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A Survey of Artificial Neural Networks with Model-based Control
Techniques for Flight Control of Unmanned Aerial Vehicles

Weibin Gu1, Kimon P. Valavanis1, Matthew J. Rutherford2, Alessandro Rizzo3

Abstract— Model-based control (MBC) techniques have been
successfully developed for flight control applications of un-
manned aerial vehicles (UAVs) in recent years. However, their
heavy reliance on the fidelity of the plant model coupled with
high computational complexity make the design and imple-
mentation process challenging. To overcome such challenges,
attention has been focused on the use of artificial neural
networks (ANNs) to study complex systems since they show
promise in system identification and controller design, to say
the least. This survey aims to provide a literature review on
combining MBC techniques with ANNs for UAV flight control,
with the goal of laying the foundation for efficient controller
designs with performance guarantees. A brief discussion on
frequently-used ANNs is presented along with an analysis
of their time complexity. Classification/comparison of existing
dynamic modeling approaches and control techniques is pro-
vided. Challenging research questions and an envisaged control
architecture are also posed for future development.

I. INTRODUCTION

Model-based control (MBC) techniques have been suc-
cessfully developed for flight control applications of un-
manned aerial vehicles (UAVs) in recent years such as feed-
back linearization (FL), a.k.a. nonlinear dynamic inversion
(NDI) [1], adaptive control [2], model predictive control
(MPC) [3], sliding mode control (SMC) [4], backstepping
control [5] and H∞ robust control [6]. However, one major
problem with MBC systems is their dependency on the
accuracy of the mathematical model of the real plant [7].
Undoubtedly, there is no perfect model owing to the fact that
the fidelity of the model is always affected by (i) parametric
uncertainties; (ii) unmodeled dynamics; and (iii) disturbances
and noise. For UAVs, unmodeled dynamics include advanced
aerodynamics effects such as blade flapping and effect
of airflow, which are generally neglected in modeling for
simplicity reasons (and it is indeed hard to capture their
dynamics as well) but do have a great impact on the real
flight [8]. Moreover, disturbances like wind gusts and sensor
noise are ubiquitous in the real world, keeping in mind that
assumptions on noise are not always realistic as noise is
mostly non-Gaussian.

To cope with these issues, modern control techniques are
available and have been applied to flight control, despite
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some limitations and drawbacks. A widely-used technique is
gain scheduling (GS) [9] which demonstrates capabilities of
handling parameter variations and nonlinearities. However,
frequent and rapid changes of controller gains are likely to
drive the system unstable [10]. Moreover, high cost of design
and implementation increases with the number of operating
points [11]. As an alternative, robust control is only good
for presumed bounded parametric uncertainties and not able
to handle either unbounded ones or unmodeled dynamics
[6], [12]. Lastly, adaptive control is specialized in dealing
with parametric uncertainties, and there barely exists widely
accepted solution to robust adaptive control problem so far
[13].

Apart from the heavy reliance on the accuracy of the
plant model, another problem with MBC systems is called
“explosion of complexity” [14] which could arise from (i)
mathematical inverse model required in FL; (ii) repeated
differentiation of virtual controller in backstepping control;
and (iii) prediction over a future horizon of plant behavior as
well as online optimization process in MPC, just to list a few.
Notably for those highly nonlinear complex systems such as
UAVs, the complexity of the controller grows substantially
as the order of the system increases.

To overcome the aforementioned challenges, attention has
been focused on the use of artificial neural networks (ANNs)
to study complex control systems since they show promise
in system identification and controller design, to say the least
[15]–[17], which greatly thanks to their merits as follows:
• Capability of identifying nonlinear and multi-variable

systems [18], [19];
• Ability to learn and adapt in real time;
• Relatively easy processing procedure and hardware im-

plementation.
However, there are also downsides for ANNs being used as
listed below:
• Requirement for a large number of training data;
• Easy to learn spurious relationships which may lead to

poor generalization capabilities [20];
• Lack of interpretability due to black-box characteristics;
• No systematic approach for ANN architecture design:

For instance, decisions on the number of layers and
neurons, activation functions, weight adjustment mech-
anisms and so forth are generally arbitrarily made, not
in a systematic fashion.

In spite of these drawbacks, it is still quite straightforward to
observe a complementary relation between MBC techniques
and ANNs. Specifically, the explicit system knowledge that



MBC relies heavily on could be leveraged to facilitate
the training process and to improve the performance and
the interpretability of ANNs. In return, ANNs can offer a
powerful means to control system design, particularly in
complex dynamics modeling as well as real-time adaptation
and implemention. Therefore, a combination between MBC
techniques and ANNs is naturally expected by intuition and
has indeed yielded a large amount of literature.

