
1

Feedback learning particle swarm optimization
Yang Tang, Zidong Wang, and Jian-an Fang

Abstract

In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSO-
QIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the
inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function.
Secondly, acceleration coefficients are determined not only by the generation number but also by the search
environment described by each particle’s history best fitness information. Thirdly, the feedback fitness information of
each particle is used to automatically design the learning probabilities. Fourthly, an elite stochastic learning (ELS)
method is used to refine the solution. The FLPSO-QIW has been comprehensively evaluated on 18 unimodal,
multimodal and composite benchmark functions with or without rotation. Compared with various state-of-the-art
PSO algorithms, the performance of FLPSO-QIW is promising and competitive. The effects of parameter adaptation,
parameter sensitivity and proposed mechanism are discussed in detail.

Index Terms

Particle swarm optimization, feedback learning, neural networks, parameters estimation

I. INTRODUCTION

PARTICLE swarm optimization (PSO) is a population-based search optimization technique introduced
by Eberhart and Kennedy [1]. The PSO employs a simple method that simulates swarm behavior in

agents such as fish gathering and birds flocking to guide the particles to search for the potential optimal
solutions. Each particle in the swarm stands for a potential solution of the optimization problem. A particle
flies to a new position according to the new velocity and its previous positions. Thus, all of the particles
iteratively discover a probable solution according to the velocity and position updating equations.

Over the past decade, the PSO algorithm has gained wide-spread popularity in the research community
mainly because of its simplistic implementation, reported success on benchmark test problems, and
acceptable performance on various application problems. PSO algorithm has been successfully used in
multiobjective optimization [2] and constrained optimization [3], etc. Unfortunately, when solving complex
multimodal tasks, the conventional PSO algorithm can easily fly into the local optima and lack the ability to
jump out of the local optima. These shortcomings have imposed the restrictions on the wider applications
of the PSO to real-world optimization problems. Therefore, the abilities of good convergence speed and
avoiding local optima are two important and appealing tasks in the study of PSO. A number of variants
of PSO algorithms have been developed in order to achieve these two goals, see for example [3-24].

Firstly, the parametric studies on coefficients (inertia weight and coefficients) were conducted in [9,
10, 13-15]. The velocity term in PSO indicates a particle’s ability to explore the search space while
it moves under the attraction of ‘pbest’ and ‘gbest’. In initial phases of PSO’s search, the concept of
linearly decreasing inertia weight with generation number was introduced in [14]. The strategy has gained

This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund
for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant
No 09ZZ66), the Key Foundation Project of Shanghai(Grant No 09JC1400700), the International Science and Technology Cooperation Project
of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany.

Y. Tang is with the School of Information Science and Technology, Donghua University, Shanghai 201620, China and Space Control and
Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China, and also with Potsdam Institute for Climate
Impact Research, Potsdam, Germany. e-mail: tangtany@gmail.com.

Z. Wang is with the Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K. and also
with the School of Information Science and Technology, Donghua University, Shanghai 201620, China. e-mail: Zidong.Wang@brunel.ac.uk.

J. Fang is with the School of Information Science and Technology, Donghua University, Shanghai 201620, China. e-mail:
jafang@dhu.edu.cn.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

popularity in promoting convergence of PSO. The idea of varying coefficients was also extended to
dynamically update the acceleration coefficients in [13]. Convergence and stability analyses were proposed
by Clerc and Kennedy [9]. Based on the theoretical analysis, the constriction factor has been introduced
into PSO to analyze the convergence behavior. Recently, it is shown that adaptive control parameters
based evolutionary algorithms perform well on various benchmarks. The adaptive idea was also applied
in designing variants of PSOs [16, 21]. In Ref. [16], an adaptive particle swarm optimization (APSO)
was presented. By evaluating the population distribution and particle fitness, four evolutionary states
are defined, which enable the automatic control of inertia weight, acceleration coefficients, and other
algorithmic parameters at run time to improve the search efficiency and convergence speed. It was found
that APSO performs well on unimodal and unrotated optimization problems with fast convergence speed.
However, when dealing with rotated optimization problems and composite problems, APSO is confronted
with premature convergence problem. In the field of adaptive tuning population size, an efficient population
utilization strategy for PSO (EPUS-PSO) was presented [21], adopting an adaptive population manager
to improve the efficiency of PSO.

Secondly, according to the idea of graph theory and network theory, some network based PSOs have
been proposed [7, 11, 12, 17-20, 24]. In Ref. [18], several social network structures were tested, with
small-world randomization of a specified number of links. Furthermore, in Ref. [11], a fully informed
particle swarm optimization (FIPSO) was proposed and several topologies of swarm were tested. In Ref.
[20], it was found that the graphs in FIPSO which performed well were more highly clustered. The
inhibition of communication might contribute to the discovery of global optima in the FIPS algorithm,
while promotion of communication speeds convergence within optimal regions. By the idea of changing
learning (communication) strategies in swarm, a comprehensive learning PSO (CLPSO) was proposed
[12], where the learning strategy abandons the global best information, and all other particles’ past best
positions might be used to update particles’ velocity. Although CLPSO delivers good performance on
complex multimodal functions, its convergence speed is not satisfactory for unimodal, multimodal and
rotated optimization problems.

Thirdly, hybridization by combining PSO with other search approaches has drawn increasing attention
to improve the performance of the PSO [5, 6, 7, 22, 23, 25, 26]. Evolutionary operators and other methods
such as selection [6], crossover, mutation [5] and chaotic sequences [25, 26] have been introduced to the
PSO to keep the best particles, to increase the diversity of the population, and to improve the capability
to escape local minima. In [22], the swarm was divided into sub-populations, and a breeding operator is
then used within a subpopulation or between the sub-populations to enhance the diversity of the swarm
population. In [7], a cooperative particle swarm optimizer (CPSO-H) was proposed to lead to improvement
of the original PSO for multimodal optimization problems. In Ref. [23], similarities between PSO and
evolutionary optimization (EO) are presented. The authors suggest an evolutionary algorithm (EA) which
is fundamentally equivalent to a PSO and then introduce different EA-specific operators to the constriction-
based PSO. Contrary to the standard PSO algorithms, the hybrid PSO, which performs similarly to the
existing genetic algorithm (GA) (and outperforms the GA in some occasions), is developed by replacing
PSO’s standard child-creation rule with a parent-centric recombination operator.

Although a number of works can help to improve the search ability and enhance convergence speed
of PSO, there still remains research room to improve the performance of PSO. With respect to existing
benchmark algorithms, the existing PSO framework does not provide a way-out to solve such simple,
unconstrained, unimodal, multimodal problems competitively. In this study, a novel PSO using fitness
feedback mechanism and quadratic inertia weight is proposed, which aims to enable the PSO to gain
the abilities of good convergence speed and search performance at the same time. The inertia weights is
calculated according to a quadratic function. The learning probabilities are determined by fitness feedback
mechanism. Moreover, acceleration coefficients are computed by the fitness feedback mechanism and
generation number. In addition, stochastic disturbances controlled by adaptive probability are added only
to the globally best particle under adaptive probabilities to refine the solution. The experimental results
on various benchmark functions with different topological structures are confirmed to show effectiveness

3

of FLPSO-QIW.
This paper is organized as follows. Section II describes the feedback learning PSO with a quadratic

function. Section III presents the test functions, the experimental setting for each algorithm. Concluding
remarks are given in Section IV.

