a class of uncertain MIMO nonlinear systems with input nonlinearities [38]. Hover control was studied

for an unmanned aerial vehicle (UAV) with input saturations in [40]. In [41], robust stability analysis

and fuzzy-scheduling control were developed for nonlinear systems with input saturation. Globally

stable adaptive control was presented for minimum phase single-input and single-output (SISO)

plants with input saturation [42]. Nonlinear control was proposed to obtain the attitude maneuver of

a three-axis stabilized flexible spacecraft considering input nonlinearity [43]. It is apparent that the

input saturation constraint will enhance the complexity of control system design for the uncertain

MIMO nonlinear system. Furthermore, robust control for uncertain MIMO nonlinear systems with

control singularity case is a promising research topic. Thus, adaptive fuzzy tracking control need

to be further developed for the uncertain MIMO nonlinear system with control singulary case and

unknown non-symmetric input saturation.

This work is motivated by adaptive fuzzy tracking control of uncertain MIMO systems with system

uncertainties, unknown external disturbance and unknown non-symmetric input saturation. The

control objective is to track a desired trajectory in the presence of systems uncertainties, the time

varying disturbances and input saturation. The main contributions of this paper are as follows:

(i) nonlinear disturbance observer is developed to approximate the unknown external disturbance

for the uncertain MIMO nonlinear system and the bounded approximation error is guaranteed.

(ii) to the best of my knowledge, it is the first time in the literature that the disturbance-observer-

based tracking control is developed for the uncertain MIMO nonlinear system with external

disturbance, control singularity and unknown non-symmetric input saturation.

(iii) rigorous stability of the disturbance-observer-based tracking control is guaranteed using Lya-

punov analysis which shows that the semiglobal uniform boundedness of all closed-loop signals.

The organization of the paper is as follows. The system statement and preliminaries are given
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in Section 2. Section 3 describes the design of nonlinear disturbance observer. Adaptive fuzzy

tracking control is proposed based on disturbance observer in Section 4. In Section 5, adaptive

fuzzy tracking control is developed for MIMO nonlinear systems with unknown input saturation and

control singularity. Simulation studies are shown in Section 6 to demonstrate the effectiveness of our

proposed control approaches, followed by some concluding remarks in Section 7.

2 Problem Formulation and Preliminary

2.1 Problem Formulation

Consider the uncertain MIMO nonlinear system described in the form of

y(n) = F (y(n−1), . . . , ẏ, y) + ∆F (y(n−1), . . . , ẏ, y) + G(y(n−1), . . . , ẏ, y)u + d(y(n−1), . . . , ẏ, y, t) (1)

where y ∈ Rn is the system output vector; F (.) ∈ Rn is a known nonlinear function vector; G(.) ∈
Rn×m is a known nonlinear function matrix; ∆F (y(n−1), . . . , ẏ, y) ∈ Rn is a unknown nonlinear

function vector which denotes the system uncertainty; d(y(n−1), . . . , ẏ, y) ∈ Rn is the time-varying

external disturbance of the uncertain MIMO nonlinear system (1).

For further facilitate proceed the adaptive fuzzy control design, we define

x1 = y, x2 = ẏ, . . . , xn = y(n−1) (2)

According to (2), the uncertain nonlinear system (1) can be transformed into the following system:

ẋi = xi+1, i = 1, 2, . . . , n− 1

ẋn = F (x) + G(x)u + ∆F (x) + d(x, t)

y = x1 (3)

where x = [x1, x2, . . . , xn]T is measurable.