The main objective of this paper is to provide a literature
review on MBC techniques combined with ANNs for UAV
flight control (a.k.a. low-level control) with the aim to lay the
foundation for efficient controller designs with performance
guarantees. Classification/comparison of existing dynamic
modeling and control techniques is provided to show their
disadvantages and limitations, giving an insight into the
possible future development. To the best knowledge of the
authors, this survey is believed to be the first work on such
topic. A relevant and recent research refers to [16] where
deep learning techniques and their applications for UAV-
based solutions are reviewed, focusing on high-level control
(i.e., path planning, situation awareness, etc).

The remainder of this paper is organized as follows.
Preliminaries of ANNs are concisely introduced in Section
II where several frequently-used ANNs are presented along
with an analysis of their time complexity. Section III provides
the literature review on UAV dynamic modeling with the use
of ANNs, followed by Section IV where MBC techniques
combined with ANNs for controller design is surveyed. Clas-
sification/comparison is elaborated in Section V to remark
the limitations of existing dynamic modeling approaches and
control techniques. Some challenging research questions are
also posed for future development together with an envisaged
control architecture. Finally, this survey is concluded with
Section VI.

II. ARTIFICIAL NEURAL NETWORKS

A. Preliminaries

The smallest element in ANNs is called neuron by analogy
with neurophysiology which was firstly studied in [21] and
behaves as a function in principle. It generally consists of a
scalar-valued activation function f : R→ R and two training
parameters, namely input weight matrix W ∈ R1×R and bias
weight b ∈ R1×1, where R is the number of elements in the
input vector p ∈ RR×1. Given an input p, a neuron generates
output a ∈ R1×1 by a = f(Wp+b) where activation function
f(·) can be chosen as hard-limit, linear, log-sigmoid or tan-
sigmoid function and so forth based on the requirements for
network performance [22].

An ANN is a network usually made up of a single input
and output layer and several hidden layers. Each of the layer
(except input layer) comprises a number of neurons, possibly
governed by different activation functions. Throughout this
survey, we follow the convention that the total number of
layers of an ANN is the sum of hidden layers plus one
(accounting for the single output layer), regardless of input
layer.

Depending on the connections between each neuron, the
architecture of ANNs can be categorized into feed-forward
and recurrent. In feed-forward networks, a neuron in one
layer can receive inputs only from those in the previous
layer. On the contrary, feedback connections are allowed in
recurrent networks which put on more dynamics at the cost of
increasing complexity. On the other hand, ANNs can be also
classified into offline and online networks based on whether
the network parameters (i.e., weight matrices and biases)
are fixed a priori or adjustable in real time. Offline ANNs
are appealing mostly because the time for offline training
is not critical while online ANNs show promise in learning
changes in the dynamics. Table I summarizes the frequently-
used representatives of feed-forward and recurrent networks
in the literature of UAV flight control. The distinguished dif-
ferences among them mainly lie in the choices of activation
functions and connection architecture, which may further
result in different training techniques for network parameters.
Thorough explanation of each type of ANNs is omitted here
due to space limitation. For those interested in details, Table
I provides some straightforward references.

TABLE I
CLASSIFICATION OF ANNS

Type of Connection ANNs

Feed-forward Multi-layer perceptron (MLP) [22]
Radial basis function (RBF) network [22]
Rectified-linear unit (ReLU) network [23]
Wavelet neural network (WNN) [24]

Recurrent Elman network [22]
Hopfield network [22]
Echo state network (ESN) [24]–[26]
Long-short-term-memory (LSTM) network [27]

B. Time Complexity

Since it is crucial for controller design to be implemented
in real time, analysis on time complexity (TC) should be
given a high priority. Unfortunately, not much literature
on combination of MBC techniques and ANNs for UAV
applications treats this issue meticulously, particularly say an
analytical analysis that offers a clear mind on the required
computational resources beforehand. In the sequel, we at-
tempt to generalize the concept of TC of ANNs and provide
analytical formulation for one single contribution.

We arbitrarily attribute TC of an ANN to three processes:
(i) offline training process; (ii) online training process; and
(iii) output generation given certain inputs. For offline ANNs,
TC can be merely regarded as the time required for ANNs to
generate outputs because offline training time is not critical
in many applications and therefore can be neglected. Hence,
TC for offline ANNs is simply associated to the network
architecture since it can be expressed as a function of
number of input nodes, output nodes and hidden neurons
as will be shown later. For online ANNs, apart from the
time for output generation, online training time should be
also taken into account because the online training process



for parameter adaptation does have a significant impact on
the real-time performance of ANNs. In the following, we
formulate the time required for output generation of several
ANNs appearing in Table I. We denote the number of input
nodes, output nodes and hidden neurons by N,K, and L ∈
Z+, respectively.

