2,366 research outputs found

    A self-learning particle swarm optimizer for global optimization problems

    Get PDF
    Copyright @ 2011 IEEE. All Rights Reserved. This article was made available through the Brunel Open Access Publishing Fund.Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.This work was supported by the Engineering and Physical Sciences Research Council of U.K. under Grants EP/E060722/1 and EP/E060722/2

    An adaptive learning particle swarm optimizer for function optimization

    Get PDF
    This article is posted here with permission of the IEEE - Copyright @ 2009 IEEETraditional particle swarm optimization (PSO) suffers from the premature convergence problem, which usually results in PSO being trapped in local optima. This paper presents an adaptive learning PSO (ALPSO) based on a variant PSO learning strategy. In ALPSO, the learning mechanism of each particle is separated into three parts: its own historical best position, the closest neighbor and the global best one. By using this individual level adaptive technique, a particle can well guide its behavior of exploration and exploitation. A set of 21 test functions were used including un-rotated, rotated and composition functions to test the performance of ALPSO. From the comparison results over several variant PSO algorithms, ALPSO shows an outstanding performance on most test functions, especially the fast convergence characteristic.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity

    Adaptive learning particle swarm optimizer-II for global optimization

    Get PDF
    Copyright @ 2010 IEEE.This paper presents an updated version of the adaptive learning particle swarm optimizer (ALPSO), we call it ALPSO-II. In order to improve the performance of ALPSO on multi-modal problems, we introduce several new major features in ALPSO-II: (i) Adding particle's status monitoring mechanism, (ii) controlling the number of particles that learn from the global best position, and (iii) updating two of the four learning operators used in ALPSO. To test the performance of ALPSO-II, we choose a set of 27 test problems, including un-rotated, shifted, rotated, rotated shifted, and composition functions in comparison of the ALPSO algorithm as well as several state-of-the-art variant PSO algorithms. The experimental results show that ALPSO-II has a great improvement of the ALPSO algorithm, it also outperforms the other peer algorithms on most test problems in terms of both the convergence speed and solution accuracy.This work was sponsored by the Engineering and Physical Sciences research Council (EPSRC) of UK under grant number EP/E060722/1

    Feedback learning particle swarm optimization

    Get PDF
    This is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published and is available at the link below - Copyright @ Elsevier 2011In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSO-QIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration coefficients are determined not only by the generation number but also by the search environment described by each particle’s history best fitness information. Thirdly, the feedback fitness information of each particle is used to automatically design the learning probabilities. Fourthly, an elite stochastic learning (ELS) method is used to refine the solution. The FLPSO-QIW has been comprehensively evaluated on 18 unimodal, multimodal and composite benchmark functions with or without rotation. Compared with various state-of-the-art PSO algorithms, the performance of FLPSO-QIW is promising and competitive. The effects of parameter adaptation, parameter sensitivity and proposed mechanism are discussed in detail.This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation Project of Shanghai(Grant No 09JC1400700), the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany
    corecore