To develop the disturbance-observer-based adaptive fuzzy tracking control for the uncertain MIMO

nonlinear system (1), the following assumption and lemma are required:

Lemma 1 [44] For bounded initial conditions, if there exists a C1 continuous and positive definite

Lyapunov function V (x) satisfying π1(‖x‖) ≤ V (x) ≤ π2(‖x‖), such that V̇ (x) ≤ −κV (x) + c, where

π1, π2 : Rn → R are class K functions and c is a positive constant, then the solution x(t) is uniformly

bounded.
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In this paper, the control objective is to develop the disturbance-observed-based adaptive fuzzy

tracking control to such that all closed-loop system signals are asymptotically convergent in the

presence of unknown input saturation and the time-varying external disturbance and ensure that

the system output track the desired signal. The desired tracking signal yd satisfies the following

assumption:

Assumption 1 For all t > 0, there exist ∆ > 0 such that ‖y(n)
d (t)‖ ≤ ∆.

2.2 Fuzzy Logical Systems

In this paper, fuzzy logic systems are chosen to approximate unknown function term ∆F (x) of the

uncertain MIMO nonlinear system (3). The fuzzy inference engine uses fuzzy IF-THEN rules to

perform a mapping from an input linguistic vector Z = [z1, z2, . . . , zl]T ∈ Rl to an output variable

Y ∈ R. Then, the ith fuzzy rule can be represented as [5]:

Ri : If z1 is Ai
1 and . . . and zl is Ai

l, then Y is Y i (4)

where Ai
1 , Ai

2, . . . , Ai
l and Y i are fuzzy sets characterized using fuzzy membership functions.

The output of the fuzzy system with the singleton fuzzifier, product inference engine and center-

average defuzzifier can be expressed as

Y (Z) =

∑r
i=1 Y i(

∏l
j=1 µAi

j
(zj)

∏l
j=1 µAi

j
(zj)

= Ŵ T ϕ(Z) (5)

where µAi
j
(zj) is the membership function value of fuzzy variables zj , and r is the number of fuzzy

rules. Ŵ T = (Y 1, Y 2, . . . , Y r) is an adjustable parameter vector. ϕ = (ϕ1, ϕ2, . . . , ϕr), and ϕi =∏l

j=1
µ

Ai
j
(zj)∑r

i=1
(
∏n

j=1
µ

Ai
j
(zj))

are fuzzy basis functions. Hence, the approximation of uncertain function term

f(Z) can be expressed as

f̂(Z) = Ŵ T ϕ(Z) (6)

where Z ∈ ΩZ ⊂ Rq, Ŵ = [Ŵ1, Ŵ2, . . . , Ŵl] ∈ Rl×l, ϕ(Z) = [ϕ1, ϕ2, . . . , ϕl]T ∈ Rl×1.

If Z belong to a compact set MZ , the optimal parameter vector W ∗ is defined as

W ∗ = arg min
Ŵ∈MW

[ sup
Z∈MZ

|f(Z)− f̂(Z|Ŵ )|] (7)

where the parameter vector Ŵ lies in a convex region given by

MW = {Ŵ | ‖Ŵ‖ ≤ mW } (8)
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where mW is a design parameter.

Under the optimization parameter vector, the unknown uncertain term f(Z) can be written as

f(Z) = W ∗T ϕ(Z) + ε (9)

where ε = [ε1, ε2, . . . , εl]T is the smallest approximation error of FLS. It is apparent that we have

‖ε‖ ≤ ε∗ (10)

where ε∗ > 0 is the upper bound of approximation error.

3 Design of Nonlinear Disturbance Observer

In the MIMO nonlinear system (3), the unknown nonlinear term ∆F (x) is approximated via fuzzy

logic systems. Considering (3) and (9), we have

ẋn = F (x) + G(x)u + W ∗T ϕ(Z) + ε + d(x, t) (11)

where ε is the approximation error of fuzzy logic system which is unknown and Z = [x1, x2, . . . , xn]T .

To efficiently tackle the unknown approximation error ε, it can be treated as a part of the system

external disturbance. Define D = ε + d. Then, equation (11) can be expressed as

ẋn = F (x) + G(x)u + W ∗T ϕ(Z) + D (12)

Since D is unknown in (12), it cannot be directly used to develop the adaptive fuzzy tracking control

for the uncertain MIMO nonlinear system (3). Thus, we design the disturbance observer to estimate

it. To proceed the design of disturbance observer, we assume that the disturbance D is time-varying

but with bounded variation. Thus, we have

‖Ḋ‖ ≤ ρ (13)

where ρ is an unknown positive constant.