It is commonly known that TC refers to the time required
for running algorithms, which is evidently influenced by the
computer being used. However, since it can be generally
expressed as the number of elementary operations included
in the algorithms which are normally assumed to take con-
stant execution time on a given computer, using a different
computer to run algorithms can be therefore regarded as
changing the execution time by a constant factor (which
is determined by the computer configurations). Motivated
by [28], Table II shows TC for different operations that
might be encountered in the ANNs in the later formulation.
Note that the choice of multiplication algorithm affects the
complexity of division, exponentiation, exponential function
and square root. We choose 3-way Toom-Cook algorithm for
multiplication in our case, though there are other variations of
algorithm available such as Schoolbook long multiplication
and Karatsuba algorithm [29]. The scalar constants Ki ∈
R+ with i = A,E,M, φ represent the ratios between the
time cost for different operations calculated with algorithms
specified in Table II and the unit time cost (which is defined
as the time cost for addition/subtraction operation), hence
Ki is always equal or greater than unity [28]. Since the
multiplication algorithm determines the complexity of other
operations and the constants Ki for multiplication, division
and square root are identical, these constants are equivalently
denoted by KM with a slight abuse of notation. Besides,
subscript A denotes addition/subtraction operation, E de-
notes exponentiation, and φ denotes exponential function.
Similarly, Ni ∈ R with i = A,E,M, φ represent the number
of each operation involved in a network. To make the results
more numerical, we assume that all the computations are
performed on a 32-bit microcontroller in spite of the fact
that industrial embedded controllers vary in number of bits,
hence n and k are all equal to 32 in Table II, where n denotes
the input size in units of bits needed to represent the input
and k is the number of digits of the exponent.

1) Time Complexity of a Feed-forward Network: Given a
fully-connected feed-forward network with a single hidden
layer whose activation functions are log-sigmoid functions
and output functions are linear functions, the time complexity
(TC) for output generation can be formulated as

TC = NA ·KA +NM ·KM +Nφ ·Kφ

= L(N +K + 1) + L(N +K + 1)KM + LKφ.
(1)

Remark. For a fully-connected feed-forward network with
a single hidden layer, the outputs of hidden layer with log-
sigmoid activation functions can be expressed as

zi = φ(

N∑
j=1

wjixj) + bi, i = 1, · · · , L (2)

where xj denotes jth input, wji denotes the weight of ith

hidden neuron associated with jth input, bi denotes the bias
of ith hidden neuron, and φ(·) denotes log-sigmoid activation
function φ(n) = 1

1+e−n . The output function at one output
node can be expressed as

yk =

L∑
i=1

wikzi + µk, k = 1, · · · ,K (3)

where wik denotes the weight of kth output associated
with ith hidden neuron, and µk denotes the bias of kth

output. Now, let us consider the number of elementary
operations included in (2) and (3) to compute TC. For a
single hidden neuron, the number of addition/subtraction,
multiplication/division, and exponential function are NA =
N + 1, NM = N + 1, Nφ = 1, respectively. The number
of operations associated to a single output node are NA =
L,NM = L. Taken into account there are L hidden neurons
and K output nodes in total, the number of operations for
the full network are NA = (N +K+1)L,NM = (N +K+
1)L,Nφ = L, which eventually result in the total time cost
in (1) by multiplying constants Ki, i = A,M, φ.

2) Time Complexity of a RBF Network: Given a radial
basis function (RBF) network with a single hidden layer
whose activation functions are radial basis functions and
output functions are linear functions, the time complexity
(TC) for output generation can be formulated as

TC = NA ·KA +NM ·KM +Nφ ·Kφ

= L(2N +K − 1) + L(N +K + 3)KM + LKφ.
(4)

3) Time Complexity of a ReLU Network: Given a
rectified-linear unit (ReLU) network with rectified-linear
units in the single hidden layer and linear functions in the
output layer, the time complexity (TC) for output generation
can be formulated as

TC = NA ·KA +NM ·KM

= L(N +K + 1) + L(N +K)KM .
(5)

Remark. Computation of TC for (4) and (5) is similar to that
for (1), and hence is omitted here for brevity.

4) Time Complexity of an ESN: Given a fully-connected
echo state network (ESN) with hyperbolic tangent functions
as reservoir activation functions in the hidden layer and linear
functions as output functions in the output layer, the time
complexity (TC) for output generation can be formulated as

TC = NA ·KA +NM ·KM +Nφ ·Kφ

= ((N +K + L)L+ (N + L− 1)K)

+ ((N +K + L+ 3)L+ (N + L)K)KM + 2LKφ.
(6)

Remark. Here we discuss a universal architecture of ESN
as shown in Fig. 1. wI , wR, wB are the weights of inputs,
reservoir activation states and output feedbacks, respectively.
wOI , wOR are the weights of readouts from input and
reservoir layer, respectively, which need to be trained. Note
that only a few of them are indicated in the figure for clarity.
φ(·) denotes hyperbolic tangent function φ(n) = tanh(n) =



Operation Algorithm Complexity Constant Ki (n = 32, k = 32)

Addition/Subtraction Basic O(n) KA = 1
Multiplication 3-way Toom-Cook multiplication O(n1.465) KM = n0.465 = 5.01
Division Newton-Raphson division O(n1.465) KM = n0.465 = 5.01
Exponentiation Exponentiation by squaring O(k · n1.465) KE = k · n0.465 = 160.34
Exponential function Taylor series O(n0.5 · n1.465) Kφ = n0.5 · n0.465 = 28.34
Square root Newton’s method O(n1.465) KM = n0.465 = 5.01