II. FLPSO-QIW
A. PSO algorithm

A swarm consists of N particles moving around in a D-dimensional search space. The position of the ith
particle is written by a vector xi(k) = (xi1(k), xi2(k), · · · , xiD(k)), where xij(k) ∈ [xmin,j, xmax,j], 1 ≤ j ≤
D, xmin,j and xmax,j are lower and upper bounds for the jth dimension respectively. The particle tunes its
current position toward the global optimum according to two terms: the best position encountered by itself
(pbest) represented by pi = (pi1, pi2, · · · , piD) and the best position in the whole swarm (gbest) represented
by pg = (pg1, pg2, · · · , pgD). The velocity of the ith particle at the kth iteration is represented by vi(k) =
(vi1(k), vi2(k), · · · , viD(k)), which is limited to a maximum velocity vmax = (vmax,1, vmax,2, · · · , vmax,D).
Thus, if the magnitude of the updated velocity |vi,d| exceeds vmax,d, then vi,d is assigned the value
sign(vi,d)vmax,d. In this paper, the maximum velocity vmax,d is set to 20% of the search range. The
inertia weight w is a scaling factor controlling the influence of the old velocity on the new one; r1,j

and r2,j are two uniform random number samples from U(0, 1). The parameters c1 and c2 are called
acceleration coefficients, namely cognitive and social coefficients respectively. The velocity and position
of the particle at next step changes according to the following equations:

vi,j(k + 1) = w(k)vi(k) + c1r1,j(pi,j(k)− xi,j(k)) + c2r2,j(pg,j(k)− xi,j(k)),

xi,j(k + 1) = xi,j(k) + vi,j(k + 1). (1)

Although PSO algorithms have been used to solve many optimization problems and numerous PSOs
have been presented, solving complex optimization problems with both high accuracy and rapid conver-
gence speed is still a challenging issue and remains open. In this section, a feedback learning PSO with
quadratic inertia function is proposed.

B. Position and velocity updating equations of FLPSO-QIW
The positions and velocity updating equations of FLPSO-QIW are given as follows:

vi,j(k + 1) = w(k)vi,j(k) + αi(k)ci(k)rj(k)(pr,j(k)− xi,j(k))

+ (1− αi(k))ci(k)rj(k)(pi,j(k)− xi,j(k)), (2)

xi,j(k + 1) = xi,j(k) + vi,j(k + 1), (3)

where pr,j(k) represents another particles’s history best fitness in the jth dimension [12]; w(k) is the
time-varying inertia weight determined by generation number; ci(k) is the acceleration coefficient which
is time-varying according to the search circumstances. αi(k) is stochastic variable that describes the
following random events for the system (2):

{
Event 1: system (2) experiences pr,j(k),
Event 2: system (2) experiences pi,j(k),

(4)

Let αi(k) be Bernoulli distributed sequences defined by

αi(k) =

{
1, if Event 1 occurs,
0, if Event 2 occurs, (5)

where αi(k) satisfies Prob{αi(k) = 1} = αi0, Prob{αi(k) = 0} = 1 − αi0. αi0 denotes the learning
probability rate. In order to pay more attention to αi0, the velocity updating equation is written in the

4

form of (2). The stochastic variable αi0 describes different learning strategies occurring in a probabilistic
way. Note that using binary sequence switching to illustrate stochastic event is widely used in our previous
works to describe some randomly occurring events, such as miss measurement, random packet losses and
stochastic delay [27, 28]. Moreover, the stochastic variables can represent the missing information in a
flock of birds. The randomly occurring learning methods are described by a binary switching sequence
that is specified by a conditional probability distribution. It was found that different learning-probability
values assigned to the particles will affect the search results [12]. However, in the proposed PSO, the
learning probability is time-varying according to the search environment. The details of assigning learning
probability to each particle will be illustrated in the following. In such a way, the learning probability of
each particle is assigned different. For each dimension of particle i, a random number is generated. If the
random number is larger than αi0, the corresponding dimension will learn from its own pi,j(k); otherwise
it will learn from another particle’s pi,j(k).

C. Calculating inertia weight according to a quadratic function
Differently from the conventional linearly decreased inertia weight, the inertia weight in this paper is

calculated according to the following quadratic function:

w(k) = a(k − kmax)
2 + b, (6)

where a and b are the parameters to be determined. We can obtain a and b by solving the following
equation:

{
w1 = a(0− kmax)

2 + b,
w2 = a(kmax − kmax)

2 + b,
(7)

where w1 and w2 are the initial and final inertia weight according to the time. By solving the above
equation, w(k) can be calculated as follows:

w(k) =
w1 − w2

k2
max

(k − kmax)
2 + w2. (8)

In this paper, w1 and w2 is set to w1 = 0.9 and w2 = 0.2, respectively. In the section of experiments,
the parameters selection and comparison with the linearly decreasing inertia weight will be discussed in
detail.

D. Determining acceleration parameters and learning probability using fitness feedback
The acceleration coefficient c is usually used to balance the global and local search abilities of PSO

[13]. The best reported results were achieved when c2 starts by 0.5 increases linearly to reach 2.5 in
the last iteration, and c1 starts with 2.5 and decreases to 0.5 in the last iteration. However, only time
information was taken into account in the PSO-TVAC scheme, while the search information at each step
is not utilized although the fitness information might enhance the performance of PSO. Generally, a large
acceleration coefficient will enable the particle to learn from other particle or its best position found so
far more quickly, while a small acceleration coefficient will let the particle retain in the current position
to search its near position and learn from other particle slowly. In this subsection, the control scheme
acceleration coefficient will be determined by both the generation number and fitness information.

Each particle in the swarm plays a different role in the searching process. Generally speaking, if a bad
particle (with bad fitness information) has a large velocity to move toward the exemplar, it would enable
itself to learn from other particles and thus achieve global search rapidly. Meanwhile, if a small speed is
assigned to a good particle, it would make it search around itself to refine the current search solution. In
order to assign different velocity to each particle according to the fitness information, one proper way is

5

to control acceleration coefficients. We normalize the best fitness value Fi of each particle found so far
as follows:

Gi =
Fi − Fmin

Fmax − Fmin

, (i = 1, 2, · · · , N) ∈ [0, 1]. (9)

where Fmax and Fmin are the maximum and minimum values among Fi. In this paper, Gi can be used to
determine the acceleration coefficient of each particle, together with generation number. Hence, ci(k) can
be calculate as follows:

c1(k) = ĉ1 − k

kmax

(ĉ1 − č1), (i = 1, 2, · · · , N), (10)

c2(k) = ĉ2 − k

kmax

(ĉ2 − č2), (i = 1, 2, · · · , N), (11)

ci(k) = (c2(k)− c1(k)) ∗Gi + c1(k), (i = 1, 2, · · · , N), (12)

where ĉ1 and ĉ2 are the initial value for c1(k) and c2(k), respectively. č1 and č2 are the final value for
c1(k) and c2(k), respectively. In this paper, the parameters setting are ĉ1 = 2, ĉ2 = 1, č1 = č2 = 1.5. By
the above method, it can be observed that in the early phase, the ci(k) has a wide range at the begging
and gradually turns into a small range. This mechanism can make the swarm benefit global search at the
beginning and local search in the end. Furthermore, in each step, the worst particle has the largest speed
to enable global search and the best particle has the smallest speed to refine the current solution. By using
this linear transformation, the swarm has the acceleration coefficient belonging to the range [c2(k), c1(k)]
in the search process. Different from conventional method, both generation number and fitness feedback
information are taken into account for adjusting acceleration coefficient of each particle. The acceleration
coefficient can be calculated easily. Owing to our design, ci(k) is not only monotonic with time, but also
monotonic with Gi. Therefore, ci(k) will have its unique value characterized by Gi and k. If a better
solution is found outside the swarm, almost all the particles in the swarm will have large Gi and thus
generate large ci(k). The particles will have large velocity and realize the global search. Meanwhile, the
best particle away from other particles will not move dynamically until the other particles move around
it. If the swarm gathers for searching solution more accurately, nearly all the particles will have small Gi

and ci, which will enable the swarm to have the local search. It is easy to implement the above method in
PSO since the calculation of Gi and ci do not need extra computation. Although the idea of using Gi to
control acceleration coefficients has been proposed in [4], the control method of acceleration coefficients
in this paper is different from [4]. Moreover, other modifications and improvements have been made in
our algorithm.