To design a nonlinear disturbance observer, an auxiliary variable is introduced as follows.

z = D −Kxn (14)

where K = KT > 0 is a design matrix.
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Considering (12), the time derivative of z can be written as

ż = Ḋ −Kẋn

= Ḋ −K(F (x) + G(x)u + W ∗T ϕ(Z) + D)

= Ḋ −K(F (x) + G(x)u + W ∗T ϕ(Z) + z + Kxn) (15)

To obtain the disturbance estimate, the estimate of intermediate variable z is presented as

˙̂z = −K(F (x) + G(x)u + ẑ + Kxn) (16)

where ẑ is the estimate of z.

Invoking (12), the estimate of disturbance D can be written as

D̂ = ẑ + Kxn (17)

Define

D̃ = D − D̂ = z − ẑ = z̃ (18)

Differentiating (18), and considering (15) and (16) yields

˙̃z = ż − ˙̂z = Ḋ −Kz̃ −KW ∗T ϕ(Z) (19)

The design of nonlinear disturbance observer can be summarized in the following theorem which

contains the detailed design process of disturbance observer.

Theorem 1 Considering the uncertain MIMO nonlinear system (3), the nonlinear disturbance ob-

server is designed as (16) and (17). Then, the approximation error of the proposed nonlinear distur-

bance observer is bounded. Namely, the approximation error D̃ remains within the compact sets ΩD̃

defined by

ΩD̃ :=
{

D̃ ∈ Rm| ‖D̃‖ ≤ √
Ω0

}

where Ω0 = 2(Vo(0) + C0
κ0

) with C0 and κ0 as defined in (24).

Proof: To analyze the convergent ability of disturbance estimate error D̃, the Lyapunov function

candidate can be written as

Vo =
1
2
D̃T D̃ =

1
2
z̃T z̃ (20)
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Considering (19), the derivative of Vo is

V̇o = z̃T Ḋ − z̃T Kz̃ − z̃T KW ∗T ϕ(Z) (21)

Considering the expression of the fuzzy basis function, we have

‖ϕ(Z)‖ ≤ ξ (22)

where ξ > 0

Invoking (21), we obtain

V̇o ≤ −z̃T (K − Im×m)z̃ +
1
2
ξ‖K‖‖W ∗‖+

1
2
‖Ḋ‖

≤ −z̃T (K − Im×m)z̃ +
1
2
ξ‖K‖‖W ∗‖+

1
2
ρ2

≤ −κ0Vo + C0 (23)

where

κ0 : = λmin(K − Im×m)

C0 : =
1
2
ξ‖K‖‖W ∗‖+

1
2
ρ2 (24)

To ensure the closed-loop system stability, the disturbance observer gain matrix K should be chosen

to make K − Im×m > 0. According to (23) and Lemma 1, it can directly show that the signals D̃

and z̃ are semiglobally uniformly bounded. For completeness, the detailed proof are presented here.

Multiplying (23) by an exponent function exp(κ0t), there yields d
dt(Vo) exp(κ0t). Integration of this

equation yields

Vo ≤
(

Vo|t=0 − C0
κ0

)
exp(−κ0t) +

C0

κ0
≤ Vo|t=0 +

C0

κ0
(25)

Considering (20) and (25), we have

1
2
‖D̃‖2 ≤ Vo|t=0 +

C0

κ0
⇒ ‖D̃‖ ≤

√
2

(
Vo|t=0 + C0

κ0

)
(26)

Thus, the approximation error D̃ of the developed disturbance observer is bounded. This concludes

the proof. ♦

Remark 1 Since many practical nonlinear systems possesses the unknown time-varying external

disturbance, the nonlinear disturbance observer is developed to monitor external disturbance in this

paper. To the proposed disturbance observer, we can see that the approximation error with suitable

transient performance can be obtained by adjusting the gain matrix K of disturbance observer. How-

ever, caution must be exercised in the choice of gain matrix of disturbance observer, due to the fact

that there are some trade-off between the disturbance approximation performance and other issues.
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4 Adaptive Fuzzy Control Design Based on Disturbance Observer