TABLE II
TIME COMPLEXITY OF DIFFERENT OPERATIONS

Fig. 1. A universal ESN architecture, which consists of an input layer,
a reservoir (or hidden) layer and an output (or readout) layer. The colors
— green, orange, blue and yellow, indicate connections from input layer
to reservoir and output layer, connections within the reservoir, connections
from reservoir to output layer, and output feedback connections from output
layer to reservoir, respectively.

e2n−1
e2n+1 and

∑
denotes sum operation. The reservoir neuron

activation of ESN given in Fig. 1 can be expressed as

zi(n+ 1) = (1− α)zi(n) + αφ
( N∑
j=1

wIjixj +

L∑
t=1

wRtizt(n)

+

K∑
k=1

wBkiyk(n) + bi

)
, i = 1, · · · , L

(7)
where z(n) denotes reservoir activation state at time instant
n ∈ Z, α ∈ (0, 1] denotes leaking rate [26] which is
assumed to be equal to unity for the given architecture, and
bi denotes bias for each hidden node. It should be noted
that (7) is not the unique expression of reservoir activation
since certain terms are optional such as the leaky integration(
i.e., (1 − α)zi(n)

)
and the output feedback term

(
i.e.,∑K

k=1 w
B
kiyk(n)

)
, hence one can choose to use different

variations in applications. The output function at one output

node can be expressed as

yk(n) =

L∑
i=1

wORik zi(n) +

N∑
j=1

wOIjk xj + µk, k = 1, · · · ,K

(8)
where µk denotes bias for each output node. To compute TC,
the number of operations for a single reservoir neuron are
NA = N+K+L,NM = N+K+L+3, Nφ = 2 and those
for a single output node are NA = N+L−1, NM = N+L.
Therefore, the total number of operations taken into account
L reservoir neurons and K output nodes are NA = (N +
K+L)L+(N+L−1)K,NM = (N+K+L+3)L+(N+
L)K,Nφ = 2L, which yield (6) by multiplying constants
Ki, i = A,M, φ.

III. DYNAMIC MODELING
Dynamic modeling is of great importance to MBC tech-

niques since it lays the foundation and paves the road for
control synthesis. Mathematical modeling has been one of
the most ubiquitous methods for years provided that the
system to be controlled is well studied and easy to model.
Unfortunately, this is not true for complex systems such
as UAVs because of inertial coupling, advanced aerody-
namics effects, not to mention a variety of disturbances
from the environment. To cope with these issues, ANN-
based models have been developed and used thanks to their
function approximation and learning ability, also named as
data-driven or black-box approach. By collecting sufficient
informative data and relying on data science techniques,
ANN-based models can be trained without too much effort
bearing almost no physical knowledge, which greatly eases
the modeling process and reduces the computational cost
for mathematical formulation of complex dynamics. Besides
data-driven approach, there also exists another branch of
modeling methods called hybrid approach which combines
mathematical modeling with data-driven approach. Such
method aims to (i) improve the performance of ANN-based
model with the aid of physical model; or (ii) enhance ANN’s
interpretability by incorporating physical knowledge into
modeling. Consequently, generalization capability of hybrid
model may be improved, meanwhile complete ignorance
about model behavior could be avoided. In this section, the
existing literature focusing on dynamic modeling for UAVs is
reviewed, categorized into data-driven and hybrid approach.
Note that papers working on both modeling and control
aspects will be surveyed in Section IV.



A. Modeling with Data-driven Approach

Data-driven approach, as introduced previously, refers to
ANN which is purely constructed from data without physical
knowledge incorporated. Depending on the architecture, the
ANN-based models appeared in the literature can be classi-
fied into feed-forward, recurrent, and mixed. Mixed models
refer to those combine both feed-forward and recurrent
networks (explained in Section II) in one single model. Note
that these models are sometimes called “hybrid” in some
literature, however, we find it more appropriate to name them
“mixed” to distinguish from hybrid model we defined ahead.
In the sequel, the review is elaborated divided into offline and
online modeling.

1) Offline Modeling: In [30], [31], mixed models of
supervised neural networks are proposed for modeling of
a mini-helicopter. Motivated by [32], a series of context-
neurons for storing previous states are connected with a two-
layer feed-forward neural network, forming a feedback loop
to add recurrent feature to the mixed ANN-based model.
Besides, two types of training architectures, namely daisy
chain (or cascade) and decoupled (or parallel), are dis-
cussed and compared since the dynamic system of helicopter
presents two distinct subsystems (radio-signal-to-attitude and
attitude-to-position). Simulation results show daisy chain
architecture has better performance due to the fact that the
error propagated from the attitude network (model of sub-
system 1) is taken into account and corrected in the position
network (model of subsystem 2). A comparative study is
also carried out to examine the performance of MLP and
RBF used for feed-forward network. The results reveal that
MLP outperforms RBF network for global approximation but
falls behind for local approximation. However, the number
of context-neurons are picked empirically in the paper which
has a direct influence on the training time. For instance, their
choice leads to 102 inputs for feed-forward network, which
eventually requires about 18 hours for offline training given
60 hidden neurons used in MLP for both attitude and position
networks.