In addition, it was found that different values of learning probability yielded different results on the
same problem [12]. In order to address this problem in a general manner, the authors proposed that each
particle has a different value. Therefore, particles have different levels of exploration and exploitation
capability in the population and are able to solve various kinds of problems. The learning probability for
each particle were empirically developed in the following [12]:

αi0 = 0.05 + 0.45 ∗ exp(10(i−1)
N−1

)− 1

exp(10)− 1
, (i = 1, 2, · · · , N). (13)

From the above equation, it can be seen that the learning probability of each particle is assigned according
to the index i. Unfortunately, the search environment has not been taken into account. In this paper, the
best fitness value Fi of each particle found so far are sorted in in an ascending way (where we suggest
the best particle has the minimum fitness value) and remember the former index as Ii. The novel learning
probability of each particle is assigned as follows:

αIi0 = 0.05 + 0.45 ∗ exp(10(i−1)
N−1

)− 1

exp(10)− 1
, (i = 1, 2, · · · , N). (14)

6

An important fact to note is that the worst particle will be given the largest learning probability to learn
from other particles, while the best particle will have the smallest learning probability to learn from
other particle or retain the current position. Thus, by such a manner, each particle has its unique learning
probability in the search process and the swarm will search more efficiently.

According to proposed learning probability, if the fitness of a particle is not updated for a refresh gap
m = 1, a random number will be generated for each dimension of the particle. If the random number is
smaller than the learning probability, event 1 will occur according to (2) and (5). According to Ii, the first
50% particles are used to generate two potential exemplars and then choose the better one as the guider.
Different from the strategy in CLPSO [12], we use the fitness feedback information and good particles are
utilized as potential guiders. This mechanism will help the particles to learn from right directions more
efficiently and keep the diversity of population at the same time.

E. Elite stochastic learning
In this subsection, stochastic learning is introduced to the best particle for refining the solution. The

elite stochastic learning (ESL) randomly selects one dimension of the best particle, which is written as
pg,j(k) for the jth dimension. Only one dimension is considered in that the local optima are likely to have
better solution in one dimension. The ESL can be written as follows:

pg,j(k) = pg,j(k) + ((λ1,j(k)− λ2,j(k)) ∗ r1(k) + λ2,j(k)) ∗R1(k), (15)

pg,j(k) = pg,j(k) + ((η1(k)− η2(k)) ∗ r2(k) + η2(k)) ∗R2(k), (16)

where r1(k) and r2(k) are uniform random numbers sample from U(0, 1). λ1,j(k) and λ2,j(k) are the
upper and lower bounds of the chosen particle in the swarm in jth dimension at each step, respectively.
η1(k) and η2(k) are the maximal and minimal value of all dimensions of the globally best particle at each
generation, respectively. R1(k) and R2(k) are the search radius of the strategy.

Ri(k) = σ(k)δ1 + (1− σ(k))δ2, (i = 1, 2), (17)

where δ1 = 1 and δ2 = 0.1. Similar to αi(k), σ(k) is a stochastic variable that describes the following
random events for the system (17):

{
Event 1: system (17) experiences δ1,
Event 2: system (17) experiences δ2,

(18)

Let σ(k) be Bernoulli distributed sequences defined by

σ(k) =

{
1, if Event 1 occurs,
0, if Event 2 occurs, (19)

where σ(k) satisfies Prob{σ(k) = 1} = σ0(k), Prob{σ(k) = 0} = 1 − σ0(k). σ0(k) denotes the radius
occurring rate. The σ0(k) is empirically decreased with time, which is given by

σ0(k) = (σ1 − σ2)× kmax − k

kmax

+ σ2, (20)

where σ1 = 1 and σ2 = 0. In ESL, the new position can be adopted if the fitness is better than the current
globally best position. Otherwise, the new position is abandoned.

Define P1 and P2 as (15) activation variable and (16) activation variable, respectively. The activation
probability variable Pi is updated as follows:

Pi =

Pi + κ1, if the search strategy i
succeed to update the globally best particle,

Pi − κ2, if the search strategy i
fails to improve the globally best particle,

(21)

7

where κ1 = 0.1 and κ2 = 0.001; i = 1, 2 represents the search approach (15) and (16), respectively. Here,
it is assumed that Pi ranges from [0.1, 1].

In addition to the ELS, there exist five major differences with CLPSO [12] and the proposed learning
methods. The main differences arise from the usage of available fitness information and five major
differences can be observed as follows:

(1) Instead of using fixed acceleration coefficient c, each particle is assigned a unique value ci(k)
according to fitness information feedback and generation number.

(2) Instead of using unalterable learning probability for each particle, each particle is set a unique
learning probability using fitness feedback strategy.

(3) Instead of using two potential exemplars from the swarm, only the best 50% particles are used to
serve as potential guiders.

(4) Instead of using the refreshing gap m = 7, m = 1 is adopted in our paper to increase the convergence
rate.

(5) Instead of using linearly decreasing inertia weight, in this paper, a quadratic function is proposed
to compute the inertia weight.

In summary, benefiting from the proposed techniques, the swarm will have the capabilities of fast
convergence rate and keep the diversity of the population at the same time. The following experimental
results will show the good performance of the proposed method.

To summarize, the pseudo code of FLPSO-QIW algorithm is described as follows by above discussion:

FLPSO-QIW.InitializeParameters();
FLPSO-QIW.CalInertiaWeight(); according to Eq. (8)
while (FE is not equal to FEmax)
{
for i = 1:particle numbers N
{
FLPSO-QIW.UpdatePosition();// update positions of particle i according to Eq. (3)
val=FLPSO-QIW.CalculateFitness();// calculate fitness of particle i
FLPSO-QIW.UpdateFE();// calculate FEs

if (val < the best fitness of particle i found so far)
{
save the position xi(k) and val;
}

}
FLPSO-QIW.CalLearningProb();// according to Eq. (14)
FLPSO-QIW.ESL();// according to Eq. (15)- Eq. (21)
for i = 1:particle numbers N
{
FLPSO-QIW.CalAccerCoef();// calculate acceleration coefficient using Eqs. (9)-(12)
for j = 1:dimension D
{
FLPSO-QIW.UpdateVelocity();// update velocity according to Eqs. (2)-(5)
}

}
}

8

III. EXPERIMENTAL RESULTS

A. Experiments setup
Eighteen benchmark functions are listed in Table I and (22)-(37) are used to test the performance of

