221 research outputs found

    Development of Robust Control Laws for Disturbance Rejection in Rotorcraft UAVs

    Get PDF
    Inherent stability inside the flight envelope must be guaranteed in order to safely introduce private and commercial UAV systems into the national airspace. The rejection of unknown external wind disturbances offers a challenging task due to the limited available information about the unpredictable and turbulent characteristics of the wind. This thesis focuses on the design, development and implementation of robust control algorithms for disturbance rejection in rotorcraft UAVs. The main focus is the rejection of external disturbances caused by wind influences. Four control algorithms are developed in an effort to mitigate wind effects: baseline nonlinear dynamic inversion (NLDI), a wind rejection extension for the NLDI, NLDI with adaptive artificial neural networks (ANN) augmentation, and NLDI with L1 adaptive control augmentation. A simulation environment is applied to evaluate the performance of these control algorithms under external wind conditions using a Monte Carlo analysis. Outdoor flight test results are presented for the implementation of the baseline NLDI, NLDI augmented with adaptive ANN and NLDI augmented with L1 adaptive control algorithms in a DJI F330 Flamewheel quadrotor UAV system. A set of metrics is applied to compare and evaluate the overall performance of the developed control algorithms under external wind disturbances. The obtained results show that the extended NLDI exhibits undesired characteristics while the augmentation of the baseline NLDI control law with adaptive ANN and L1 output-feedback adaptive control improve the robustness of the translational and rotational dynamics of a rotorcraft UAV in the presence of wind disturbances

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    UAV Model-based Flight Control with Artificial Neural Networks: A Survey

    Get PDF
    Model-Based Control (MBC) techniques have dominated flight controller designs for Unmanned Aerial Vehicles (UAVs). Despite their success, MBC-based designs rely heavily on the accuracy of the mathematical model of the real plant and they suffer from the explosion of complexity problem. These two challenges may be mitigated by Artificial Neural Networks (ANNs) that have been widely studied due to their unique features and advantages in system identification and controller design. Viewed from this perspective, this survey provides a comprehensive literature review on combined MBC-ANN techniques that are suitable for UAV flight control, i.e., low-level control. The objective is to pave the way and establish a foundation for efficient controller designs with performance guarantees. A reference template is used throughout the survey as a common basis for comparative studies to fairly determine capabilities and limitations of existing research. The end-result offers supported information for advantages, disadvantages and applicability of a family of relevant controllers to UAV prototypes

    A Survey of Offline and Online Learning-Based Algorithms for Multirotor UAVs

    Full text link
    Multirotor UAVs are used for a wide spectrum of civilian and public domain applications. Navigation controllers endowed with different attributes and onboard sensor suites enable multirotor autonomous or semi-autonomous, safe flight, operation, and functionality under nominal and detrimental conditions and external disturbances, even when flying in uncertain and dynamically changing environments. During the last decade, given the faster-than-exponential increase of available computational power, different learning-based algorithms have been derived, implemented, and tested to navigate and control, among other systems, multirotor UAVs. Learning algorithms have been, and are used to derive data-driven based models, to identify parameters, to track objects, to develop navigation controllers, and to learn the environment in which multirotors operate. Learning algorithms combined with model-based control techniques have been proven beneficial when applied to multirotors. This survey summarizes published research since 2015, dividing algorithms, techniques, and methodologies into offline and online learning categories, and then, further classifying them into machine learning, deep learning, and reinforcement learning sub-categories. An integral part and focus of this survey are on online learning algorithms as applied to multirotors with the aim to register the type of learning techniques that are either hard or almost hard real-time implementable, as well as to understand what information is learned, why, and how, and how fast. The outcome of the survey offers a clear understanding of the recent state-of-the-art and of the type and kind of learning-based algorithms that may be implemented, tested, and executed in real-time.Comment: 26 pages, 6 figures, 4 tables, Survey Pape

    A review of variable-pitch propellers and their control strategies in aerospace systems