In [33], black-box system identification using ESN with
real flight data is performed for a quadrotor. Thanks to
reservoir computing (RC) [25], the training process of ESN
is facilitated since the traditional training methods for RNN
such as back-propagation through time (BPTT) and real time
recurrent learning (RTRL) are not required [34]–[36]. A
single ESN model is trained offline with initially 100 echo
states and spectral radius of 0.1 chosen empirically. Then, an
evolutionary algorithm named covariance matrix adaptation
evolution strategy (CMA-ES) is used to optimize some of
the parameters of ESN in order to reduce the mean square
error (MSE) produced at the testing stage, which finally
leads to 127 echo states and spectral radius of 0.9191. From
simulation, the optimized ESN shows imperceptible results
compared with real flight data.

In [37], a novel ReLU network model is used for dynamic
modeling of an aerobatic helicopter presented with details
about parameter initialization and optimization methods.

Three baseline models are described to make comparisons
with the proposed model given real data, namely linear
acceleration model, linear lag model and quadratic lag model.
The proposed ReLU model is a combination of quadratic lag
model and a two-layer simple ReLU network. Since the pro-
posed model is non-convex unlike the three baseline models,
it is trained by two steps: First, least-squares regression; Sec-
ond, stochastic gradient descent (SGD). Simulation results
show the proposed ReLU model improves 58% overall in
root mean square (RMS) acceleration prediction over state-
of-the-art methods. The training time takes less than 1 hour
on a 6-core Intel i7 server with 32GB RAM for 2500 hidden
units and 10 past samples of (lag) horizon.

In [38], the problem is investigated that whether an ANN-
based dynamic model can be employed for control synthe-
sis for trajectories different than those used for training.
Similar to [37], two simple two-layer ReLU networks are
used respectively to learn linear and angular acceleration
components of a quadrotor offline, however, without aug-
menting quadratic lag model. The two network models have
100 hidden neurons for each and are trained by resilient
backpropagation learning algorithm. Coupled with linear
quadratic regulator (LQR) and proportional-derivative (PD)
control for trajectory tracking, experiment shows even simple
ANN architecture is capable of generalizing the dynamics
beyond the training data to a satisfactory accuracy, hence
can be further used for control purposes.

In [39], a modular deep recurrent neural network (MOD-
ERNN) framework [40] is used for MIMO modeling of a
quadrotor in the presence of noise and ground effect. The
MODERNN framework is proposed intentionally to address
the problem of vanishing/exploding gradient in deep neural
networks [41]. To reduce the computational complexity, three
separate MODERNNs are trained with Levenberg-Marquardt
(LM) method, each of dimension 3× 10, 3× 8, and 4× 20,
where the first number is the number of layers and the
second is the number of neurons inside each layer. It takes
approximately 24 hours for each training on an i7 core
machine with 16GB of RAM. Simulation results show good
learning capability of a complex quadrotor model.

2) Online Modeling: In [42], a comparison of an offline
and online neural network architecture for the identification
of a fixed-wing UAV is drawn. In particular, two decoupled
networks representing lateral and longitudinal dynamics are
employed with compared to a single network model. To
facilitate online training, small fixed batches of input and
output data are used, empirically ranging from 5 to 10. Both
decoupled networks have two feed-forward layers with 4
hidden neurons and a maximum of 3 past inputs used for the
prediction of the present output. From simulation results, it
can be seen that online model is more adaptive to changes in
the inputs to the system while offline model has a smoother
approximation. However, for a complex nonlinear system
such as UAV, it is expected to use both online and offline
model to achieve better performance. For instance, a well
trained offline model can be used as a reference model and
the online model can be used to aid the autopilot.



B. Modeling with Hybrid Approach

Hybrid approach is usually referred to as modeling using
ANNs in conjunction with mathematical model, particularly
first principle model (FPM). In a broader sense, however,
it refers to any ANN-based models that directly incorporate
(explicit) physical knowledge into training process, which
unfortunately, has not been fully developed for UAV appli-
cations yet (will be further discussed in Section V). The
existing literature on hybrid approach presented subsequently
focuses only on offline modeling.