PSOs [29-31]. The threshold ε in Table I is the accepted value when satisfying |f(x)−f(x∗)| < ε. Biased
initializations are used for the functions whose global optimum is at the center of the search range. All
the functions are tested on 30 dimensions. f1(x) and f2(x) are unimodal optimization problems. f1(x) is
used to test the convergence speeds of PSOs. f2(x) is hard to optimize and can be viewed as a multimodal
problem. f9(x) is unimodal function with rotation. f3(x) to f8(x) are multimodal problems which are
hard to optimize. Note that some functions are separable and can be solved by using D one-dimensional
searches. Therefore, eight rotated unimodal and multimodal problems are used to test the performance
of the PSOs. According to the Salomon’s method [32], an orthogonal matrix M is generated to rotate
a function. The original variable x is left multiplied by the orthogonal matrix M to get the new rotated
variable y = M ∗ x. This variable y is used to compute the fitness value f . When one dimension in x
is changed, all dimensions in y will be influenced. Thus, the rotated function cannot be solved by D
one-dimensional searches. f9-f16 are rotated functions. f17 and f18 are composite functions with rotation.
The composition functions are asymmetrical multimodal problems, with different properties in different
areas [29-31].

f1(x) =
D∑

i=1

x2
i , (22)

f2(x) =
D−1∑
i=1

(100(xi+1 − xi)
2 + (xi − 1)2), (23)

f3(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10), (24)

f4(x) =
D∑

i=1

(y2
i − 10 cos(2πyi) + 10),

where yi =

{
xi, |xi| < 0.5,
round(2xi)

2
, |xi| ≥ 0.5,

(25)

f5(x) = −20e−0.2
√

1
D

∑D
i=1 x2

i − e
1
D

∑D
i=1 cos 2πxi + 20 + e, (26)

f6(x) =
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos(
xi√

i
) + 1, (27)

f7(x) =
π

D
{10 sin2(πy1) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2}

+
D∑

i=1

u(xi, 10, 100, 4),

where yi = (1 +
1

4
(xi + 1)), u(xi, a, k, m) =

k(xi − a)m, xi > a,
0, −a ≤ xi ≤ a,
k(−xi − a)m, xi < −a.

(28)

9

f8(x) =
D∑

i=1

(kmax∑

k=0

[ak cos(2πbk(xi + 0.5))]−D
kmax∑

k=0

[ak cos(2πbk ∗ 0.5)]

)
,

a = 0.5, b = 3, kmax = 20, (29)

f9(x) =
N∑

i=1

(
i∑

j=1

xj)
2, y = M ∗ x, (30)

f10(x) =
D−1∑
i=1

(100(yi+1 − yi)
2 + (yi − 1)2), y = M ∗ x, (31)

f11(x) =
D∑

i=1

(y2
i − 10 cos(2πyi) + 10), y = M ∗ x, (32)

f12(x) =
D∑

i=1

(z2
i − 10 cos(2πzi) + 10),

where zi =

{
yi, |yi| < 0.5,
round(2yi)

2
, |yi| ≥ 0.5, y = M ∗ x,

(33)

f13(x) = −20e−0.2
√

1
D

∑D
i=1 y2

i − e
1
D

∑D
i=1 cos 2πyi + 20 + e, (34)

f14(x) =
1

4000

D∑
i=1

y2
i −

D∏
i=1

cos(
yi√
i
) + 1, y = M ∗ x, (35)

f15(x) =
π

D
{10 sin2(πy1) +

D−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2}

+
D∑

i=1

u(xi, 10, 100, 4),

where yi = (1 +
1

4
(xi + 1)), u(zi, a, k, m) =

k(zi − a)m, zi > a,
0, −a ≤ zi ≤ a,
k(−zi − a)m, zi < −a.

z = M ∗ x (36)

f16(x) =
D∑

i=1

(kmax∑

k=0

[ak cos(2πbk(yi + 0.5))]−D

kmax∑

k=0

[ak cos(2πbk ∗ 0.5)]

)
,

a = 0.5, b = 3, kmax = 20, y = M ∗ x, (37)

Composite Function 3 in [30] f17: (Rotated CF3) is composed using ten Griewank functions, where
each Griewank function is calculated with rotation.

Rotated Composite Function 3 in [31] f18: f18 is composed using ten different benchmark functions:
two rotated Rastrigin’s functions, two rotated Weierstrass functions, two rotated Griewank’s functions,
two rotated Ackley’s functions, and two sphere functions. f18 is more complex since the global optimum
is not easy to locate.

10

TABLE I
BENCHMARK CONFIGURATIONS

Functions Name Dimension Search Space Threshold(ε) Initial Range
f1(x) Sphere 30 [−100, 100]D 0.01 [−100, 50]D

f2(x) Rosenbrock 30 [−10, 10]D 100 [−10, 5]D

f3(x) Rastrigin 30 [−5, 5]D 50 [−5, 2]D

f4(x) Noncontinuous Rastrigin 30 [−5, 5]D 50 [−5, 2]D

f5(x) Ackley 30 [−32, 32] 0.01 [−32, 16]D

f6(x) Griewank 30 [−600, 600]D 0.01 [−600, 200]D

f7(x) Penalized 30 [−50, 50]D 0.01 [−50, 20]D

f8(x) Weierstrass 30 [−0.5, 0.5]D 0.01 [−0.5, 0.2]D

f9(x) Rotated Quadric 30 [−100, 100]D 100 [−100, 50]D

f10(x) Rotated Rosenbrock 30 [−10, 10]D 100 [−10, 5]D

f11(x) Rotated Rastrigin 30 [−5, 5]D 100 [−5, 2]D

f12(x) Rotated Noncontinuous Rastrigin 30 [−5, 5]D 100 [−5, 2]D

f13(x) Rotated Ackley 30 [−32, 32]D 0.01 [−32, 16]D

f14(x) Rotated Griewank 30 [−600, 600]D 100 [−600, 200]D

f15(x) Rotated Penalized 30 [−10, 10]D 0.01 [−10, 5]D

f16(x) Rotated Weierstrass 30 [−0.5, 0.5]D 10 [−0.5, 0.2]D

f17(x) Rotated CF3 30 [−500, 500]D 100 [−5, 5]D

f18(x) Hybrid composite function 30 [−500, 500]D 100 [−5, 5]D

FEs

M
e
a
n

fi
t
n
e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 200

10− 100

100

10100

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(a)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
100

101

102

103

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(b)

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 20

10− 10

100

1010

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(c)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 20

10− 10

100

1010

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(d)

Fig. 1. Performance of the algorithms for four 30-dimensional benchmark functions.(a) f1. (b) f2. (c) f3. (d) f4.

The population size of all the PSOs is 20 except SPSO. For SPSO, as suggested in Ref. [24], the
population size is 50. Six existing PSO algorithms are shown in Table II in detail. The first PSO is a
standard PSO with local coupling topology and population size 50 [24]. PSO-LDIW [10, 14, 15] is with
linearly decreasing inertia weight. PSO-TVAC [13] is a PSO with time-varying acceleration parameters and
incorporating a self-organizing method. PSO-CK is a PSO with a constriction factor [9]. CLPSO delivers a
comprehensive-learning strategy, which is used to yield better performance for multimodal functions [12].

11

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 20

10− 10

100

1010

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(a)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 20

10− 10

100

1010

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(b)

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000

10− 30

10− 20

10− 10

100

1010

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(c)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 15

10− 10

10− 5

100

105

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(d)

Fig. 2. Performance of the algorithms for four 30-dimensional benchmark functions.(a) f5. (b) f6. (c) f7. (d) f8.

APSO is an adaptive PSO, which can adjust the acceleration coefficients and inertia weight adaptively
[16] according to an evolutionary factor by calculating average distance. The parameters for these PSOs
are provided in Table II.