    Full text link
    The relentless pursuit of aircraft flight efficiency has thrust variable-pitch propeller technology into the forefront of aviation innovation. This technology, rooted in the ancient power unit of propellers, has found renewed significance, particularly in the realms of unmanned aerial vehicles and urban air mobility. This underscores the profound interplay between visionary aviation concepts and the enduring utility of propellers. Variable-pitch propellers are poised to be pivotal in shaping the future of human aviation, offering benefits such as extended endurance, enhanced maneuverability, improved fuel economy, and prolonged engine life. However, with additional capabilities come new technical challenges. The development of an online adaptive control of variable-pitch propellers that does not depend on an accurate dynamic model stands as a critical imperative. Therefore, a comprehensive review and forward-looking analysis of this technology is warranted. This paper introduces the development background of variable-pitch aviation propeller technology, encompassing diverse pitch angle adjustment schemes and their integration with various engine types. It places a central focus on the latest research frontiers and emerging directions in pitch control strategies. Lastly, it delves into the research domain of constant speed pitch control, articulating the three main challenges confronting this technology: inadequacies in system modeling, the intricacies of propeller-engine compatibility, and the impact of external, time-varying factors. By shedding light on these multifaceted aspects of variable-pitch propeller technology, this paper serves as a resource for aviation professionals and researchers navigating the intricate landscape of future aircraft development

    Online Deep Learning for Improved Trajectory Tracking of Unmanned Aerial Vehicles Using Expert Knowledge

    Full text link
    This work presents an online learning-based control method for improved trajectory tracking of unmanned aerial vehicles using both deep learning and expert knowledge. The proposed method does not require the exact model of the system to be controlled, and it is robust against variations in system dynamics as well as operational uncertainties. The learning is divided into two phases: offline (pre-)training and online (post-)training. In the former, a conventional controller performs a set of trajectories and, based on the input-output dataset, the deep neural network (DNN)-based controller is trained. In the latter, the trained DNN, which mimics the conventional controller, controls the system. Unlike the existing papers in the literature, the network is still being trained for different sets of trajectories which are not used in the training phase of DNN. Thanks to the rule-base, which contains the expert knowledge, the proposed framework learns the system dynamics and operational uncertainties in real-time. The experimental results show that the proposed online learning-based approach gives better trajectory tracking performance when compared to the only offline trained network.Comment: corrected version accepted for ICRA 201

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Autonomous Close Formation Flight Control with Fixed Wing and Quadrotor Test Beds

    Get PDF
    Autonomous formation flight is a key approach for reducing energy cost and managing traffic in future high density airspace. The use of Unmanned Aerial Vehicles (UAVs) has allowed low-budget and low-risk validation of autonomous formation flight concepts. This paper discusses the implementation and flight testing of nonlinear dynamic inversion (NLDI) controllers for close formation flight (CFF) using two distinct UAV platforms: a set of fixed wing aircraft named “Phastball” and a set of quadrotors named “NEO.” Experimental results show that autonomous CFF with approximately 5-wingspan separation is achievable with a pair of low-cost unmanned Phastball research aircraft. Simulations of the quadrotor flight also validate the design of the NLDI controller for the NEO quadrotors

    Fault Diagnosis and Fault-Tolerant Control of Unmanned Aerial Vehicles

    Get PDF
    With the increasing demand for unmanned aerial vehicles (UAVs) in both military and civilian applications, critical safety issues need to be specially considered in order to make better and wider use of them. UAVs are usually employed to work in hazardous and complex environments, which may seriously threaten the safety and reliability of UAVs. Therefore, the safety and reliability of UAVs are becoming imperative for development of advanced intelligent control systems. The key challenge now is the lack of fully autonomous and reliable control techniques in face of different operation conditions and sophisticated environments. Further development of unmanned aerial vehicle (UAV) control systems is required to be reliable in the presence of system component faults and to be insensitive to model uncertainties and external environmental disturbances. This thesis research aims to design and develop novel control schemes for UAVs with consideration of all the factors that may threaten their safety and reliability. A novel adaptive sliding mode control (SMC) strategy is proposed to accommodate model uncertainties and actuator faults for an unmanned quadrotor helicopter. Compared with the existing adaptive SMC strategies in the literature, the proposed adaptive scheme can tolerate larger actuator faults without stimulating control chattering due to the use of adaptation parameters in both continuous and discontinuous control parts. Furthermore, a fuzzy logic-based boundary layer and a nonlinear disturbance observer are synthesized to further improve the capability of the designed control scheme for tolerating model uncertainties, actuator faults, and unknown external disturbances while preventing overestimation of the adaptive control parameters and suppressing the control chattering effect. Then, a cost-effective fault estimation scheme with a parallel bank of recurrent neural networks (RNNs) is proposed to accurately estimate actuator fault magnitude and an active fault-tolerant control (FTC) framework is established for a closed-loop quadrotor helicopter system. Finally, a reconfigurable control allocation approach is combined with adaptive SMC to achieve the capability of tolerating complete actuator failures with application to a modified octorotor helicopter. The significance of this proposed control scheme is that the stability of the closed-loop system is theoretically guaranteed in the presence of both single and simultaneous actuator faults
    • …
    corecore