1) Offline Modeling: In [43], a hybrid model for quadrotor
in a multi-step prediction scenario is proposed. Different
from the above modeling focusing on single-step prediction,
multi-step prediction problem seeks an accurate estimate
of the system output over the same time horizon given an
input sequence. Long-short-term-memory (LSTM) networks
in conjunction with a mathematical motion model of the
quadrotor are proposed, in which LSTMs are initialized
following process given in [44] for accurate system states
prediction. Two configurations, namely hybrid-series and
hybrid-parallel, and the use of tapped delay lines (TDLs)
are discussed. Simulation results show the proposed ap-
proach, especially hybrid-parallel model, outperforms first
principle model as well as full black-box model. However,
the network specifications are not presented in detail which
poses difficulties to understand computational complexity.
Besides, according to the paper, for full black-box model
training, velocity and body rates are decoupled as two MIMO
subsystems to be learned by two separate LSTM networks
to avoid divergence. Nonetheless, the velocity network is
trained on the actual body rates rather than predicted body
rates from body rate network. This can be actually viewed
as the decoupled architecture in [31] where it has been
already pointed out that daisy chain architecture outperforms
decoupled architecture as the error propagated from the first
network is very likely to be corrected in the second network.
Hence, it would be more convincing if the authors can
compare hybrid architecture with state-of-the-art daisy chain
architecture.

In [28], different identification techniques are compared
for control-oriented modeling for quadrotor, including para-
metric techniques (ARX, ARMAX, and OE), ANNs (RBF
networks) and neuro-fuzzy inference systems. In particu-
lar, they show the hybridization of them (i.e., parametric
technique with ANN or neuro-fuzzy in cascade connection)
provides models with the better balance between accuracy
and complexity than if they are individually applied. More-
over, they also discuss the influence of the training dataset
partition on the final model, which proves that ANN with
online learning strategies has almost always smaller error
than that of the offline model and hence is less sensitive to
dataset partition. Unfortunately, it is not shown in this paper
the performance of recurrent networks and that of online
learning in hybridization.

IV. CONTROL TECHNIQUES
In this section, the focus of literature review is on the

use of ANN for controller design, different from Section III
where attention is particularly paid to dynamic modeling. It
is noted that most of the literature applies adaptive ANN-
based elements to deal with uncertainties, which can be
regarded as adaptive control technique. However, for the sake
of classification, we categorize the existing work based on
the main control technique adopted for flight control.

A. Feedback Linearization

In [45], an adaptive output feedback control design is
proposed for command augmentation system (CAS) for an
aircraft. Two RBF networks with sigma-pi units are used
for both offline model inversion and online adaptation to
cancel out model inversion error, with 21 RBF units and 40
sigma-pi units and the total number of weights of 840 for
each. Since the weights of offline network appear linearly, a
standard linear least square approximation method is used
as the training method. A stable weights adjustment rule
for the online neural network is also derived, which ensures
that all of the signals in the loop are uniformly bounded
and that the weights of the online network tend to constant
values. Simulation results show that online adaptive network
is able to cancel out model inversion error without full
knowledge of uncertainties under a high-g, fixed throttle
turn maneuver. A similar extended work refers to [46] in
which σ-modification is used and more simulation results
are given to show the capabilities of dealing with parametric
uncertainties and unmodeled dynamics, however, for a Van
der Pol oscillator.

In [47], a high-performance tracking controller is designed
for an autonomous helicopter using feedback linearization
with an ANN-based adaptive element accounting for in-
version error. Pseudo control hedging is particularly used
to protect adaptive element from actuator saturation non-
linearities and from inner-outer-loop interaction. A feed-
forward neural network with single hidden layer is used with
5 hidden neurons. Network parameters are updated online
using a stable adaptive law derived from Lyapunov stability
analysis, which guarantees signal boundedness of all asso-
ciated variables through analytical proof. Both simulation
and flight tests show satisfactory tracking performance for
various maneuvers. However, the potential of ANN-based
adaptive element is not investigated, for instance, the flight
in which flight dynamics change moderately significant.

In [48], a hybrid adaptive control method is proposed
for stability recovery of damaged aircraft operating in off-
nominal flight conditions under single damage. A direct
adaptive control augmentation to cancel out model inversion
error is realized by a single-hidden-layer sigma-pi neural
network. The hybrid (implicit-explicit) adaptive control in-
corporates an explicit parameter identification based on an
adaptive law derived from the Lyapunov stability method
or a recursive least-square method to estimate the true
plant dynamics, which is then used for dynamic inversion
control. By doing this, the dynamic inversion error that direct



adaptive ANN has to compensate for is reduced, which
avoids saturating control authority and exciting unmodel
dynamics due to aggressive learning (high learning rate) of
direct adaptive ANN. Simulation results show good ability
of damage effect aerodynamic modeling and control under
single damage.

In [49], a concurrent-learning adaptive controller with
feedback linearization is proposed for a helicopter to improve
weight convergence properties and tracking performance
by alleviating the rank-1 condition on weight updates in
adaptive control. Inclusion of concurrent learning is the main
contribution of this paper, with the use of a similar baseline
control as presented in [47], that is a single-hidden layer
neural network with 8 hidden neurons used as online adaptive
element to reduce model inversion error. Such modification
makes the controller able to adapt using current as well
as stored data without affecting the responsiveness of the
adaptive law to current data. Since the choice of baseline
adaptive law and the projection matrix does not affect the
stability properties of the concurrent-learning adaptive law,
the proposed methodology can be further generalized to other
adaptive schemes. From simulation and flight test results,
improved tracking performance is observed for both repeated
forward-step maneuvers and aggressive trajectory tracking
maneuver.