In this section, we develop adaptive fuzzy tracking control scheme for the uncertain MIMO nonlin-

ear system (3) using the developed disturbance observer and fuzzy logic systems. To propose the

disturbance-observer-based adaptive fuzzy tracking control, the tracking error is defined as

e = yd − y (27)

Based on the tracking error e, we define

es = e(n−1)(t) + kn−2e
(n−2)(t) + . . . + k1ė(t) + k0e(t) (28)

where design parameters k0, k1, . . . , kn−2 are chosen as positive constants such that the polynomial

sn−1 + kn−2s
n−2 + . . . + k0 is Hurwitz.

Considering (27) and (28), ēs is given by

ēs = ės − e(n) (29)

To develop adaptive fuzzy tracking control for the uncertain MIMO nonlinear system (3), we assume

that G(x) is nonsingular [45]. Under this assumption, the disturbance-observed-based adaptive fuzzy

tracking control is proposed as

u = G−1(x)(−F (x)− Ŵ T ϕ(Z) + τ − D̂) (30)

where τ is given by

τ = y
(n)
d + γes + ēs (31)

where γ > 0.

Substituting (30) into (12), we obtain

y(n) = F (x) + G(x)u + ∆F (x) + d

= W ∗T ϕ(Z)− Ŵ T ϕ(Z) + τ + D − D̂

= −W̃ T ϕ(Z) + τ + D̃ (32)

where W̃ = Ŵ −W ∗.

Considering (31), equation (32) can be rewritten as

ės = −γes + W̃ T ϕ(Z)− D̃ (33)

9



Consider the adaptive law for Ŵ as

˙̂
W = −Λ(ϕ(Z)eT

s + βŴ ) (34)

where Λ = ΛT > 0 and β > 0.

The above design procedure can be summarized in the following theorem, which contains the results

of disturbance-observer-based adaptive fuzzy tracking control for the system dynamics (3) with the

unknown time-varying external disturbance.

Theorem 2 Consider the uncertain MIMO nonlinear system (3) with the unknown time-varying

external disturbance D which is estimated via disturbance observer (16) and (17). Then, all closed-

loop system signals are semi-globally uniformly stable under the proposed disturbance-observer-based

adaptive fuzzy tracking control (30). Furthermore, the tracking error e, the disturbance approximation

error D̃ and the parameter estimate error W̃ of fuzzy system remain within the compact sets Ωe, ΩD̃

and ΩW̃ respectively, defined by

Ωe :=
{

e ∈ Rn| ‖e‖ ≤ √
Ω1

}

ΩD̃ :=
{

D̃ ∈ Rn| ‖D̃‖ ≤ √
Ω1

}

ΩW̃ :=
{

W̃ ∈ Rl| ‖W̃‖ ≤
√

Ω1
λmax(Λ−1)

}

where Ω1 = 2(V (0) + C
κ ) with C and κ as defined in (39).

Proof: Let the Lyapunov function candidate be given by

V =
1
2
eT
s es +

1
2
D̃T D̃ +

1
2
tr(W̃ T Λ−1W̃ ) (35)

The time derivative of V along the state trajectory is

V̇ = eT
s ės + D̃T ˙̃D + tr(W̃ T Λ−1 ˙̃W ) = eT

s ės + z̃T ˙̃z + tr(W̃ T Λ−1 ˙̃W )

≤ −γeT
s es + eT

s W̃ T ϕ(Z)− eT
s D̃ + z̃T Ḋ − z̃T Kz̃ − z̃T KW ∗T ϕ(Z) + tr(W̃ T Λ−1 ˙̃W ) (36)

Considering the updated law (34) of the fuzzy system parameter and the following fact