TABLE II
PSO ALGORITHMS FOR COMPARISON

Algorithm Parameters Reference
SPSO w : 0.729, c1 : 1.49, c2 : 1.49,local structure [24]

PSO-LDIW w : 0.9− 0.4, c1 = c2 = 2 [10, 14, 15]
PSO-TVAC w : 0.9− 0.4, c1 : 2.5− 0.5, c2 : 0.5− 2.5 [13]

PSO-CK w : 0.729, c1 : 1.49, c2 : 1.49 [9]
CLPSO w : 0.9− 0.4, c = 1.49, m = 7 [12]
APSO Automatically chosen [16]

FLPSO-QIW w : 0.9− 0.2, m = 1 this paper

In all the experiments, the algorithm configuration of the FLPSO-QIW is listed as follows. The č1 and
č2 are set to 1.5, which is close to the value of c = 1.494 in CLPSO. In (10)-(12), ĉ1 and ĉ2 are set to 2
and 1, respectively. In the following experiment, we will also show the bounds of c2 − c1 is vital for the
search performance. κ1 and κ2 are set to 0.1 and 0.001, respectively.

All the algorithms use the same number of 2 × 105 fitness evaluations (FEs) for each test function.
Further, all the experiments are performed on the same machine with a Core 2 2.26-GHz CPU, 2-GB
memory, and Windows XP operating system. The initialization of each PSO is uniformly dispersed in
Initial Range described in Table I. The results are obtained by following the similar methods in [12, 16,
31]. Each algorithm will repeat 30 times independently for eliminating random discrepancy.

12

TABLE III
SEARCH RESULT COMPARISONS AMONG SEVEN PSOS ON EIGHTEEN TEST FUNCTIONS AND COMPARISONS BETWEEN FLPSO-QIW

AND OTHER PSOS ON T-TESTS

SPSO PSO-LDIW PSO-TVAC PSO-CK CLPSO APSO FLPSO-QIW
f1 Mean 5.3e-189 1.20e-31 4.14e-7 1.02e-92 1.12e-28 5.23e-113 1.09e-100

Std. Dev. 0 6.04e-31 2.06e-6 5.08e-92 1.48e-28 2.81e-112 4.13e-103
t-test = + + = + = *

f2 Mean 17.3 30.87 28.22 5.81 22.83 22.7 20.7
Std. Dev. 2.3 24.26 14.22 5.42 14.9 19.2 19.1

t-test = = + - = = *
f3 Mean 58.5 52.46 36.9 70.6 0.03 2.3 0

Std. Dev. 11.7 42.38 8.67 21.9 0.18 7.1 0
t-test + + + + = = *

f4 Mean 36.6 26.09 27.05 60.5 0 1.9 0
Std. Dev. 12.0 17.27 9.39 17.1 0 6.0 0

t-test + + + + = = *
f5 Mean 7.1e-15 0.75 0.26 3.1 2.27e-14 0.0015 5.77e-15

Std. Dev. 1.1e-15 3.78 0.49 1.8 4.36e-15 0.0039 1.80e-15
t-test + = + + + + *

f6 Mean 0.001 14.2 0.017 0.08 1.18e-15 9.0 0
Std. Dev. 0.005 71.03 0.02 0.2 4.49e-15 52.3 0

t-test = = + + = = *
f7 Mean 0.017 0.01 1.67 0.6 1.67e-28 1.5e-5 1.5e-32

Std. Dev. 0.05 0.03 1.12e-15 0.92 1.66e-28 4.2e-5 9.42e-34
t-test + + + + + + *

f8 Mean 0.2 0.52 0.2 8.4 1.15e-10 0.15 5.39e-10
Std. Dev. 0.4 0.97 0.02 2.9 1.2e-10 0.1 4.28e-10

t-test + + + + = + *
f9 Mean 6.5e-5 7579.07 4959.46 9.9e-15 725.55 9.89e-9 10.4

Std. Dev. 0.0001 8281.14 6758.67 3.4e-14 375.08 1.4e-8 10.2
t-test - + + - + - *

f10 Mean 35.3 45.59 51.49 19.1 28.7 29.0 32.3
Std. Dev. 23 39.36 41.36 17.8 0.54 15.8 19.5

t-test = = + - = = *
f11 Mean 69.9 81.12 61.76 78.9 88.0 84.0 20.8

Std. Dev. 18 30.90 16.5 18.8 18.3 24.1 17.2
t-test + + + + + + *

f12 Mean 71.6 85.68 63.03 88.9 84.3 82.6 22.0
Std. Dev. 12.8 29.42 18.9 17.9 15.1 20.4 16.2

t-test + + + + + + *
f13 Mean 1.3 3.56 2.77 3.0 0.0004 2.6 6.6e-15

Std. Dev. 0.78 4.09 3.36 1.4 0.0009 0.9 1.59e-15
t-test + + + + + + *

f14 Mean 0.005 0.011 0.02 0.04 2.4e-5 0.02 3.32e-10
Std. Dev. 0.007 0.01 0.02 0.04 6.2e-5 0.03 1.58e-9

t-test + + + + = + *
f15 Mean 0.29 0.14 1.67 1.8 0.11 0.02 3.24e-20

Std. Dev. 0.54 0.34 1.12e-15 2.9 0.14 0.03 1.52e-19
t-test + + + + + + *

f16 Mean 13.1 7.81 8.4 15.5 10.67 14.7 0.1
Std. Dev. 3.3 2.50 2.5 3.4 1.62 3.3 0.2

t-test + + + + + + *
f17 Mean 1265.99 1883 1883 1866 22.9 709.3 7.7

Std. Dev. 437 154 154 227 47.4 504 27.3
t-test + + + + = + *

f18 Mean 274 360 248 236 162 332 76.2
Std. Dev. 164 197 214 84 8.5 143 13.6

t-test + + + + + + *
Score 12 14 18 12 10 10 *

13

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000

10− 10

10− 5

100

105

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(a)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
100

101

102

103

104

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

50

100

150

200

250

300

350

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

0

50

100

150

200

250

300

350

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(d)

Fig. 3. Performance of the algorithms for four 30-dimensional benchmark functions.(a) f9. (b) f10. (c) f11. (d) f12.

B. Comparisons on the solution accuracy
The mean solutions and standard deviation (Std. Dev.) of the solutions in 30 independent runs are listed

in Table III. The best result among those PSOs is indicated by Boldface in the table. Figs. 1-5 show the
comparisons in terms of convergence, mean solutions and evolution processes in solving 18 benchmark
functions.

From the Table III and Figs. 1-5, the FLPSO-QIW provides the best performance on the f3−f7, f11−f18

and ranks the second on f1, f2 and f8. SPSO can reach the highest accuracy on f1. FLPSO-QIW delivers
good performance on f1, which is used to test the convergent rate. PSO-CK offers the best performance
on f2, f9 and f10. The results show that SPSO and PSO-CK have good ability of convergence speed. On
multimodal optimization problems without rotation, FLPSO-QIW can achieve the highest performance on
f3 − f8 among seven PSOs, as seen from Table III, Figs. 1(c)-(d) and Fig. 2. CLPSO ranks second on
these benchmarks f3, f4, f6, f7 on accuracy and performs a little better than FLPSO-QIW on f8 with a
slow convergence speed. On rotated multimodal problems f11 − f16, FLPSO-QIW performs much better
than other PSOs. Table III and Figs. 3(c)-(d) and Fig. 4 illustrate the competitive performance of FLPSO-
QIW. One can observe that the proposed method can help the PSO to search the optimum as well as
maintaining a higher convergence speed when dealing with multimodal rotated functions. On composite
functions f17 and f18, FLPSO-QIW can deliver best search performance and high convergence speed
among these PSOs, as illustrated in Table III and Fig. 5. The capabilities of avoiding local optima and
finding global optimum of multimodal functions indicate the superiority of FLPSO-QIW.