In [50], two MLPs are trained for a feedback linearization
controller design of a fixed-wing UAV of which the offline
MLP replaces the inverse model required in feedback lin-
earization while the online MLP is to account for inversion
error. Both of them update the network parameters through
back-propagation. From software-in-the-loop (SIL) simula-
tion, where simulated data are used for online training at the
moment, satisfactory tracking results are achieved for a step
command in roll rate under some sensor noise. However,
the details of MLP configurations are not elaborated such as
number of neurons and layers. Moreover, the trained MLP
and online MLP is the same object as described in this paper.
Such architecture can be actually regarded as an online MLP
with pre-determined weights and biases, which might require
more theoretical proof or realistic tests to validate its stability
and performance.

In [51], a nonlinear 7dof of control reconfigurable model
for F-16 aircraft is developed, which is then used to de-
velop an explicit model following direct adaptive controller
with adaptive neural networks and using nonlinear dynamic
inversion and control allocation (CA). The adaptive neural
network is designed to cope with inversion error online
by Lyapunov stability analysis, with a two layer design
having 50 hidden neurons. Simulation results show notable
performance under mass properties changes and loss of an
aileron. The main advantage of the proposed approach is in-
corporation of changes or deviations in the plant on/off-flight
while ensuring stability, manoeuvrability, and performance.
Besides, it relaxes the need to develop extensive and precise
fault detection and isolation (FDI) algorithms.

In [52], ESN is used for both offline and online training in
the control design of a fixed-wing UAV. The offline training

realizes model inversion required for feedback linearization
while online training is performed to reduce the inversion
errors. Since ESN does not require back-propagation for
training, Weiner-Hopf method for linear regression is used
which significantly reduces training time. Simulation results
show improved tracking performance of bank angle com-
mand. However, no theoretical proof for system stability is
provided. No comparative studies are carried out to show
the promise of ESN over other feed-forward or recurrent
networks. Besides, system performance under uncertainties
is not considered for the proposed control architecture.

B. Sliding Mode Control

In [53], a double-loop integral sliding mode control
(IntSMC) along with RBF networks are developed for po-
sition and attitude tracking of a quadrotor subject to dis-
turbances and parametric uncertainties. RBF networks are
trained online using an adaptive law based on Lyapunov ap-
proach to estimate and cancel out uncertainties. The proposed
controller shows faster convergence of the state variables
to their desired values under disturbances and uncertainties.
Comparisons with other control techniques are also given
from simulation. However, unmodeled dynamics are not
considered.

C. Backstepping Control

In [54], backstepping technique along with ANNs are used
for flight control of a helicopter. Two-layer online MLPs
with 15 hidden neurons are used to estimate some unknown
nonlinearities as well as physical parameters. Analytical
analysis of stability is provided using the Lyapunov theory
for online adaptation of the network parameters. Simulation
results show good performance of the proposed controller
even with a sudden mass change perturbation.

V. DISCUSSION: CHALLENGES AND OPPORTUNITIES

A. Classification and Comparison

Table III shows a general classification of reviewed lit-
erature on dynamic modeling for UAVs. As surveyed in
Section III, the previous studies are categorized into data-
driven and hybrid approach (as shown in the row) and
offline and online modeling (as shown in the column). It is
straightforward to see that most of them rely on offline data-
driven approach. This is mostly because the training time
for offline modeling is not critical, which is quite appealing
for practical applications to train ANNs with a large number
of data for accuracy purposes. Nonetheless, whenever system
dynamics change, the performance of offline model degrades
since nothing can be done to adjust the parameters to capture
those changes in the dynamics in real time. From this
perspective, an online model (or a combination of online and
offline model) is highly preferable, especially for nonlinear
complex systems.

Besides, data-driven approach is known as black-box
approach, which has been unceasingly criticized for the
lack of interpretability. Though from Table III we see that
hybrid models have been proposed which attempt to improve



the model accuracy by exploiting data information from a
mathematical model in series, only little literature works in
this direction and no online solution has been developed so
far. More importantly, the issue on interpretability is still not
intentionally dealt with as no explicit knowledge is directly
incorporated. Motivated by this, it is worth mentioning a
recent study [55] in which physics-guided neural network
(PGNN) framework is proposed for modeling aiming to
make ANNs more interpretable by means of incorporating
an explicit physical law in the cost function as well as
using simulated data from a mathematical model for network
training. Unlike in the majority of previous studies, where
simplicity and accuracy are the only two criteria for ANN’s
performance, the modified cost function included with a
physical law proposed in this paper is optimized for simplic-
ity, accuracy and physical consistency, which yields a model
that has a good balance between computational complexity,
model accuracy and generalization capability. Though the
PGNN-based model is proposed for offline SISO modeling of
lake temperature with feed-forward architecture, it shows sat-
isfactory preliminary results and deserves more investigation
for UAV applications. To conclude, we believe that online
hybrid modeling will outperform all the existing dynamic
modeling due to the aforementioned reasons. Hence, it is
one of our future research topics.