2tr(W̃ T Ŵ ) = ‖W̃‖2 + ‖Ŵ‖2 − ‖W ∗‖2 ≥ ‖W̃‖2 − ‖W ∗‖2 (37)

we obtain

V̇ ≤ −γeT
s es − eT

s D̃ + z̃T Ḋ − z̃T Kz̃ − z̃T KW ∗T ϕ(Z)− β

2
‖W̃‖2 +

β

2
‖W ∗‖2

= −γeT
s es − eT

s z̃ + z̃T Ḋ − z̃T Kz̃ − z̃T KW ∗T ϕ(Z)− β

2
‖W̃‖2 +

β

2
‖W ∗‖2

≤ −(γ − 0.5)‖es‖2 − z̃T (K − 1.5Im×m)z̃ − β

2
‖W̃‖2 +

1
2
ξ‖K‖‖W ∗‖+

β

2
‖W ∗‖2 +

1
2
ρ2

≤ −κV + C (38)
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where

κ : = min((γ − 0.5), λmin(K − 1.5Im×m),
2β

λmax(Λ−1)
)

C : =
1
2
ξ‖K‖‖W ∗‖+

1
2
ρ2 (39)

To ensure the closed-loop system stability, the corresponding design parameters γ, K and β should

be chosen to make γ − 0.5 > 0 and K − Im×m > 0. According to (39) and Lemma 1, it can directly

show that the signals D̃, e and W̃ are semiglobally uniformly bounded. For completeness, the details

of the proof are omitted here. This concludes the proof. ♦

Remark 2 In the developed adaptive fuzzy tracking control, the output of nonlinear disturbance

observer is adopted. Thus, the upper boundary of the unknown external disturbance is not required in

the design of adaptive fuzzy tracking control (30). Furthermore, the proposed disturbance-observer-

based adaptive fuzzy tracking control can fully explore the dynamic characteristic of the time-varying

disturbances. It is worth to point out that the convergence performance of the tracking error e, the

disturbance approximation error D̃ and the parameter estimate error W̃ depends on the choice of

design parameters γ, K and β.

5 Adaptive Fuzzy Control Design Considering Unknown Input Sat-

uration and Control Singularity

In Section 4, adaptive fuzzy tracking control has been developed for the uncertain MIMO nonlin-

ear system based on disturbance observer. However, control gain matrix G(x) has been required

nonsingular. Since G(x) depends on the system state x, there exists the singular feasibility at a

special moment in the practical system, i.e, |G(x)| = 0 . On the other hand, input saturation has

not been considered. In fact, input saturation always exists due to actuator output constraint. If

input saturation is ignored in the control design, the closed-loop control system performance may

be degraded. Therefore, adaptive fuzzy tracking control design will be presented for the uncertain

MIMO nonlinear systems with control singularity and unknown input saturation in this section.

Considering the uncertain MIMO nonlinear system (3) with unknown non-symmetric input satura-

tion, the control input u = [u1, u2, . . . , um]T is given by

ui =





ui max, if vi > ui max

vi, if − ui min ≤ vi ≤ ui max

−ui min, if vi < −ui min

(40)
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where v = [v1, v2, . . . , vm]T is the designed control input demand. ui min and ui max are the unknown

parameters of non-symmetric input saturation.

To efficiently tackle and analyze the control singularity and unknown input saturation, the adaptive

fuzzy tracking control is proposed as

v = GT (x)(G(x)GT (x) + δI)−1ur (41)

where δ is a positive design parameter.

It is apparent that we have

G(x)GT (x)(G(x)GT (x) + δI)−1 = I − δ(G(x)GT (x) + δI)−1 (42)

Considering (42), and substituting (41) into (12), we obtain

ẋn = F (x) + G(x)u + ∆F (x) + d(x, t)

= F (x) + G(x)(v + ∆u) + W ∗T ϕ(Z) + D

= F (x) + ur + W ∗T ϕ(Z) + D + G(x)∆u− δ(G(x)GT (x) + δI)−1v (43)

where ∆u = u− v.