For a thorough comparison, the t-test has also been carried out in this paper. Table III presents the score
on every function of this two-tailed test with a significance level of 0.05 between the FLPSO-QIW and
another PSO algorithm. Rows “+ (Better),” “= (Same),” and “- (Worse)” give the number of functions that
the FLPSO-QIW performs significantly better than, almost the same as, and significantly worse than the
compared algorithm on fitness values in 30 runs, respectively. Row “Score” shows the difference between

14

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 15

10− 10

10− 5

100

105

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(a)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 10

10− 5

100

105

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(b)

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 20

10− 10

100

1010

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(c)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
10− 3

10− 1

101

103

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(d)

Fig. 4. Performance of the algorithms for four 30-dimensional benchmark functions.(a) f13. (b) f14. (c) f15. (d) f16.

FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
101

102

103

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(a)
FEs

M
e
a
n

fi
tn

e
ss

:f
(x

)
−

f
(x

∗
)

0 50000 100000 150000 200000
101

102

103

FLPSO−QIW
PSO−CK
PSO−LDIW
PSO−TVAC
APSO
CLPSO
SPSO

(b)

Fig. 5. Performance of the algorithms for four 30-dimensional benchmark functions.(a) f17. (b) f18.

the number of +’s and the number of −’s, which is used to give an overall comparison between the two
algorithms. For instance, comparing the FLPSO-QIW and the SPSO, the former significantly outperforms
the latter on seven functions (f3, f4, f5, f7, f8, f11, f12, f13, f14, f15, f16, f17 and f18), does almost the
same as the latter on four functions (f1, f2, f6 and f10), and does worse on f9 function, yielding a Score
merit of 13−1 = 12, indicating that the FLPSO-QIW generally outperforms the SPSO. Although it worked
slightly weaker on some functions, the FLPSO-QIW in general offered much improved performance than
all the PSOs compared, as confirmed in Table III. It is also worth pointing out that the FLPSO-QIW
performs much better than the other PSOs on rotated and composite optimization problems.

Comparing the results and the convergence graphs, among these seven PSO algorithms, the PSO-LDIW
and the PSO-TVAC cannot perform well on all the functions. The CLPSO has good global search ability
and slow convergence speed. The APSO can converge to the best solution found so far very quickly

15

TABLE IV
CONVERGENCE SPEED AND ALGORITHM RELIABILITY COMPARISONS; ’-’ REPRESENTING NO RUNS REACHED AN ACCEPTABLE

SOLUTION

SPSO PSO-LDIW PSO-TVAC PSO-CK CLPSO APSO FLPSO-QIW
f1 Mean FEs 14968 105803 45669 8953 56172.2 7176 26730.2

Right Percentage(%) 100 100 100 100 100 100 100
f2 Mean FEs 8373.72 97634 40850.3 5191 54753.4 6099 24911.2

Right Percentage(%) 100 100 100 100 100 100 100
f3 Mean FEs 2511.8 100387 47345.1 3225 54847.3 3474 6899.63

Right Percentage(%) 23.3 50 90 13.3 100 100 100
f4 Mean FEs 25385.6 120030 51313.5 13334 43254.6 3341 3180

Right Percentage(%) 83.3 90 100 36.7 100 100 100
f5 Mean FEs 18659.8 111933 50494.8 - 63097.7 56178 35045.4

Right Percentage(%) 100 96.7 76.7 0 100 96.7 100
f6 Mean FEs 10490.1 111273 48358.6 8878 64260.7 10543 33022.2

Right Percentage(%) 90 43.3 50 23.3 100 56.7 100
f7 Mean FEs 16990 97955 - 15091 46810 33399 23155

Right Percentage(%) 86.7 90 0 43.3 100 100 100
f8 Mean FEs 16260.4 118947 - - 78017.4 - 44116.6

Right Percentage(%) 56.7 60 0 0 100 0 100
f9 Mean FEs 40293.3 129523 63162 18811 - 21808 106032

Right Percentage(%) 100 33.3 53.3 100 0 100 100
f10 Mean FEs 8517.48 95260.2 39344.5 5089 46849.5 5297 25981.3

Right Percentage(%) 100 90 80 100 100 100 100
f11 Mean FEs 11165.7 100387 61298.9 2767 121104 4199.80 50162.8

Right Percentage(%) 96.7 50 96.7 90 70 80 100
f12 Mean FEs 11695.8 123628 68345.9 2606 111435 18110 45624.4

Right Percentage(%) 93.3 70 96.7 73.3 83.3 86.7 100
f13 Mean FEs 4948.72 - 49442 - 112375 - 37610.3

Right Percentage(%) 20 0 3.3 0 96.7 0 100
f14 Mean FEs 505.28 113561 50322.7 13613 73009 10510 32733.3

Right Percentage(%) 100 53.3 36.7 20 100 43.3 100
f15 Mean FEs 77905 131640 - 86552 122008 75667 39062

Right Percentage(%) 40 56.7 0 26.7 56.7 23.3 100
f16 Mean FEs 4361.2 96677.7 41340.7 - 125887 - 15443.3

Right Percentage(%) 13.3 86.7 70 0 23.3 0 100
f17 Mean FEs - - - - 75300.8 76890 33402

Right Percentage(%) 0 0 0 0 90 10 93.3
f18 Mean FEs - - 15211 - - - 142270

Right Percentage(%) 0 0 33.3 0 0 0 100
Mean Reliability 66.8 59.4 54.8 40.3 78.9 55.3 99.6

though it is easy to stuck in the local optima. The SPSO and the PSO-CK have good search capability
on unimodal optimization problems. The FLPSO-QIW has good local search ability and global search
ability at the same time.

C. Comparisons on convergent rate and successful percentage
The convergent rate for achieving the global optimum is another key point for testing the algorithm

performance. Note that in solving real-world optimization problems, the “FE” overwhelms the algorithm
overhead. Hence, the computation times of these algorithms are not provided here. Table IV shows that
FLPSO-QIW needs least FEs to achieve the acceptable solution on f4, f15, f16, f17 and f18, which
reveals that FLPSO-QIW has a higher convergent rate than other algorithms. ALthough SPSO, PSO-CK
or APSO might outperform FLPSO-QIW on the other functions, SPSO, PSO-CK and APSO have much
worse successful ratio and accuracy than FLPSO-QIW on the tested functions. In addition, FLPSO-QIW
can achieve accepted value with a good convergence speed and accuracy on most of the functions, as
seen from Figs. 1-5 and Table IV. Table IV also shows that FLPSO-QIW yields a highest percentage
for achieving acceptable solutions in 30 runs. According to the no free lunch theorem [33], any elevated
performance over one class of problems is offset by performance over another class. Hence, one algorithm

16

cannot perform better on convergence speed and accuracy than the others on every optimization problem.
In summary, the FLPSO-QIW performs best on multimodal functions with or without rotation and has

good search ability of unimodal function. Owing to the proposed techniques, the FLPSO-QIW processes
capabilities of fast convergence speed, the highest successful ratio and the best search accuracy among
these PSOs.