Data-driven Hybrid

Feed-forward Recurrent Mixed

Offline [37], [38], [42] [33], [39], [40] [30], [31] [28], [43]

Online [42] N/A N/A N/A

TABLE III
LITERATURE CLASSIFICATION OF UAV DYNAMIC MODELING

Table IV illustrates the classification of reviewed liter-
ature on UAV flight control, which is categorized based
on control objectives. Several observations can be made
from the existing studies. First, most of the ANN-based
adaptive elements have update mechanisms of weight ma-
trices and biases through adaptive laws, which are intended
to provide theoretical proof for closed-loop stability and
weight convergence. As for ANN-based adaptive element
updated using data science approach, there is a lack of
theoretical development. Second, using ANNs in control
to cope with uncertainties is one of the major reasons for
the employment of ANNs, however, very few studies push
the simulation results towards experimental ones to validate
the effectiveness in the real-world situation. Third, there
is a preference for selection of feed-forward networks in
the design, most probably due to their simple architecture
that facilitates the theoretical analysis. However, it is widely
acknowledged that recurrent networks are more powerful
since feedback connections give them a temporal learning
ability which feed-forward networks do not possess. Hence,
a comparative study or analysis might be appreciated to sup-
port the choice of ANN architecture in each design and the

future development of recurrent networks is also anticipated.
Fourth, as pointed out in [48], significant modeling error will
lead to aggressive learning due to the high learning rate,
which might further result in saturation of control authority
and excitement of unmodeled dynamics. This stresses the
importance of architecture design for control systems where
the capability of proposed solution should be clarified and
validated, for example, what type of uncertainties can be
dealt with and what is the safe and reliable operational range
of the controller. Lastly, it is also expected to enhance the
interpretability of ANN-based solution in control as that in
dynamic modeling.

To improve tracking performance [47], [49], [53]

To handle uncertainties [45], [53], [54]

To provide fault tolerance [48], [51]

To verify feasibility of the methods [50], [52]

TABLE IV
LITERATURE CLASSIFICATION OF UAV FLIGHT CONTROL

B. Future Work

Based on the analyses of the literature surveyed in this
paper, we envisage a novel control architecture for UAV
flight control using MBC techniques combined with ANNs
for future studies. The control scheme is briefly illustrated
in Fig. 2, which in essence applies adaptive ANNs with
feedback linearization technique motivated by [45]. Differ-
ently, an online inverse model is used for model inversion
which forms a quasi-linear plant in real time to avoid
significant inversion error and aggressive learning, motivated
by [48]. The functionality of each block of the controller is
explained as follows: (i) Reference model is used to specify
desired handling qualities; (ii) Linear dynamic compensator
is included to shape system response; (iii) Adaptive control
augmentation is aimed to reduce inversion error and deal
with parametric uncertainties, unmodeled dynamics and dis-
turbances and noise; and (iv) PGNN-based inverse model is
designed to cancel out inherent nonlinearities and yield a
quasi-linear plant.

Compared with [45], [48], the main anticipated advance-
ment of the proposed architecture lies in the use of PGNN
framework for online inverse modeling (i.e., yielding a
hybrid online model), which is intended to improve the
generalization capability as well as the model accuracy.
On the development of the PGNN-based inverse model,
there are several research questions that are of particular
interest to the authors. First, it is worth investigating if
the use of a recurrent architecture can empower the PGNN
framework since a feed-forward architecture is arbitrarily
chosen in [55]. Second, the use of PGNN framework for
MIMO modeling needs to be explored. Third, computational
complexity should be studied for the PGNN-based model to
verify the feasibility of real-time implementation. In Section
II, we only derive the time complexity of output generation



for some ANNs, while issues on online training time as
well as space complexity are still missing. Fourth, according
to [55], the PGNN-based model is trained through data
science approach, hence theoretical development on system
stability and weight convergence is needed when the model
is embedded in the control architecture. Last but not least, it
is also essential to verify if the PGNN-based inverse model
can be employed for control synthesis, leading to a robust
solution.

Fig. 2. Proposed control architecture for UAV flight control. Green blocks
with red arrows represent online adaptive ANN-based solutions.

VI. CONCLUSIONS

In this survey, we thoroughly analyze the reasons why
ANNs are now playing an increasingly crucial role in MBC
systems. To implement a real-time control system, the time
complexity of certain ANNs is also addressed. A literature
review on MBC techniques combined with ANNs for flight
control applications of UAVs is presented in detail. Despite
the promising results achieved in the existing work, there
are still opportunities for further enhancements in dynamic
modeling and control techniques. Consequently, we envisage
a novel control architecture which attempts to obtain an
optimal control solution by meticulously combining ANNs
and MBC techniques. Several challenging research questions
are also posed for future development.
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