Since ∆u is unknown, it can be treated as a part of the disturbance. Define the compound disturbance

as follows:

D̄ = D + G(x)∆u− δ(G(x)GT (x) + δI)−1v (44)

Considering (44), we have

ẋn = F (x) + ur + W ∗T ϕ(Z) + D̄ (45)

Due to the unknown D̄, the disturbance observer is used to approximated it. Similar with (16), the

observer of the intermediate variable z can be designed as

˙̂z = −K(F (x) + ur + ẑ + Kxn) (46)

where K = KT > 0, ẑ is the estimate of z and ur will be given.

Then, the estimate of disturbance ˆ̄D can be written as

ˆ̄D = ẑ + Kxn (47)

Based on the output of the designed disturbance observer, ur is designed as

ur = −F (x)− Ŵ T ϕ(Z) + τ − ˆ̄D (48)
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Substituting (48) into (45), we obtain

ẋn = F (x) + ur + W ∗T ϕ(Z) + D̄

= W ∗T ϕ(Z)− Ŵ T ϕ(Z) + τ + D̄ − ˆ̄D

= −W̃ T ϕ(Z) + τ + ˜̄D (49)

where W̃ = Ŵ −W ∗.

Considering (28), (29) and (31), (49) can be rewritten as

ės = −γes + W̃ T Φ(Z)− ˜̄D (50)

Consider the adaptive law for Ŵ as

˙̂
W = −Λ(ϕ(Z)eT

s + βŴ ) (51)

where Λ = ΛT > 0 and β > 0.

The above design procedure can be summarized in the following theorem, which contains the adaptive

fuzzy control results for the uncertain MIMO system dynamics (3) with system uncertainty, external

disturbance, control singularity and unknown input saturation.

Theorem 3 Considering the uncertain MIMO nonlinear system (3) with system uncertainty, ex-

ternal disturbance, control singularity and unknown non-symmetric input saturation, the compound

disturbance D̄ is approximated using disturbance observer (46) and (47), the updated law of fuzzy

system parameter is chosen as (51) and the robust tracking control is designed according to (41) and

(48). Then, the tracking error e, the disturbance approximation error D̃ and the parameter W̃ are

semi-globally uniformly stable.

The proof of Theorem 2 can be similarly done in accordance with the proof of Theorem 1.

Remark 3 From (44), the effects of control singularity and unknown non-symmetric input satura-

tion are treated as a part of the compound disturbance which is approximated using the nonlinear

disturbance observer (46) and (47). Although the uncertain MIMO nonlinear system (3) has the con-

trol singularity case and unknown non-symmetric input saturation, lyapunov analysis show that the

trajectory of the closed-loop system is asymptotically convergent under the proposed adaptive fuzzy

tracking control. To the best of our knowledge, it is the first time in the literature that the control

singularity and unknown non-symmetric input saturation are considered in the control design, and

as such it is different from the existing results.

13



6 Simulation Results

Simulation results are given to illustrate the effectiveness of our proposed control techniques in this

section. Let us consider the uncertain MIMO nonlinear system in the form of

ẋ1 = x2

ẋ2 =




F1(x)

F2(x)


 +




g11(x) g12(x)

g21(x) g22(x)


 u +




∆F1(x)

∆F2(x)


 +




d1(x)

d2(x)




y = x1 (52)

where x = [x11, x12, x21, x22]T , x1 = [x11, x12]T , x2 = [x21, x22]T , F1(x) = (1 + x2
11)x21 + x12e

−0.5x22 ,

F2(x) = sin(x11x22) + x21x
2
12, g11(x) = −1 + cos(x12x22) + sin(x11x22), g12(x) = 1, g21(x) = 1 −

ex12x22 , g22(x) = 1 − x12x22e
−x11x21 , ∆F1(x) = 0.2 sin(0.1x11x21) + 0.3 sin(0.2x12x22), ∆F2(x) =

0.2 sin(0.1x12x21) + 0.3 sin(0.2x11x22), d1 = 0.2 sin(0.5x11x22) + 0.3 sin(0.2
√

tx12x21) and d2 = 0.3

sin(0.25x12x21) + 0.2 sin(0.2
√

t + 1x11x22).