D. Analysis on the Computational Complexity of Algorithms
Following the methods in [31], the computational complexity of the algorithms discussed in this paper

is computed as in Table V. Computations of T0, T1, and T̂2 can be referred in [31] and thus one can obtain
(T̂2−T1)/T0. The results of PSO-LDIW, PSO-TVAC, SPSO, PSO-CK, APSO, CLPSO and FLPSO-QIW
are obtained in Table V. All of the time values are measured in CPU seconds. The results of PSO-LDIW,
PSO-TVAC, SPSO, PSO-CK, APSO, CLPSO and FLPSO-QIW are obtained on a PC with CPU Dual
Core 2.26 GHz, RAM 2G, Platform: MATLAB 2009a. The computational complexity of FLPSO-QIW is
modest, with a complexity value near 2.

TABLE V
COMPUTATIONAL COMPLEXITY OF ALGORITHMS

Algorithm T0 T1 T̂2 (T̂2 − T1)/T0

SPSO 1.95 18.72 41.59 11.72
PSO-LDIW 1.95 18.72 41.45 11.65
PSO-TVAC 1.95 18.72 41.83 11.85

PSO-CK 1.95 18.72 40.80 11.33
CLPSO 1.95 18.72 20.53 0.92
APSO 1.95 18.72 40.65 11.24

FLPSO-QIW 1.95 18.72 22.89 2.13

E. Performance of feedback mechanism and ELS
Fitness feedback mechanism and ELS are also used to test them on the search performance of FLPSO-

QIW. The fitness feedback mechanism is the method described in Eqs. (9)-(12). The ELS method is
illustrated in Eqs. (15)-(21). We compare the effectiveness of FLPSO-QIW without feedback mechanism,
FLPSO-QIW without ELS and complete FLPSO-QIW here to show the performance of feedback mecha-
nism and ELS. Results of 30 independent runs and comparisons between FLPSO-QIW with other variants
of FLPSO-QIW on t-test of fitness value are shown in Table VI. The explanation of symbols “+”, “−”
and “=” are provided in Section III-B.

From the results, it can be seen that FLPSO-QIW with both ELS and feedback mechanism is the best
among three variants of FLPSO. FLPSO-QIW with two techniques can search with highest accuracy
and fastest convergence speed. For t-test of fitness value, it can be found that FLPSO-QIW performs
significantly better on f4 than FLPSO-QIW without ELS. It can also be observed that FLPSO-QIW
performs significantly better on f5 than FLPSO-QIW without feedback mechanism. FLPSO-QIW can not
only deliver a highest accuracy on unimodal functions, but also offer a good global search performance
on multimodal functions.

To summarize, the full FLPSO-QIW is the most powerful for the tested functions. The results verify
that fitness feedback method can accelerate the convergence and enhance accuracy and ELS can help the
swarm to have a better search performance.

F. Performance of quadratic inertia weight and its parameters setting

In this subsection, the quadratic inertia weight with linear inertia weight is compared. Moreover, the
parameter setting is also considered. In all the experiments, w1 is set 0.9 so that only w2 is adjusted in

17

TABLE VI
ADVANTAGES OF FEEDBACK MECHANISM AND ELS

Algorithms Functions f1 f4 f5 f6 f11 f13

FLPSO-QIW without Average 9.69e-97 0.56 6.36e-15 0 37 5.65e-15
ELS Std. Dev. 4.29e-96 0.81 1.7e-15 0 6 1.8e-15

FEs 26625 48926 31455 30060 71136 34979
t-test = + = = = =

FLPSO-QIW without Average 5.7e-46 0 8.3e-15 4.04e-14 33.4 7.9e-15
feedback approach Std. Dev. 2.2e-45 0 2.4e-15 1.5e-13 19.5 1.4e-15

FEs 36175 3475 41477 51335 72681.9 46821
t-test = = + = = =

FLPSO-QIW Average 1.09e-100 0 5.77e-15 0 20.8 6.6e-15
Std. Dev. 4.13e-103 0 1.8e-15 0 17.2 1.6e-15

FEs 26730 3180 35045 33022 50162 37610

TABLE VII
PERFORMANCE OF QUADRATIC INERTIA WEIGHT AND ITS PARAMETERS SETTING(THE BEST VALUE IS IN BOLD FONT.)

Functions f1 f4 f5 f6 f11 f13

linear inertia weight Average 1.1E-71 0 7.43e-15 4.81e-17 35.7 7.43e-15
(w2 = 0.4) FEs 40302 3321 59796 56731 87909 63360

t-test = = + = + =
linear inertia weight Average 1.04e-85 0 6.72e-15 0 22.2 6.37e-15

(w2 = 0.2) FEs 34768 3309 49075 47100 65277 52038
t-test = = = = = =

quadratic inertia weight Average 3.8e-96 0 6.48e-15 2.47e-4 31.2 6.37e-15
(w2 = 0.3) FEs 28322 3140 37839 35290 72472 40503

t-test = = = = = =
quadratic inertia weight Average 4.7e-100 0.03 5.18e-15 0 24.9 6.3e-15

(w2 = 0.1) FEs 24907 3247 32912 31943 49480 35391
t-test = = = = = =

quadratic inertia weight Average 1.09e-100 0 5.77e-15 0 20.8 6.6e-15
(w2 = 0.2) FEs 26730 3180 35045 33022 50162 37610

this paper. Results of 30 independent runs and comparisons between FLPSO-QIW with other parameter
setting of FLPSO-QIW on t-test of fitness value are illustrated in Table VII.

The results on f1, f4, f5, f6, f11, f13 are listed in Table VII. It can be observed that PSO with quadratic
inertia weight can achieve faster convergence speed than that with linear inertia weight. In addition,
a smaller w2 will lead to a higher convergence speed than a larger one, which is consistent with the
description in [14]. However, PSO with a small w2 will get into the local optima easier than that with
a large one when testing f4. The results of t-test only show that FLPSO-QIW significantly performed
better than FLPSO with linearly decreased inertia weight w2 = 0.4. The comparisons in t-test between
FLPSO-QIW with other three variants of FLPSO-QIW show that FLPSO-QIW performs almost the same
as other three variants of FLPSO-QIW, which indicates that FLPSO-QIW is not sensitive to the adjustment
of parameters. In order to make a balance of high accuracy and rapid search speed, w2 = 0.2 is selected in
our paper. It is worth noting that other parameters can be chosen according to the different requirements
of application.
G. Performance of time-varying acceleration parameters

In this subsection, the effects of ĉ1 and ĉ2 are investigated on FLPSO-QIW here. For the sake of
simplicity, in this paper, the mean values of ĉ1 and ĉ2 are both set to 1.5, which is close to the value
1.494 adopted in CLPSO. After fixing the mean value, the range of ĉ1 − ĉ2 is tuned gradually. It can be
observed from Table VIII that a larger range of ĉ1− ĉ2 can lead to a faster convergence speed of PSO, as
seen from Table VIII. The comparisons in t-test between FLPSO-QIW with other three parameter settings
of FLPSO-QIW show that FLPSO-QIW perform almost the same as other three parameter settings of
FLPSO-QIW, which indicates that FLPSO-QIW is not sensitive to adjustment of parameters. In order
to make a balance of rapid convergence rate and search accuracy, ĉ1 = 2 and ĉ2 = 1 are used as a

18

TABLE VIII
EFFECTS OF ĉ1 AND ĉ2 ON SEARCH ACCURACY AND CONVERGENCE RATE(THE BEST VALUE IS IN BOLD FONT.)

ĉ1 = 2, ĉ2 = 1 ĉ1 = 2.25, ĉ2 = 0.75 ĉ1 = 1.75, ĉ2 = 1.25 ĉ1 = ĉ2 = 1.5
f1 Average 1.09e-100 1.1e-102 9.1e-99 7.6e-49

Mean FEs 26730 24144 28723 31312
t-test * = = =

f4 Average 0 0 0 0
Mean FEs 3180 3256 3240 3224

t-test * = = =
f5 Average 5.77e-15 5.65e-15 5.77e-15 6.3e-15

Mean FEs 35045 36038 35130 35044
t-test * = = =

f6 Average 0 0 0 0
Mean FEs 33022 28996 39737 42640

t-test * = = =
f11 Average 20.8 24 29.8 22.3

Mean FEs 50162 51970 52767 51402
t-test * = + =

f14 Average 3.3e-10 0.0002 6.36e-12 3.6e-14
Mean FEs 33402 30652 40756 42770

t-test * = = =

representative parameter setting in our paper.
IV. CONCLUSION

In this paper, a feedback learning PSO with quadratic inertia weight has been proposed to solve various
types of optimization problems. In the proposed PSO, the fitness information is used to control the
parameters of PSO. The acceleration coefficients are determined by both generation time and search
environment. The inertia weight is calculated by a quadratic function. A large number of experiments
verify that the feedback learning strategy enables the FLPSO-QIW to make use of the information in
swarm. In comparison with six PSO variants, the FLPSO-QIW works in a more effective way and find
better quality solutions more frequently.

V. ACKNOWLEDGEMENTS

The authors are grateful to the Editor-in-Chief, Associate Editor and anonymous reviewers for their
careful reading and constructive comments.

REFERENCES

[1] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference On Neural Network, 1995, pp.
1942-1948.

[2] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga MS, Handling multiple objectives with particle swarm optimization, IEEE Trans.
Evol. Comput., vol. 8, no. 3, pp. 256-279, Jun. 2004.

[3] R. A. Krohling and L.dos Santos Coello, Coevolutionary particle swarm optmization using Gaussian distribution for solving constrned
optimization problems, IEEE Trans. Syst., Man, Cybern. B, vol.36, no.6, pp.1407-1416, Dec. 2006.

[4] X. Cai, Z. Cui, J. Zeng, and Y. Tana. Dispersed particle swarm optimization. Information Processing Letters, 105:231-235, 2008.
[5] P. S. Andrews, An investigation into mutation operators for particle swarm optimization, in Proc. IEEE Congr. Evol. Comput., Vancouver,

BC, Canada, 2006, pp. 1044-1051.
[6] P. J. Angeline, Using selection to improve particle swarm optimization, in Proc. IEEE Congr. Evol. Comput., Anchorage, AK, 1998,

pp. 84-89.
[7] F. VD. Bergh and A. P. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE Trans. Evol. Comput. , vol. 8.,no. 3

pp.225-239, June 2004.
[8] Y. P. Chen, W. C. Peng, and M. C. Jian, Particle swarm optimization with recombination and dynamic linkage discovery, IEEE Trans.

Syst., Man, Cybern. B, Cybern., vol. 37, no. 6, pp. 1460-1470, Dec. 2007.
[9] M. Clerc, J. Kennedy, The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space, IEEE Transactions

on Evolutionary Computation 6(1). Piscataway, NJ, 2002, pp. 58-73.
[10] R. C. Eberhart and Y. H. Shi, Particle swarm optimization: Developments, applications and resources, in Proc. IEEE Congr. Evol.

Comput. Seoul, Korea, 2001, pp. 81-86.

19

[11] R. Mendes, J. Kennedy, and J. Neves, The fully informed particle swarm: Simpler, maybe better, IEEE Trans. Evol. Comput., vol. 8,
no. 3, pp. 204-210, Jun. 2004.

[12] J.J. Liang, P.N. Suganthan, S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,
IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295, Jun. 2006.

[13] A. Ratnaweera, SK. Halgamure, HC. Watson. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration
coefficients. IEEE Trans Evol. Comput. 2004;8:240-55.

[14] Y. Shi and R. C. Eberhart, A modified particle swarm optimizer, in Proc. IEEE Congr. Evol. Comput., 1998, pp. 69-73.
[15] Y. Shi, RC Eberhart. Parameter selection in particle swarm optimization. In: Proceedings of the 7th international conference on

evolutionary programming VII. LNCS, vol. 1447. New York: Springer-Verlag; 1998. p. 591-600.
[16] Z. Zhan, J. Zhang, Y. Li, H.S.H. Chung, Adaptive particle swarm optimization, IEEE Trans. System, man and cybernetics-B,

39(2009)1362-1381.
[17] J. Kennedy, The particle swarm social adaptation of knowledge, in Proc. IEEE Int. Conf. Evol. Comput., Indianapolis, IN, Apr. 1997,

pp. 303-308.
[18] J. Kennedy, Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. Proceedings of the 1999

Conference on Evolutionary Computation, 1931-1938.
[19] J. Kennedy and R. Mendes, Population structure and particle swarm performance, in Proc. IEEE Congr. Evol. Comput., Honolulu, HI,

2002, pp. 1671-1676.
[20] J. Kennedy and R. Mendes, Neighborhood topologies in fully informed and best-of-neighborhood particle swarms, IEEE Trans. Syst.,

Man, Cybern. C, Appl. Rev., vol. 36, no. 4, pp. 515-519, Jul. 2006.
[21] S. Hsieh, T. Sun, C. Liu, and S. Tsai, Efficient Population Utilization Strategy for Particle Swarm Optimizer, IEEE Trans. On SMC-B,

VOL. 39, NO. 2, pp. 444-456, 2009.
[22] M. Lovbjerg, T. K. Rasmussen, and T. Krink, Hybrid particle swarm optimizer with breeding and subpopulations, in Proc. Genetic

Evol. Comput. Conf., 2001, pp. 469-476.
[23] K. Deb and N. Padhye, Improving a Particle Swarm Optimization Algorithm Using an Evolutionary Algorithm Framework, KanGAL

Report Number 2010003.
[24] D. Bratton; J. Kennedy. Defining a standard for particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence

Symposium. Honolulu, United States: 2007.
[25] B. Liu, L. Wang, Y. H. Jin, F. Tang, and D. X. Huang, Improved particle swarm optimization combined with chaos, Chaos, Solitons

Fractals, 25(5), 1261-1271, 2005.
[26] W. Hong, Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model, Energy

Conversion and Management, 50(1), 105-117, 2009.
[27] Z. Wang, D. W. C. Ho., and X. Liu. Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE

Transactions on Automatic Control, 48(2003)1254-1258.
[28] Z. Wang, F. Yang, Daniel W. C. Ho, and X. Liu, Robust H∞ Control for Networked Systems With Random Packet Losses, IEEE

Trans Systems, man and cybernetics-PART B, VOL. 37, NO. 4, AUGUST 2007.
[29] X. Yao, Y. Liu and G. M. Lin, Evolutionary programming made faster, IEEE Trans. Evol. Comput., vol.3, no.2, pp.82-102, July,. 1999.
[30] J. J. Liang, P. N. Suganthan, and K. Deb, Novel composition test functions for numerical global optimization, in Proc. Swarm Intell.

Symp., Jun. 2005. [Online]. Available: http://www.ntu.edu.sg/home/EPNSugan.
[31] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari, Problem definitions and evaluation criteria for

the CEC2005 special session on real-parameter optimization, in Proc. IEEE Congr. Evol. Comput.,2005, pp.1-50.
[32] R. Salomon, Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions, BioSystems, vol. 39, pp.

263-278, 1996.
[33] D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Congr. Evol. Comput. vol. 1, no, 1, pp. 67-82,

Apr. 1997.