Obviously, nonlinear system (52) has the same as form of the studied uncertain MIMO nonlinear

system (3). Form the expression of G(x), we can see that there exists control singularity case for

the nonlinear system (52). Following, the extensive simulation to demonstrate the effectiveness

of proposed adaptive fuzzy tracking control. Before the design of nonlinear disturbance observer

and adaptive fuzzy tracking control, all design parameters in the simulation study are chosen as

K = 200I2×2, Λ = 0.01I7×7 β = 0.002, γ = 50, k1 = 200, and δ = 0.05. The initial state conditions

are arbitrarily chosen as x11 = 0, x12 = 0.1, x21 = −0.1, x22 = 0.1, d̂1 = 0, d̂2 = 0.1 and Ŵ = 0.2. The

desired trajectory is taken as y1d = 0.5(1.6 sin(t)−sin(0.5t)) and y2d = 0.5(sin(t)+sin(0.5t)). For the

non-symmetric saturation constraint, the saturation values are given by u1max = 1.8, u1min = −2.0,

u2max = 1.2 and u2min = −1.5. In the simulation, fuzzy membership functions are chosen as follows

µF 1
i

= exp[
−0.5(xi + 1.5)2

4
], µF 2

i
= exp[

−0.5(xi + 1)2

4
],

µF 3
i

= exp[
−0.5(xi + 0.5)2

4
], µF 4

i
= exp[

−0.5x2
i

4
],

µF 5
i

= exp[
−0.5(xi − 0.5)2

4
], µF 6

i
= exp[

−0.5(xi − 1)2

4
],

µF 7
i

= exp[
−0.5(xi − 1.5)2

4
].

The disturbance observer and the adaptive fuzzy tracking control are designed according to (46), (47),

(41) and (48). The fuzzy system parameter is updated by (51). The tracking results of the uncertain

MIMO nonlinear system (52) with input saturation and control singularity case are shown in Figure 1,

14



Figure 2 and Figure 3 under the proposed adaptive fuzzy tracking control. Although, there exist non-

symmetric input saturation, control singularity and time-varying external disturbance, the tracking

performance of uncertain MIMO nonlinear system (52) is still satisfactory and tracking errors are

asymptotically convergent. The control input signals are shown in Figure 4 and Figure 5. From

Figure 4 and Figure 5, the non-symmetric input saturation of control input signals are observed.

Norm of the approximation parameter of fuzzy logical system is presented in Figure 6 which shows

the convergent ability of approximation parameter.

Based on above simulation results, we obtain that the proposed adaptive fuzzy control technique for

uncertain MIMO nonlinear systems using disturbance observer is valid.

7 Conclusion

In this paper, adaptive fuzzy tracking control has been proposed for a class of uncertain MIMO

nonlinear systems. To improve the ability of disturbance attenuation and closed-loop system perfor-

mance, the nonlinear disturbance observer has been adopted to estimate the compound disturbance.

Using outputs of the disturbance observer and the fuzzy logical system, the disturbance-observer-

based adaptive fuzzy tracking control has been proposed for the uncertain MIMO nonlinear system

with the non-symmetric input saturation, control singularity and the time-varying external distur-

bance. The stability of the closed-loop system has been proved using rigorous Lyapunov analysis.

Finally, simulation results have been used to illustrate the effectiveness of the proposed adaptive

fuzzy tracking control scheme.
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Figure 1: Tracking result of y1 and y1d
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Figure 2: Tracking result of y2 and y2d
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Figure 3: Tracking errors
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Figure 4: Control input u1

20



0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

u
2

Figure 5: Control input u2
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Figure 6: Norm of the approximation parameter of fuzzy logical system
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